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Gaussian Process Based Predictive Control

for Periodic Error Correction
Edgar D. Klenske, Melanie N. Zeilinger, Bernhard Schölkopf, and Philipp Hennig

Abstract—Many controlled systems suffer from unmodeled
nonlinear effects that recur periodically over time. Model-free
controllers generally cannot compensate these effects, and good
physical models for such periodic dynamics are challenging to
construct. We investigate nonparametric system identification
for periodically recurring nonlinear effects. Within a Gaussian
process regression framework, we use a locally periodic co-
variance function to shape the hypothesis space, which allows
for a structured extrapolation that is not possible with more
widely used covariance functions. We show that hyperparameter
estimation can be performed online by using the maximum a-
posteriori point estimate, which provides an accuracy comparable
to sampling methods as soon as enough data to cover the periodic
structure has been collected. It is also shown how the periodic
structure can be exploited in the hyperparameter optimization.
The predictions obtained from the Gaussian process model are
then used in a model predictive control framework to correct for
the external effect. The availability of good continuous predictions
allows control at a rate higher than that of the measurements.
We show that the proposed approach is particularly beneficial
for sampling times that are smaller than, but of the same
order of magnitude as, the period length of the external effect.
In experiments on a physical system, an electrically actuated
telescope mount, this approach achieves a reduction of about
20% in root mean square tracking error.

I. INTRODUCTION

S
CREWS AND GEARS are not the only source of pe-

riodically recurring errors in dynamical systems. Every

system that is tied to the ubiquitous day- and night cycle (like

building control or energy systems) or to recurring movements

(like a beating heart or a satellite) suffers from periodic errors.

Since these effects are often small relative to the required

control precision, they are in practice usually neglected in

the controller design. For high precision control systems,

however, such errors can be the dominant source of problems.

Correcting errors only after they are measured leads to a

delay in the error correction. If these errors can be anticipated,

the control performance can be significantly improved. While

errors arising stochastically cannot be preempted systematically,

periodic effects are amenable for prediction: Since their future

resembles their past, extrapolation (prediction) is easier and

more structured. Based on this idea, we present a framework
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72076 Tübingen, Germany. e-mail: {edgar.klenske, bernhard.schoelkopf,
philipp.hennig}@tuebingen.mpg.de

M.N. Zeilinger is with the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, CA 94720, USA.
e-mail: melanie.zeilinger@eecs.berkeley.edu

The research of M.N. Zeilinger has received funding from the EU FP7
under grant agreement no. PIOF-GA-2011-301436-COGENT.

for identification and control of periodic effects. Our framework

continually performs identification at runtime, and is thus

applicable to stochastic time varying systems.

The correction of periodic errors has repeatedly been studied.

The “Very Large Telescope” uses an internal parametric model

for the known error sources, and a Kalman filter (e.g. [1])

as an estimator for the model parameters [2]. High precision

tracking of spacecrafts on periodic trajectories was addressed

in [3], based on predictive filtering using an extended Kalman

filter (e.g. [1]). To predict the beating motion of a human heart,

extended Kalman filtering for state estimation was used in [4],

allowing the nonlinear model to change over time. Concerning

the use of learning based models for control, there is a wide

range of literature available in the context of adaptive control.

For methods based on model predictive control see e.g. the

recent work [5], [6], [7].

In contrast to previous methods for periodic error correction,

the approach presented here does not rely on a pre-specified

finite-dimensional model class. Instead, we propose a nonpara-

metric framework based on Gaussian process (GP) regression

that is frequently used for system identification (see e.g. [8]

for a survey). It is closely related to least-squares regression,

which is the most commonly employed technique in system

identification, but is based on a probabilistic interpretation,

which can be used to guide exploration during identification

[9]. There is recent work on using GPs for state filtering [10]

and on modeling and control of nonlinear systems [8], [11].

The idea of using the learned model in predictive control is

conceptually similar to [5], [6], [12], with the key difference

that we use a GP to predict time varying effects. The textbook

[13] provides a general introduction to Gaussian processes.

A Gaussian process model is parametrized by two objects:

mean and covariance function. When used in system identifi-

cation, in particular the choice of covariance function has a

strong effect on performance, and requires consideration of the

particular dynamics to be identified. Although the literature

knows “universal” covariance functions that can technically

approximate any continuous function [14], [15], this notion

only applies in the infinite limit, and can be subject to extremely

slow (logarithmic) convergence [16], [17]. Hence, the choice

of the covariance function is often critical in practice.

In this work, the focus lies on the identification of quasi

periodic systems (§II-A) with Gaussian processes (§II-B) by

using a specific model class involving periodicity (§III-A).

A key element of GP regression is the estimation of the

hyperparameters (§III-B), which is performed by exploiting

the structure of the problem at hand (§III-C). We focus on the

case where the system up to the periodic effect is linear and
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use model predictive control to achieve optimal closed-loop

performance (§IV-A). A reformulation in the form of a tracking

problem is proposed, which offers simple implementation and

facilitates analysis of the control performance (§IV-B). To show

the qualitative properties of this framework, we apply it to a

toy problem first (§V-B). As the development of this method

was driven by a real problem in astronomy, the method is

evaluated on this problem both in simulation (§V-C1, §V-C2)

and hardware experiments (§V-C3). While GPs and MPC are

well studied techniques, the main contribution of this work

is a combination that is tailored to quasi periodic functions,

allowing for extrapolation and efficient computation, which

is crucial for online identification and control. A practical

technique for hyperparameter optimization is proposed and

the effectiveness of the approach for compensation of quasi

periodic errors is demonstrated on the experiment of a telescope

mount.

This paper extends the preliminary conference version on the

same topic [18]. We here provide a more extensive treatment of

hyperparameter estimation, discuss Markov-Chain-Monte-Carlo

(MCMC) versus maximum a-posteriori (MAP) estimation, and

propose a custom optimization method for the latter. Additional

experiments include an analysis of system behavior under

sensor failure.

II. PRELIMINARIES

A. Problem statement

Consider the dynamical system

ẋ(t) = Ax(t) +Bu(t) + g(t) (1)

composed of a linear system with dynamic matrices A, B
and a nonlinear time varying function g : R+ _R

E , where

x ∈ R
E denotes the state and u ∈ R

F the input. For simplicity,

full state measurement is assumed. The structure of (1) could

be chosen more generally – Gaussian process models can

also learn nonlinear functions of the state and input. We opt

for this linear formulation with nonlinear external reference

here to keep the resulting control problem conceptually clear

and computationally simple. If needed, the definition can also

be adapted to a nonlinear system using a nonlinear model

predictive control technique [19].

The function g captures nonlinear time dependent effects,

in particular we will focus on systems exhibiting some form

of periodic behavior. Systems with such time dependent errors

of periodic characteristic appear in different application areas,

such as building temperature control, beating-heart surgery or

electrical power grids. For strictly periodic functions, there

exists a constant period λ, such that g(t + nλ) = g(t) for

n ∈ N. However, error sources in real systems are often not

perfectly periodic in this sense, they show various forms of

phase-shift, deformation and desynchronization. To address

this issue, we generalize to consider locally periodic functions.

These are functions for which g(t) ≈ g(t + nλ) for nλ ≪ ℓ
and g(t) 6≈ g(t+nλ) for nλ ≫ ℓ, where ℓ is some measure of

temporal locality. Intuitively speaking, local periodicity means

that the periodicity is not strict, i.e. variations are allowed. In

particular, this covers functions that vary on a slower time-

scale, e.g. a decaying oscillation or an oscillation with long-term

change in shape.

We consider the case where a linear model (matrices A and

B) is available and the goal is to infer the disturbance function

g(t) online from measurements. This is motivated by the fact

that often a nominal model is derived either from physical

considerations or an offline system identification step.

At every measurement time tk, the system goes through the

following process:

1) Measure x(tk), ẋ(tk)
2) Construct observation for g(tk), update model for g(t)
3) Compute control input u(tk) = u(x(tk), g(tk)) and

apply to system (1)

It should be noted that in practice, measurements of ẋ are

generally not available and will be approximated numerically,

see also the experimental details in §V.

At this point, it should be intuitively clear that the perfor-

mance gain one can expect from the use of a periodic model

for feed-forward compensation depends on the sampling rate

of the control system: If the external error is slow compared to

the measurement rate, a locally linear model is sufficient. But if

the external error is on the same time scale as the measurement,

it helps to use feed-forward control based on GP predictions.

With the presented approach it is even possible to choose the

control interval smaller than the actual measurement interval.

See §V-C1 for a more detailed discussion.

B. Gaussian process regression

For notational simplicity, this section only covers the scalar

case of Gaussian processes. In the case of a vector-valued

function g, one GP is trained for every dimension. For

our purposes, a Gaussian process GP(g;µ, k) is an infinite-

dimensional probability distribution over the space of real-

valued functions g : R_R, such that every finite, D-

dimensional linear restriction to function values g(T ) ∈ R
D

(measurements) at times T ∈ R
D (measurement locations) is

a D-variate Gaussian distribution N (g(T );µ(T ), k(T, T )). It

is parametrized by a mean function µ(T ) : RD
_R

D, and a

covariance function k(T1, T2) : R
D1 × R

D2
_R

D1×D2 . The

mean has a relatively straightforward role; it simply shifts

predictions. The covariance function’s responsibility is more

intricate. It can be interpreted as a similarity measure over

function values in R
D and controls the shape of the Gaussian

process belief in the space of functions. It has to be chosen

such that, for any T1, T2 ∈ R
D, the matrix k(T1, T2) ∈ R

D×D,

also known as the kernel, is positive semidefinite.

If data points zi are observed at times ti with Gaussian

noise ε
zi = g(ti) + ε ε ∼ N (0, σ2), (2)

then the point-wise posterior distribution under the Gaussian

process prior and the Gaussian likelihood encoding this

observation is also Gaussian [13, §2.2], with the posterior

mean and variance

µ(t) = k⊺tTK
−1

z (3)

Σ(t) = ktt − k⊺tTK
−1kTt, (4)
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where K = k(T, T ) + σ2I is the kernel Gram matrix with

observation noise σ2, z is the vector of observations at time

points T and t is the prediction time. For notational brevity,

we use the short-hand kab := k(a, b).

GP regression is a general framework for nonlinear regres-

sion. As mentioned above, in the context of our particular

setup, it may in fact also be used to construct probabilistic

models for fully nonlinear systems g = g(x, u, t), without

major changes. For the purposes of this paper, however, we

focus on the simpler case of g = g(t), allowing for direct

incorporation in stochastic predictive control techniques.

III. GPS FOR QUASI PERIODIC FUNCTIONS

This section will propose a covariance function suitable for

the identification of quasi periodic functions and present an

efficient technique for hyperparameter optimization.

A. Quasi periodic covariance function
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Fig. 1. (a): The compound kernel kC (green) of (7) is the product of kSE

(black, (5)) and kP (red, (6)). (b): Samples drawn from Gaussian process priors
using these covariance functions (same colors). Samples using the periodic
kernel are perfectly periodic, while samples using the compound kernel are
only periodically similar on a scale controlled by the parameter ℓSE of (7).
This local periodicity can be used to increase modeling flexibility.

The way to construct a periodic hypothesis class, and the

central idea of this work, is to construct a covariance function

that focuses prior probability mass on locally periodic functions.

Among the most popular kernels for regression purposes is

the square-exponential (a.k.a. Gaussian, radial basis function)

kernel

kSE(t, t
′; ℓSE) = exp

(

−
(t− t′)2

2ℓ2SE

)

, (5)

with length-scale ℓSE. This kernel gives a stationary model

which does not allow for structured extrapolation. MacKay

[20] proposed a periodic covariance function, based on a sine-

transformation of the input:

kP(t, t
′; ℓP, λ) = exp

(

−
2 sin2

(

π
λ
(t− t′)

)

ℓ2P

)

, (6)

with length-scale ℓP and period-length λ. Function values

g(t), g(t′) jointly sampled from Gaussian process priors with

this covariance function are perfectly correlated if |t− t′| = λ,

resulting in identical function values for points that are one

period length apart. Thus sampled functions are perfectly

periodic with period λ. Within this period length, samples vary

on a typical regularity length scale of δ = sin−1(ℓP/2)λ/π,

over a range with standard deviation θ = 1 (Fig. 1).

For many systems, strict periodicity is too strong an

assumption. For example, the weather is stochastic, which has

an effect on the periodic temperature in a building. Therefore,

modeling external errors with perfect periodicity can lead

to severe overfitting and low extrapolation performance. To

weaken the perfect correlation, we use the fact that the kernel

property is closed under multiplication and addition (i.e. kernels

form a semiring, [13, §4.2.4]): Although the product of two

Gaussian processes is not a Gaussian process, the product of

two kernel functions is also a kernel and therefore a valid

covariance function for a Gaussian process.

This property of covariance functions is useful to construct

composite covariance functions either automatically from data

[21] or manually. Since we have access to physical knowledge

about the system, a suitable kernel is constructed in a qualitative

manner. Multiplying the periodic kernel with a broad square-

exponential gives another kernel whose corresponding Gaussian

process condenses mass at functions that change over time:

kC(t, t
′; θ2, ℓSE, ℓP, λ) = θ2 · kSE(t, t

′; ℓSE) · kP(t, t
′; ℓP, λ), (7)

with signal variance θ2 and the other parameters as stated above.

This kernel considers two input times similar if they are similar

under both the square-exponential and the periodic kernel. If

ℓSE ≫ λ, this allows encoding a decay in the covariance

over several oscillations. The different covariance functions

are shown in Fig. 1a, exemplary randomly sampled functions

from Gaussian processes with those covariance functions are

shown in Fig. 1b. The posterior mean of GPs with aperiodic

and periodic covariance, trained on periodic data, is shown in

Fig. 2. In the region far away from data points the predictions

are equal, whereas close predictions show significantly more

structure with the (locally) periodic kernel.

Fig. 2b illustrates the key benefit of this approach: With in-

creasing distance from data, the prediction degrades gracefully

back to the zero mean. If a (not perfect) periodicity would be

predicted with a purely periodic kernel, prediction and reality

could run out of phase over time, leading to bad predictive

performance. The proposed locally periodic covariance function

circumvents this problem.

B. Hyperparameter estimation

The combined kernel (7) has four hyperparameters, which

will henceforth be subsumed in the vector η := (θ2, ℓSE, ℓP, λ).
This includes the period length λ of the periodicity. Inferring
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(a) SE-kernel

(b) Locally periodic kernel

Fig. 2. Comparison of Gaussian process posteriors (posterior mean function
as thick line, shaded region covers two marginal standard deviations) arising
from the same periodic data (black) for the square-exponential kernel (top)
and a product of periodic and square-exponential kernel (bottom). The locally
periodic kernel provides a richer extrapolation, which can be used for improved
predictive control.

good values for η is important for good modeling performance.

The fundamental framework for such inference is provided

by Bayes’ theorem. The likelihood for observations z at

times T , conditioned on the parameters η, can be found by

marginalization over the unknown function g, which is feasible

because both p(z|g) and p(g|η) are Gaussian distributions:

p(z|T, η) =

∫

p(z|g)p(g|η)dg (8)

=

∫

N (z; gT , σ
2
I)GP(g; 0, k(η))dg

= N (z; 0,K(η)).

In order to make the method more robust, priors on the

parameters are introduced. For the strictly positive variables

θ2, ℓSE, ℓP, λ that constitute η, Gamma priors are a classic choice

(see e.g. [22]):

p(η|κ, τ) =
∏

i

ηκi−1
i exp(ηi

τi
)

Γ(κi)τ
κi

i

, (9)

where κi and τi are tuning-parameters. The choice of these

parameters is however not critical, since the effect of the

hyperparameter prior fades quickly once enough data points

have been collected. However, even under these simple priors,

Bayesian inference is not analytic, because of the complicated

shape of the likelihood (8) as a function of η. Ideally, the goal

would be to compute the marginal

p(g) =

∫

p(g|η)p(η)dη (10)

using a prior density p(η) [13]. However, this approach is

intractable and can only be performed approximately at high

computational expense. One (comparably elaborate and precise)

way to approximate the posterior distribution over η and to

marginalize over the unknown parameters η is sampling, using

a Markov chain Monte Carlo (MCMC) method. We found

shrinking-rank slice sampling [23] to be particularly well-suited

for this task and implemented the method accordingly.

The left column of Fig. 3 shows the resulting marginals on

the function g at two different points in the learning process.

Not unexpectedly, the posterior uncertainty is high after only

a few observations, in particular after less than one full period,

but collapses to a highly confident distribution after several

periods of observations have been collected.

In the latter case of high certainty, when all samples from the

posterior are close to each other, their entirety is represented

well by a single point estimate. Such an estimate can be found in

a computationally much less demanding process, by optimizing

the posterior distribution, or even just the likelihood, to find the

maximum a-posteriori (MAP) or maximum likelihood estimate,

respectively [13, §5.4.1]. The latter, maximum likelihood

approach is also known as evidence maximization, or “type-II

maximum likelihood”, in the literature, to distinguish it from

the much more simplistic approach of fitting g itself by a

maximum likelihood method.

Using the MAP estimate is one of the most widely studied

and best understood strategies in statistics [24, §9.3 – §9.6]. It

is not without weaknesses (e.g. the optimization is prone to

get stuck in local minima), some of which are often resolved

if enough data is available (Fig. 3) or by the use of customized

optimization algorithms (III-C). Other approaches, for example

integrating the hyperparameters over MAP estimates or cross

validation, have been examined in the past and found to perform

worse than the above type-II maximum likelihood approach in

practice, see e.g. [25], [13, §5.4.2].

The maximization is easier to perform in log domain, in

which the effect of the prior is additive, leading to the following

optimization problem:

η∗ = argmax
η

p(η|z, T ) = argmax
η

p(z|T, η)p(η)

= argmax
η

(log p(z|T, η) + log p(η)), (11)

where the logarithm of the likelihood is given by

log p(z|T, η) =

−
1

2
z
⊺K(η)−1

z−
1

2
log |K(η)| −

D

2
log 2π. (12)

In (11), the prior effectively turns into a regularizer, simplifying

optimization and avoiding degeneracy. The additional compu-

tational cost is negligible compared to the matrix inversion

needed for (12).

The right column of Fig. 3 shows the Gaussian process

point estimates for g resulting from MAP inference. From

the figure, it is clear that point estimation leads to a more

limited, and generally overly confident extrapolation model,

especially in early phases of learning, when the dataset does

not yet cover several periods. However, MAP offers two

advantages that make it attractive from an applied perspective:

The first one is computational cost – MCMC sampling can

be orders of magnitude more expensive than optimization

for a MAP estimate. The second one is an algebraic one:

MCMC estimates are mixtures of Gaussian process models

(see Fig. 3). This means the overall dynamical model for

the system defined by these models is a very challenging

stochastic differential equation which cannot, in general, be
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interpreted as a differential equation involving a Wiener process.

In our implementation and experiments, we thus rely on the

computationally much less taxing MAP inference.

C. Custom parameter optimization

The log-likelihood surface for η is, in general, not convex.

Fig. 4 shows a slice through this surface along the periodicity

parameter λ. Standard numerical optimizers will thus usually

return suboptimal local extrema of this function. An interesting

observation in our specific context is that the periodic structure

of the covariance function and the data is reflected in this

hyperparameter likelihood as well. The reason for this is a

harmonic effect: If the data has a true period of λ, then periodic

functions whose periodicity is an integer multiple of λ also fit

the data well, resulting in low values of (12).

Intuitively, this can be compared to a function with peri-

odicity λ, which could also be considered as a function with

period length 2λ. To see this, recall from Fig. 1b that the

periodic functions can have an arbitrary recurring pattern in

each repetition. By inspecting (12), we can gain intuition and

notice that the likelihood (12) is a nonlinear (deterministic)

function of terms of the form (6). Since each of these terms is

periodic in λ−1, the overall function will show periodicity in

that term.

This harmonic structure can be leveraged by means of

a heuristic to increase numerical stability of the optimizer.

We designed a customization of a numerical optimizer out-

lined in Alg. 1 that, after convergence to a local minimum

η = (θ2, ℓSE, ℓP, λ), also checks the function value at η′ =
(θ2, ℓSE, ℓP,

1

2
λ). If the negative log likelihood at this location

is lower, the optimizer is updated and the bisection is repeated.

The locations that are iteratively proposed during the loop (line

4 of the algorithm) are shown as vertical lines in Fig. 4. This

approach uses the (otherwise problematic) non-convex structure

in the hyperparameter optimization to find better optima.

0 50 100 150 200 250 300 350 400

λ

−
lo
g
p

likelihood

posterior

search locations

Fig. 4. Slice through the hypothesis space of hyperparameters along the
dimension of the hyperparameter λ, defining the period length of g. Logarithm
of the type-II (marginal) likelihood in thin blue, logarithm of posterior
distribution (sum of log likelihood and vague log prior, not shown) in green.
The shape of the log posterior is dominated by the likelihood, indicating that
most prior assumptions are dominated by the observed data. The meaning of
the vertical lines is explained in §III-C.

IV. GP PREDICTIONS IN MODEL PREDICTIVE CONTROL

Popular control frameworks supporting the incorporation

of feed-forward model predictions include linear quadratic

Algorithm 1 Customized optimization

1: η := (θ2, ℓSE, ℓP, λ) ⊲ initial guess

2: η^ LOCALLY OPTIMIZE(η) ⊲ use std. optimizer

3: loop

4: η′ ^(θ2, ℓSE, ℓP,
1

2
λ) ⊲ make proposal

5: if nll(η′) > nll(η) then ⊲ compare neg. log lik.

6: break ⊲ reject and leave loop

7: else

8: η^ η′ ⊲ accept proposal

9: end if

10: end loop

11: return η

regulator (LQR) techniques, see e.g. [26], or model predictive

control (MPC), see e.g. [27].

In this work we employ an online MPC framework, com-

puting the optimal control input by solving an optimization

problem for each measured state. This allows for direct

incorporation and updating of the GP model (potentially

also changing with every sampled state) as well as system

constraints, such as input constraints.

A. Discrete-time MPC formulation

A discrete-time MPC approach is used based on the

discretized model of (1)

xk+1 = Adxk +Bduk + ak, (13)

where Ad and Bd are obtained from a zero-order-hold dis-

cretization and ak is a discretization of choice of g at time

tk.

Since the optimal control input is computed at each sampling

time based on the current measured state, the model can

be updated online. An important aspect and advantage of

combining online learning of a continuous time function with

MPC is the possibility to decouple the discretization from the

sampling time. While in a standard MPC setup, unmodeled

effects only become apparent through state measurements and

therefore require fast sampling rates, the GP model captures

these effects and provides a continuous prediction of their

evolution in the future. As a result, the sampling time can

be chosen as a multiple of the discretization or prediction

interval without sacrificing performance by using the sequence

of control inputs in between state measurements. It is clear

that an upper bound on the sampling time is imposed by the

prediction horizon.

Since the prediction from the Gaussian process model is

stochastic and provides a distribution over future function

values rather than one particular sequence, stochastic MPC

methods offer a natural framework to incorporate the GP

model and make use of the posterior model uncertainty. For

an overview of recent stochastic MPC methods, see e.g. [28],

[29] and the references therein. This is an important advantage

over other nonparametric methods like kernel ridge regression

or regularized least squares, which do not provide posterior

uncertainty.
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Fig. 3. Comparison of Markov Chain Monte Carlo inference (left column) with maximum a-posteriori point estimation (right column) on hyperparameters of
the Gaussian process model. Top: initial phase of learning, after only a few observations. Bottom: convergence after observation of several periods.

A common cost function in stochastic MPC for regulating

the system state to the origin is the expected value of the sum

of stage costs

V (x(p(g)),u) := E

[

N−1
∑

n=0

l(xn(p(g)), un)

]

(14)

where p(g) = GP(g(t);µ,Σ) denotes the posterior distribution

over the function g. If the stage cost l is taken to be quadratic

(which is the case for most practical MPC problems) and since

the inputs are deterministic and the GP posterior is Gaussian,

the expected value is equivalent to using the mean of the state

evolution, i.e. the mean GP prediction of g(t) in dynamics

(1). The most common stochastic MPC problem hence results

in a deterministic formulation by using the GP posterior and

reduces to the certainty equivalent (CE) controller.

We consider the case of a quadratic stage cost in the

following. As the true function g(t) is unknown, a discrete-

time system describing the mean of the state trajectory is

approximated by replacing ak in (13) with ãk, obtained by

discretizing the mean of the GP prediction g̃. ·̃ therefore denotes

the mean estimate of the true function inferred from data and

emphasizes that these are generally not the same. The resulting

discrete-time system can directly be used in a standard MPC

formulation.

B. Tracking MPC

We propose a different formulation in the following, trans-

forming the regulation problem into a linear tracking problem.

The state of the mean discrete time system at prediction time

step k + n, starting from state xk at time step k is given by:

x̃k+n =

An
dxk +

n
∑

m=1

Am−1

d Bduk+n−m +

n
∑

m=1

Am−1

d ãk+n−m, (15)

where ãk is the discretization of the GP prediction g̃. This is

the sum of the linear system and a system driven by ãk. It can

be easily seen that the MPC problem for regulating system

(13) to the origin can be reformulated as a tracking problem

for the linear system, tracking a nonlinear reference.

The reference signal is generated from the GP prediction

according to (15):

x
ref =

[

−ãk+1 · · · −
n
∑

m=1

Am−1

d ãk+n−m

]⊺

. (16)

The resulting MPC problem is given by

(x∗,u∗) = argmin
x,u

N−1
∑

n=0

l(xn − xref
n , un) (17a)

s.t. x0 = x(tk) (17b)

xn+1 = Adxn +Bdun (17c)

u ∈ U (17d)

where U ⊆ R
F is a polytopic set defining the input constraints,

x := [x0, . . . , xN ] is the state trajectory and similarly for

u. The resulting problem is a quadratic program that can be

solved efficiently using available optimization software (e.g.

[30]) or fast MPC techniques proposed in recent years, such
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as code generation (e.g. [31]). Because this is an instance of a

basic MPC technique, the standard properties of MPC apply.

It also allows for a more principled analysis of the closed-loop

properties: Extensions in the field of tracking MPC can be

applied to ensure stability, such as reference governors, or

the periodic MPC approach in [32]. Applying the modified

tracking formulation in [32], convergence can be guaranteed if

the model g̃(t) converges to a periodic function.

Remark 1: The discrete-time model (13) with the predicted

nonlinear term ãk can in principle be used in any linear or

linearized state estimation or control method based on state

prediction. One example is the Kalman filter. The nonlinear

prediction from the GP can be incorporated into the state pre-

diction without complicating the Kalman filter equations. The

measurement update of the Kalman filter remains unchanged.

The GP predictions increase the performance by providing a

better state estimate. This leads to smaller correction terms

and smaller posterior variance.

Remark 2: Because the posterior of the Gaussian process is

a Gaussian distribution, state constraints can be included in the

form of soft constraints, penalizing the amount of constraint

violation, or chance constraints, ensuring constraint satisfaction

with a certain probability [33], [34].

Remark 3: The approach can also be applied to stage cost

functions and constraints that do not allow for a deterministic

representation using the GP model, e.g. a value-at-risk formu-

lation involving the variance of the cost by using sample-based

methods to approximate the stochastic MPC problem [35], [36].

GPs fit well in this framework by being generative models

from which sample trajectories can be easily drawn.

Remark 4: Depending on the discretization used, a trade off

between the mean and variance of a quadratic cost function can

be formulated as a deterministic optimization problem using

the posterior GP prediction:

E

[

1

2
x⊺

nQxn

]

= µ⊺

nQµn + tr(QΣn), (18a)

V

[

1

2
x⊺

nQxn

]

= µ⊺

nQΣnQµn +
1

2
tr(QΣnQΣn). (18b)

This is the case whenever the distribution N (µn,Σn) of ak
can be directly obtained from the distribution of g(t), e.g. in

the case of Euler discretization.

V. EXPERIMENTS

The presented method was implemented and used on

different test problems. After providing a toy example that

demonstrates how the state evolution is anticipated by the

use of the GP prediction, the method is evaluated for a

simulated telescope system where the performance under

different measurement frequencies and under sensor failure

is analyzed. Finally, the proposed method is tested in an

experiment on a real telescope system, showing substantial

improvements in control performance.

A. Implementation details

Since in practice the state and derivative cannot be measured

directly, they have to be approximated from potentially noisy

measurements. An observer (like the Kalman filter, e.g. [1]) can

be used to estimate the state, which increases the performance,

especially when the measurement noise is high.

Since the function to be inferred acts as additional input to

the dynamics, observations of the disturbance are constructed

from observations of the change in state, ∆x = xk+1 − xk.

We therefore assume g(t) to be piece-wise constant, here a

zero-order-hold linearization is used (chosen to be at t+ 1

2
∆t)

ak = Gdg(t+
1

2
∆t), Gd =

∫ ∆t

0

eAτdτ, (19)

where ∆t is the sampling time. Note that this is only used

to generate the data point, the resulting GP model is still a

continuous function. The value g(t + 1/2∆t) is obtained as

solution of the linear system

Gdg(t+
1

2
∆t) ≈ (xk+1 −Adxk −Bduk) , (20)

which is the data point used to train the GP.

In the experiments presented in the following, the discretiza-

tion of the mean prediction g̃(t) is obtained from the exact

discretization

ãk =

∆t
∫

0

eAτ g̃((k + 1)∆t− τ)dτ, (21)

evaluated with a standard ODE-solver [37].

B. Toy problem

As a simple problem for providing intuition, consider the

following linear dynamic (double integrator) system with an

additive time-periodic component g:

ẋ =

[

0 1
0 0

]

x(t) +

[

0
1

]

u(t) + g(t) (22a)

g(t) =

[

sin(t)
cos(1.3t)

]

. (22b)

The goal is to control the first state of the system to the origin.

We use the quadratic cost

l(xn, un) =
1

2
x⊺

nQxn +
1

2
u⊺

nRun (23)

with diagonal state weight Q = diag(100, 0). The weight on

the control input is set to R = 1, allowing for aggressive

control behavior. The horizon length of the MPC is set to

N = 15. State and input constraints are omitted for simplicity.

The system was simulated numerically with a sampling

rate of 1Hz. Fig. 5 shows control inputs and resulting

state trajectories for a model predictive controller without

information about the disturbance g, and a model predictive

controller using the posterior mean functions of two periodic

Gaussian process regressors as a model for g. One GP is trained

for each dimension of the disturbance.

After an identification phase in the first 5 s of the experiment,

the GP based controller shows a drastic performance improve-

ment. Omitting this identification phase, the root-mean-square

(RMS) error, measured with respect to the origin, drops by

90%, from 0.94 for the linear model to 0.097 for the GP based
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controller. Speaking more qualitatively, Fig. 5 also shows less

residual structure in the controlled state x1. It is visible that

control signals are applied earlier when the prediction is used.

While the GP based controller is effective at reducing the

periodic structure from the first controlled state, the regression

model itself remains able to predict the periodic error correctly

into the future, even when trained exclusively on controlled

states. This is possible because the regression model is obtained

from the controlled dynamics, so it can account for the shift

of periodicity from the states to the control input. This feature

of the framework is crucial for identifying controlled systems

(see next section).

0 10 20 30 40 50

−2

0

2

t

x
1

0 10 20 30 40 50

−5

0

5

u

Fig. 5. Closed-loop input and output trajectories under the MPC controller.
MPC using a linear model is shown as thin lines, the GP based MPC controller
as thick lines.

C. Periodic error correction for telescope mounts

The original motivation for the work presented here is

the control of periodic errors in astrophotography systems.

Telescope mounts correct for the Earth’s rotation relative to the

sky by a circular motion at the sidereal velocity. This motion

is typically produced by mechanical devices using cogs and

worm gears, which gives rise to periodic deviations. Because

contemporary telescopes, even those used by amateurs, have

high optical resolution, and because images are taken with long

exposure times, these mechanical imprecisions are frequently

the dominant source of blur on astronomical photographs.

Existing periodic error correction systems require careful

system identification by the user of the telescope. The cor-

responding measurements need to be re-aligned after every

repositioning of the telescope (that is, multiple times per night),

and still regularly lead to unsatisfactory performance.

A problem specific to this astronomical application is that

state measurement is performed by taking photographs of the

night sky, which requires relatively long exposure times, so that

the measurement frequency can reach the order of magnitude

of the periodic error. This is precisely the domain in which

we expect to see utility from a periodic model.

1) Simulated system: The period length of the periodic error

in telescopes is relatively slow. To allow rapid prototyping,

we designed a simulated system with dynamics similar to

a real telescope. Experiments have shown that the model

can be reduced by considering only the angular position as

state, measured relative to the desired state. The state can be

influenced by an input velocity. The resulting model is

ẋ = u+ g(t), (24)

with an unknown function g(t) that is observed to be quasi

periodic.

Fig. 6 shows simulation results that empirically confirm the

intuition from §II-A that the benefit of periodic prediction in

control depends on the sampling rate. Using the numerical

simulation, we compare for various sampling rates of the state

• an MPC controller using the linear model (1) with

g(t) = 0 ∀t
• two MPC controllers, both using a nonparametric, but

fully stationary (i.e. not periodic) GP model for g with the

square-exponential covariance function (5). One of these

models uses a length scale smaller than the periodicity

(i.e. it can extrapolate periodic swings locally, but not

beyond one period); the other a length scale longer than

the periodicity (i.e. it averages over the periodic variations)

• two MPC controllers using instances of the periodic

model for g described in this paper; one in which

the hyperparameters are fixed to a good value a priori

(amounting to the assumption that the period of g is

known), the other using the full setup described in §III, in

which the periodicity hyperparameter is learned by type-II

maximum likelihood during identification

Since we are only interested in the performance in the limit in

this experiment, all the controllers were run for an identification

phase of 10 period lengths to avoid artifacts from the early

identification phase. Fig. 6 then shows RMS error, i.e. deviation

of the state from the origin, after this phase as a function of

the sampling time. The RMS error is measured over 10 period

lengths starting after the identification phase. The discretization

time for the MPC is always set to 1/100 of the period length,

i.e. to 1 s. Between measurements, the MPC controllers are

operated in open-loop mode, i.e. the control inputs are obtained

from the sequence of the last MPC optimization.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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Fig. 6. Comparison of the error at different sampling times (in simulation).
MPC control inputs are computed at the indicated sampling times, shown as
a fraction of the period length. The control rate is 1Hz for every plot. The
MPC parameters were set to Q = 102 and R = 101. The horizon length
was chosen such that the horizon covers the time until the next measurement.
Between measurements, the MPCs are operated in open-loop mode. g(t) is
set to be a sine with fixed period λ = 100 s.

The results demonstrate the intuition: For sampling times

much smaller than λ, the dynamics are locally linear, and

all models achieve an error close to zero. Their performance

difference is only marginal (lower left in Fig. 6). For sampling



9

times between 10% and 80% of λ, the periodic model offers

considerable benefits. When the sampling times are close to

or larger than the periodicity, the Nyquist rate imposes limits

on identifiability of the system, which adversely affects the

performance of the periodic nonparametric model. This shows

that a broad prior can lead to bad performance if only little

data is available (c.f. §III-B). On the other hand, if λ is known

precisely, very good control is possible even for sampling

rates lower than λ. The green line in Fig. 6 represents the

performance of a system almost ignorant of λ in the beginning:

the prior is very broad. One can expect prior information about

λ of varying vagueness to give performance somewhere in the

region between the green and blue curves in Fig. 6.

Of course, the case where sampling rate and λ are equal

is special, since then g appears constant in the measurements,

and even the informed periodic model can only ever learn the

behavior of g at one unique point during the period. A weaker

version of this effect is also visible in the plot at a sampling

rate of λ/2. This “selection bias” affects all regression models,

including the aperiodic ones.

Summarizing, the proposed approach offers the main benefit

for sampling intervals between 10% and 80% of the distur-

bance period length. Whereas for short sampling intervals,

all techniques result in low errors, systems with sampling fre-

quency below the Nyquist frequency of the periodic disturbance

cannot be expected to improve with a system that has to learn

the periodicity.

2) Evaluation of fault tolerance: A similar experiment is

conducted to investigate the effect of missing measurements

on the performance of the controlled system. Fig. 7 shows the

empirical results. The setup is the same as in the experiment

described before, but now the sampling time is fixed to a

value of 5 s, while the period length is 100 s. The length of

the horizon is set to 41 time steps (i.e. 205 s), covering more

than two full periods of the periodic effect, which is a realistic

setting for a real telescope.

After giving the system enough time to learn under regular

output measurements, no new data is given to the learning

procedure to update the GP model of g(t) and no new state

estimate is available to the controller. This corresponds to a

fault in the sensor (or clouds in front of the camera in the

telescope setting). The sensor does not recover within the

simulation time. Fig. 7 shows the performance of the different

controllers, measured in terms of the RMS error and calculated

from the beginning of the fault, here at time 0. In all controller

setups, the MPC controller cannot be recomputed as there is

no state estimate available. For the next time steps (without

measurement), the MPC therefore is operated in open-loop

mode, i.e. the control inputs are taken from the control sequence

computed at the time before the fault.

At the beginning of the failure (lower left of Fig. 7), the

performance of all methods is good, since the effect of the

periodic function is still small. Over time, we see the simple

controller without prediction slowly degrading. Interestingly,

the performance of the GP with square exponential kernel

with too long a length scale performs even worse than not

predicting g(t) at all. This illustrates how critical the choice

of the hyperparameters is and that a wrong choice can even

degrade the performance. The model with sensible length scale

performs significantly better initially, but the extrapolation of

the SE kernel degrades quickly (see Fig. 2a) resulting in an

overall performance that is only slightly better than for the

linear model.

With periodic predictions, in contrast, the controllers perform

significantly better during the fault. The periodic GP is clearly

better than the SE with short length scale, even if the period

length is inferred and not fixed at a good value. The RMS

error for the GP with optimal parameter λ is virtually zero and

even a controller knowing the true function g would therefore

only show marginal improvement. This analysis shows that

the proposed combination of a periodic GP model and MPC

control is able to compensate temporary sensor failures and

maintain high control performance for locally periodic dynamic

effects.
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Fig. 7. Comparison of the RMS error after a failure (in simulation). Sampling
time and discretization time of the MPC are both 5 s. The MPC parameters
are set to N = 41, Q = 102 and R = 101. After a training period, no new
measurements are taken (“dark phase”). The MPC is operated in open-loop
mode. g(t) is set to be a sine with fixed period λ = 100 s.

3) Hardware experiment: We have tested our implemen-

tation on a physical system, a commercially available Vixen

Sphinx1 telescope mount (Fig. 8). Without closed-loop control,

this mount shows about 7′′ of RMS error after correction for

static drift. The error arises from the imperfect shape of the

cogs in the gear of this mount (Fig. 9). The imperfect shape is

not visible to the naked eye, see Fig. 10a for an uncontrolled

measurement.

Because outdoor measurements are subject to random, time-

varying effects like weather conditions, we constructed a more

reproducible experimental setup using a second, high precision

gearless ASA DDM60Pro2 telescope mount equipped with

a laser “star” as tracking reference. It has a typical tracking

RMS error of about 0.4′′. The measurement is done with a

Canon EF400DO lens3 on a “The Imaging Source” DMK

41AU02.AS4 camera.

1http://www.vixenoptics.com/mounts/sphinx.htm
2http://www.astrosysteme.at/eng/mount ddm60.html
3http://www.canon-europe.com/For Home/Product Finder/Cameras/EF

Lenses/Telephoto/EF 400mm f4 DO IS USM/
4http://www.astronomycameras.com/products/usb/dmk41au02as/
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Fig. 8. The telescope mount used for the tracking experiments. On the right
side is the camera lens used as guiding telescope. A main telescope is not
used for the tests.

Fig. 9. The gearbox of the telescope mount. One of the motors is visible on
the left. The two cogs on the right transmit the motor’s rotation to a worm
gear (not visible), which sits on the same axis and thus has the same period.
These cogs and worm gear are the likely source of the periodic error.

For the hardware interaction, the open source “PhD Guid-

ing”5 software package is used. In the original implementation

this software uses a deadbeat controller. The telescope is

connected to the computer with a Shoestring GPUSB6, a device

that sends pulse-width modulated signals to telescopes over a

commonly used 6-wire interface.

We altered the software to gain access to the measured

displacement of the camera image. The value is sent through

a network socket to MATLAB, where the controller developed

in this paper calculates the optimal control signal, which is in

turn sent back to the guiding software. The software then sends

the control signal to the telescope hardware. For plotting and

calculation of the RMS error, the measured displacement is

converted from pixels into arcseconds (′′) with an empirically

determined conversion factor.

For real-time implementation, algorithmic complexity is

relevant. The computational cost of the GP prediction scales

cubically in the number of data points. To bound computational

cost, we limit the number of used data points to 90 in a moving

window fashion. This gives a sufficient coverage of 270 s,
or about 3 periods of the short periodic component. Since

inference continuously runs in an extrapolation setting (see

5http://www.stark-labs.com/phdguiding.html
6http://www.store.shoestringastronomy.com/gpusb.htm

also Fig. 2b), this is sufficient for precise inference and control.

For the prediction of the dynamics in the model predictive

control, an ODE-solver is employed to predict the reference

(16) from the mean of the GP prediction. This has manageable

computational cost because the inference cost of a Gaussian

process is dominated by the initial one-time operation of

inverting the Gram matrix K in O(D3) time, while subsequent

evaluations of the mean function at M times only has cost

O(MD) (see (3)).

The optimization of the hyperparameters is also an expensive

part of this algorithm. As the kernel Gram matrix has to be built

and inverted at every evaluation of the objective function, the

number of evaluations has to be kept small at every sampling

time. We use a numerical optimizer based on the BFGS update

[38], [39], [40], [41], a quasi-Newton algorithm that updates an

estimate of the inverse Hessian in each iteration. In the standard

implementation, the estimate of the Hessian obtained at one

time step is discarded after each individual call to the optimizer.

For the use in the control setting, we altered the algorithm so

that the estimate of the inverse Hessian is stored and used

to initialize the optimizer’s estimate at the next sampling

time. This makes it possible to do one iteration per sampling

interval (in a sense, threading the optimization algorithm into

the learning algorithm). This significantly reduces computation

time.

The presented method was tested on two different setups,

one with an MPC based on the linear model without g and one

with the GP prediction for the periodic error. The test was run 3

times for 25min each. Both the sampling and the discretization

time were set to 3 s. The horizon length was N = 10; the state

and control weights were set to Q = 102 and R = 103. The

results of these runs are shown in Table I. The RMS error drops

by 22.64% through the use of GP predictions in this hardware

setup. Baseline measurements without movement showed about

0.25 to 0.35′′ of noise. The noise introduced by the stepper

motor could not be quantified with the current measurement

system. Overall, the presented method eliminated at least a

third of the controllable error, after subtracting baseline noise

but without taking the stepper motor into account. That is a

good result in this domain, but could probably be improved,

which is also visible through the light residual structure visible

in Fig. 10c.

Run 1 Run 2 Run 3 Mean

Plain MPC 0.9839 1.0234 0.9353 0.9809

GP-MPC 0.7365 0.7792 0.7605 0.7587

TABLE I
EXPERIMENTAL RESULTS (RMS ERROR, IN ′′)

In order to further investigate this issue and assess the

performance of the method, Fig. 11 shows the power spectra

of the measurements, obtained from the Fourier transform. It

is noticeable that the strong periodic components near 100 s
and near 500 s are highly damped with the presented method.

VI. CONCLUSION

High precision control of dynamical systems requires precise

models of even minor external error sources. Where analytic
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Fig. 10. Measurements of the state for the physical experiments with the
telescope: Without controller (a), where the shaded area shows the vertical
range of the two other plots; for plain MPC using only a linear model (b);
and for the periodic Gaussian process based MPC (c). Results (b) and (c) are
from run 2 of our experiments, which resulted in the highest (worst) RMS
error for both models (Table I).
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Fig. 11. Power spectra of the measurements of Fig. 10, plain MPC using
only a linear model (a), and periodic Gaussian process model based MPC (b).

models are not available, they can only be constructed numeri-

cally from measurements of the system. Periodic error sources

are an especially promising domain in this regard, as they

can be extrapolated well into the future. We have studied a

nonparametric modeling framework based on a carefully crafted

Gaussian process prior exhibiting a weak, localized form of

periodicity. Because Gaussian regression returns models in the

form of stochastic differential equations, they can be combined

directly with existing control frameworks. Integration into a

model predictive control scheme was investigated, which can

leverage the prediction at a desired resolution, even below the

sampling time. Numerical and physical experiments confirm the

intuitive result that the benefit of periodic models depends on

the relative size of state sampling and disturbance frequencies.

We showed that, even in cases where the gain of a periodic

prediction is only marginal during normal operation, such

models are beneficial when sensors fail temporarily. The

presented method also shows considerable increases in control

performance, confirming the practical utility of this framework.
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