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Abstract. We describe a method for recovering 3D human body pose
from silhouettes. Our model is based on learning a latent space using the
Gaussian Process Latent Variable Model (GP-LVM) [1] encapsulating
both pose and silhouette features Our method is generative, this allows
us to model the ambiguities of a silhouette representation in a principled
way. We learn a dynamical model over the latent space which allows us
to disambiguate between ambiguous silhouettes by temporal consistency.
The model has only two free parameters and has several advantages over
both regression approaches and other generative methods. In addition
to the application shown in this paper the suggested model is easily
extended to multiple observation spaces without constraints on type.

1 Introduction

We consider the problem of estimating 3D articulated human pose from monoc-
ular silhouettes. Silhouettes are commonly used for pose estimation [2,3,4,5,6]
as they contain strong cues for pose while at the same time being invariant to
texture and lighting. Pose estimation from silhouettes is difficult because of in-
herent ambiguities leading to a one to many mapping from silhouette to pose.
These ambiguities can be split into two types, (i) mis-labeling or limb flips and
(ii) out of plane rotations. The first type appears for in plane rotations when lack
of occlusion cues makes it hard to differentiate between limbs. The out-of-plane
ambiguities appear when the subject is facing the view plane: the perspective
distortions do not give strong enough cues to disambiguate limbs position out-
of-plane. Algorithms with silhouette inputs need to handle these ambiguities.

There are two lines of work on pose estimation from silhouettes, (i) methods
modeling the silhouette as a generative process from pose [4,6,7], (ii) methods
based on regression from image observations to pose [2,5,8,9]. Generative meth-
ods model the space of silhouettes as a function of pose. This will correctly reflect
the structure of the problem as each silhouette could have been generated by
several different poses but each pose can only generate one single silhouette. The
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problem arises when trying to infer pose from silhouette as, due to the multi-
modality no inverse functional mapping from silhouette to pose exists. Finding
each mode in pose space for a given silhouette is often very complicated due to
the high-dimensionality of the pose space, even approximative methods like par-
ticle filters will be very expensive as a very large number of particles are needed
to explore the high-dimensional pose space.

Regression based techniques try to model the pose space as a function of
silhouettes. However due to the multi-modality no such functional exists. To
overcome this problem it has been suggested to divide the silhouette space into
subspaces for which functionals exist [2,5]. The pose space can then be described
as a mixture of these single regressors. The structure of such a mixture has
to reflect the multi-modality such that a one-to-one mapping exist between
silhouette and pose for each subspace. In [2] the mixture centers region of support
are decided by clustering in pose space. This is based on the assumption that
ambiguities will occur between poses that have a significantly different joint
angle configuration.

In [5] clustering is initially done in silhouette feature space then each cluster
is split into several sub-clusters based on their corresponding poses. A clustering
approach will not resolve all the ambiguities as it is based on the assumption that
ambiguous silhouettes are “clearly” separated in pose space. This is only true
for a small subset of ambiguities as especially the out-of-plane type occurs for
continuous ranges in pose space. The final number of regressors will need to be
decided based on some heuristic assumption about the occurrence of ambiguities
or an error measure. There is a trade-off between generalization and training
error as the minimal error would be given if each pose were to be represented by
a separate regressor, but this would remove all generalizing capabilities of the
model.

In this paper we take a learning based approach where we model both silhou-
ette observations, joint angles and their dynamics as generative models from a
shared low dimensional latent representations using the GP-LVM [1]. In line with
other work on pose estimation [2,3,4,5,6] we have chosen to represent each image
by its silhouette. As in [2,5] each silhouette is represented using shape context
histograms [10]. We subsample each contour with one pixel spacing, acquiring
about 100 − 150 histograms for each image. To reduced the dimensionality of
the descriptor and remove the the the effects of ordering we vector quantize the
histograms using K-means clustering as described in [11], resulting in a 100D
silhouette descriptor.

As described above a generative processwill correctly handle themulti-modality
between silhouette and pose. As we are learning a low-dimensional representation
of pose we are not forced to fall-back on approximative methods for solving the
inverse of this generative mapping. Our latent representation reflects the dynam-
ics of of the data and can therefore predict poses over time in simple manner. The
model requires no manual initialization when predicting sequential data but auto-
matically initializes from training data.
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2 Gaussian Processes

Gaussian Processes (GP) [12] are generalizations of Gaussian distributions de-
fined over infinite index sets. Thereby a GP can be used to specify distribution
over functions. It is completely defined by its mean function µ(xi), which is often
taken to be zero, and its covariance function k(xi,xj). The covariance function k

characterizes the nature of the functions that can be sampled from the process.
One widely used covariance function is

k(xi,xj) = θ1e
−

θ2
2 ||xi−xj||

2

+ θ3 + β−1δij , (1)

where the parameters are given by Φ = {θ1, θ2, θ3, β} and δij is Kronecker’s
delta function. This covariance function combines an RBF function, a bias and
a white-noise term. The parameters Φ of the covariance function k will be referred
to as the hyper-parameters of the GP.

2.1 Prediction

By definition of a GP any finite number of variables specified by the process will
have a joint Gaussian distribution [12]. For regression yi = f(xi) + ǫ, with noise
ǫ ∼ N(0, β−1), where yi ∈ ℜ and xi ∈ ℜq placing a GP prior with zero mean
and covariance function k(xi, xj)

1 over f , leads to the joint distribution,

[
y

y∗

]

∼ N

(

0,

[
K K∗

KT
∗ k(x∗,x∗)

])

(2)

of a set of observed data {xi, yi}
N
i=1 and an unseen point x∗, where Kij =

k(xi,xj). Conditioning on the observed data leads to a posterior distribution
over functions. From this posterior we obtain the predictive equations of a GP
for an unseen point x∗,

y∗ = k(x∗,X)K−1Y (3)

σ2
∗ = k(x∗,x∗) − k(x∗,X)T K−1k(x∗,X), (4)

where X = [x1, . . . ,xN ]T , Y = [y1, . . . , yN ]T , y∗ is the mean prediction and σ2
∗

is the variance.

2.2 GP Training

By maximizing the marginal likelihood over functions f ,

p(Y|X, Φ) =

∫

p(Y|f,X, Φ)p(f |X, Φ)df (5)

p(f |X, Φ) = N(0,K),

1 Including a white-noise term with variance β−1.
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the hyper-parameters Φ of the GP can be learned from the observed data. This
is referred to as training in the GP framework. It might seem undesirable to opti-
mize over the hyper-parameters as the model might over-fit the data2 Inspection
of the logarithm of equation (5),

log p(Y|X) = −
1

2
tr

(
YT K−1Y

)

︸ ︷︷ ︸

data−fit

−
1

2
log |K|

︸ ︷︷ ︸

complexity

−
N

2
log 2π, (6)

shows two “competing terms”, the data-fit and the complexity term. The com-
plexity term measures and penalizes the complexity of the model, while the
data-fit term measures how well the model fits the data. This “competition”
encourages the GP model not to over-fit the data.

3 GP-LVM

Lawrence [13] proposed an algorithm for dimensionality reduction using Gaus-
sian Processes called the Gaussian Process Latent Variable Model (GP-LVM).
The GP-LVM is a generative model where each observed data point, yi ∈ ℜD,
is generated through a noisy process from a latent variable xi ∈ ℜq,

yi = f(xi) + ǫ, (7)

where ǫ ∼ N(0, β−1I). Placing a zero mean GP-prior on the generative function
f the marginal likelihood P (Y|X, Φ) can be formulated by integration over f ,

P (Y|X, Φ) =

D∏

j=1

1

(2π)
N
2 |K|

1
2

e−
1
2yT

:,jK
−1y:,j , (8)

where y:,j is the jth column from the data matrix, Y. The GP-LVM maximizes
the marginal likelihood (8) with respect to both the latent points X and the
hyper-parameters Φ of the covariance function,

{X̂, Φ̂} = argmaxX,ΦP (Y|X, Φ). (9)

In general3 there is no closed form solution for (9) and we must turn to gradient
based optimization to make progress. The only parameter of the GP-LVM that
can not be found through maximum likelihood is the dimensionality of the latent
space, q, which must be set by hand.

2 By setting the noise variance β−1 to zero the function f will pass exactly through
the observed data Y.

3 An exception is when the linear kernel is used, in which case the optimization be-
comes an eigenvalue problem [1].
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3.1 Back Constrained GP-LVM

Using a smooth covariance function the GP-LVM will specify a smooth mapping
from the latent space X to the observation space Y, this means that points
close in the latent space will be close in the observed space. Having a smooth
generative mapping does not imply that an inverse functional mapping exists.

Recently Lawrence and Quiñonero Candela [14] proposed an extension to
the GP-LVM where the model is constrained by representing each latent point
as a smooth parametric mapping from its corresponding observed data point,
xi = g(yi,W), where W is the mapping parameter set. This constrains points
that are close in the observed space to also be close in the latent space. The
mapping from observed data Y to X will be referred to as back-constraint.
Including a back-constraint in the GP-LVM model changes the maximization
in equation (9) from optimization with respect to the latent variables X to
optimizing the parameters of the back-constraining mapping,

{Ŵ, Φ̂} = argmaxW,ΦP (Y|W, Φ). (10)

3.2 GP Dynamics

For embedding sequential data Wang et. al. [15] proposed an extension to the
GP-LVM to find a latent space that would reflect the ordering of the observed
data. This is done by specifying a predictive function over the sequence in latent
space,

xt = h(xt−1) + ǫdyn, (11)

where ǫdyn ∼ N(0, β−1
dynI). A GP prior can then be placed over the function

h(x). Marginalizing this mapping results in a distribution over the latent points
which, through combination with the marginalized likelihood for the GP-LVM,
specifies a new objective function,

{X̂, Φ̂Y , Φ̂dyn} = argmaxX,ΦY ,Φdyn

P (Y|X, ΦY )P (X|Φdyn). (12)

4 GP-LVM for Pose Estimation

The aim of our model is to learn a shared latent representation X = [x1, . . . ,xN ]T

that relates corresponding pairs of feature Y = [y1, . . . ,yN ]T and pose Z =
[z1, . . . , zN ]T . In [16] a shared latent structure between two joint angle spaces,
one corresponding to a humanoid robot and the other corresponding to a human is
learned. This is done by modifying the GP-LVM to learn separate sets of Gaussian
Processes to each of the different observation spaces from a shared latent space.
The latent representation is found by maximizing the joint marginal likelihood of
the two observation spaces,

P (Y,Z|X, Φs) = P (Y|X, ΦY )P (Z|X, ΦZ), (13)
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where Φs = {ΦY , ΦZ}. We want to learn a latent structure that preserves local
distances from the pose space. This can be achieved by incorporating a back-
constraint from the pose space onto the latent space by representing the latent
points as a function of the pose. Incorporating a back-constraint from pose im-
plies we are trying to enforce a one-to-one mapping between the pose space and
the latent space. This is desirable as it will force the mapping from latent to fea-
ture to be many-to-one which means that we have contained the multi-modality
of the system to this mapping.

To back-constrain the latent space, we represent the latent points by a regres-
sion over a kernel induced feature space that allows for non-linearities,

xi =

N∑

j=1

wjφ(zi, zj) (14)

φ(zi, zj) = e−
γ
2 (zi−zj)T (zi−zj) (15)

This leads to a modified objectivewhere the positions of the latent variables are op-
timized indirectly by maximizing P (Y,Z|W, ΦY , ΦZ) = P (Y|W, ΦY )P (Z|W, ΦZ)

with respect to the parameters of the back-constraint. The latent representation
is shared by the feature space and the pose space. By back-constraining the pose
space we are encouraging the mapping between the latent space and pose space
to be one-to-one, thereby forcing the GP-LVM from latent space to silhouette fea-
tures to be many-to-one to reflect the ambiguities in the silhouette features.

4.1 Dynamical Model

Many of the pose ambiguities from our silhouette representation can be re-
solved by considering sequential data. Including a model that can predict poses
over time allows us to resolve ambiguous silhouettes by temporal consistency.
However, by learning a latent representation we can do even better. We can
incorporate the dynamic model when learning the latent representation, forc-
ing the latent representation to respect the data’s dynamics. This can be done
by specifying a GP over the latent space as in [15], incorporating this within
our back-constrained, shared latent space representation leads to the following
objective,

P (Y,Z,W|Φ) = P (Y,Z|W, Φs)P (W|Φdyn),

where Φ = {Φs, Φdyn}. Sequences of pose usually form locally smooth but glob-
ally complex trajectories through joint angle space. This makes it difficult to fit
a dynamic model when pose is represented as joint angles. Learning a dynamical
model jointly with the latent representation is beneficial as the non-linear map-
ping from latent space to pose space allows for a significantly different structure
for the latent representation and the joint angle representation. We use this prop-
erty to smoothly4 arrange the latent representation according to the dynamics

4 Due to the smooth covariance function in the dynamic GP.
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Fig. 1. Single Image Pose Estimation: Input silhouette followed by output poses asso-
ciated with modes on the latent space ordered according to decreasing likelihood

of the data. Along with the dynamics our model also contains a back-constraint.
The back-constraint will encourage that the local smoothness of the joint angle
trajectories is preserved. Our experiments show that the structure of the latent
space changes significantly when incorporating the dynamics, this difference is
evidence of the complex nature of trajectories through joint angle space.

4.2 Model Summary

Training of the model implies that we are finding a shared latent representation
X of both the observation spaces Y (the silhouette features) and Z (the pose
angles), learning two sets of GP regressors from the latent space, X, to recon-
struct each of the observation spaces. Additionally the latent space incorporates
a set of GPs which give temporal predictions. We are also learning a parametric
mapping from the pose space, Z, to the latent space, X, thereby enforcing the
latent space to preserve the local similarities of the pose space. All the remaining
parameters of the model, except two, are found through maximum likelihood.
The two remaining parameters are: (i) the width γ of the kernel that specifies
the back-constraining mapping (15). This parameter was estimated by viewing
the scatter matrix of the kernel response to the pose training data (in all our
experiments it is set γ = 10−3). (ii) The dimensionality of the latent space q

which we set to 4 for all our experiments. All other parameters of the model
(i.e. the parameters of each of the three covariance functions, the parameters
of the back-constraint and the coordinates of latent representation) are learned
from training data.

5 Pose Inference

Given a trained model which jointly represents the pose angles, Z, and the
silhouette features, Y, in terms of a shared sub-space, X, we wish to infer the
most likely sequence of pose angles given a set of silhouette features. We will
first describe inference for a single frame and then show how inference is done
for a sequence of frames.
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5.1 Single Image Pose Estimation

Inference in this model is a two stage process. In the first stage the position
on the latent space that is most likely to have generated the observed features
is found. This is done by maximizing the predictive likelihood for the GP that
maps the latent space to the given silhouette features,

x̂ = argmaxx∗

p(y∗|x∗,Y,X, ΦY ). (16)

Having forced the multi modality to be handled by the GP from latent to feature
we expect (16) to have several maxima for an ambiguous silhouette. Equation
(16) needs to be maximized using gradient based methods which require initial-
ization. For each initialization for x∗ we will find one (not necessarily unique)
maximum. To recover multiple solutions we need multiple initializations. We
chose the initializations of x∗ from the latent points, X, that correspond to the
training data, choosing the 20 most likely points to have generated y∗.

As explained in the previous section we back-constrain the latent space with
a smooth mapping from pose space with the aim of enforcing a one-to-one cor-
respondence between the latent space and the pose space. This means that given
a latent representation the pose can simply be found by mapping each of the
optimized latent points to pose space using the mean prediction from each latent
point (3) of the GP as the most likely pose for each of the modes,

ẑ = k(x̂,X)T K−1Z, (17)

and accounting for the width of the distribution around each mode using the
variance (4).

5.2 Sequence Estimation

A single feature descriptor is likely to correspond to several different poses, how-
ever a sequence of feature descriptors are less likely to be ambiguous. Learning
a GP to predict latent points over time we can formulate the joint likelihood for
a sequence of features and their latent coordinates using the dynamical model.
We can maximize this joint likelihood to find the most likely latent coordinates
for the observed sequence of silhouette features.

X̂ = argmaxX∗

p(Y∗,X∗|Y,X, ΦY , Φdyn) (18)

Having found the corresponding latent points the most likely poses can, as in
the case of the single frame estimation, be found through the mean prediction
of the GP from the latent space to the pose space,

Ẑ = k(X̂,X)T K−1Z (19)

5.3 Sequence Initialization

As with the initialization for a single image we want to initialize each frames la-
tent point with a point from the latent space from the training data X. The most
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likely sequence through the training data for an unseen sequence Y∗ can be found
by interpreting the sequence as a hidden Markov model (HMM) where the latent
states of the HMM correspond to the training points. The likelihood for each ob-
servation is specified by the GP point likelihood (16) associated with each each
latent point, and the transitions are given by the dynamical GP that predicts
over time in the latent space. The most probable path Xinit = argmaxx(1),...x(n)

p(x(1), . . .x(n)|y
(1)
∗ , . . .y

(n)
∗ ) through this lattice can be found using the Viterbi

algorithm [17]. The optimization of the sequence objective in (18) can then be
initialized with Xinit.

6 Results

We will consider the data presented in [2]. This dataset contains 1927 training
poses and 418 poses for testing from human motion capture data. Each pose is
parametrized by a 54 dimensional joint vector. From each pose vector an image
has been generated using the computer graphic package Poser from Curious
Labs.

6.1 Single Image

In Figure 1 results for a single pose estimate are shown. Each estimate is initial-
ized using the 20 most likely points from the training data. The top row shows
an ambiguous silhouette of the mis-labeling or limp flip type, followed by the
model estimates sorted according to likelihood. We expect a mis-labeling ambi-
guity to correspond to a discrete set of poses with significantly different joint
angle configurations. Only the three first estimates have a good correspondence
to the silhouette, corresponding to significantly different joint configurations of
both legs and arms as expected.

The bottom row show a silhouette corresponding to an out-of-plane ambi-
guity. This silhouette contains very little information about the position of the
limbs moving out-of-plane, we can see that this is well reflected by the model,
suggesting several different configuration of the legs and the arms. The least
likely of the shown estimates is a heading ambiguity which is also a plausible
estimate to the silhouette.

6.2 Sequence

In Figure 2 every 20th frame for a circular walk sequence is shown. Our model
does well for most of the frames but misestimates one stride in a turn. This
bad estimate is due to lack of training data, each turn in the training data from
this position is taken with the opposite leg compared to the test data. Therefore
the dynamical model does not agree with the observations and the estimated
pose is a suboptimal minimum. The estimate waits until the stride with the
“unexpected” leg is finished and then latches on in the correct stride. Outside
this turn our model correctly estimates the true pose.
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Fig. 2. Every 20th frame from a circular walk sequence, Top Row: Input Silhouette,
Middle Row: Model Pose Estimate, Bottom Row: Ground Truth. The box indicates
bad estimates by our model.

Fig. 3. Angle error: The image on the left is the true pose, the middle image has an
angle error of 1.7◦, the image on the right has an angle error of 4.1◦. An angle error
higher up in the joint-hierarchy will effect the positions for all joints further down. As
the errors for the middle image are higher up in the hierarchy this will effect each limb
connected further down the chain from this joint thereby resulting in a significantly
different limp positions.

6.3 Quantitative Results

Results on Human Pose estimation are normally reported by the means square
error between the estimated pose and ground truth [2,18]. A mean square error
treats all dimension of the joint angle space with equal importance and do not
reflect the hierarchical structure of the human physiology, Figure 3. Table 1
shows mean RMS angle and joint position error for our model, a set of regression
algorithms and the mean pose in the training data over the test sequence. We
can see that our single estimate is worse than RVM regression. This is expected
as the multi-modal prediction in our model will either predict the correct pose
or we find an ambiguous pose in these cases a regression based methods would
predict the mean pose which will result in a smaller error. Neither angle or joint
position error can correctly reflect visual similarity for sequences as humans have
strong and complex priors with regards to motion.
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Table 1. Mean RMS Angle and Joint Position Error normalized by the height of the
model. Note that the only the GP-LVM Sequence method is using temporal information.

Angle Error Joint Position Error

Mean Training Pose 8.3◦ 37.3 · 10−2

Linear Regression 7.7◦ 33.5 · 10−2

RVM 5.9◦ 15.8 · 10−2

GP-LVM Single 6.5◦ 17.2 · 10−2

GP-LVM Sequence 5.3◦ 15.0 · 10−2

7 Discussion

The model presented in this paper learns a shared low-dimensional representa-
tion of a single observation space and a target domain. For the task of estimating
pose from silhouette the information in the observation space in not sufficient to
determine pose why we in this paper have used temporal consistency to disam-
biguate between multiple solutions. Another strategy is to incorporate additional
observation spaces that together will better represent the target domain. A com-
mon example for the application presented is to use information from additional
views, another example is combining information from both visual and audio
cues. This leads to the problem of how to “merge” the different observation
spaces into a single representation. In [8] features are extracted from multiple
views and concatenated into a larger feature vector from which pose is inferred.
In the presented model additional observations can simply be added and a shared
low-dimensional representation can be learned of all the observation spaces and
the target domain. An additional advantage with the model is that inference
can be done if any non-zero subset of the observations are given, presenting
additional observations will constrain the problem further.

8 Conclusion and Future Work

We have presented a method for human pose estimation from silhouettes using
Gaussian Process Latent Variable Models. Our model represent both image ob-
servations and pose parameters in a shared latent space. The structure of the
latent space is constrained to produce smooth trajectories over time by incor-
porating a GP to predict over the latent space. The model only has two free
parameters and requires no manual initialization.

In future work we would like to extend the model to learn two separate sets
of dynamics, one dynamic for the human relative motion (e.g. stride) and one
model for the motion of the root of the body. This should hopefully solve the
problems in our estimation and also reduced the amount of training data needed.
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