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Abstract

Many applications require optimizing an un-
known, noisy function that is expensive to
evaluate. We formalize this task as a multi-
armed bandit problem, where the payoff function
is either sampled from a Gaussian process (GP)
or has low RKHS norm. We resolve the impor-
tant open problem of deriving regret bounds for
this setting, which imply novel convergence rates
for GP optimization. We analyze GP-UCB, an
intuitive upper-confidence based algorithm, and
bound its cumulative regret in terms of maximal
information gain, establishing a novel connection
between GP optimization and experimental de-
sign. Moreover, by bounding the latter in terms
of operator spectra, we obtain explicit sublinear
regret bounds for many commonly used covari-
ance functions. In some important cases, our
bounds have surprisingly weak dependence on
the dimensionality. In our experiments on real
sensor data, GP-UCB compares favorably with
other heuristical GP optimization approaches.

1. Introduction

In most stochastic optimization settings, evaluating
the unknown function is expensive, and sampling
is to be minimized. Examples include choosing
advertisements in sponsored search to maximize
profit in a click-through model (Pandey & Olston,
2007) or learning optimal control strategies for robots
(Lizotte et al., 2007). Predominant approaches
to this problem include the multi-armed bandit
paradigm (Robbins, 1952), where the goal is to
maximize cumulative reward by optimally balancing
exploration and exploitation, and experimental design
(Chaloner & Verdinelli, 1995), where the function
is to be explored globally with as few evaluations
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as possible, for example by maximizing information
gain. The challenge in both approaches is twofold: we
have to estimate an unknown function f from noisy
samples, and we must optimize our estimate over some
high-dimensional input space. For the former, much
progress has been made in machine learning through
kernel methods and Gaussian process (GP) models
(Rasmussen & Williams, 2006), where smoothness
assumptions about f are encoded through the choice
of kernel in a flexible nonparametric fashion. Beyond
Euclidean spaces, kernels can be defined on diverse
domains such as spaces of graphs, sets, or lists.

We are concerned with GP optimization in the multi-
armed bandit setting, where f is sampled from a GP
distribution or has low “complexity” measured in
terms of its RKHS norm under some kernel. We pro-
vide the first sublinear regret bounds in this nonpara-
metric setting, which imply convergence rates for GP
optimization. In particular, we analyze the Gaussian
Process Upper Confidence Bound (GP-UCB) algo-
rithm, a simple and intuitive Bayesian method (Auer
et al., 2002; Auer, 2002; Dani et al., 2008). While
objectives are different in the multi-armed bandit
and experimental design paradigm, our results draw
a close technical connection between them: our regret
bounds come in terms of an information gain quantity,
measuring how fast f can be learned in an information
theoretic sense. The submodularity of this function
allows us to prove sharp regret bounds for particular
covariance functions, which we demonstrate for com-
monly used Squared Exponential and Matérn kernels.

Related Work. Our work generalizes stochastic
linear optimization in a bandit setting, where the un-
known function comes from a finite-dimensional linear
space. GPs are nonlinear random functions, which can
be represented in an infinite-dimensional linear space.
For the standard linear setting, Dani et al. (2008)
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provide a near-complete characterization explicitly
dependent on the dimensionality. In the GP setting,
the challenge is to characterize complexity in a differ-
ent manner, through properties of the kernel function.
Our technical contributions are twofold: first, we
show how to analyze the nonlinear setting by focusing
on the concept of information gain, and second, we
explicitly bound this information gain measure using
the concept of submodularity (Nemhauser et al.,
1978) and knowledge about kernel operator spectra.

Kleinberg et al. (2008) provide regret bounds un-
der weaker and less configurable assumptions (only
Lipschitz-continuity w.r.t. a metric is assumed;
Bubeck et al. 2008 consider arbitrary topological
spaces), which however degrade rapidly with the di-

mensionality of the problem (Ω(T
d+1

d+2 )). In practice,
linearity w.r.t. a fixed basis is often too stringent
an assumption, while Lipschitz-continuity can be too
coarse-grained, leading to poor rate bounds. Adopting
GP assumptions, we can model levels of smoothness in
a fine-grained way. For example, our rates for the fre-
quently used Squared Exponential kernel, enforcing a
high degree of smoothness, have weak dependence on
the dimensionality: O(

√

T (log T )d+1) (see Fig. 1).

There is a large literature on GP (response surface)
optimization. Several heuristics for trading off explo-
ration and exploitation in GP optimization have been
proposed (such as Expected Improvement, Mockus
et al. 1978, and Most Probable Improvement, Mockus
1989) and successfully applied in practice (c.f., Lizotte
et al. 2007). Brochu et al. (2009) provide a comprehen-
sive review of and motivation for Bayesian optimiza-
tion using GPs. The Efficient Global Optimization
(EGO) algorithm for optimizing expensive black-box
functions is proposed by Jones et al. (1998) and ex-
tended to GPs by Huang et al. (2006). Little is known
about theoretical performance of GP optimization.
While convergence of EGO is established by Vazquez
& Bect (2007), convergence rates have remained elu-
sive. Grünewälder et al. (2010) consider the pure ex-
ploration problem for GPs, where the goal is to find the
optimal decision over T rounds, rather than maximize
cumulative reward (with no exploration/exploitation
dilemma). They provide sharp bounds for this explo-
ration problem. Note that this methodology would not
lead to bounds for minimizing the cumulative regret.
Our cumulative regret bounds translate to the first
performance guarantees (rates) for GP optimization.

Summary. Our main contributions are:

• We analyze GP-UCB, an intuitive algorithm for
GP optimization, when the function is either sam-
pled from a known GP, or has low RKHS norm.

Kernel Linear 

kernel
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kernel Regret RT

�

T (log T )d+1
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Figure 1. Our regret bounds (up to polylog factors) for lin-
ear, radial basis, and Matérn kernels — d is the dimension,
T is the time horizon, and ν is a Matérn parameter.

• We bound the cumulative regret for GP-UCB in
terms of the information gain due to sampling,
establishing a novel connection between experi-
mental design and GP optimization.

• By bounding the information gain for popular
classes of kernels, we establish sublinear regret
bounds for GP optimization for the first time.
Our bounds depend on kernel choice and param-
eters in a fine-grained fashion.

• We evaluate GP-UCB on sensor network data,
demonstrating that it compares favorably to ex-
isting algorithms for GP optimization.

2. Problem Statement and Background

Consider the problem of sequentially optimizing an un-
known reward function f : D → R: in each round t, we
choose a point xt ∈ D and get to see the function value
there, perturbed by noise: yt = f(xt)+ ǫt. Our goal is

to maximize the sum of rewards
∑T

t=1 f(xt), thus to
perform essentially as well as x∗ = argmax

x∈D f(x)
(as rapidly as possible). For example, we might want
to find locations of highest temperature in a building
by sequentially activating sensors in a spatial network
and regressing on their measurements. D consists of
all sensor locations, f(x) is the temperature at x, and
sensor accuracy is quantified by the noise variance.
Each activation draws battery power, so we want to
sample from as few sensors as possible.

Regret. A natural performance metric in this con-
text is cumulative regret, the loss in reward due to not
knowing f ’s maximum points beforehand. Suppose
the unknown function is f , its maximum point1

x∗ = argmax
x∈D f(x). For our choice xt in round

t, we incur instantaneous regret rt = f(x∗) − f(xt).
The cumulative regret RT after T rounds is the sum
of instantaneous regrets: RT =

∑T
t=1 rt. A desirable

asymptotic property of an algorithm is to be no-regret :
limT→∞ RT /T = 0. Note that neither rt nor RT are
ever revealed to the algorithm. Bounds on the average
regret RT /T translate to convergence rates for GP
optimization: the maximum maxt≤T f(xt) in the first
T rounds is no further from f(x∗) than the average.

1 x∗ need not be unique; only f(x∗) occurs in the regret.
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2.1. Gaussian Processes and RKHS’s

Gaussian Processes. Some assumptions on f are
required to guarantee no-regret. While rigid paramet-
ric assumptions such as linearity may not hold in prac-
tice, a certain degree of smoothness is often warranted.
In our sensor network, temperature readings at closeby
locations are highly correlated (see Figure 2(a)). We
can enforce implicit properties like smoothness with-
out relying on any parametric assumptions, modeling
f as a sample from a Gaussian process (GP): a col-
lection of dependent random variables, one for each
x ∈ D, every finite subset of which is multivariate
Gaussian distributed in an overall consistent way (Ras-
mussen & Williams, 2006). A GP (µ(x), k(x,x′)) is
specified by its mean function µ(x) = E[f(x)] and
covariance (or kernel) function k(x,x′) = E[(f(x) −
µ(x))(f(x′) − µ(x′))]. For GPs not conditioned on
data, we assume2 that µ ≡ 0. Moreover, we restrict
k(x,x) ≤ 1, x ∈ D, i.e., we assume bounded variance.
By fixing the correlation behavior, the covariance func-
tion k encodes smoothness properties of sample func-
tions f drawn from the GP. A range of commonly used
kernel functions is given in Section 5.2.

In this work, GPs play multiple roles. First, some of
our results hold when the unknown target function is a
sample from a known GP distribution GP(0, k(x,x′)).
Second, the Bayesian algorithm we analyze generally
uses GP(0, k(x,x′)) as prior distribution over f . A
major advantage of working with GPs is the exis-
tence of simple analytic formulae for mean and co-
variance of the posterior distribution, which allows
easy implementation of algorithms. For a noisy sam-
ple yT = [y1 . . . yT ]T at points AT = {x1, . . . ,xT },
yt = f(xt)+ǫt with ǫt ∼ N(0, σ2) i.i.d. Gaussian noise,
the posterior over f is a GP distribution again, with
mean µT (x), covariance kT (x,x′) and variance σ2

T (x):

µT (x) = kT (x)T (KT + σ2I)−1yT , (1)

kT (x,x′) = k(x,x′) − kT (x)T (KT + σ2I)−1kT (x′),

σ2
T (x) = kT (x,x), (2)

where kT (x) = [k(x1,x) . . . k(xT ,x)]T and KT is
the positive definite kernel matrix [k(x,x′)]x,x′∈AT

.

RKHS. Instead of the Bayes case, where f is sam-
pled from a GP prior, we also consider the more ag-
nostic case where f has low “complexity” as measured
under an RKHS norm (and distribution free assump-
tions on the noise process). The notion of reproduc-
ing kernel Hilbert spaces (RKHS, Wahba 1990) is in-
timately related to GPs and their covariance func-
tions k(x,x′). The RKHS Hk(D) is a complete sub-
space of L2(D) of nicely behaved functions, with an

2This is w.l.o.g. (Rasmussen & Williams, 2006).

inner product 〈·, ·〉k obeying the reproducing property:
〈f, k(x, ·)〉k = f(x) for all f ∈ Hk(D). The induced
RKHS norm ‖f‖k =

√

〈f, f〉k measures smoothness of
f w.r.t. k: in much the same way as k1 would generate
smoother samples than k2 as GP covariance functions,
‖·‖k1

assigns larger penalties than ‖·‖k2
. 〈·, ·〉k can be

extended to all of L2(D), in which case ‖f‖k < ∞ iff
f ∈ Hk(D). For most kernels discussed in Section 5.2,
members of Hk(D) can uniformly approximate any
continuous function on any compact subset of D.

2.2. Information Gain & Experimental Design

One approach to maximizing f is to first choose
points xt so as to estimate the function globally
well, then play the maximum point of our estimate.
How can we learn about f as rapidly as possible?
This question comes down to Bayesian Experimental
Design (henceforth “ED”; see Chaloner & Verdinelli
1995), where the informativeness of a set of sampling
points A ⊂ D about f is measured by the information
gain (c.f., Cover & Thomas 1991), which is the mutual
information between f and observations yA = fA+ǫA

at these points:

I(yA; f) = H(yA) − H(yA|f), (3)

quantifying the reduction in uncertainty about f
from revealing yA. Here, fA = [f(x)]x∈A and
εA ∼ N(0, σ2I). For a Gaussian, H(N(µ,Σ)) =
1
2 log |2πeΣ|, so that in our setting I(yA; f) =
I(yA;fA) = 1

2 log |I + σ−2KA|, where KA =
[k(x,x′)]x,x′∈A. While finding the information gain
maximizer among A ⊂ D, |A| ≤ T is NP-hard (Ko
et al., 1995), it can be approximated by an efficient
greedy algorithm. If F (A) = I(yA; f), this algorithm
picks xt = argmax

x∈D F (At−1∪{x}) in round t, which
can be shown to be equivalent to

xt = argmax
x∈D

σt−1(x), (4)

where At−1 = {x1, . . . ,xt−1}. Importantly, this
simple algorithm is guaranteed to find a near-optimal
solution: for the set AT obtained after T rounds, we
have that

F (AT ) ≥ (1 − 1/e) max
|A|≤T

F (A), (5)

at least a constant fraction of the optimal infor-
mation gain value. This is because F (A) satisfies
a diminishing returns property called submodularity
(Krause & Guestrin, 2005), and the greedy approxima-
tion guarantee (5) holds for any submodular function
(Nemhauser et al., 1978).

While sequentially optimizing Eq. 4 is a provably good
way to explore f globally, it is not well suited for func-
tion optimization. For the latter, we only need to iden-
tify points x where f(x) is large, in order to concen-



Gaussian Process Optimization in the Bandit Setting

trate sampling there as rapidly as possible, thus exploit
our knowledge about maxima. In fact, the ED rule
(4) does not even depend on observations yt obtained
along the way. Nevertheless, the maximum informa-
tion gain after T rounds will play a prominent role
in our regret bounds, forging an important connection
between GP optimization and experimental design.

3. GP-UCB Algorithm

For sequential optimization, the ED rule (4) can be
wasteful: it aims at decreasing uncertainty globally,
not just where maxima might be. Another idea is to
pick points as xt = argmax

x∈D µt−1(x), maximizing
the expected reward based on the posterior so far.
However, this rule is too greedy too soon and tends
to get stuck in shallow local optima. A combined
strategy is to choose

xt = argmax
x∈D

µt−1(x) + β
1/2
t σt−1(x), (6)

where βt are appropriate constants. This latter objec-
tive prefers both points x where f is uncertain (large
σt−1(·)) and such where we expect to achieve high
rewards (large µt−1(·)): it implicitly negotiates the
exploration–exploitation tradeoff. A natural interpre-
tation of this sampling rule is that it greedily selects
points x such that f(x) should be a reasonable upper
bound on f(x∗), since the argument in (6) is an upper
quantile of the marginal posterior P (f(x)|yt−1). We
call this choice the Gaussian process upper confidence
bound rule (GP-UCB), where βt is specified depending
on the context (see Section 4). Pseudocode for
the GP-UCB algorithm is provided in Algorithm 1.
Figure 2 illustrates two subsequent iterations, where
GP-UCB both explores (Figure 2(b)) by sampling an
input x with large σ2

t−1(x) and exploits (Figure 2(c))
by sampling x with large µt−1(x).

The GP-UCB selection rule Eq. 6 is motivated by the
UCB algorithm for the classical multi-armed bandit
problem (Auer et al., 2002; Kocsis & Szepesvári,
2006). Among competing criteria for GP optimization
(see Section 1), a variant of the GP-UCB rule has
been demonstrated to be effective for this application
(Dorard et al., 2009). To our knowledge, strong
theoretical results of the kind provided for GP-UCB in
this paper have not been given for any of these search
heuristics. In Section 6, we show that in practice
GP-UCB compares favorably with these alternatives.

If D is infinite, finding xt in (6) may be hard: the
upper confidence index is multimodal in general.
However, global search heuristics are very effective in
practice (Brochu et al., 2009). It is generally assumed
that evaluating f is more costly than maximizing the
UCB index.

Algorithm 1 The GP-UCB algorithm.

Input: Input space D; GP Prior µ0 = 0, σ0, k
for t = 1, 2, . . . do

Choose xt = argmax
x∈D

µt−1(x) +
√

βtσt−1(x)

Sample yt = f(xt) + ǫt

Perform Bayesian update to obtain µt and σt

end for

UCB algorithms (and GP optimization techniques
in general) have been applied to a large number of
problems in practice (Kocsis & Szepesvári, 2006;
Pandey & Olston, 2007; Lizotte et al., 2007). Their
performance is well characterized in both the finite
arm setting and the linear optimization setting, but
no convergence rates for GP optimization are known.

4. Regret Bounds

We now establish cumulative regret bounds for GP
optimization, treating a number of different settings:
f ∼ GP(0, k(x,x′)) for finite D, f ∼ GP(0, k(x,x′))
for general compact D, and the agnostic case of arbi-
trary f with bounded RKHS norm.

GP optimization generalizes stochastic linear opti-
mization, where a function f from a finite-dimensional
linear space is optimized over. For the linear case, Dani
et al. (2008) provide regret bounds that explicitly de-
pend on the dimensionality3 d. GPs can be seen as
random functions in some infinite-dimensional linear
space, so their results do not apply in this case. This
problem is circumvented in our regret bounds. The
quantity governing them is the maximum information
gain γT after T rounds, defined as:

γT := max
A⊂D:|A|=T

I(yA;fA), (7)

where I(yA;fA) = I(yA; f) is defined in (3). Recall
that I(yA;fA) = 1

2 log |I + σ−2KA|, where KA =
[k(x,x′)]x,x′∈A is the covariance matrix of fA =
[f(x)]x∈A associated with the samples A. Our regret
bounds are of the form O∗(

√
TβT γT ), where βT is the

confidence parameter in Algorithm 1, while the bounds
of Dani et al. (2008) are of the form O∗(

√
TβT d) (d

the dimensionality of the linear function space). Here
and below, the O∗ notation is a variant of O, where
log factors are suppressed. While our proofs – all pro-
vided in the longer version (Srinivas et al., 2009) – use
techniques similar to those of Dani et al. (2008), we
face a number of additional significant technical chal-
lenges. Besides avoiding the finite-dimensional analy-
sis, we must handle confidence issues, which are more

3 In general, d is the dimensionality of the input space
D, which in the finite-dimensional linear case coincides
with the feature space.
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Figure 2. (a) Example of temperature data collected by a network of 46 sensors at Intel Research Berkeley. (b,c) Two
iterations of the GP-UCB algorithm. It samples points that are either uncertain (b) or have high posterior mean (c).

delicate for nonlinear random functions.

Importantly, note that the information gain is a prob-
lem dependent quantity — properties of both the ker-
nel and the input space will determine the growth of
regret. In Section 5, we provide general methods for
bounding γT , either by efficient auxiliary computa-
tions or by direct expressions for specific kernels of
interest. Our results match known lower bounds (up
to log factors) in both the K-armed bandit and the
d-dimensional linear optimization case.

Bounds for a GP Prior. For finite D, we obtain
the following bound.

Theorem 1 Let δ ∈ (0, 1) and βt =
2 log(|D|t2π2/6δ). Running GP-UCB with βt for
a sample f of a GP with mean function zero and
covariance function k(x,x′), we obtain a regret bound
of O∗(

√

TγT log |D|) with high probability. Precisely,

Pr
{

RT ≤
√

C1TβT γT ∀T ≥ 1
}

≥ 1 − δ.

where C1 = 8/ log(1 + σ−2).

The proof essentially relates the regret to the growth
of the log volume of the confidence ellipsoid, and in a
novel manner, shows how this growth is characterized
by the information gain.

This theorem shows that, with high probability over
samples from the GP, the cumulative regret is bounded
in terms of the maximum information gain, forging a
novel connection between GP optimization and exper-
imental design. This link is of fundamental technical
importance, allowing us to generalize Theorem 1 to
infinite decision spaces. Moreover, the submodularity
of I(yA;fA) allows us to derive sharp a priori bounds,
depending on choice and parameterization of k (see
Section 5). In the following theorem, we generalize
our result to any compact and convex D ⊂ R

d under
mild assumptions on the kernel function k.

Theorem 2 Let D ⊂ [0, r]d be compact and convex,
d ∈ N, r > 0. Suppose that the kernel k(x,x′) satisfies
the following high probability bound on the derivatives
of GP sample paths f : for some constants a, b > 0,

Pr {sup
x∈D |∂f/∂xj | > L} ≤ ae−(L/b)2 , j = 1, . . . , d.

Pick δ ∈ (0, 1), and define

βt = 2 log(t22π2/(3δ)) + 2d log
(

t2dbr
√

log(4da/δ)
)

.

Running the GP-UCB with βt for a sample f of a
GP with mean function zero and covariance function
k(x,x′), we obtain a regret bound of O∗(

√
dTγT ) with

high probability. Precisely, with C1 = 8/ log(1 + σ−2)
we have

Pr
{

RT ≤
√

C1TβT γT + 2 ∀T ≥ 1
}

≥ 1 − δ.

The main challenge in our proof is to lift the regret
bound in terms of the confidence ellipsoid to general
D. The smoothness assumption on k(x,x′) disqual-
ifies GPs with highly erratic sample paths. It holds
for stationary kernels k(x,x′) = k(x − x′) which are
four times differentiable (Theorem 5 of Ghosal & Roy
(2006)), such as the Squared Exponential and Matérn
kernels with ν > 2 (see Section 5.2), while it is vio-
lated for the Ornstein-Uhlenbeck kernel (Matérn with
ν = 1/2; a stationary variant of the Wiener process).
For the latter, sample paths f are nondifferentiable al-
most everywhere with probability one and come with
independent increments. We conjecture that a result
of the form of Theorem 2 does not hold in this case.

Bounds for Arbitrary f in the RKHS. Thus far,
we have assumed that the target function f is sampled
from a GP prior and that the noise is N(0, σ2) with
known variance σ2. We now analyze GP-UCB in an
agnostic setting, where f is an arbitrary function
from the RKHS corresponding to kernel k(x,x′).
Moreover, we allow the noise variables εt to be an ar-
bitrary martingale difference sequence (meaning that
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E[εt | ε<t] = 0 for all t ∈ N), uniformly bounded by σ.
Note that we still run the same GP-UCB algorithm,
whose prior and noise model are misspecified in this
case. Our following result shows that GP-UCB attains
sublinear regret even in the agnostic setting.

Theorem 3 Let δ ∈ (0, 1). Assume that the true
underlying f lies in the RKHS Hk(D) corresponding
to the kernel k(x,x′), and that the noise εt has zero
mean conditioned on the history and is bounded by σ
almost surely. In particular, assume ‖f‖2

k ≤ B and
let βt = 2B + 300γt log3(t/δ). Running GP-UCB with
βt, prior GP (0, k(x,x′)) and noise model N(0, σ2),
we obtain a regret bound of O∗(

√
T (B

√
γT +γT )) with

high probability (over the noise). Precisely,

Pr
{

RT ≤
√

C1TβT γT ∀T ≥ 1
}

≥ 1 − δ,

where C1 = 8/ log(1 + σ−2).

Note that while our theorem implicitly assumes that
GP-UCB has knowledge of an upper bound on ‖f‖k,
standard guess-and-doubling approaches suffice if no
such bound is known a priori. Comparing Theorem 2
and Theorem 3, the latter holds uniformly over all
functions f with ‖f‖k < ∞, while the former is a prob-
abilistic statement requiring knowledge of the GP that
f is sampled from. In contrast, if f ∼ GP(0, k(x,x′)),
then ‖f‖k = ∞ almost surely (Wahba, 1990): sample
paths are rougher than RKHS functions. Neither
Theorem 2 nor 3 encompasses the other.

5. Bounding the Information Gain

Since the bounds developed in Section 4 depend on the
information gain, the key remaining question is how to
bound the quantity γT for practical classes of kernels.

5.1. Submodularity and Greedy Maximization

In order to bound γT , we have to maximize the infor-
mation gain F (A) = I(yA; f) over all subsets A ⊂ D of
size T : a combinatorial problem in general. However,
as noted in Section 2, F (A) is a submodular function,
which implies the performance guarantee (5) for max-
imizing F sequentially by the greedy ED rule (4). Di-
viding both sides of (5) by 1−1/e, we can upper-bound
γT by (1 − 1/e)−1I(yAT

; f), where AT is constructed
by the greedy procedure. Thus, somewhat counterin-
tuitively, instead of using submodularity to prove that
F (AT ) is near-optimal, we use it in order to show that
γT is “near-greedy”. As noted in Section 2, the ED
rule does not depend on observations yt and can be
run without evaluating f .

The importance of this greedy bound is twofold.
First, it allows us to numerically compute highly
problem-specific bounds on γT , which can be plugged
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Figure 3. Spectral decay (left) and information gain bound
(right) for independent (diagonal), linear, squared expo-
nential and Matérn kernels (ν = 2.5.) with equal trace.

into our results in Section 4 to obtain high-probability
bounds on RT . This being a laborious procedure, one
would prefer a priori bounds for γT in practice which
are simple analytical expressions of T and parameters
of k. In this section, we sketch a general procedure
for obtaining such expressions, instantiating them for
a number of commonly used covariance functions,
once more relying crucially on the greedy ED rule
upper bound. Suppose that D is finite for now, and
let f = [f(x)]x∈D, KD = [k(x,x′)]x,x′∈D. Sampling
f at xt, we obtain yt ∼ N(vT

t f , σ2), where vt ∈ R
|D|

is the indicator vector associated with xt. We can
upper-bound the greedy maximum once more, by
relaxing this constraint to ‖vt‖ = 1 in round t of the
sequential method. For this relaxed greedy procedure,
all vt are leading eigenvectors of KD, since successive
covariance matrices of P (f |yt−1) share their eigenba-
sis with KD, while eigenvalues are damped according
to how many times the corresponding eigenvector is
selected. We can upper-bound the information gain
by considering the worst-case allocation of T samples
to the min{T, |D|} leading eigenvectors of KD:

γT ≤ 1/2

1 − e−1
max
(mt)

∑|D|

t=1
log(1 + σ−2mtλ̂t), (8)

subject to
∑

t mt = T , and spec(KD) = {λ̂1 ≥ λ̂2 ≥
. . . }. We can split the sum into two parts in order
to obtain a bound to leading order. The following
Theorem captures this intuition:

Theorem 4 For any T ∈ N and any T∗ = 1, . . . , T :

γT ≤ O
(

σ−2[B(T∗)T + T∗(log nT T )]
)

,

where nT =
∑|D|

t=1 λ̂t and B(T∗) =
∑|D|

t=T∗+1 λ̂t.

Therefore, if for some T∗ = o(T ) the first T∗ eigenval-
ues carry most of the total mass nT , the information
gain will be small. The more rapidly the spectrum
of KD decays, the slower the growth of γT . Figure 3
illustrates this intuition.

5.2. Bounds for Common Kernels

In this section we bound γT for a range of commonly
used covariance functions: finite dimensional linear,
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Squared Exponential and Matérn kernels. Together
with our results in Section 4, these imply sublinear
regret bounds for GP-UCB in all cases.

Finite dimensional linear kernels have the form
k(x,x′) = xT x′. GPs with this kernel correspond to
random linear functions f(x) = wT x, w ∼ N(0, I).

The Squared Exponential kernel is k(x,x′) =
exp(−(2l2)−1‖x − x′‖2), l a lengthscale parameter.
Sample functions are differentiable to any order
almost surely (Rasmussen & Williams, 2006).

The Matérn kernel is given by k(x,x′) =
(21−ν/Γ(ν))rνBν(r), r = (

√
2ν/l)‖x − x′‖, where ν

controls the smoothness of sample paths (the smaller,
the rougher) and Bν is a modified Bessel function.

Theorem 5 Let D ⊂ R
d be compact and convex, d ∈

N. Assume the kernel function satisfies k(x,x′) ≤ 1.

1. Finite spectrum. For the d-dimensional Bayesian
linear regression case: γT = O

(

d log T
)

.

2. Exponential spectral decay. For the Squared
Exponential kernel: γT = O

(

(log T )d+1
)

.

3. Power law spectral decay. For Matérn kernels
with ν > 1: γT = O

(

T d(d+1)/(2ν+d(d+1))(log T )
)

.

We now provide a sketch of the proof. γT is bounded
by Theorem 4 in terms the eigendecay of the kernel
matrix KD. If D is infinite or very large, we can
use the operator spectrum of k(x,x′), which likewise
decays rapidly. For the kernels of interest here,
asymptotic expressions for the operator eigenvalues
are given in Seeger et al. (2008), who derived bounds
on the information gain for fixed and random designs
(in contrast to the worst-case information gain consid-
ered here, which is substantially more challenging to
bound). The main challenge in the proof is to ensure
the existence of discretizations DT ⊂ D, dense in the
limit, for which tail sums B(T∗)/nT in Theorem 4 are
close to corresponding operator spectra tail sums.

Together with Theorems 2 and 3, this result guaran-
tees sublinear regret of GP-UCB for any dimension
(see Figure 1). For the Squared Exponential kernel,
the dimension d appears as exponent of log T only, so

that the regret grows at most as O∗(
√

T (log T )
d+1

2 )
– the high degree of smoothness of the sample paths
effectively combats the curse of dimensionality.

6. Experiments

We compare GP-UCB with heuristics such as the
Expected Improvement (EI) and Most Probable
Improvement (MPI), and with naive methods which
choose points of maximum mean or variance only,
both on synthetic and real sensor network data.

For synthetic data, we sample random functions from a
squared exponential kernel with lengthscale parameter
0.2. The sampling noise variance σ2 was set to 0.025 or
5% of the signal variance. Our decision set D = [0, 1]
is uniformly discretized into 1000 points. We run
each algorithm for T = 1000 iterations with δ = 0.1,
averaging over 30 trials (samples from the kernel).
While the choice of βt as recommended by Theorem 1
leads to competitive performance of GP-UCB, we
find (using cross-validation) that the algorithm is
improved by scaling βt down by a factor 5. Note that
we did not optimize constants in our regret bounds.

Next, we use temperature data collected from 46 sen-
sors deployed at Intel Research Berkeley over 5 days at
1 minute intervals, pertaining to the example in Sec-
tion 2. We take the first two-thirds of the data set to
compute the empirical covariance of the sensor read-
ings, and use it as the kernel matrix. The functions f
for optimization consist of one set of observations from
all the sensors taken from the remaining third of the
data set, and the results (for T = 46, σ2 = 0.5 or 5%
noise, δ = 0.1) were averaged over 2000 possible
choices of the objective function.

Lastly, we take data from traffic sensors deployed along
the highway I-880 South in California. The goal was to
find the point of minimum speed in order to identify
the most congested portion of the highway; we used
traffic speed data for all working days from 6 AM to
11 AM for one month, from 357 sensors. We again
use the covariance matrix from two-thirds of the data
set as kernel matrix, and test on the other third. The
results (for T = 357, σ2 = 4.78 or 5% noise, δ = 0.1)
were averaged over 900 runs.

Figure 4 compares the mean average regret incurred
by the different heuristics and the GP-UCB algorithm
on synthetic and real data. For temperature data,
the GP-UCB algorithm and EI heuristic clearly
outperform the others, and do not exhibit significant
difference between each other. On synthetic and traf-
fic data MPI does equally well. In summary, GP-UCB

performs at least on par with the existing approaches
which are not equipped with regret bounds.

7. Conclusions

We prove the first sublinear regret bounds for GP
optimization with commonly used kernels (see Fig-
ure 1), both for f sampled from a known GP and f of
low RKHS norm. We analyze GP-UCB, an intuitive,
Bayesian upper confidence bound based sampling rule.
Our regret bounds crucially depend on the information
gain due to sampling, establishing a novel connection
between bandit optimization and experimental design.
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(a) Squared exponential
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Figure 4. Comparison of performance: GP-UCB and various heuristics on synthetic (a), and sensor network data (b, c).

We bound the information gain in terms of the kernel
spectrum, providing a general methodology for obtain-
ing regret bounds with kernels of interest. Our exper-
iments on real sensor network data indicate that GP-

UCB performs at least on par with competing criteria
for GP optimization, for which no regret bounds are
known at present. Our results provide an interesting
step towards understanding exploration–exploitation
tradeoffs with complex utility functions.
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