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Approximate Bayesian computation (ABC) can be used for model fitting
when the likelihood function is intractable but simulating from the model is
feasible. However, even a single evaluation of a complex model may take
several hours, limiting the number of model evaluations available. Modelling
the discrepancy between the simulated and observed data using a Gaussian
process (GP) can be used to reduce the number of model evaluations required
by ABC, but the sensitivity of this approach to a specific GP formulation has
not yet been thoroughly investigated. We begin with a comprehensive empiri-
cal evaluation of using GPs in ABC, including various transformations of the
discrepancies and two novel GP formulations. Our results indicate the choice
of GP may significantly affect the accuracy of the estimated posterior distri-
bution. Selection of an appropriate GP model is thus important. We formulate
expected utility to measure the accuracy of classifying discrepancies below
or above the ABC threshold, and show that it can be used to automate the
GP model selection step. Finally, based on the understanding gained with toy
examples, we fit a population genetic model for bacteria, providing insight
into horizontal gene transfer events within the population and from external
origins.

1. Introduction. Estimating parameters of a statistical model often requires
evaluating the likelihood function. For complex models, such as those arising in
population genetics, deriving or evaluating the likelihood in a reasonable compu-
tation time may be impossible. On the other hand, generating data from the model
may be relatively straightforward. Approximate Bayesian Computation (ABC)
[Beaumont, Zhang and Balding (2002), Hartig et al. (2011), Marin et al. (2012),
Turner and Van Zandt (2012), Lintusaari et al. (2016)] is an inference framework
for such models. It is based on generating data from the simulation model for var-
ious parameter values and comparing the simulated data with the observed data
using some discrepancy measure. The simplest ABC algorithm is the rejection
sampler, which, at each step, randomly simulates a parameter from the prior dis-
tribution, runs the simulation model with this parameter, and finally accepts the
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parameter if the discrepancy between the simulated and observed data is smaller
than some threshold parameter (which we call “ABC threshold” or just “thresh-
old”). These steps are repeated until a sufficient number of samples from the ap-
proximate posterior have been collected.

To speed up ABC inference, several sampling-based algorithms have been pro-
posed [Marjoram et al. (2003), Sisson, Fan and Tanaka (2007), Beaumont et al.
(2009), Toni et al. (2009), Drovandi and Pettitt (2011), Del Moral, Doucet and
Jasra (2012), Lenormand, Jabot and Deffuant (2013)]. An alternative to sampling
that has received much attention in recent years is to construct an explicit approx-
imation to the likelihood function, and use this as a proxy for the exact likelihood
in for example, MCMC samplers. In the synthetic likelihood method this is done
by modelling the summary statistics with a multivariate Gaussian [Wood (2010),
Price et al. (2018)]; see also Fan, Nott and Sisson (2013), Papamakarios and Mur-
ray (2016) for some other approaches. Nonparametric approximations have also
been considered [Blum (2010), Turner and Sederberg (2014)], and connections to
other approaches are discussed by Drovandi, Pettitt and Lee (2015), Gutmann and
Corander (2016). Gaussian processes [Rasmussen and Williams (2006)] (GPs) can
naturally encode assumptions about the smoothness of the likelihood. They have
been used by Drovandi, Moores and Boys (2018) to accelerate pseudo-marginal
MCMC methods, and by Wilkinson (2014), Kandasamy, Schneider and Póczos
(2015) to model the likelihood function. An alternative is to model individual sum-
maries with a GP [Meeds and Welling (2014), Jabot et al. (2014)].

Typically hundreds of thousands of model simulations are needed for ABC in-
ference, but here we focus on the challenging case where less than a thousand
evaluations are available due to computational constraints. We adopt the approach
of Gutmann and Corander (2016) who modelled the discrepancy between ob-
served and simulated data with a GP. In this paper, by discrepancy we mean a
scalar-valued nonnegative function that measures the distance between the ob-
served and simulated data. Modelling the scalar-valued discrepancy allows one
to use Bayesian optimisation [Brochu, Cora and de Freitas (2010), Shahriari et al.
(2015)] to effectively select evaluation locations [Gutmann and Corander (2016)].
Also, this approach has the advantage that computing the ABC posterior estimate
can be done even with relatively few model evaluations. The ABC posterior is
proportional to the product of the prior and the probability that the simulated dis-
crepancy falls below the ABC threshold, and this quantity can be computed an-
alytically from the fitted GP. However, a potential issue in using a GP to model
the discrepancy is that, in practice, the GP modelling assumptions may not hold
exactly [Gutmann and Corander (2016)]. The discrepancy is often positive (e.g.,
a weighted Euclidean distance), non-Gaussian, and its variance may vary over the
parameter space, causing additional approximation error of unknown magnitude.
In this article we study this in detail. To focus on the GP modelling aspect, we
assume that the region of nonnegligible posterior probability is known in advance,
but acknowledge that detecting the region is a topic of ongoing research on its own
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FIG. 1. The GP surrogate used to model the simulated discrepancies affects the accuracy of the

resulting ABC posterior estimate. x-axis is the simulation model parameter and y-axis the value of

the (transformed) discrepancy. Black dots are the simulated realisations of discrepancies, and the

grey area is the 95% predictive interval, representing stochastic variation in the simulation. The

red line shows the corresponding posterior approximation which is computed as a lower tail prob-

ability from the discrepancy model. (a) The standard GP results in overestimated variance of the

discrepancy, yielding a poor approximation to the posterior. Input-dependent GP model in (b) or

discrepancy transformation in (c) result in better approximations. The best fit is here obtained when

using both the transformation and the input-dependent GP model in (d), as even after the square-root

transformation in (c) the variance of the discrepancy is not constant.

[Wilkinson (2014), Kandasamy, Schneider and Póczos (2015), Drovandi, Moores
and Boys (2018), Gutmann and Corander (2016), Järvenpää et al. (2017)].

The impact of GP model assumptions on the resulting ABC posterior is demon-
strated with a realistic example in Figure 1, where different GP formulations are
used to model the discrepancy in the area with nonnegligible posterior probabil-
ity. The model here describes horizontal gene transfer between bacterial genomes,
published recently by Marttinen et al. (2015). The discrepancies were obtained
by fixing other parameters to their point estimates, and generating realisations of
the discrepancy with varying values for a parameter that describes the frequency
of horizontal gene transfer between bacteria. A thorough analysis of the model is
presented in Section 3.3. For now please note that the input-dependent noise model
[Goldberg, Williams and Bishop (1997), Tolvanen, Jylänki and Vehtari (2014)] is
able to take into account the heteroscedastic variance of the discrepancy and, con-
sequently, seems to result in an accurate approximation to the posterior (the true
posterior is here unavailable). On the other hand, with the standard GP regression
the fit is poor, and the resulting posterior distribution appears too wide.

Our paper makes the following contributions:
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• Motivated by the preliminary investigation with the population genetics model
above, we assess the impact of the GP formulation on ABC inference for multi-
ple benchmark models.

• We propose two generalisations of previously presented GP-ABC approaches:
first, we allow heteroscedastic noise in the GP; second, we use a classifier GP to
directly model the probability of the discrepancy being below the ABC thresh-
old.

• We propose a new utility function to automate GP model choice for ABC. The
utility function favours models that achieve higher accuracy in classifying dis-
crepancies below or above the ABC threshold.

• As a practical application, we derive an accurate posterior distribution for the
population genetic model for gene transfer in bacteria, allowing us to make in-
ferences about the relationship between gene deletions and introductions, and
between gene transfers from within the population and from external origins.

This paper is organised as follows. In Section 2 we briefly review general ABC
methods and introduce different GP models for ABC. We also discuss GP model
selection in ABC. In Section 3 we present findings from multiple example prob-
lems to illustrate the impact of GP assumptions and model selection in ABC, and
finally present the results for the bacterial genomics model. Section 4 contains the
discussion, and in Section 5 we conclude with recommendations on handling GP
surrogates in ABC inference.

2. Background and methods.

2.1. ABC. We assume that we have observed data y ∈ R
d from a simulation

model whose likelihood function can be written as p(y | θ), where the unknown
parameters to be estimated are θ ∈ � ⊂ R

p , and the prior density is p(θ). The
posterior distribution can then be computed from the Bayes theorem

(1) p(θ | y) =
p(θ)p(y | θ)

∫

p(θ ′)p(y | θ ′)dθ ′ ∝ p(θ)p(y | θ).

When either the analytic form of the likelihood function p(y | θ) is unavailable or
its value cannot be evaluated in a reasonable time, the standard alternative is to
use approximate Bayesian computation (ABC). The ABC targets the approximate
posterior

(2) pABC(θ | y) ∝ p(θ)

∫

1�(y,x)≤εp(x | θ)dx,

where x ∈ R
d denotes pseudo-data generated by the simulation model with param-

eter θ . The pseudo-data x are compared to the observed data y and � :Rd ×R
d →

R+ is a discrepancy function between the two data sets. In practice, the threshold
ε represents a tradeoff between estimation accuracy and efficiency; small values
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result in more accurate estimates but require more computation. The discrepancy
is often formed using some summary statistics such that if s is a mapping from
the data space R

d to a lower dimensional space of the summary statistics, then the
discrepancy could be, for example, �(y,x) = ‖s(y) − s(x)‖, where ‖ · ‖ denotes
some (possible weighted) norm. Choosing informative summaries and combining
them in a reasonable way affect the resulting approximate posterior [Marin et al.
(2012), Fearnhead and Prangle (2012)] but we do not consider this problem here.

Given N samples from the simulation model with a chosen parameter θ , so that
x
(i)
θ ∼ p(x | θ), i = 1, . . . ,N , the ABC posterior at θ can be estimated using

(3) pABC(θ | y) ∝∼ p(θ)

N
∑

i=1

1
�(y,x

(i)
θ )≤ε

.

Alternatively, one can use ABC rejection sampling to sample from the ABC pos-
terior, with the following steps: 1. Draw θ (i) ∼ p(θ). 2. Generate x(i) ∼ p(x | θ (i))

from the simulation model. 3. Accept θ (i) if �(y,x
(i)
θ ) ≤ ε. The accepted values

{θ (i)} are samples from the approximate posterior distribution. For further back-
ground on ABC, we refer the reader to the recent review by Lintusaari et al. (2016).

2.2. BOLFI method. To speedup inference, Gutmann and Corander (2016)
proposed to model the discrepancy �θ = �(y,xθ ) between the observed data
y and the simulated data xθ as a function of θ . At each step of their algo-
rithm, the current training data that is, the discrepancy-parameter pairs Dt =

{(�(i), θ (i))}ti=1, are used to train the discrepancy model, which is then used to in-
telligently select the next parameter value θ (t+1) to run the computationally costly
simulation model, and thus to obtain updated training data Dt+1. The simulations
can be adaptively focused to areas yielding small discrepancy values (exploitation),
while allowing some exploration of new areas with potentially small values.

At each step, the fitted surrogate model is used to compute an estimated ABC
posterior. As opposed to equation (3), the estimated posterior for each θ can be
obtained as p(θ)P(�θ ≤ ε), where the probability is computed using the statistical
model (i.e., the fitted GP). For any continuous and strictly increasing function g,
it holds that P(�θ ≤ ε) = P(g(�θ ) ≤ ε′), where ε′ = g(ε). Thus one can also
model g(�θ ) instead to �θ , which facilitates straightforward transformations for
the discrepancy (e.g., the logarithm) possibly making the discrepancy easier to
model.

2.3. GP models for ABC. In this section we describe different GP formula-
tions for modelling the (possibly transformed) discrepancy in the BOLFI approach.
In addition to the standard GP model, we include two novel extensions (see below):
the input-dependent GP and the classifier GP. We assume that the training data con-
sists of discrepancy-parameter pairs Dt = {(�(i), θ (i))}ti=1 from the modal area of
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the posterior, and the aim is to model the discrepancy and the resulting posterior
as accurately as possible using Dt .

In the standard GP regression one assumes that �θ ∼ N (f (θ), σ 2) and f (θ) ∼
GP(m(θ), k(θ , θ ′)) with a mean function m : � → R and covariance function
k : � × � → R. We use m(θ) = 0, and the squared exponential covariance func-
tion k(θ , θ ′) = σ 2

f exp(−
∑p

i=1(θi − θ ′
i )

2/(2l2
i )) in our experiments. Given the hy-

perparameters φ = (σ 2
f , l1, . . . , lp, σ 2) and training data Dt , the posterior predic-

tive density for the latent function f at θ follows a Gaussian density with mean
and variance

(4) μt (θ) = kt (θ)T K−1
t (θ)�(1:t), vt (θ) = k(θ , θ) − kt (θ)T K−1

t (θ)kt (θ),

respectively. Above we have denoted kt (θ) = (k(θ , θ (1)), . . . , k(θ , θ (t)))T ,
[Kt (θ)]ij = k(θ (i), θ (j)) + σ 2

1i=j for i, j = 1, . . . , t and �(1:t) = (�(1), . . . ,

�(t))T . The hyperparameters φ are estimated by maximising the marginal like-
lihood, for details, see Rasmussen and Williams (2006). A model-based estimate
of the likelihood at θ can be obtained from the fitted GP as

(5) P(�θ ≤ ε) = �
((

ε − μt (θ)
)

/

√

vt (θ) + σ 2
)

,

where ε is the threshold and � is the cumulative distribution function of the stan-
dard Gaussian distribution. An estimate of the posterior density is obtained by
multiplying the estimated likelihood with the prior p(θ).

Next we describe the input-dependent GP model [Goldberg, Williams and
Bishop (1997), Tolvanen, Jylänki and Vehtari (2014)]. In the standard GP
model the noise variance σ 2 representing the stochasticity in the discrep-
ancy due to simulation is assumed constant. We relax this by assuming �θ ∼
N (f (θ), σ 2 exp(g(θ))), f (θ) ∼ GP(m(θ), k(θ , θ ′)) and g(θ) ∼ GP(mn(θ),

kn(θ , θ ′)). That is, also the variance of the discrepancy is modelled with a GP
allowing it to change smoothly as a function of the parameter θ . Since the vari-
ance must be positive, its logarithm is modelled with the GP. As before we set
m(θ) = 0, and also mn(θ) = 0, implying that a priori the average variance is
close to σ 2. We use the squared exponential covariance functions k(θ , θ ′) =

σ 2
f exp(−

∑p
i=1(θi −θ ′

i )
2/(2l2

fi
)) and kn(θ , θ ′) = σ 2

g exp(−
∑p

i=1(θi −θ ′
i )

2/(2l2
gi

)).
There are 2p + 2 hyperparameters to be estimated: p lengthscale parameters, lfi

,
lgi

, and one signal variance parameter for each covariance function, σ 2
f , σ 2

g . The

value of σ 2 is fixed to make the covariance hyperparameters identifiable. Laplace
approximation is used for model fitting. We also experimented with the expecta-
tion propagation approximation by Tolvanen, Jylänki and Vehtari (2014), but this
came with additional cost and results were qualitatively similar. Equation (5) can
still be used to estimate the likelihood, by replacing the point estimate of σ 2 with
an estimate of σ 2 exp(g(θ)).

The GP models above are used for modelling the ABC discrepancy between
observed and simulated data. However, for computing the approximate posterior,
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it is sufficient to know the probability that the discrepancy is below the threshold ε.
Motivated by this, we propose a method, classifier GP, which models the lower tail
probability directly as a function of the parameter θ , using binary GP classification.
We interpret the observations zi = 21�(i)≤ε −1 as class labels +1 and −1 such that
p(zi | f (θ i)) = λ−1(zif (θ i)), where λ is either the logit or probit link function
and f (θ) ∼ GP(m(θ), k(θ , θ ′)). Hence, this corresponds to an assumption that
the discriminative function is smooth, but does not impose additional assumptions
about the distribution of the discrepancy. For each parameter value θ the model
thus specifies the probability of the discrepancy being classified as +1, that is, to
be below the threshold. The likelihood estimate is thus obtained directly. Unlike
with other GP models, we add an additional constant to the prior mean function
m(θ) to take into account the fact that the lower tail probabilities are generally very
small. Without this, the discriminative function tended to become nonzero near the
parameter bounds, inducing posterior mass near the boundaries and, consequently,
poor approximations. We use the squared exponential covariance function for the
latent function f as for the standard GP method, and Laplace approximation model
fitting; see Rasmussen and Williams (2006) for details.

2.4. GP model selection. Since the distribution of the discrepancy depends
on the characteristics of the simulation model and the chosen discrepancy (see,
e.g., Table 1 for some potential choices), some GP models will fit the training data
better than others. Consequently, we propose two utility functions for comparing
GP models and different transformations of discrepancy, with the aim of choosing
the GP formulation that yields the most accurate estimate of the posterior. See for
example, Bernardo and Smith (2001), Vehtari and Ojanen (2012) for a thorough
discussion on using expected utility for model selection.

As the first criterion, we consider the expected log predictive density for a new
discrepancy value �(t+h) evaluated at some future evaluation point θ (t+h) for h =
1,2, . . . . Here the utility of a single observation �(t+h) is defined by

(6) uh = logp
(

�(t+h) | θ (t+h),D(1:t),M
)

,

where D(1:t) = {(�(i), θ (i))}ti=1 denotes the training data gathered thus far and
M denotes the model. The different transformations of the discrepancy are taken
into account by considering the effect of the transformation �′ = g(�). The ex-
pected utility estimate is obtained by averaging over all the possible realisations
of the future data yielding ū = Eh(uh). This utility measures how well the GP
predicts the distribution of the discrepancies, which is used for computing the pos-
terior estimate of the simulation model. As we do not know the distribution of the
discrepancy-parameter data (�(t+h), θ (t+h)), we approximate the expected utili-
ties using the data D(1:t) [Vehtari and Lampinen (2002)]. K-fold cross-validation
(CV) leads to the following estimate for expected log predictive density

(7) ūCV =
1

t

t
∑

i=1

logp
(

�(i) | θ (i),D(1:t)\s(i),M
)

,



GAUSSIAN PROCESS MODELLING IN ABC 2235

where the data are split into K (almost) equally sized groups and s(i) denotes
the indexes of the group to which the ith data point belongs. In practice, we use
K = 10. In the sequel, we refer to this as the mlpd utility, which stands for the
mean of the log-predictive density.

A downside of the mlpd utility is that it does not acknowledge the final pur-
pose of the selected GP model, that is, to approximate the posterior distribution.
It may thus give high scores to GP models which broadly model the discrepancy
accurately, whereas the focus should be on how well the smallest discrepancies are
modelled, as those affect the posterior approximation most. Motivated by this, we
frame the problem as a classification task which then leads to a new utility function
tailored for ABC inference. The utility for a single observation �(t+h) is defined
by

uc
h = 1�(t+h)≤ε log

(

P
(

�(t+h) ≤ ε | M
))

+ 1�(t+h)>ε log
(

P
(

�(t+h) > ε | M
))

,
(8)

where P(�(t+h) ≤ ε | M) is the probability that a new realisation of the discrep-
ancy �(t+h) at a test point θ (t+h) is smaller than the threshold ε according to
model M (conditioning on θ (t+h) and D(1:t) is omitted to simplify notation). This
utility penalises realisations of the discrepancy that are under the threshold when,
according to the model, this should happen only with a very small probability, or
vice versa. An additional advantage of this utility is that it is invariant to a transfor-
mation of the discrepancy if the threshold ε is transformed accordingly, and also
it can be used to compare the classifier GP to other models, as it only requires the
probability that the discrepancy is below the threshold. Again, we use the K-fold
CV with K = 10 to approximate the expected utility, so that

ūc
CV =

1

t

t
∑

i=1

(

1�(i)≤ε log
(

P
(

�(i) ≤ ε | D(1:t)\s(i),M
))

+ 1�(i)>ε log
(

P
(

�(i) > ε | D(1:t)\s(i),M
)))

.

(9)

We call this the classifier utility from now on.

3. Results.

3.1. Toy examples. We consider several toy examples to study the approxi-
mation error for different GP models and transformations of the discrepancy. A
summary of the test problems is given in Table 1. Although simple, these ex-
amples highlight potential challenges in modelling the discrepancy that we ex-
pect carry over to many realistic problems of potentially higher dimensional-
ity. The quality of the results is assessed by computing the total variation dis-
tance (TV) between the estimated and the corresponding true posterior that is,
TV(ptrue,papprox) = 1/2

∫

� |ptrue(θ) − papprox(θ)|dθ . Values for this integral are
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TABLE 1
Description of the test problems. Above, ȳ denotes the sample mean of {yi}

n
i=1 and, similarly, σ 2

y is

the sample variance. The data points yi(θ) are independent and identically distributed draws from

the simulation model with parameter θ . Also, GM(α,μ1,μ2, σ 2
1 , σ 2

2 ) = αN (μ1, σ 2
1 )+

(1 − α)N (μ2, σ 2
2 ). For the 2D Gaussian we use a fixed covariance matrix � with unit variances

and correlation 0.5

Test problem and

model Prior n Discrepancy �θ True θ

Gaussian 1, N (θ,1) U([−0.5,3]) 10 (ȳ − ȳ(θ))2 1
Bimodal, N (θ2,2) U([−2.5,2.5]) 5 (ȳ − ȳ(θ))2 ±1
Gaussian 2, N (0, θ) U([0,5]) 10 (σ 2

y − σ 2
y(θ)

)2 1

Poisson, Poi(θ) U([0,5]) 10 (ȳ − ȳ(θ))2 2
GM 1,
GM(0.7, θ, θ + 5,1,2)

U([−10,5]) 1 (y1 − y1(θ))2 1

GM 2,
GM(0.7, θ, θ,3,0.25)

U([−6,6]) 1 (y1 − y1(θ))2 1

Uniform, U([0, θ ]) U([0,5]) 5 (max{yi} − max{yi(θ)})2 2
2D Gaussian 1,
N (θ,�)

U([1.5,4] × [1.5,4]) 10 (ȳ − ȳ(θ))T �−1(ȳ − ȳ(θ)) [2.5,2.5]T

2D Gaussian 2,
N (θ1, θ2)

U([2,4.5] × [0.5,5]) 25 (ȳ − ȳ(θ))2 + (σ 2
y − σ 2

y(θ)
)2 [3,2]T

Lotka–Volterra,
see the text

U([0.25,1.25] × [0.5,1.5]) 8 see the text [1,1]T

computed numerically. Kullback–Leibler divergence (KL), defined as KL(ptrue ‖

papprox) =
∫

� ptrue(θ) log(ptrue(θ)/papprox(θ))dθ is used as an alternative criterion
and is also computed numerically. GPstuff 4.6 [Vanhatalo et al. (2013)] is used for
fitting the GP models.

We consider two transformations of the squared error (se) discrepancy shown
in Table 1, namely, the log and the square-root transformations (log and sqrt).
Although other transformations can be used, these already demonstrate the main
findings. One could also transform the individual summaries before combining
them to a discrepancy function, but we do not consider this approach here. We use
uniform priors for the parameters of the simulation models over a range covering
the modal area of the true posterior. We also repeat the experiments with a much
wider support, although this seems less relevant in practice when the goal is to
obtain an accurate posterior estimate where the majority of mass is located, and
hence focus simulations there. Other priors and adaptive schemes for choosing
the training data are also possible [Gutmann and Corander (2016)]. We set the
ABC threshold ε customarily as the 0.05th quantile of the discrepancies sampled
from the uniform prior and use the same threshold for all GP-ABC methods, the
baseline ABC rejection sampler, and for the “true” ABC posterior computed using
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ABC rejection sampling with extensive simulations. Thus the difference in results
is only caused by the choice of GP model and discrepancy transformation.

To get an estimate of the variability due to a stochastic simulation model, we re-
peat each experiment 100 times. We also repeat the experiments with some other
choices of the threshold and using the true posterior density (which is available
analytically for the test problems) as the baseline. These results are presented as
supplementary material [Järvenpää et al. (2018)]. For the basic ABC rejection sam-
pler, we use kernel density estimation as a post-processing step to approximate the
posterior curve from the accepted samples, thereby imposing basic smoothness as-
sumptions of the posterior. We use the logit link function for GP classifier method
in our experiments. The full summary of the results is gathered in Tables 2 and 3,
and below we analyse in detail some of the key findings.

EXAMPLE 3.1 (Gaussian 1). As the first example, representing many key find-
ings, we consider a simple Gaussian model with an unknown mean and known
variance; see “Gaussian 1” in Table 1. This model is simple enough to be anal-
ysed analytically. Consider the discrepancies �θ = (ȳ − x̄θ )

2 and �′
θ = |ȳ − x̄θ |.

Using basic properties of the expectation and the Gaussian distribution, we ob-
tain E(�θ ) = (θ − ȳ)2 + σ 2/n and var(�θ ) = 2σ 2(2(θ − ȳ)2 + 1)/n. Similarly
var(�′

θ ) ≈ σ 2/n, which holds accurately for large |θ |. We see that the variance of
the discrepancy �θ grows quadratically as a function of the parameter θ . On the
other hand, with �′

θ the variance is approximately constant.
The main observations of this example are illustrated in Figure 2. In (a)-(-c)

a prior over a wide range is used and in (d)–(f) training data are gathered within
a narrower region around the mode. Comparing (a) and (b) shows that the input-
dependent GP model yields a much better approximation than the standard GP.
In (a) the poor GP fit causes also a poor approximation to the posterior, which
cannot be corrected by increasing the number of simulations. Furthermore, dif-
ferent transformations change the behaviour of the discrepancy. The square-root-
transformation in (c), which makes the variance of the discrepancy approximately
constant, improves the standard GP considerably. In (d)–(f) three different GP
models are fitted near the posterior mode, and we see that focusing the simula-
tions to the central region improves the performance of all methods.

EXAMPLE 3.2 (Poisson). We estimate the parameter of the Poisson distribu-
tion which demonstrates the benefit of GP modelling compared to the ABC rejec-
tion sampling. Figure 3 shows typical results. Here the data have discrete values
but the discrepancy is approximately Gaussian, and the variance of the discrepancy
grows as a function of the parameter. The input-dependent model does not improve
the results visibly, even if the fit to the discrepancy data is evidently better. The best
approximations are obtained when the square-root transformation is used as in (a)–
(b) since then the discrepancy is approximately Gaussian, although its variance is
not constant. The ABC rejection sampler in (c) does not work well due to the small
number of accepted samples as compared to the GP-based methods.
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TABLE 2
Results for the 1D toy examples. The quality of the approximation was measured using the TV

distance between the estimated and the true ABC posterior densities. The smallest TV values are

bolded. Value n is the number of model simulations and “se”, “log” and “sqrt” refer to squared,
log transformed and square-root transformed discrepancies, respectively

n = 50 n = 100 n = 200 n = 400 n = 600

se log sqrt se log sqrt se log sqrt se log sqrt se log sqrt

Gaussian 1:
GP 0.17 0.09 0.07 0.20 0.10 0.05 0.21 0.11 0.04 0.20 0.17 0.03 0.20 0.18 0.03

GP in.dep. 0.19 0.14 0.09 0.18 0.14 0.06 0.18 0.13 0.05 0.19 0.14 0.04 0.21 0.15 0.04
classifier GP 0.40 0.40 0.40 0.33 0.33 0.33 0.19 0.19 0.19 0.10 0.10 0.10 0.09 0.09 0.09
rej. ABC 0.31 0.31 0.31 0.26 0.26 0.26 0.18 0.18 0.18 0.12 0.12 0.12 0.11 0.11 0.11

Bimodal:
GP 0.20 0.47 0.16 0.20 0.26 0.12 0.21 0.18 0.10 0.21 0.16 0.08 0.20 0.17 0.07

GP in.dep. 0.19 0.58 0.18 0.17 0.39 0.14 0.20 0.28 0.11 0.20 0.25 0.09 0.20 0.23 0.08
classifier GP 0.39 0.39 0.39 0.35 0.35 0.35 0.24 0.24 0.24 0.17 0.17 0.17 0.14 0.14 0.14
rej. ABC 0.45 0.45 0.45 0.39 0.39 0.39 0.26 0.26 0.26 0.20 0.20 0.20 0.16 0.16 0.16

Gaussian 2:
GP 0.32 0.36 0.27 0.32 0.24 0.26 0.33 0.20 0.25 0.33 0.21 0.24 0.32 0.22 0.23
GP in.dep. 0.48 0.37 0.30 0.45 0.33 0.29 0.44 0.29 0.27 0.42 0.25 0.26 0.41 0.25 0.25
classifier GP 0.35 0.35 0.35 0.35 0.35 0.35 0.26 0.26 0.26 0.17 0.17 0.17 0.15 0.15 0.15

rej. ABC 0.29 0.29 0.29 0.29 0.29 0.29 0.22 0.22 0.22 0.18 0.18 0.18 0.16 0.16 0.16

GM 1:
GP 0.32 0.29 0.31 0.31 0.28 0.30 0.31 0.28 0.30 0.30 0.23 0.29 0.29 0.19 0.28
GP in.dep. 0.42 0.35 0.32 0.40 0.37 0.31 0.39 0.34 0.30 0.38 0.25 0.29 0.37 0.24 0.28
classifier GP 0.34 0.34 0.34 0.36 0.36 0.36 0.27 0.27 0.27 0.18 0.18 0.18 0.14 0.14 0.14

rej. ABC 0.35 0.35 0.35 0.32 0.32 0.32 0.24 0.24 0.24 0.19 0.19 0.19 0.14 0.14 0.14

GM 2:
GP 0.19 0.14 0.13 0.18 0.12 0.12 0.19 0.12 0.11 0.19 0.11 0.11 0.20 0.11 0.11
GP in.dep. 0.26 0.19 0.14 0.24 0.18 0.12 0.21 0.16 0.11 0.22 0.16 0.10 0.24 0.15 0.10

classifier GP 0.37 0.37 0.37 0.33 0.33 0.33 0.21 0.21 0.21 0.14 0.14 0.14 0.12 0.12 0.12
rej. ABC 0.33 0.33 0.33 0.29 0.29 0.29 0.20 0.20 0.20 0.16 0.16 0.16 0.14 0.14 0.14

Uniform
GP 0.26 0.22 0.15 0.26 0.24 0.15 0.27 0.22 0.15 0.26 0.23 0.15 0.26 0.23 0.15
GP in.dep. 0.26 0.22 0.16 0.22 0.21 0.13 0.19 0.23 0.12 0.17 0.23 0.11 0.15 0.23 0.12
classifier GP 0.43 0.43 0.43 0.34 0.34 0.34 0.23 0.23 0.23 0.14 0.14 0.14 0.11 0.11 0.11

rej. ABC 0.33 0.33 0.33 0.31 0.31 0.31 0.23 0.23 0.23 0.19 0.19 0.19 0.17 0.17 0.17

Poisson:
GP 0.19 0.12 0.09 0.18 0.10 0.07 0.18 0.08 0.06 0.20 0.11 0.06 0.20 0.12 0.06

GP in.dep. 0.21 0.23 0.13 0.21 0.19 0.10 0.24 0.18 0.08 0.23 0.15 0.07 0.24 0.16 0.07
classifier GP 0.33 0.33 0.33 0.28 0.28 0.28 0.14 0.14 0.14 0.09 0.09 0.09 0.09 0.09 0.09
rej. ABC 0.26 0.26 0.26 0.23 0.23 0.23 0.16 0.16 0.16 0.11 0.11 0.11 0.10 0.10 0.10
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TABLE 3
Results for the 2D toy examples. See the caption for Table 2 for details

n = 100 n = 200 n = 400 n = 600 n = 800

se log sqrt se log sqrt se log sqrt se log sqrt se log sqrt

2D Gaussian 1:
GP 0.24 0.15 0.12 0.23 0.13 0.09 0.22 0.12 0.07 0.22 0.12 0.07 0.22 0.12 0.07

GP in.dep. 0.20 0.20 0.14 0.19 0.15 0.10 0.17 0.12 0.08 0.18 0.12 0.07 0.19 0.11 0.07

classifier GP 0.62 0.62 0.62 0.63 0.63 0.63 0.24 0.24 0.24 0.15 0.15 0.15 0.12 0.12 0.12
rej. ABC 0.35 0.35 0.35 0.27 0.27 0.27 0.22 0.22 0.22 0.19 0.19 0.19 0.17 0.17 0.17

2D Gaussian 2:
GP 0.53 0.32 0.45 0.51 0.26 0.43 0.51 0.22 0.40 0.50 0.21 0.39 0.50 0.20 0.39
GP in.dep. 0.64 0.27 0.26 0.61 0.20 0.24 0.50 0.17 0.22 0.49 0.15 0.22 0.50 0.13 0.21
classifier GP 0.63 0.63 0.63 0.63 0.63 0.63 0.36 0.36 0.36 0.21 0.21 0.21 0.17 0.17 0.17
rej. ABC 0.34 0.34 0.34 0.29 0.29 0.29 0.25 0.25 0.25 0.20 0.20 0.20 0.19 0.19 0.19

Lotka–Volterra:
GP 0.22 0.19 0.20 0.18 0.15 0.16 0.16 0.13 0.15 0.15 0.12 0.13 0.15 0.12 0.12

GP in.dep. 0.31 0.23 0.23 0.21 0.19 0.19 0.18 0.16 0.15 0.16 0.15 0.14 0.15 0.14 0.12

classifier GP 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.20 0.20 0.20 0.17 0.17 0.17
rej. ABC 0.33 0.33 0.33 0.26 0.26 0.26 0.22 0.22 0.22 0.20 0.20 0.20 0.18 0.18 0.18

FIG. 2. Results for the “Gaussian 1” model. The grey area is the 95% probability interval, the

blue dashed line is the threshold and the black dots represent realisations of the discrepancy. The ab-

breviations “se”, “log” and “sqrt” refer to squared, log transformed and square-root transformed

discrepancies, respectively. In (a) the GP is fitted to discrepancy realisations on a wide interval result-

ing in a poor approximation. Better approximations are obtained by the input-dependent GP model

(b) or transforming the discrepancy (c). In (d) the fitting is done on the area of significant posterior

mass resulting in the best fit in terms of both TV and KL, even if the variance of the discrepancy

is still clearly overestimated in the modal region. In (e) the posterior uncertainty is slightly under-

estimated due to the skewness of the log-transformed discrepancy. The classifier GP in (f) slightly

overestimates the tails of the posterior.
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FIG. 3. Results for the “Poisson” example, demonstrating the benefits of the GP modelling. The

input-dependent GP model (b) fits the discrepancy data better than the standard GP (a). Despite

this difference, the posterior approximations are about equally good. The ABC rejection sampler (c)
yields a less accurate approximation with only the 200 training points available.

EXAMPLE 3.3 (GM 1). The third example demonstrates that both the stan-
dard and input-dependent GP models may fail to capture a bimodal shape of the
posterior. Here also the discrepancy distribution is bimodal conditional on specific
parameter values. A particular realisation is shown in Figure 4. The GP and input-
dependent GP yield slightly different approximations, neither of which captures
the bimodality. However, fixing the lengthscale to a small value allows to capture
the bimodal shape but with the cost of making the overall shape of the estimated
posterior wiggly (not shown). The ABC rejection sampler works better despite the
limited training set size of 200. This observation does not hold for all bimodal
posteriors, though. To demonstrate this, we designed another example where the
posterior is bimodal, the “Bimodal” in Table 1. In contrast with the Gaussian mix-
ture model above, the distribution of the discrepancy is close to a Gaussian for any
parameter. This type of discrepancy can be modelled well, and consequently, the
bimodal shape of the posterior can be learnt accurately.

FIG. 4. Neither the standard (a) nor the input-dependent GP model (b) learn the shape of the pos-

terior in the bimodal “GM 1” example. Notably, not only the posterior, but also the discrepancy

distribution, given a particular parameter value, is bimodal, which is the explanation of this be-

haviour. 200 points were generated from the model, but similar results were obtained with a larger

set of simulations, and with other transformations. On the other hand, the ABC rejection sampler (c)
uncovers the bimodal shape.
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EXAMPLE 3.4 (Lotka–Volterra). We consider the Lotka–Volterra model used
by Toni et al. (2009) to compare ABC methods. The model describes the evolution
of prey and predator populations, defined by differential equations

(10)
dx1

dt
= θ1x1 − x1x2,

dx2

dt
= θ2x1x2 − x2,

where x1 = x1(t) and x2 = x2(t) describe the prey and predator species at time
t , respectively. Their initial values are set to x1(0) = 0.5 and x2(0) = 1.0. Vector
θ = (θ1, θ2) is the parameter to be estimated. The 8 measurements for (x1, x2)

are corrupted by additive independent and identically distributed Gaussian noise
N (0,0.52). We consider a discrepancy

(11) �θ =
8

∑

i=1

2
∑

j=1

(

xj (ti) − x̂j (ti, θ)
)2

,

where xj (ti) are the noisy measurements at time ti and x̂j (ti, θ) the corresponding
predictions with parameter θ . The prior and the true value of the parameter vector
are shown in Table 1.

The results are shown in Figure 5, and we see that the GP formulation has only
a moderate impact. However, the classifier GP and the ABC rejection sampler per-
form worse than the GP-based methods, as seen also in Table 3. The estimates of
the ABC rejection sampler also vary more between the different simulated training
data.

As a general observation from Tables 2 and 3, we conclude that whenever the
discrepancy is close to a Gaussian, or if the number of evaluations is very small
and only a few discrepancy values are below the threshold ε, the GP-based ap-
proaches yield better posterior approximations than the ABC rejection sampler or
the classifier GP method. However, if the Gaussian assumptions are violated, as
in Example 3.3, the rejection sampler and the classifier GP are more accurate. In-
creasing the number of simulations does not help as it does not solve the model
misspecification. Interestingly, as few as 50 model evaluations in 1D (200 in 2D)
result in almost as accurate results as 400 evaluations in 1D (600 in 2D). On the
other hand, the accuracies of the ABC rejection sampler and classifier GP clearly
improve as the number of evaluation points is increased. Additional evaluations
also improve the stability of GP estimation and, hence, decrease the variance in
the results.

The classifier GP performs generally similarly or slightly better than the ABC
rejection sampler. However, with a small number of evaluations the error of the
classifier GP is relatively large, but as the number of evaluations increases, the
accuracy increases rapidly reaching and finally clearly outperforming the ABC
rejection sampler. However, decreasing the threshold to the 0.01th quantile leads
to conservative results since the number of realisations of the discrepancy below
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FIG. 5. Posterior estimates for the Lotka–Volterra model. The black dots represent points where

the simulation was run. The parameter θ1 is on the x-axis and θ2 on the y-axis. The difference

between the standard and input-dependent GP formulations is minor, but both of them outperform

the classifier GP and the ABC rejection sampler.

the threshold becomes very small as shown in supplementary materials [Järvenpää
et al. (2018)]. Typically the classifier GP tends to overestimate the probability in
the posterior tail area despite our attempts to change this behaviour as described in
Section 2.3.

Overall, the square-root transformation seems to work best while log-transfor-
mation is also useful in some cases. However, with small threshold values, such
as the 0.01th quantile of the realised discrepancies, modelling the log-transformed
discrepancy with a GP tends to cause too narrow posterior distributions in some
scenarios; see Figure 2(e). This happens if many discrepancies are close to zero,
in which case the log transformation results in a strongly skewed distribution. This



GAUSSIAN PROCESS MODELLING IN ABC 2243

may not be an issue in practice, since with a complex model simulating data such
that the discrepancy becomes very small is unlikely (or impossible if the model is
misspecified), even with the optimal parameter value. Also, modelling nonnegative
discrepancies with GP regression does not appear to cause large additional poste-
rior approximation error in practice; see, for example, Figures 2 and 3. In some of
the test cases, the input-dependent GP model worked best but a similar effect was
often achieved also by modelling a suitably transformed discrepancy.

3.2. Model selection results. In Section 2.4, we formulated two utility func-
tions to guide the selection of the GP model: the expected log predictive density
(mlpd utility) and the expected log predictive probability of attaining a discrepancy
that falls below the threshold (classifier utility). Next we illustrate the performance
of these methods in practice. We consider the same toy problems as in Section 3.1,
and we exclude the classifier GP from the comparisons related to the mlpd utility.

The results in Figure 6 and Supplementary Figure S1 by Järvenpää et al. (2018)
demonstrate the performance of the mlpd and classifier utilities, when used to se-
lect a GP model to estimate the posterior. We see that both methods work rea-
sonably well across all cases, although “Gaussian 2” and “2D Gaussian 1” toy
problems seem more difficult than the rest. Also, as expected, as more simulations
become available, the model selection improves in most scenarios, such that the
highest utilities better identify the GP formulations resulting in the most accurate
posterior approximations. For some individual simulations a GP model resulting

FIG. 6. Results of the GP model selection using the classifier utility. The value on the y-axis is the

difference between the TV distance of the chosen GP (corresponding to the largest utility) and the

smallest TV distance observed (corresponding to the most accurate result obtained). Therefore, the

smaller the value is, the closer the selected model is to the optimal model. The violin plot shows the

results over 100 simulated training data sets. The x-axis shows the number of model simulations n.
The blue line represents the median results if the standard GP with the square-root transformation

is always chosen. Another baseline shown with red is obtained by randomly selecting the GP model

formulation.
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in a poor posterior approximation has the highest utility. This happens mainly with
a small number of simulations and the classifier utility, because then the number
of cases below the threshold is very small, and, consequently, the utility itself has
a high variance. These cases are seen as peaks in the violin plots.

Comparison of Figure 6 and Supplementary Figure S1 by Järvenpää et al. (2018)
shows that the overall performance difference between the two proposed utilities
is relatively small. However, in the case of “Gaussian 2” and “GM 1” examples,
the mlpd utility performs systematically worse than the classifier utility. In these
cases even with 600 evaluations, the mlpd utility tends to propose suboptimal GP
models. Further, the classifier utility can be used to compare basically any set of
models that predict the amount of posterior mass under the threshold, making it
more applicable than the mlpd utility as explained in Section 2.4. On the other
hand, the performance of the classifier utility criterion is more dependent on the
value of the threshold. When the threshold is decreased so that only a few discrep-
ancies fall below the threshold, the method will not work anymore, contrary to the
mlpd utility.

3.3. Horizontal gene transfer between bacterial genomes. The emerging field
of bacterial genomics involves analysis of thousands of bacterial genomes, to un-
derstand the variability in bacteria as well as to answer questions of practical
importance, such as the spread of antibiotic resistance [Croucher et al. (2011),
Chewapreecha et al. (2014)]. One interesting observation is the extent to which
members of the same bacterial species can differ in genome content, that is, differ-
ent strains of the same species can have different sets of genes, and only a minority
of the genes is observed in all strains [Touchon et al. (2009)]. Furthermore, bacteria
can exchange genes with one another in a process called horizontal gene transfer
(HGT) [Thomas and Nielsen (2005)].

Here we consider a previously published population genomic model that de-
scribes the variation in genome content [Marttinen et al. (2015)]. Point estimates
of the parameters have previously been published for this model, but we are inter-
ested in estimating the full posterior, when the model is fitted to a published col-
lection of 616 genomes from Streptococcus pneumoniae [Croucher et al. (2013)].
Briefly, the model consists of a forward-simulation of a population of bacterial
strains for many generations. At each generation, the next generation is simulated
by selecting strains randomly from the current generation. In addition, the genome
content of the descendants may be modified by three operations, the rates of which
correspond to the three parameters of the model: the gene deletion rate (del), novel
gene introduction rate (nov), and the rate of HGT where the gene presence-absence
status of the donor strain is copied to the recipient strain (hgt).

To estimate the model parameters, we consider the discrepancy

(12) �θ = w1 KL(θ) + w2
(

creal − csimu(θ)
)2

,
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where KL(θ) is the Kullback–Leibler divergence between the observed and sim-
ulated gene frequency spectra, creal is the so-called observed clonality score, and
csimu(θ) the corresponding simulated value; see Marttinen et al. (2015) for details.
The weights w1 and w2 are used to transform the summaries approximately on the
same scale, which is common in ABC literature. Marttinen et al. (2015) achieved
the same effect by log-transforming the KL-divergence, but up to this difference,
the discrepancy here is the same as the one used by Marttinen et al. (2015). Also,
because the discrepancy has been investigated before, we are able to construct a
priori plausible ranges for the parameters � = [0.01,0.15] × [0.1,0.35] × [4,10],
and we use the uniform prior p(θ) = U(�). For the GP computations the hgt

parameter is scaled so that the parameters are approximately on the same scale.
We run the simulation model in parallel with 1000 points generated from the prior.
Most simulations require one to two hours on a single processor. We set the thresh-
old to the 0.05th quantile of the simulated discrepancy values, but the 0.01th quan-
tile led to similar conclusions. We model the discrepancy using the standard and
input-dependent GP models and the same transformations as in the previous sec-
tions.

The estimated posterior marginals are shown in Figure 7 and additional vi-
sualisation is included to the supplement [Järvenpää et al. (2018)]. The largest
classifier utility score corresponds to the input-dependent GP model with the log
transformation (classifier utility = −0.101) but also the square-root transforma-
tion with input-dependent GP and the log transformation with standard GP yield
visually similar approximations with utilities −0.102 and −0.106, respectively.
On the other hand, the squared discrepancy in equation (12) as such is difficult
to model, resulting in overestimated posterior uncertainty (see Figure 1). In gen-
eral, the input-dependent GPs have higher utilities compared to the corresponding
standard GPs for this simulation model. However, since we simulate only 1000
training data points, we expect the posterior variance to still be slightly overes-
timated, as seen in many toy examples. The approximated posterior agrees well

FIG. 7. Marginal posterior densities for the three parameters of the genetics model. The discrep-

ancy was log-transformed and the final model fitting was done by running the model 1000 times and

using the input-dependent GP model. The black dots are the model simulations (projected to each

coordinate axis), the dashed blue line is the threshold and the solid blue line describes the zero line.
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with the earlier reported point estimate θ = (0.066,0.18,7.4). In addition, we see
a strong positive correlation (ρ = 0.48) between the del and nov parameters, which
intuitively means that a high gene deletion rate can be compensated by a high rate
of introducing novel genes into the population.

Finally, we derive posterior predictive distributions for two biologically inter-
pretable quantities, (i) the ratio between the number of all gene acquisitions vs.
gene deletions (computed by considering all acquisitions and deletions, caused ei-
ther by HGT within the population or a novel acquisition/deletion), and (ii) the
ratio of gene introductions to the population from outside the population (as novel
genes) vs. from within the population (through HGT). The posterior predictive dis-
tributions are obtained by re-weighting the original simulations with importance
sampling. The 95% credible interval for quantity (i) is approximately (1.17,1.44)

and for quantity (ii) it is (0.26,0.52). Interestingly, we see that there are signifi-
cantly more gene acquisitions than deletions, as with a high probability their ratio,
the quantity (i), is larger than one. Because in reality the genomes are not rapidly
growing, this indicates some mechanism to counter the imbalance between acqui-
sitions and deletions, for example selection against larger genomes in general, or
alternatively that many new genes are individually selected against; see the discus-
sion by Marttinen et al. (2015). On the other hand, the ratio of gene acquisitions
from outside vs. from within the population, the quantity (ii), is approximately
0.4, which corresponds to the biological expectation that the majority of horizon-
tal gene transfer events happens between closely related bacterial strains; see, for
example, Majewski (2001), Fraser, Hanage and Spratt (2007). To our knowledge,
this has not been estimated before using simulation-based inference.

4. Discussion. We have thoroughly studied the use of GPs to enhance ABC
inference, but, nevertheless, many choices could not be systematically investi-
gated. We only considered the squared exponential covariance function, but ex-
pect the conclusions to hold also with other common options, as in Jabot et al.
(2014). We also used a zero mean function unlike Wilkinson (2014), Gutmann
and Corander (2016), who assumed that the discrepancy goes to infinity far from
the minimum, and thus included quadratic terms to the mean function. Our choice
allows for estimating posterior distributions of arbitrary shapes, at the cost of po-
tentially overestimating the tails of the distributions. The results also depend on
the GP hyperparameters; we used relatively uninformative priors for them and es-
timated them by maximising the marginal likelihood (for more details, see the Sup-
plementary Material [Järvenpää et al. (2018)]). Integrating over the hyperparame-
ters might improve the accuracy and stability, as in Snoek, Larochelle and Adams
(2012), and alleviate numerical problems, which we occasionally encountered es-
pecially with the input-dependent GP model. Difficult cases included heavy-tailed,
bimodal, or skewed discrepancy distributions, and cases where the discrepancy
was approximately constant in some region but grew rapidly elsewhere.
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We further assumed the summary statistics and the discrepancy function given,
but in practice they must be designed carefully. We also considered a fixed set of
transformations of the discrepancy, but other choices, such as the warped GP re-
gression [Snelson, Rasmussen and Ghahramani (2004)], could be used to derive
additional transformations. Overall, the error caused by a poorly designed dis-
crepancy may be larger than the approximation error caused by an unsuitable GP
model. Nevertheless, we find it important to understand and try to minimise the
approximation error introduced in the modelling phase. In order to focus on the
GP modelling aspect, we further assumed that the region with nonnegligible pos-
terior probability was known approximately in advance. In practice this could be
estimated by Bayesian optimisation with the standard GP model. An interesting
future direction is to formally integrate adaptive model selection with acquisition
of novel evaluation locations.

While our study is the first to compare different models for the discrepancies,
other studies on modelling in ABC have been conducted before. For example,
Blum and François (2010) modelled individual summary statistics for regression
adjustment method in ABC and allowed heteroscedastic noise. Blum (2010) used
different transformations of the summary statistics and investigated the selection
of the corresponding regression adjustment method using cross-validation based
criteria. The normality assumptions of the synthetic likelihood method [Wood
(2010)] were examined by Price et al. (2018), and, similarly to us, inferences were
found relatively robust to deviations from normality, except when the summaries
had heavy tails or were bimodal. Jabot et al. (2014) compared different emula-
tion methods for ABC, namely local regressions and GPs. However, unlike in this
work, the authors modelled the summaries separately, as was also done by Meeds
and Welling (2014).

We applied the techniques to a previously published population genetic model
for horizontal gene transfer in bacteria [Marttinen et al. (2015)]. In this realistic
example, the input-dependent GP model with log-transformed discrepancies had
the highest model selection utility, and was thus selected for presenting the re-
sults. This enabled us to derive the full posterior distribution for the parameters
of the model. We estimated the number of gene acquisitions to be significantly
higher than the number of gene deletions, suggesting some form of selection to
prevent genomes from growing rapidly, to counterbalance this observation. We
also estimated for the first time with simulation-based inference the ratio of gene
transfers within the population considered, and those from external origins, and
the results supported the empirical expectation that the majority of gene transfers
happens between closely related strains. We note that multiple different models for
bacterial evolution have been published, which differ in their purpose and assump-
tions [Fraser, Hanage and Spratt (2007), Doroghazi and Buckley (2011), Cohan
and Perry (2007), Shapiro et al. (2012), Ansari and Didelot (2014), Niehus et al.
(2015)]. The methods considered here establish a sound basis for estimating pa-
rameters in these models and their possible future generalisations.
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5. Conclusions. We considered the challenging task of ABC inference with
a small number of model evaluations, and investigated the use of GPs to model
the simulated discrepancies to fully use the scarce information available. Overall,
we found this had a great potential to improve the accuracy of the posterior when
the number of evaluations was limited. As anticipated by Gutmann and Coran-
der (2016), we observed that the discrepancy distribution may in realistic situa-
tions deviate from standard GP assumptions, for example, the variance may be
heteroscedastic or the distribution skewed or multimodal. For this reason, we stud-
ied various GP formulations for modelling the discrepancy, or the probability of
the discrepancy being below the ABC threshold. We also investigated how trans-
formations of the discrepancy affect the modelling accuracy. The main finding is
that no single modelling approach works best and, consequently, care is needed.
Some general guidelines can be nevertheless be drawn:

• The input-dependent GP typically improves the results over the standard GP if
the variance of the discrepancy is not constant across the parameter space.

• Square-root transformation produced the overall best approximations but also
the log-transformation was often useful. However, squared discrepancy should
be avoided due to its likely non-Gaussian distribution, and the dependence of
the variance on the parameter, making it difficult to model with a GP.

• Occasionally none of the GP models may fit the data well, leading to poor pos-
terior approximations. In these cases the classifier GP, the smoothed ABC rejec-
tion sampler, or some more general GP formulation not included here may be
useful.

• Model selection tools can be used to select a GP model for ABC inference in
a principled way, and their accuracy improves along with the number of model
simulations available.
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SUPPLEMENTARY MATERIAL

Additional figures and extended results tables (DOI: 10.1214/18-
AOAS1150SUPP; .pdf). We provide figures and tables to summarise the results
of additional simulation studies.

REFERENCES

ANSARI, M. A. and DIDELOT, X. (2014). Inference of the properties of the recombination process
from whole bacterial genomes. Genetics 196 253–265.

BEAUMONT, M. A., ZHANG, W. and BALDING, D. J. (2002). Approximate Bayesian computation
in population genetics. Genetics 162 2025–2035.

BEAUMONT, M. A., CORNUET, J.-M., MARIN, J.-M. and ROBERT, C. P. (2009). Adaptive ap-
proximate Bayesian computation. Biometrika 96 983–990. MR2767283

https://doi.org/10.1214/18-AOAS1150SUPP
http://www.ams.org/mathscinet-getitem?mr=2767283
https://doi.org/10.1214/18-AOAS1150SUPP


GAUSSIAN PROCESS MODELLING IN ABC 2249

BERNARDO, J.-M. and SMITH, A. F. M. (2001). Bayesian Theory. Wiley, Chichester. MR1274699
BLUM, M. G. B. (2010). Approximate Bayesian computation: A nonparametric perspective. J. Amer.

Statist. Assoc. 105 1178–1187. MR2752613
BLUM, M. G. B. and FRANÇOIS, O. (2010). Non-linear regression models for approximate

Bayesian computation. Stat. Comput. 20 63–73. MR2578077
BROCHU, E., CORA, V. M. and DE FREITAS, N. (2010). A tutorial on Bayesian optimization of

expensive cost functions, with application to active user modeling and hierarchical reinforcement
learning. Preprint. Available at arXiv:1012.2599.

CHEWAPREECHA, C., HARRIS, S. R., CROUCHER, N. J., TURNER, C., MARTTINEN, P.,
CHENG, L., PESSIA, A., AANENSEN, D. M., MATHER, A. E., PAGE, A. J. et al. (2014). Dense
genomic sampling identifies highways of pneumococcal recombination. Nat. Genet. 46 305–309.

COHAN, F. M. and PERRY, E. B. (2007). A systematics for discovering the fundamental units of
bacterial diversity. Curr. Biol. 17 R373–R386.

CROUCHER, N. J., HARRIS, S. R., FRASER, C., QUAIL, M. A., BURTON, J., VAN DER LIN-
DEN, M., MCGEE, L., VON GOTTBERG, A., SONG, J. H., KO, K. S. et al. (2011). Rapid pneu-
mococcal evolution in response to clinical interventions. Science 331 430–434.

CROUCHER, N. J., FINKELSTEIN, J. A., PELTON, S. I., MITCHELL, P. K., LEE, G. M.,
PARKHILL, J., BENTLEY, S. D., HANAGE, W. P. and LIPSITCH, M. (2013). Population ge-
nomics of post-vaccine changes in pneumococcal epidemiology. Nat. Genet. 45 656–663.

DEL MORAL, P., DOUCET, A. and JASRA, A. (2012). An adaptive sequential Monte Carlo method
for approximate Bayesian computation. Stat. Comput. 22 1009–1020. MR2950081

DOROGHAZI, J. R. and BUCKLEY, D. H. (2011). A model for the effect of homologous recombina-
tion on microbial diversification. Genome Biol. Evol. 3 1349–1356.

DROVANDI, C. C., MOORES, M. T. and BOYS, R. J. (2018). Accelerating pseudo-marginal MCMC
using Gaussian processes. Comput. Statist. Data Anal. 118 1–17. MR3715260

DROVANDI, C. C. and PETTITT, A. N. (2011). Estimation of parameters for macroparasite popula-
tion evolution using approximate Bayesian computation. Biometrics 67 225–233. MR2898834

DROVANDI, C. C., PETTITT, A. N. and LEE, A. (2015). Bayesian indirect inference using a para-
metric auxiliary model. Statist. Sci. 30 72–95. MR3317755

FAN, Y., NOTT, D. J. and SISSON, S. A. (2013). Approximate Bayesian computation via regression
density estimation. Stat 2 34–48.

FEARNHEAD, P. and PRANGLE, D. (2012). Constructing summary statistics for approximate
Bayesian computation: Semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser.
B. Stat. Methodol. 74 419–474. MR2925370

FRASER, C., HANAGE, W. P. and SPRATT, B. G. (2007). Recombination and the nature of bacterial
speciation. Science 315 476–480.

GOLDBERG, P. W., WILLIAMS, C. K. I. and BISHOP, C. M. (1997). Regression with input-
dependent noise: A Gaussian process treatment. Adv. Neural Inf. Process. Syst. 10 493–499.

GUTMANN, M. U. and CORANDER, J. (2016). Bayesian optimization for likelihood-free inference
of simulator-based statistical models. J. Mach. Learn. Res. 17 Paper No. 125, 47. MR3555016

HARTIG, F., CALABRESE, J. M., REINEKING, B., WIEGAND, T. and HUTH, A. (2011). Statistical
inference for stochastic simulation models – Theory and application. Ecol. Lett. 14 816–827.

JABOT, F., LAGARRIGUES, G., COURBAUD, B. and DUMOULIN, N. (2014). A comparison of em-
ulation methods for approximate Bayesian computation. Preprint. Available at arXiv:1412.7560.

JÄRVENPÄÄ, M., GUTMANN, M., PLESKA, A., VEHTARI, A. and MARTTINEN, P. (2017). Effi-
cient acquisition rules for model-based approximate Bayesian computation. Preprint. Available at
arXiv:1704.00520.

JÄRVENPÄÄ, M., GUTMANN, M., VEHTARI, A. and MARTTINEN, P. (2018). Supplement to “Gaus-
sian process modeling in approximate Bayesian computation to estimate horizontal gene transfer
in bacteria.” DOI:10.1214/18-AOAS1150SUPP.

http://www.ams.org/mathscinet-getitem?mr=1274699
http://www.ams.org/mathscinet-getitem?mr=2752613
http://www.ams.org/mathscinet-getitem?mr=2578077
http://arxiv.org/abs/arXiv:1012.2599
http://www.ams.org/mathscinet-getitem?mr=2950081
http://www.ams.org/mathscinet-getitem?mr=3715260
http://www.ams.org/mathscinet-getitem?mr=2898834
http://www.ams.org/mathscinet-getitem?mr=3317755
http://www.ams.org/mathscinet-getitem?mr=2925370
http://www.ams.org/mathscinet-getitem?mr=3555016
http://arxiv.org/abs/arXiv:1412.7560
http://arxiv.org/abs/arXiv:1704.00520
https://doi.org/10.1214/18-AOAS1150SUPP


2250 JÄRVENPÄÄ, GUTMANN, VEHTARI AND MARTTINEN

KANDASAMY, K., SCHNEIDER, J. and PÓCZOS, B. (2015). Bayesian active learning for posterior
estimation. In International Joint Conference on Artificial Intelligence 3605–3611.

LENORMAND, M., JABOT, F. and DEFFUANT, G. (2013). Adaptive approximate Bayesian compu-
tation for complex models. Comput. Statist. 28 2777–2796. MR3141363

LINTUSAARI, J., GUTMANN, M. U., DUTTA, R., KASKI, S. and CORANDER, J. (2016). Funda-
mentals and recent developments in approximate Bayesian computation. Syst. Biol. 66 e66–e82.

MAJEWSKI, J. (2001). Sexual isolation in bacteria. FEMS Microbiol. Lett. 199 161–169.
MARIN, J.-M., PUDLO, P., ROBERT, C. P. and RYDER, R. J. (2012). Approximate Bayesian com-

putational methods. Stat. Comput. 22 1167–1180. MR2992292
MARJORAM, P., MOLITOR, J., PLAGNOL, V. and TAVARE, S. (2003). Markov chain Monte Carlo

without likelihoods. Proc. Natl. Acad. Sci. USA 100 15324–15328.
MARTTINEN, P., CROUCHER, N. J., GUTMANN, M. U., CORANDER, J. and HANAGE, W. P.

(2015). Recombination produces coherent bacterial species clusters in both core and accessory
genomes. Microb. Genomes 1 e000038.

MEEDS, E. and WELLING, M. (2014). GPS-ABC: Gaussian process surrogate approximate
Bayesian computation. In Proceedings of the 30th Conference on Uncertainty in Artificial In-

telligence.
NIEHUS, R., MITRI, S., FLETCHER, A. G. and FOSTER, K. R. (2015). Migration and horizontal

gene transfer divide microbial genomes into multiple niches. Nat. Commun. 6 8924.
PAPAMAKARIOS, G. and MURRAY, I. (2016). Fast e-free inference of simulation models with

Bayesian conditional density estimation. In Advances in Neural Information Processing Systems

29.
PRICE, L. F., DROVANDI, C. C., LEE, A. and NOTT, D. J. (2018). Bayesian synthetic likelihood.

J. Comput. Graph. Statist. 27 1–11. MR3788296
RASMUSSEN, C. E. and WILLIAMS, C. K. I. (2006). Gaussian Processes for Machine Learning.

Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA. MR2514435
SHAHRIARI, B., SWERSKY, K., WANG, Z., ADAMS, R. P. and DE FREITAS, N. (2015). Taking the

human out of the loop: A review of Bayesian optimization. Proc. IEEE 104.
SHAPIRO, B. J., FRIEDMAN, J., CORDERO, O. X., PREHEIM, S. P., TIMBERLAKE, S. C., SZ-

ABÓ, G., POLZ, M. F. and ALM, E. J. (2012). Population genomics of early events in the eco-
logical differentiation of bacteria. Science 336 48–51.

SISSON, S. A., FAN, Y. and TANAKA, M. M. (2007). Sequential Monte Carlo without likelihoods.
Proc. Natl. Acad. Sci. USA 104 1760–1765. MR2301870

SNELSON, E., RASMUSSEN, C. E. and GHAHRAMANI, Z. (2004). Warped Gaussian processes. In
Advances in Neural Information Processing Systems 16 337–344.

SNOEK, J., LAROCHELLE, H. and ADAMS, R. P. (2012). Practical Bayesian optimization of ma-
chine learning algorithms. In Advances in Neural Information Processing Systems 25 1–9.

THOMAS, C. M. and NIELSEN, K. M. (2005). Mechanisms of, and barriers to, horizontal gene
transfer between bacteria. Nat. Rev., Microbiol. 3 711–721.

TOLVANEN, V., JYLÄNKI, P. and VEHTARI, A. (2014). Approximate inference for nonstationary
heteroscedastic Gaussian process regression. In 2014 IEEE International Workshop on Machine

Learning for Signal Processing 1–24.
TONI, T., WELCH, D., STRELKOWA, N., IPSEN, A. and STUMPF, M. P. H. (2009). Approximate

Bayesian computation scheme for parameter inference and model selection in dynamical systems.
J. R. Soc. Interface 6 187–202.

TOUCHON, M., HOEDE, C., TENAILLON, O., BARBE, V., BAERISWYL, S., BIDET, P., BIN-
GEN, E., BONACORSI, S., BOUCHIER, C., BOUVET, O. et al. (2009). Organised genome dy-
namics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 5

e1000344.
TURNER, B. M. and SEDERBERG, P. B. (2014). A generalized, likelihood-free method for posterior

estimation. Psychon. Bull. Rev. 21 227–250.

http://www.ams.org/mathscinet-getitem?mr=3141363
http://www.ams.org/mathscinet-getitem?mr=2992292
http://www.ams.org/mathscinet-getitem?mr=3788296
http://www.ams.org/mathscinet-getitem?mr=2514435
http://www.ams.org/mathscinet-getitem?mr=2301870


GAUSSIAN PROCESS MODELLING IN ABC 2251

TURNER, B. M. and VAN ZANDT, T. (2012). A tutorial on approximate Bayesian computation.
J. Math. Psych. 56 69–85. MR2909506

VANHATALO, J., RIIHIMÄKI, J., HARTIKAINEN, J., JYLÄNKI, P., TOLVANEN, V. and VE-
HTARI, A. (2013). GPstuff: Bayesian modeling with Gaussian processes. J. Mach. Learn. Res.
14 1175–1179. MR3063621

VEHTARI, A. and LAMPINEN, J. (2002). Bayesian model assessment and comparison using cross-
validation predictive densities. Neural Comput. 14 2439–2468.

VEHTARI, A. and OJANEN, J. (2012). A survey of Bayesian predictive methods for model assess-
ment, selection and comparison. Stat. Surv. 6 142–228. MR3011074

WILKINSON, R. D. (2014). Accelerating ABC methods using Gaussian processes. In Proceedings

of the Seventeeth International Conference on Artificial Intelligence and Statistics 1015–1023.
WOOD, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systems. Nature

466 1102–1104.

M. JÄRVENPÄÄ

A. VEHTARI

P.MARTTINEN

HELSINKI INSTITUTE FOR INFORMATION

TECHNOLOGY HIIT
DEPARTMENT OF COMPUTER SCIENCE

AALTO UNIVERSITY

FI-00076, ESPOO

FINLAND

E-MAIL: marko.j.jarvenpaa@aalto.fi
aki.vehtari@aalto.fi
pekka.marttinen@aalto.fi

M. U. GUTMANN

SCHOOL OF INFORMATICS

UNIVERSITY OF EDINBURGH

EDINBURGH, EH8 9AB
UNITED KINGDOM

E-MAIL: michael.gutmann@ed.ac.uk

http://www.ams.org/mathscinet-getitem?mr=2909506
http://www.ams.org/mathscinet-getitem?mr=3063621
http://www.ams.org/mathscinet-getitem?mr=3011074
mailto:marko.j.jarvenpaa@aalto.fi
mailto:aki.vehtari@aalto.fi
mailto:pekka.marttinen@aalto.fi
mailto:michael.gutmann@ed.ac.uk

	Introduction
	Background and methods
	ABC
	BOLFI method
	GP models for ABC
	GP model selection

	Results
	Toy examples
	Model selection results
	Horizontal gene transfer between bacterial genomes

	Discussion
	Conclusions
	Acknowledgement
	Supplementary Material
	References
	Author's Addresses

