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Abstract 

 
Gaussian Process Regression (GPR) is an estimation technique that is capable of yielding reliable out-of-
sample predictions in the presence of highly nonlinear unknown relationships between dependent and 
explanatory variables. But in terms of identifying relevant explanatory variables, this method is far less 
explicit about questions of statistical significance. In contrast, more traditional spatial econometric models, 
such as spatial autoregressive (SAR) models or spatial error models (SEM), place rather strong prior 
restrictions on the functional form of relationships, but allow direct inference with respect to explanatory 
variables.  In this paper, we attempt to combine the best of both techniques by augmenting GPR with a 
Bayesian Model Averaging (BMA) component which allows for the identification of statistically relevant 
explanatory variables while retaining the predictive performance of GPR.  
 
Other approaches along these lines include the well-known BMA extensions of both SAR and SEM, as 
well as the class of locally weighted regression methods exemplified by Geographically Weighted 
Regression (GWR). To demonstrate the relative effectiveness of GPR-BMA, we construct several 
simulated comparisons designed to capture the types of non-separable relationships that are most difficult 
to identify by standard regression methods. In particular, a simulated spatial housing-price example is 
constructed that is sufficiently rich to demonstrate the behavioral relevance of such non-separabilities, as 
well as to allow a wide range of comparisons among these methods. In addition, we also apply GPR-BMA 
to a benchmark BMA dataset on economic growth to illustrate certain additional insights made possible by 
this approach. Our main results show that GPR-BMA not only exhibits better predictive power than these 
alternative models, but also more accurately identifies the true variables associated with the underlying data 
generating process. In particular, GPR-BMA yields a posterior probability interpretation of simulated 
model-inclusion frequencies that provides a natural measure of the statistical relevance of each variable. 
Moreover, while such frequencies offer no direct information about the signs of local marginal effects, it is 
shown that partial derivatives based on mean GPR predictions do provide such information, and in a 
manner that exhibits better small-sample properties than GWR.  
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1. Introduction 

 
Two of the most basic tasks of spatial statistical modeling are the explanation and 
prediction of spatial phenomena. As with all statistical modeling, the methods for 
achieving these goals differ to a certain degree. In spatial analyses, the task of 
explanation has focused mainly on parametric statistical models, typically some form of 
spatial regression, where identification of key variables can be accomplished by standard 
tests of hypotheses. But the need to specify prior functional forms in these models tends 
to diminish their value for out-of-sample predictions. So the task of spatial prediction has 
focused on more flexible nonparametric approaches, typically local regression or 
stochastic interpolation methods.1 But the very flexibility of these methods tends to 
impede the formal statistical identification of explanatory variables. Hence the objective 
of this paper is to propose one method for unifying these two tasks. In particular, we 
combine a general form of stochastic interpolation known as Gaussian Process 

Regression (GPR) together with Bayesian Model Averaging (BMA). 
 
But before doing so, we must stress that there have been many attempts achieve such a 
unification. On the parametric side, the work most closely related to our present approach 
has been the efforts of LeSage et al. (2007, 2008) to achieve more robust spatial 
regression models by combining them with Bayesian Model Averaging.2 On the 
nonparametric side, a number of methods for variable identification have been proposed 
for the important class of Locally Weighted Regression (LWR) models. In particular, 
McMillen et al. (1996, 2010, 2012) have extended the general testing procedures of 
Cleveland and Devlin (1988) to explicit spatial contexts, and following Robinson (1988), 
have developed new semiparametric testing procedures for the identification of key 
explanatory variables. But our own work is more closely related to the many efforts to 
introduce variable identification into Gaussian Process Regression. Perhaps the most 
widely known method is Automatic Relevance Determination (ARD), first introduced by 
Neal (1996) and MacKay (1998). But while this method has great practical appeal, it 
offers little in the way of statistical identification of explanatory variables. Hence our 
present approach draws most heavily on the work of Chen and Wang (2010), who first 
employed Bayesian Model Averaging for both prediction and variable identification in 
GPR models. The key feature of this approach is to allow uncertainties with respect to 
both relevant explanatory variables and spatial predictions to be treated explicitly.  
 
Hence the main contributions of the present paper are to develop this GPR-BMA method 
in detail, and to present a series of systematic comparisons of this method with the 
alternative approaches mentioned above, both in term of simulated and empirical data 
sets. The simulated data sets are designed to capture the types of nonseparable 
relationships that are most difficult for standard spatial regression models to detect. Here 
it is shown that even for the more robust BMA versions of spatial regression models, 
such relationships continue to be elusive and often yield misleading results. In this 
regard, locally weighted regressions appear to fare much better [see for example the 

                                                 
1 For an overview of nonparametric inductive approaches to spatial data analysis, see for example Gahegan 
(2000). 
2 For an overview of alternative “filtering” approaches to spatial regression, see Getis and Griffith (2002).  
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discussion in Fotheringham and Brundson’s (1999)]. Our present analysis focuses on 
Geographically Weighted Regression (GWR) which is currently the most widely used 
version of LWR in spatial applications [as for example in the ArcGIS implementation 
based on Fotheringham,  Brunsdon, and Charlton (2002)]. But while such models are 
sufficiently flexible to detect locally varying relationships among variables, they are far 
less reliable than GPR-BMA in terms of root mean squared error. This is most dramatic 
in terms of their predictive capabilities. In addition, it should also be emphasized that, 
unlike GWR models which depend on a auxiliary spatial-kernel and window-size 
parameters (as well as a multitude of locally estimated beta parameters), we have chosen 
the simplest possible GPR model with a standard squared-exponential covariance kernel 
involving only three distinct parameters.  Our objective in doing so is to show that even 
without extensive parameterization, GPR-BMA models can achieve a remarkable degree 
of model flexibility. 
 
To develop these results, we begin in Section 2 below with a detailed development of the 
GPR-BMA model. This is followed in Section 3 and 4 with the simulated comparisons 
between GPR-BMA and the alternative approaches outlined above. Finally, in Section 5, 
we apply GPR-BMA to an empirical data set involving economic growth rates among 
countries.  
 
2. Gaussian Process Regression with Bayesian Model Averaging 

 
In this section we develop our proposed methodological procedure for spatial data 
analysis. This begins in Section 2.1 with a general development of Gaussian processes in 
a Bayesian setting that focuses on Gaussian Process Regression (GPR) – which amounts 
to posterior prediction within this framework. The Bayesian Model Averaging (BMA) 
approach to GPR is then developed in Section 2.2.   
 
2.1. Gaussian Process Regression 
 

To set the stage for our present analysis, we start with some random (response) 
variable, y , which may depend on one or more components of a given vector, 

1( ,.., )
k

x x x , of explanatory variables, written as ( )y y x . If these explanatory 

variables are assumed to range over the measurable subset, kX  , then this 

relationship can be formalized as a stochastic process, { ( ) : }y x xX} , on X .  To study 

such relationships, the Bayesian strategy is to postulate a prior distribution for this 
process with as little structure as possible, and then to focus on posterior distributions of 
unobserved y -values derived from data observations. The most common approach to 

constructing prior distributions for stochastic processes, { ( ) : }y x xX} , is to adopt a 

Gaussian Process (GP) prior in which each finite subset of random variables, 

1{ ( ),.., ( )}
N

y x y x , is postulated to be multinormally distributed. In this way, the entire 

process can be specified in terms of a mean function, ( )x , and covariance function, 

cov( , )x x , ,x xX , usually written more compactly as 

 
(1) ( ) ~ [ ( ),cov( , )]y x GP x x x    
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The simplest of these models assumes that the mean function is constant, and focuses 
primarily on relationships between variables in terms of their covariances. In particular, it 
is most commonly assumed that the mean function is zero, ( ) 0 ,x x X  , and that 

the covariance function has some specific parametric form, cov( , ) ( , )x x c x x  , 

designated as the kernel function for the process with (hyper)parameter vector,  . While 
there are many choices for kernels, one of the simplest and most popular is the squared 

exponential kernel, 
 

(2)  2 2

2 2

1

1 1
2 2

c ( , ) exp || || exp ( )
k

j jj
x x v x x v x x   

           

 

which involves two (positive) parameters, ( , )v  . Hence all covariances are assumed 

to be positive, and to diminish as the (Euclidean) distance between explanatory vectors, 
x  and x , increases. (Note also that to avoid scaling issues with components of 
Euclidean distance, all variables are implicitly assumed to be standardized.)  The 
practical implication of this Gaussian process approach is that for each finite collection, 

( : 1,.., )
i

X x i N  , of explanatory vectors in X , the prior distribution of the associated 

random vector ( ) [ ( ) : 1,.., ]
i

y y X y x i N    is assumed to be multinormal: 
 

(3) ( ) ~ 0 , ( , )Ny X N c X X   
 

where 0
N

 denotes the N -vector of zeros and the covariance matrix, 

( , ) [ ( , ) : , 1,.., ]
i j

c X X c x x i j N   , is given by (2). Hence the entire process is defined 

by only the two parameters, ( , )v  . While many extensions of this Gaussian process 

prior are possible that involve more parameters (as discussed further in the next section), 
our main objective is to show that with only a minimum number of parameters one can 
capture a wide range of complex nonlinear relationships. 
 

Given this Gaussian process framework, the objective of Gaussian Process Regression 
(GPR) is to derive posterior predictions about unobserved y  values given observed 

values (data) at some subset of locations in X . But here a new assumption is added, 
namely that observed values may themselves be subject to measurement errors that are 
independent of the actual process itself. Following Rasmussen and Williams (2006) 
[RW], we assume that for any realized value, ( )y x , of the process at xX , the 

associated observed value, ( )y x , is a random variable of the form:  
 

(4) 2( ) ( ) , ~ (0, )x x
iid

y x y x N     

 

In this context, the relevant prediction problem for our purposes can be formulated as 

follows. Given observed data, ( , ) {( , ), 1,.., }
i i

y X y x i n  , with ( : 1,.., )
i

y y i n    and 

( : 1,.., )
i

X x i n   X , we seek to predict the unobserved value, ( )y x , at xX . To 

develop this prediction problem statistically, observe first from (3) and (4) that y  is 

multinormally distributed as 
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(5) 2~ 0 , ( , )
n n

y N c X X I     

 

Hence, by a second application of (3), it follows that the prior distribution of ( , )y y  must 

be jointly multinormally distributed as (see for example expression (2.21) in [RW]), 
 

(6) 
2

0 ( , ) ( , )
~ ,

0 ( , ) ( , )n n

y c x x c x X
N

y c X x c X X I

 

  

    
            

 

 

Thus, by standard arguments (for example expression (A.6), p.200 in [RW]), one may 

conclude that the conditional distribution ( )y x  given ( , )y X , is of the form 
 

(7) | , , ~ ( | , , ), var( | , , )y x y X N E y x y X y x y X    

 

where by definition, 
 

(8) 2 1( | , , ) ( , )[ ( , ) ]
n

E y x y X c x X c X X I y      ,  and 
 

(9) 2 1var( | , , ) ( , ) ( , )[ ( , ) ] ( , )
n

y x y X c x x c x X c X X I c X x         
 

This is usually referred to as the predictive distribution of ( )y x  given observations, 

( , )y X . From a spatial modeling perspective, this predictive distribution is closely related 

to the method of geostatistical kriging (as discussed further in a more detailed version of 
this paper [DS] available from the authors on request). 
 

Up to this point, we have implicitly treated the parameters 2( , , )v   as given. But in fact 

they are unknown quantities to be determined. Given the distributional assumptions 
above, one could employ empirical Bayesian estimation methods [as for example in Shi 
and Choi (2011, Section 3.1)]. But for our present purposes it is most useful to adopt a 
full Bayesian approach in which all parameters are treated as random variables. This 
approach allows both parameter estimation and variable selection to be carried out 
simultaneously. In particular, the standard Markov Chain Monte Carlo (MCMC) methods 
for Bayesian estimation allow model averaging methods to be used for both variable 
selection and parameter estimation. For purposes of this paper, we adopt the approach 
developed in Chen and Wang [CW] (2010).3 
 

First, to complete the full Bayesian specification of the model, we must postulate prior 
distributions for the vector of parameters,  
 

(10) 2 2
1 2 3( , ) ( , , ) ( , , )v            

 

Since these parameters are all required to be positive, we follow [CW] (see also Williams 
and Rasmussen, 1996) by postulating that they are independently log normally distributed 
with reasonably diffuse priors, and in particular that 

                                                 
3 For alternative approach using Monte Carlo methods in the context of spatial kriging with location 
uncertainty, see Gabrosek and Cressie (2002). 
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(11) ln( ) ( 3,9) , 1,2,3
i

N i    
 

[As is well known, so long as these prior distributions are independent and reasonably 
diffuse, their exact form will have little effect on the results. So the choices in (11) are 
largely a matter of convenience.]  If we now let ( )p z  denote a generic probability density 

for any random vector, z , then for z  , the full (hyper)prior distribution of   can be 
written as 
 

(12) 
3

1
( ) ( )

ii
p p 


  

 

where each of the marginals, ( )
i

p  , is a log normal density as in (11). Similarly, if we 

now let z y , then the conditional distribution of ( )y y X  given 2( , )    is seen to 

be precisely the multinormal distribution in (5). So if for notational simplicity we let 
 

(13) 2( ) ( , )
n

K X c X X I     
 

then the corresponding conditional density, ( | , )p y X  , is of the form 
 

(14) /2 1/2 11
2( | , ) (2 ) det[ ( )] exp[ ( ) ]n

p y X K X y K X y         
 

Finally, if we assume that   does not depend on X , i.e., that ( | ) ( )p X p  , then the 

desired posterior distribution of   given data ( , )y X  can be obtained from the standard 

identity 
 

(15) ( | , ) ( | ) ( , | ) ( | , ) ( | ) ( | , ) ( )p y X p y X p y X p y X p X p y X p         
 

by noting that since ( | )p y X  does not involve  , we must have  
 

(16)  ( | , ) ( | , ) ( )p y X p y X p    
 

A this point one could in principle apply MCMC methods to estimate the posterior 
distribution of    as well as posterior distributions of predictions, ( )y x , in (7). But our 

goal is to combine such estimates with variable selection.   
 
2.2 Model and Variable Selection in Gaussian Process Regression  

 
The above formulation of GPR has implicitly assumed that all explanatory variables, 

1( ,.., )
k

x x x , are relevant for describing variations in the response variable, y . But in 

most practical situations (such as our economic growth application in Section 5), it is 
important to be able to gauge which of these variables are most relevant. This is readily 
accomplished in standard regression settings where mean predictions are modeled as 
explicit functions of x , and hence where variable relevance can usually be tested directly 
in terms of associated parameters [such as in the standard linear specification,  

0 1( | ) k

j j jE y x x   ]. Even in the present GPR setting, there are a number of 

parametric approaches that have been proposed. The most popular of these is designated 
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as Automatic Relevance Determination (ARD) [see for example MacKay (1995, 1998) 
and Neal (1996) together with the discussions in [RW, Section 5.1] and Shi and Choi 
(2011, Section 4.3.1)]. This method proceeds by the extending covariance model in (2) to 
include individual   parameters for each variable,  
 

(17) 
2

21

1
2

( )
c ( , ) exp

k j j

j
j

x x
x x v 

 
   

  
  

 

where in this case, 2 2
1( , ) ( , ,.., , )

k
v       . Here it should be clear that for 

sufficiently large values of 
j

  the variable 
j

x  will have little influence on covariance and 

hence on y  predictions. Hence the usual ARD procedure is to standardize all variables 

for comparability, construct estimates, ˆ
j

 , of 
j

  by (empirical Bayes) maximum 

likelihood,  and then determine some threshold value, 0 , for ˆ
j

  above which 
j

x  is 

deemed to be irrelevant for prediction. 
 

2.2.1 Bayesian Model Averaging Approach 

 
In contrast to these variable-selection procedures using extended parameterizations of the 
covariance kernel, our present approach essentially parameterizes “variable selection” 
itself. In particular, if we denote the presence or absence of each variable 

j
x  in a given 

model by the indicator function, 
j

 , with 1
j

   if 
j

x  is present and 0
j

   otherwise, 

then each model specification is defined by the values of the model vector, 1( ,.., )
k

   . 

Here we omit the “null model”, 0
k

  , and designate the set of possible values for   as 

the model space, {0,1} 0k

k
   . [This model-space approach to variable selection has a 

long history in Bayesian analysis, going back at least at to the work of George and 
McCulloch (1993) in hierarchical Bayesian regression.] With these definitions, one can 
now extend the set of model parameters,  , to include this model vector, ( , )  , and 

proceed to develop an appropriate prior distribution for   on  . In the present case, 

since the parameter vector, 2( , , )v   , is seen from (2) and (4) to be functionally 

independent of the choice of explanatory variables used (namely,  ), we can assume that 
the priors on   and   are statistically independent.4 
 
To construct a prior distribution for  , we first decompose this distribution as follows.  If 

the size of each model, 1( ,.., )
k

   , is designated by 
1

( )
k

jj
q s  


  , then by 

definition each prior, ( )p  , for   can be written as 
 

                                                 
4 As pointed out by [CW], this independence assumption greatly simplifies the MCMC analysis to follow. 
In particular, if covariance functions such as (17) are used, then the parameter vector   essentially changes 
dimension with each model. This requires more complex reversible-jump methods (Green, 1995) that tend 
to be computationally intensive. So as stated previously, our objective is to show that even without such 
refinements, the present GPR-BMA procedure performs remarkably well.  
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(18) ( ) [ , ( )] ( , ) ( | ) ( )p p s p q p q p q        
 

This decomposition is motivated by the fact that the size of each model is itself an 
important feature. Indeed, all else being equal, smaller models are surely preferable to 
larger models (Occam’s razor). So it is reasonable to introduce some prior preference for 
smaller models. Following [CW] we employ a truncated geometric distribution for q  

given by 
 

(19) 
1(1 )

( ) , 1,..,
1 (1 )

q

k
p q q k

 



 

 
 

 

where (0,1) . This family of distributions always places more weight on smaller 

values of q , as is seen in Figure 1 below for selected values of   with 42k  . While 

[CW] suggest that the (hyper)parameter,  , be chosen by “tuning” the model (say with 
cross validation), we simply selected the prior value, 0.01  , which only slightly favors 
smaller values of q , as seen in the figure.  

 
 
 

To complete the specification of ( )p   we assume that ( | )p q  is uniform on its domain. 

In particular, if for each 1,..,q k  we let { : ( ) }
q

s q      denote all models of size 

q , then the definition of ( )p   in (18) can be completed by setting 

(20) 
1 !( )!

( | ) ; , 1,..,
| | !

q

q

q k q
p q q k

k
 

   


 

With this prior, we can now extend the posterior distribution in (16) to 
 

(21) ( , | , ) ( | , , ) ( , ) ( | , , ) ( ) ( )p y X p y X p p y X p p            
 

Following [CW], this joint posterior is estimated by Gibbs sampling using the conditional 
distributions, 
 

(22) ( | , , ) ( | , , ) ( )p y X p y X p     , and 
 

(23) ( | , , ) ( | , , ) ( )p y X p y X p      
 

We now consider each of these Gibbs steps in turn. 
 

Sampling the   Posterior. If for each component, 
i

 , of 1 2 3( , , )     we now let 
i

  

denote the vector of all other components, then (12) allows us to write the conditional 
distributions for these  components as 
 

(24) 
( | , , )

( | , , , ) ( | , , )
( | , , )

i i

i

p y X
p y X p y X

p y X

     
 


   ( | , , ) ( ) ( )
i i

p y X p p                                        

       

                                        ( | , , ) ( )
i

p y X p      ,  1,2,3i   
 

Figure 1 
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Using these conditional distributions, one can in principle apply Gibbs sampling to 
approximate samples from the posterior in (22). But such samples are notoriously 
autocorrelated and cannot be treated as independent. This means that (in addition to the 
initial “burn in” samples) only a small fraction of these Gibbs samples can actually be 
used for analysis. With this in mind, we follow [CW] by adopting an alternative approach 
designated as Hamiltonian Monte Carlo (HMC) [first introduced by Duane et al. (1987) 
and originally designated as “Hybrid Monte Carlo”]. This approach not only requires a 
much smaller set of burn-in samples to reach the desired steady-state distribution (22), 
but can also be tuned to avoid autocorrelation problems almost entirely. The key idea [as 

developed in the lucid paper by Neal (2010)] is to treat 1( ,.., )
k

    as the set of 

“position” variables in a discrete stochastic version of a k -dimensional Hamiltonian 

dynamical system with corresponding “momentum” variables, 1( ,.., )
k

   . Such 

HMC processes can be tuned to converge to the desired steady-state distribution (22), 
while at the same time allowing extra “degrees of freedom” provided by the momentum 
variables,  . In particular, Neal (2010) shows how these momentum variables can be 

made to produce successive samples with “wider spacing” that tend to reduce 
autocorrelation effects.  
 

Sampling the   Posterior.  In sampling from the posterior distribution of the model 
vector,  , we again follow [CW] by employing a Metropolis-Hastings (M-H) algorithm 
with birth-death transition probabilities [see also Denison, Mallick and Smith (1998)]. 
Since our method differs slightly from that of [CW], it is convenient to develop this 
procedure in more detail. The objective is to construct a Markov chain that converges to 

the distribution, ( | , , )p y X  , in (23). The basic “birth-death” idea is to allow only 

Markov transitions that add or subtract at most one variable from the current model. So if 

1( ,.., )q q q

k
    denotes a generic model of size q , then the possible “births” consist of 
those models in 1q  that differ from q  by only one component, i.e., 
 

(25)  1 1
1 1 1
( ) : | | 1 , 1,.., 1

kq q q q

q q i ii
q k    

  
        

 

[where 1( )q

q    for q k ]. Similarly, the possible “deaths” consist of those models 

in 1q  that differ from q in only one component, i.e., 
 

(26)  1 1
1 1 1
( ) : | | 1 , 2,..,

kq q q q

q q i ii
q k    

  
       

 

[where 1( )q

q    for 1q  ]. With these definitions, the set of possible transitions, 

( )q , from each model, q , is of the form 
 

(27) 1 1( ) { } ( ) ( ) , 1,..,q q q q

q q q k           
 

If T  denotes the transition matrix for the desired Markov chain, and if we let ( | )q
T    

denote the corresponding transition probability from model q  to model ( )q  , then 
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by the general M-H algorithm, these transition probabilities are decomposed into the 

product of a proposal probability, ( | )q

r
p   , and an acceptance probability, ( | )q

a
p   , 

for each ( ) { }q q     as 
 

(28) ( | ) ( | ) ( | )q q q

r a
T p p       , 

 

 so that the “no transition” case is given by, 
 

(29) 
( ) { }

( | ) 1 ( | )q q

q q q
T T

  
   

 
   

 

In our case, the proposal probabilities are based on proposed “births” or “deaths”.  If we 
let b  denote a proposed birth event and d  a proposed death event, then by assuming 
these events are equally likely whenever both are possible, the appropriate birth-death 

probability distribution, ( | )q  , can be defined as,  
 

(30) 1
2

1 , 1

( | ) , 1

0 ,

q

q

b q k

q k

 


  
 

        ,   and   

 

(31) 1
2

0 , 1

( | ) , 1

1 ,

q

q

d q k

q k

 


  
 

 

 

so that by definition, ( | ) ( | ) 1q q
b d      for all 1,..,q k . Given this birth-death 

process (which can be equivalently viewed as a random walk on [1,.., ]k  with “reflecting 
barriers”), we next define conditional proposal probabilities given birth or death events. 

First, if ( | , )q

r
p b   denotes the conditional probability of proposal, 1( )q

q  , given a 

birth event, b, and if all such proposals are taken to be equally likely, then since there are 

only k q  ways of switching a “0” to “1” in q , it follows that  
 

(32) 1

1

1 1
( | , ) , ( ),

| ( ) |
q q

r qq

q

p b q k
k q

   
 



   
 

 

 

Similarly, if ( | , )q

r
p d   denotes the conditional probability of proposal, 1( )q

q   

given a death event, d, and if all such proposals are again taken to be equally likely, then 

since there are only q  ways of switching a “1” to “0” in q , it also follows that 
 

(33) 1

1

1 1
( | , ) , ( ), 1

| ( ) |
q q

r qq

q

p d q
q

   
 



   


 

 

With these conventions, the desired proposal distribution in our case is given by 
 



 11 

(34) 1

1

( | ) ( | , ) , ( )
( | )

( | ) ( | , ) , ( )

q q q

r qq

r q q q

r q

b p b
p

d p d

     
 

     




   
 

 

Finally, to ensure convergence to the posterior distribution, ( | , , )p y X  , the desired 

acceptance probability distribution, ( | )q

a
p  , for this M-H algorithm must necessarily 

be of the form 
 

(35) 
1 1

( ) { }

min{1, ( , )} , ( ) ( )
( | )

1 ( | ) ,q q

q q q

q qq

q qa

a

r
p

p
  

    
 

   
 

 

        

 

where the appropriate acceptance ratio, ( , )q
r   , is given by 

 

(36) 1 1

( | , , ) ( | )
( , ) , ( ) ( )

( | , , ) ( | )

q
q q qr

q qq q

r

p y X p
r

p y X p

       
          

 

As is shown in the Appendix, these ratios can be given the following operational form, 
where ( )p q  denotes the truncated geometric distribution in (19): 
 

(37) 

1

1

( | , , ) ( 1) ( | )
, ( )

( | , , ) ( ) ( | )
( , )

( | , , ) ( 1) ( | )
, ( )

( | , , ) ( ) ( | )

q

qq q

q

q

qq q

p y X p q d

p y X p q b
r

p y X p q b

p y X p q d

     
   

 
     
   





 
  

 
   

 

 

Gibbs Sampling. The basic Gibbs sampling procedure outlined above was programmed 
in Matlab (and is described in more detail in the appendix of [DS]). The M-H algorithm 
for sampling model vectors,  , forms the outer loop of this procedure, and the HMC 
procedure for sampling parameter vectors,  , forms the inner loop. This structure allows 
more efficient sampling, depending on whether new model vectors are chosen or not. 

Following an initial burn-in phase, a post burn-in sequence, [( , ) : 1,.., ]
i i

i N   , is 

obtained for estimating all additional properties of this Gaussian process model, as 
detailed below. For the housing price example below, the average number of post burn-in 
runs required for convergence across 10 simulations at various samples sizes is 262.5 
 

2.2.2 Model Probabilities and Variable-Inclusion Probabilities 

 
With regard to the general problem of model selection, one of the chief advantages of this 
model-space approach is that it yields meaningful posterior probabilities for each 

candidate model vector,  , given the observed data ( , )y X . In particular, these model 

probabilities are simply the marginal probabilities, 
 

(38) ( | , ) ( , | , )p y X p y X d


          

                                                 
5 Specific Gibb sampling parameter values for the house price example are provided in footnote 14. 
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For estimation purposes, it is more convenient to write these probabilities as conditional 
expectations over the entire space of parameter pairs, ( , )  . In particular, if for each 

model    we let the indicator function, ( , )I   , be defined by  
 

(39) 
1 ,

( , )
0 ,

I





 
 

 


  
 

 

then (38) can be equivalently written as a general integral of the form 

(40) ( , )( , )
( | , ) ( , ) ( , | , )( ) [ ( , )]p y X I p y X d d E I     
            

 

Hence, assuming approximate independence of the samples, [( , ) : 1,.., ]
i i

i N   , an 

application of the Law of Large Numbers shows that the sample average, 
 

(41) 
1

1ˆ ( | , ) ( , )
N

i ii
p y X I

N
   


    

 

yields a consistent estimate of each model probability, ( | , )p y X . But since the number 

of occurrences of   in the sample sequence, [( , ) : 1,.., ]
i i

i N   , is given by, 
 

(42) ( )N  
1

( , )
N

i ii
I  

  

 

it follows from (41) that for any model,   , this estimator is simply the fraction of   
occurrences, i.e., 
 

(43) 
( )ˆ ( | , )

N
p y X

N

   

 

Note also that (43) yields an estimate, ̂ , of the most likely model based on observations, 

( , )y X , namely 
 

(44) 
( )ˆ ˆarg max ( | , ) arg max

N
p y X

N
 

     

 

In this context, one might be tempted to identify the “most relevant” explanatory 
variables in 1( ,.., ,.., )

j k
x x x x  to be simply those appearing in this most likely model.  

But like the ARD procedure mentioned above, this method provides no probabilistic 
measure of “relevance” for each variable separately. However, in a manner similar to 
posterior likelihoods of models, we can also define posterior likelihoods of individual 
variables as follows.  If we denote the class of models containing variable j  by 

{ : 1}
j j

     , then in terms of model probabilities, it follows that the probable 

membership of variable j  in such candidate models must be given by 
 

(45) ( 1| , ) ( | , )
j

jp y X p y X


 


   
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Moreover, we see from (41) that a consistent estimator of this inclusion probability for 
each variable j  is given by 
 

(46)  
( )ˆ ˆ( 1| , ) ( | , )

j j
j

N
p y X p y X

N 

 
 

     

 

Finally, since  
 

(47) ( )
j

jN N





  

 

is by definition the number of occurrences of variable j  in the models of sample 

sequence, [( , ) : 1,.., ]
i i

i N   , it follows as a parallel to (43) that this estimated inclusion 

probability is simply the fraction of these occurrences, 
 

(48) ˆ ( 1| , ) j

j

N
p y X

N
    

 

These inclusion probabilities provide a natural measure of relevance for each variable 
which (unlike p-values) is larger for more relevant variables. For example, if the 
estimated inclusion probability for a given variable, j , is 0.95, then j  must appear in  

95% of the (post burn-in) models “accepted” by the Metropolis-Hastings procedure 
above. So while there is no formal “null hypothesis” being tested, this inclusion 
probability does indeed provide compelling evidence for the relevance of variable j  

based on observations, ( , )y X .  

 
2.2.3  Prediction and Marginal Effects Using Bayesian Model Averaging 

 
One key difference between inclusion probabilities and standard tests of hypotheses for 
regression coefficients is that inclusion probabilities yield no direct information about 
whether the contribution of a given explanatory variable tends to be positive or negative. 
In fact, when relations among variables are highly nonseparable (as in our examples 
below), both the magnitude and direction of such contributions may exhibit substantial 
local variation. In view of these possibilities, it is more appropriate to consider the local 

contributions of each component of 1( ,.., )
k

x x x to predicted values of the response 

variable, ( )y x . With this objective in mind, we first employ the MCMC results above to 

develop posterior mean predictions of ( )y x  given ( , )y X  that parallel expression (8) 

above. 
 

BMA Predictions. To obtain posterior mean predictions, one could in principle apply the 

post burn-in sequence, [( , ) : 1,.., ]
i i

i N   , to estimate maximum a posteriori (MAP) 

values, 2ˆ ˆ ˆ( , )   , of the parameters together with the most likely model, ̂ , in (44) and 

use this pair ˆ ˆ( , )   to obtain a posterior version of the mean predictions in (8). In 

particular, if for any data point, 1( ,.., )
k

x x x X , we now denote the relevant data for 
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each model,   , by ( ) ( : 1)
j j

x x   , and similarly, let 1( ) [ ( ),.., ( )]
n

X x x   , 

then by using (8) together with (13) , the MAP prediction of y given ˆ( )x   together with 

data, ˆ[ , ( )]y X  , can be obtained as, 
 

 (49) 1
ˆ ˆ

ˆ ˆ ˆ ˆ ˆ[ | ( ), , ( )] [ ( ), ( )]{ [ ( )]}E y x y X c x X K X y 
       

 

However, as is widely recognized, there is often more information in the underlying 

MCMC sequence [( , ) : 1,.., ]
i i

i N    than is provided by this single MAP estimate. In 

particular, by averaging the mean predictions generated by each of the sample pairs, 

( , )
i i
  , the resulting “ensemble” prediction is generally considered to be more robust. 

This is in fact the essence of Bayesian Model Averaging.  
 

So rather than using (49), we now construct BMA predictions of y [as first proposed by 
Raftery et al. (1997)]. To do so, recall first (from Section 1.2) that the spatial location of 
any prediction may or may not be part of the candidate variables in x  [let alone the 
reduced variable set, ( )x  , for any model,   ]. But for purposes of spatial prediction, 

it is useful to be explicit about the underlying set of locations,  l L . For any given 

location, l, we now let 1( ,.., )
l l lk

x x x X  denote the vector of candidate explanatory 

variables at l ,  and let 
l

y  denote the corresponding value of y to be predicted at l. By 

replacing ˆ ˆ( , )   in (49) with the pair, ( , )
i i
  , the corresponding mean prediction for 

l
y  

given ( , )
i i
   together with data [ , ]y X  is then given by: 

 

(50)  1[ | , , , , ] [ ( ), ( )]{ [ ( )]}
i il l i i l i i iE y x y X c x X K X y          , 1,..,i N  

 

In these terms, the corresponding BMA prediction of 
l

y  at location, l L , is given  by 
 

(51) 
1

1
( | , , ) [ | , , , , ]

N

l l l l i ii
E y x y X E y x y X

N
 


   

 

Note in particular that such mean predictions are equally well defined at data points 

( , ), 1,..,
j j

y x j n , and are given by 
 

(52) 
1

1
( | , , ) [ | , , , , ]

N

j j j j i ii
E y x y X E y x y X

N
 


   

 

                                     1

1

1
[ ( ), ( )]{ [ ( )]}

i i

N

j i i ii
c x X K X y

N
    


   

 
 

BMA Marginal Effects. Here we again adopt a BMA  approach to local marginal effects 
at locations, l L , by first considering these effects for each mean prediction in (50), and 
then averaging such effects as in (51). Turning first to the mean predictions in (50) 

generated by a given pair, ( , )
i i
  , there are several issues that need to be addressed. First 

there is the question of how to treat components of 
l

x  that are excluded from model, 
i

 . 
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One approach is simply to ignore such cases by only calculating marginal effects for each 

explanatory variable, 
lj

x , in those models, 
i

 , with 1
ij
  , and then averaging these 

effects. But for purposes of model averaging, it is more appropriate to simply treat 
marginal effects as being identically zero for excluded variables. [These two approaches 
are compared following expression (58) below.]  
 

The second question is how to calculate local marginal effects for included variables. For 

continuous variables, 
lj

x , these are simply taken to be the partial derivatives of mean 

predictions in (50) with respect to 
lj

x . For discrete variables (such as “number of 
bedrooms” in the housing example below), such partial derivatives should in principle be 
replaced by appropriate partial differences.  But since we wish to compare our results 
with Geographical Weighted Regression (GWR), which also produces local marginal 
effects, we choose to treat such variables as continuous in order to obtain results more 
comparable with local regression coefficients. Note finally that explanatory variables 
may in some cases be nominal (such as the “school district” indicator variable in the 
housing example). While one can in principle evaluate (50) at each alternative nominal 
value in such cases, we choose here to focus only on quantitative variables. 
 

With these preliminaries, we now define the marginal effect, ( , )
lj i i

ME   , of explanatory 

variable, j , in the ( , )
i i
  -prediction at location, l , to be: 

 

(53) 
[ | , , , , ] , 1

( , )
0 , 0

j l l i i ij

lj i i

ij

x E y x y X
ME

  
 




  


 

 

For the case of 1
ij
  , we may use (50) to obtain the following more explicit form:6 

 

(54)   1[ | , , , , ] [ ( ), ( )] [ ( )]
i ij jl l i i l i i ix xE y x y X c x X K X y       

   

 

Moreover, since partial derivatives of the squared exponential kernel in (2) are given by 
 

(55) 2 2

21 1

2
( , ) exp( || || ) ( , )[ ( )]

j j j jx xc x x v x x c x x x x  
 
           

 

it follows by letting ( )
l i li

x x   and 1( ) [ ,.., ]
i i in

X x x   that the bracketed expression in 

(54) can be given the following exact form  
 

(56) 1[ ( ), ( )] [ ( , ),..., ( , )]
i i ij j jl i i li i li inx x xc x X c x x c x x     

     

 

                                                 
6 Note that in principle it is also possible to analyze marginal effects on ( , , , , )|

l l i i
E y x y X    with respect 

to changes in explanatory variables, 
sj

x , at data locations, s. In this context, it can be seen that the inverse 

1
[ ( )]

ii
K X   , in (54)  plays a role similar to the “indirect effects” induced by the inverse 1

( )
n

I W   in 

(60) below for the SAR model [as brought to our attention by a referee, and developed in detail by LeSage 
and Pace (2009, Section 2.7.1)]. However, we shall not pursue such indirect marginal effects in this paper. 
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                                            2
1

1 1[ ( , )( ),.., ( , )( )]
i ii

li i lij i j li in lij injc x x x x c x x x x 
     

 

As in (51), the resulting BMA marginal effect, 
lj

ME , of explanatory variable, j , at 

location, l , is simply the average of the values in (53) as given by 
 

(57) 
1

1
( , )

N

lj lj i ii
ME ME

N
 


   

 

Note finally that since all terms with 0
ij
   are zero, and since the number of models, 

i
 , with 1

ij
  is precisely 

j
N  in (47), this marginal effect can be equivalently written as  

 

(58) 
: 1 : 1

1 1
( , ) ( , )

ij ij

j

lj lj i i lj i ii i
j

N
ME ME ME

N N N 
   

 

          
   

 

The expression in brackets is precisely the BMA marginal effect that would have been 
obtained if only models involving variable j  were included in the averaging. Hence the 

present version simply “discounts” marginal effects by the inclusion probabilities in (48). 
 

Given this formal development of GPR-BMA models, we turn now to a series of 
systematic comparisons of this approach with the alternative approaches outlined in the 
Introduction. We begin in the next section with the simplest of these comparisons, 
focusing on the BMA versions of spatial regression models proposed by LeSage and 
Parent [LP] (2007). 
 

 

3. SIMULATION 1:  A Simple Nonseparable Example 
 

As mentioned in the Introduction, the simple simulation models developed here are 
designed specifically to focus on the role of functional nonseparabilities in comparing 
GPR-BMA with SAR-BMA and SEM-BMA. To do so, it is appropriate to begin in 
Section 3.1 with a brief description of these spatial regression models. This is followed in 
Section 3.2 with a specification of the simulation models to be used, together with 
comparative simulation results focusing on both model and variable selection. 
 
 

3.1  SAR-BMA and SEM-BMA Models 
 

Following LeSage and Parent [LP] (2007), the standard SAR model takes the form 
 

(59) 2, ~ (0, )
n n

y Wy X N I          
 

where [ : 1,.., ]
i

X x i k   is an n k  matrix of explanatory variables (as in Section 2.1 

above), and where (1,..,1)
n
   is a unit vector representing the intercept term in the 

regression. The key new element here is the prior specification of an n -square weight 
matrix, W , which is taken to summarize all spatial relations between sample locations, 
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1,..,i n . For purposes of analysis, the simultaneities among dependent values in y  are 

typically removed by employing the reduced form:  
 

(60) 1 2( ) ( ) , ~ (0, )
n n n

y I W X N I          
 

In terms of this same notation, the standard SEM model is given by the equation system, 
 

(61) 2, , ~ (0, )
n n

y X u u Wu N I           

where simultaneities among residual values in  u  are similarly removed by employing the 
reduced form: 
 

(62) 1 2( ) , ~ (0, )
n n n

y X I W N I          
 

Note that (unlike [LP]) we use the same symbol,  , for the spatial autocorrelation 

parameter in both models (60) and (62) to emphasize the similarity in parameter sets, 
( , , , )    , between these models.  Not surprisingly, this similarity simplifies extensions 

to a Bayesian framework, since one can often employ common prior distributions for 
parameters in both models. To facilitate Bayesian Model Averaging, [LP] follow many of 
the general conventions proposed by Fernandez, Ley, and Steel [FLS] (2001b). First of all 
(in a manner similar to our   vectors in Section 2.2.1 above), if the relevant class of 
candidate models, M, is denoted by M , then each model, M M , is specified by a 

selection of variables (columns) from X , denoted here by
M

X , with corresponding 

parameter vector, 
M

 .  The parameters   and   together with the relevant spatial 

autocorrelation parameter,  , are assumed to be common to all models, and are given 

standard non-informative priors. In particular a uniform prior on [-1,1] is adopted for   in 

all simulations below. Only the priors on 
M

  for each model M warrant further discussion, 

since they utilize data information from 
M

X . In particular, the prior on 
M

  for SAR-BMA 

models is assumed to be normal with mean vector, 0, and covariance matrix given by 
1( )

M M
g X X

 , where (following the recommendation of [FLS]) the proportionality factor is 

given by 21/ max{ , }g n k , with k  denoting the number of candidate explanatory 

variables. As with our GPR-BMA model, all variables are here assumed to be 

standardized, both to be consistent with the zero prior mean assumption on 
M

  and to 

avoid sensitivity to units in the associated covariance matrix. For SEM-BMA models, the 

prior on 
M

  is given a similar form, with 
M

X  replaced by ( )
n M

I W X . In both cases, 

these covariances are motivated by standard maximum-likelihood estimates of 
M

 , and can 

thus be said to yield natural “empirical Bayes” priors for 
M

 .  
 

Aside from the specification of priors, the other key difference between the 
implementation of SAR-BMA and SEM-BMA in [LP] and our implementation of GPR-
BMA in Section 2.2.1 above is the method of estimating both model probabilities and 
inclusion probabilities. Rather than appeal to asymptotic MCMC frequency 
approximations as we have done, [LP] follow the original approach of Fernandez, Ley, 
and Steel (2001a) by employing numerical integration to obtain direct approximations of 
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the posterior marginal probabilities for each model. If we again let ( , )y X  denote the 

relevant set of observed data as in Section 2.2 above, and let ( | , )p M y X  denote the 

posterior marginal probability of model M  given ( , )y X , then the corresponding 

estimated model probabilities, ˆ( | , )p M y X , are taken to be these numerical-integration 

approximations. If for each variable, j , we also let 
j

M  denote the set of models, M, 

containing variable j, then as a parallel to expression (46) above, the relevant estimates of 
inclusion probabilities for each variable j is given by 
 

(63) ˆ ˆ( | , ) ( | , )
jM

p j y X p M y X


 M
 

 

As verified by [FLS], both the frequency and numerical-integration approaches yield very 
similar results for sufficiently large MCMC sample sizes. But since the posterior 
marginal calculations should in principle be somewhat more accurate, they can be 
expected to give a slight “edge” to both SAR-BMA and SEM-BMA simulations (based 
on the Matlab routines of LeSage) over our asymptotic frequency approach for GPR-
BMA.  This lends further weight to the marked superiority of GPR-BMA estimates as 
exhibited by the simulations below. 
 

3.2 Simulated Model Comparisons 
 

We start with the following 3-variable instance of the SAR model in (60), 
 

(64) 1 2
1 2 3( ) [3 4 2 ] , ~ (0, )

n n n
y I W x x x N I           

 

and corresponding instance of the SEM model in (62), 
 

(65) 1 2
1 2 33 4 2 ( ) , ~ (0, )

n n n
y x x x I W N I           

 

where in both cases, 1 2 3( , , )X x x x , 3  , and (1,4, 2)   . In view of the linear 

separability of these specifications, we designate these benchmark models as the 
separable models. Our main interest will be in the behavior of estimators when the actual 
functional form is not separable. But before introducing such complexities, we first 
complete the parameter specification of the basic models in (64) and (65). For all 
simulations in this section, we set the autocorrelation parameter to 0.5   (to ensure a 

substantial degree of spatial autocorrelation), and choose a sample size, 367n  , that is 
sufficiently large to avoid small-sample effects. In particular, the weight matrix, W , used 
here is a queen-contiguity matrix for Philadelphia census tracts (normalized to have a 

maximum eigenvalue of one). Finally, the simulated values of 1 2 3( , , )x x x  are 

standardizations of independent samples drawn from (0,1)N , and the residual standard 

deviation is set to be sufficiently small, 0.1  ,  to ensure that functional specifications 

of 1 2 3( , , )x x x  always dominate residual noise.  In this setting, it is clear that both SAR 

and SAR-BMA should do very well in estimating model (64), and similarly that both 
SEM and SEM-BMA should do well for (65). 
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To introduce nonseparabilities into these models, we preserve all spatial autocorrelation 

specifications, but alter the functional form of 1 2 3( , , )x x x as follows: 
 

(66) 1 2
1 2 3( ) [3 (4 2 ) ] , ~ (0, )

n n n
y I W x x x N I           

 

(67) 1 2
1 2 33 (4 2 ) ( ) , ~ (0, )

n n n
y x x x I W N I           

 

This seemingly “innocent” change serves to highlight the main objective of the present 

analysis. In particular, it should be clear that the effective sign of 1x  now depends on the 

sign of 2 34 2x x , and similarly that the effective signs of both 2x  and 3x  depend on that 

of 1x . So the key feature of these nonseparable models is that the direction of influence 

of each x-variable on y depends on the values of other x-variables. With this in mind, it 
should be clear that any attempt to approximate such nonseparabilities by appropriate 
choices of (constant) coefficients,  , in X  is bound to fail. Even more important is the 

fact that such “compromise” approximations may often be so close to zero that the 
explanatory variables are rendered statistically insignificant. This is in fact the main 
conclusion of our simulation results.   
 

But before presenting these results, it is important to observe that models (66) and (67) 
can of course be well estimated by simply extending the linear-in-parameters 
specifications in (64) and (65) to include first-order interaction effects. In particular, since 

the expression 1 2 3 1 2 1 3(4 2 ) 4 2x x x x x x x    is an instance of the 6-parameter 

specification, 1 1 2 2 3 3 4 1 2 5 1 3 6 2 3x x x x x x x x x          ,  standard estimates of models 

(60) and (62) with X extended to 1 2 1 3 2 3( , , , )Z X x x x x x x , can easily identify the two 

significant parameters, 4 and 5 .  More generally, such parametric specifications can in 

principle be extended to capture almost any degree of interaction complexity. But such 
heavily parameterized (“saturated”) models are not only costly in terms of data 
requirements, they are also notoriously prone to over-fitting data.  These points serve to 
underscore our emphasis on the ability of GPR-BMA to identify highly complex relations 
with remarkably few parameters. Finally, to gauge the effectiveness of each method in 

identifying the true explanatory variables, 1 2 3( , , )x x x , three irrelevant variables 

1 2 3( , , )z z z , are also constructed as standardizations of independent samples from (0,1)N ,  

and added to each simulation. 
 
 

3.3  Simulation Results 
 

The simulation results are displayed in Table 1 below, where the three explanatory 

variables 1 2 3( , , )x x x  and irrelevant variables 1 2 3( , , )z z z  are listed in the first column, and 

where each subsequent column lists the estimated inclusion probabilities (in percentage 
terms) for the relevant combinations of models and methods.  
 
 
 
 

Table 1 
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The inclusion probabilities for SAR-BMA and SEM-BMA are based on expression (63) 
above, and those for GPR-BMA are based on expression (48). The first two columns 
include results for the SAR-BMA and SEM-BMA models in the separable case described 
by expressions (64) and (65), respectively. These are included to show that when the true 

model is linearly separable in 1 2 3( , , )x x x , both SAR-BMA and SEM-BMA do extremely 

well in identifying the correct variables. [The basic SAR and SEM models without BMA 
(not shown) also do extremely well in terms of standard p-values.] But the most 
interesting results for our purposes are the last four columns involving the nonseparable 
case. Here columns three and five compare SAR-BMA and GPR-BMA with respect to 
the nonseparable specification in expression (66), and similarly, columns four and six 
compare SEM-BMA and GPR-BMA with respect to the nonseparable specification in 
expression (67). In both cases it is clear that that even when adding Bayesian Model 
Averaging to SAR or SEM, these models show little ability to identify the true variables 
in the presence of such nonseparabilities. Not only are all true x-variables unidentified, 
but they are in fact often less relevant than some of the z-variables. This is made even 
clearer by Table 2 below, where the five models in M  with highest estimated marginal 
posterior probabilities are also shown.  
 
 
 
 

Notice that in both cases, the most probable model is precisely the one which includes no 

explanatory variables, i.e., that relies only on the intercept for “explanation”. In other 
words, these globally separable specifications can have difficulty in distinguishing such 
nonseparable relations from random noise. This is also seen by comparing the overall 
dispersion of posterior model probabilities. In contrast to the separable case (not shown) 
where the top five models for both SAR-BMA and SEM-BMA include more than 99.5% 
of the posterior mass, the situation is quite different in the nonseparable case. For SAR-
BMA the top five models only account for 84.8% of posterior mass, and for SEM-BMA 
it is even less (75.8%). So there is seen to be far more dispersion among alternative 
candidate models in this nonseparable case. But again we should emphasize that these 
examples are specifically designed to be challenging for standard linearly specified 
estimation models, even when spatial autocorrelation components are specified correctly. 
What is somewhat more surprising is that the extension of these models to include 
Bayesian Model Averaging seems to offer little in the way of help.  
 

In this light, the single most important result of this simulated comparison is to show how 
well GPR-BMA is doing with respect to the same data. Even though there is no attempt 
to capture spatial autocorrelation structure, the true variables are identified 100% of the 
time, and the irrelevant variables are never identified. While these results may at first 
glance appear “too good to be true”, they serve to underscore the main difference 
between global parametric and local nonparametric approaches. By focusing primarily on 
local information around each location, the latter approach is able to discern changing 
relationships with a remarkable degree of reliability. It should also be added that 
Bayesian Model Averaging seems to work especially well in this setting. In particular, it 
effectively dampens variations in these local relationships over the many alternative 

Table 2 
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candidate models in M . We shall see this again in our second more elaborate simulation 
example, to which we now turn.  
 

4. SIMULATION 2: A Stylized Housing Price Example 
 

 While the above simulation model served to illustrate the consequences of 
nonseparabilities in a simple and transparent way, there was no attempt to relate this to 
actual spatial behavior. In the present section we introduce a stylized model of housing 
price formation in a “Circular City” where nonseparabilities arise from the differences in 
housing preferences among household types. This example is developed in far more 
detail, and is used to illustrate the full range of analytical questions that can be addressed 
with GPR-BMA models. In particular, we consider not only variable selection, but also 
prediction of unobserved prices, and estimation of the local marginal effects of each 
variable on prices. In doing so, it is important to compare GPR-BMA with the alternative 
kernel-based family of Locally Weighted Regression (LWR) models that are specifically 
designed to estimate local marginal effects. As mentioned in the Introduction, we focus 
here on Geographically Weighted Regression (GWR), which is by far the most 
commonly used method for spatial applications. Hence we begin in Section 4.1 below 
with a brief summary of this method, together with key references where further details 
can be found. The Circular City Model is then developed in Section 4.2. This is followed 
in Section 4.3 with a presentation and discussion of the simulation results comparing 
these two methods. 
 

4.1 Geographically Weighted Regression 
 

Geographically Weighted Regression (GWR) appears to have been introduced 
independently by McMillen (1996) and Brunsdon, Fotheringham, and Charlton (1996) 
[but is given its name in the latter paper]. As mentioned in the introduction, our present 
application of GWR relies more heavily on the approach of McMillen (1996), following 

Cleveland and Devlin (1988). For given spatial data, 1( , ,.., )
i i ik

y x x , at locations, 

1,..,i n , this approach starts with a linear model of the form 
 

(68) 0 1
, 1,..,

k

i i iv iv i i i iv
y x x i n    


       

 

where 1(1, ,.., )
i i ik

x x x  , 2
1( ,.., ) ~ (0, )

n n
N I   ,7 and where the coefficient 

vector, 0 1( , ,.., )
i i i iK
     , is allowed to vary across spatial locations 1,..,i n . While 

(68) appears to be a linear “parametric” model, these spatially varying coefficients can 
essentially capture any function of spatial locations, so that space itself is implicitly 
treated nonparametrically.8 But to estimate this host of parameters, additional 

                                                 
7 Depending on the context, some developments of GWR make no appeal to independence of residuals. But 
when formal testing procedures are used [such as in McMillen (1996) and Brunsdon, Fotheringham, 
Charlton (1999)], this independence assumption is essential. Note also that an extension of this model to 

include spatial heteroscedasticity is developed in Páez, Uchida and Miyamoto (2002).  
8 In more general LWR models, this same scheme can be employed to model any subset of explanatory  
variables nonparametrically, as shown in [MR]. Here it should also be noted that the application in [MR] 
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assumptions are needed. The key assumption here is that parameter variation is 
sufficiently smooth over space to ensure that parameter values near location i  are not 

“too different” from those at i .  This allows parameters, 
i
 , to be estimated by 

minimizing weighted sums of squares of the form 
 

(69) 2

1
min ( ) ( )

i

n

j j i ij
y x w j 


  

 

where parameters at all locations are now replaced by
i
 , and where the local kernel 

weights, ( )
i

w j , are implicitly chosen to be close to zero except for those neighboring 

locations, j , where 
j i

  . This is easily seen to yield a series of standard weighted 

least squares estimates 
 

(70) 1ˆ ( ) , 1,..,i i iX W X X W y i n     
 

where 1 1( ,.., ) , ( ,.., )
n n

y y y X x x   , and where 
i

W  is a diagonal matrix with components, 

( ) , 1,..,
i

w j j n . As with the weight matrices, W , in Section 3.1 above, one must of 

course pre-specify the local kernel weights, ( )
i

w j . While many choices are possible, we 

employ the standard squared exponential (Gaussian) kernel,  
 

(71) 2( ) exp( / )i ijw j d b   
 

which is seen to parallel our choice of the squared exponential covariance kernel in (2) 

above. Here, 
ij

d  denotes Euclidean distance between spatial locations i  and j , and 

parameter 0b   is usually designated as the bandwidth of the kernel. Clearly, larger 
bandwidths include a wider range of relevant locations in (69), and are thus appropriate 

when spatial variation in 
i
  coefficients is more gradual. The choice of an appropriate 

bandwidth is typically carried out by standard “leave-one-out” cross-validation 
techniques [as for example in Brunsdon, Fotheringham, and Charlton (1996, Section 
3.2)].  Given this basic GWR model, we now focus on procedures for prediction, variable 
selection and local marginal analysis within this framework. 
 

4.1.1 Prediction in GWR 
 

Here we simply sketch the basic implementation of prediction in GWR, and refer the 
reader to Harris, Fotheringham, Crespo, Charlton (2010) for further details. To begin 
with, notice that while the basic model in (67) was developed only at data points (to 
provide a natural comparison with standard OLS), it should be clear that for any target 

location, s , where attribute data, 1(1, ,.., )
s s sk

x x x  , is available, (68) can be extended to 

include location s as: 
 

(72) 2
0 1

, ~ (0, )
k

s s sv sv s s s s sv
y x x N      


      

 

                                                                                                                                                 
employs an alternative version of LWR, namely Conditional Parametric Regression (CPAR), which differs 
from GWR by including spatial coordinates among the explanatory variables of the model. 
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So even though 
s

y  is not observed, it can be predicted by estimating the conditional 

expectation 
 

(73) ( | )
s s s s

E y x x   
 

To do so, one can estimate
s

  by a corresponding extension of (70). In particular, by 

letting 
is

d  denote the Euclidean distance from i  to s , one can extend ( )
i

w j  in (71) to a 

local kernel function, ( )
i

w s , on the entire space of locations. If the corresponding kernel 

matrix at s is denoted by, [ ( ) : 1,.., ]
s i

W diag w s i n  , then 
s

  can be estimated as 
 

(74) 1ˆ ( )s s sX W X X W y      , 
 

This in turn yields the following estimate of ( | )
s s

E y x , 
 

(75) 1ˆˆˆ ( | ) ( )s s s s s s s sy E y x x x X W X X W y         , 
 

which provides a mean prediction of 
s

y based on the observed data. For example, in our 

housing price model below, if 
i

y  is the observed sales price of a house with attributes, 

i
x , at locations 1,..,i n , and if  the attributes, 

s
x , of some unsold house at location s are 

available, then (75) yields a natural prediction of the sales price, 
s

y , for this house based 

on observed prices of its neighbors. Notice finally that there is some degree of parallel 
between the predictions in (75) and GPR predictions in expression (8), where the 

covariance kernel, ( )c  , is replaced by the local kernels, ( )
s

w  . However, the key 

difference here is that ( )
s

w   involves only 2-dimensional distances between spatial 

locations, while ( )c   involves k-dimensional distances between all explanatory 

variables. 
 

4.1.2 Variable Selection in GWR  
 

While there are in principle many ways to carry out variable selection within this GWR 
framework, the simplest and most intuitive approach (in our view) is the semiparametric 
method of McMillen and Redfearn (2010) [MR] mentioned in the Introduction. If for any 
candidate explanatory variable, v , we denote the set of all other explanatory variables by 

{1,..., }v k v  , then the essential idea (in the present setting) is to use GWR to “remove” 
the influence of v  on both y  and v, and then run a simple regression using these 

residuals to determine the relevance of v on y in the absence of v .9 To implement this 

procedure, we first eliminate variable v  by setting ( ) ( : )
i ij

x v x j v   and ( )X v    

[ ( ) : 1,.., ]ix v i n . The GWR prediction of 
i

y  based on variables, v , is then given by 
 

                                                 
9 This semiparametric procedure is conceptually very similar to the “mixed” GWR model developed in 
Chapter 3 in Fotheringham, Brunsdon, and Charlton (2002). In that setting, the present candidate variable, 

v
x , would be formally treated as the “parametric” part of the model.   
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(76) 1ˆ ( ) ( ) [ ( ) ( )] ( )
i i i i

y v x v X v W X v X v W y
    

 

and similarly, the GWR prediction of 
vi

x  based on v  is10  
 

(77) 1ˆ ( ) ( ) [ ( ) ( )] ( )
vi i i i vi

x v x v X v W X v X v W x
    

 

Given these predictions, if we denote the portion of 
i

y  not explained by v  as 
 

(78) ˆ( ) ( )
i i i

y v y y v    
 

and the portion of 
vi

x  not explained by v  as 
 

(79) ˆ( ) ( )
vi vi vi

x v x x v     , 
 

then the explanation of y provided by variable v  independent of all other variables, v , 
can be gauged by the results of the simple regression:  
 

(80) 0( ) ( ) , 1,..,
i v vi i

y v x v i n         
 

Following [MR], it is most natural to use the p-value of 
v

  to measure the statistical 

significance of variable v  in providing additional information about y . Note finally that 

(unlike the inclusion probabilities in Section 2.2.2 above) the sign of 
v

  provides some 

information about the overall direction of influence on y. 
 

4.1.3 Local Marginal Analysis in GWR  
 

In many ways, local marginal analysis is the simplest of these procedures in GWR, since 
this was the original purpose of the model itself. As a parallel to (54) above, it now 
follows from (73) that for any explanatory variable, v , 
 

(81) ( | ) ( )s s s s svv vx x
E y x x   

     

 

so that estimates of such local marginal effects are given precisely by the estimated local 

beta coefficients, ˆ
sv . In principle, one can thus use the standard errors from each local 

regression to obtain confidence bounds on the magnitude of 
sv

 . But as pointed out by 

Wheeler and Tiefelsdorf (2005), GWR is much more sensitive to multicollinearity among 
explanatory variables than is ordinary regression.11 So great care must be taken in 
interpreting these values, especially for small sample sizes.12 
 

                                                 
10 Here it should be noted that cross-validation bandwidths could in principle differ between (75) and (76). 

But for consistency we use the same bandwidth in (76) for each variable in (77). So the 
i

W  matrices are in 

fact the same, as shown.  
11 Wheeler and Tiefelsdorf (2005) propose checking standard diagnostics like Variance Inflation Factors. 
Visual diagnostic methods are also developed in Wheeler (2010). 
12 The detailed simulation study by Páez, Farber, and Wheeler (2011) suggests that estimates of individual 
beta coefficients tend to be unreliable for sample sizes less than 160n  . 
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4.2 The Circular City Model 
 

In [MR] a stylized one-dimensional model of urban population density was developed to 
illustrate the superiority of LWR over OLS in fitting spatially varying functions. In the 
present section we develop a two-dimensional stylized model of urban housing prices 
which is more explicit in terms of explanatory variables, and allows a wider range of 
estimation issues to be addressed, including both variable selection and local marginal 
analysis. In particular, we consider a small circular city of one-mile radius with three 

inner zones ( 1 2 3, ,Z Z Z ) and three outer zones ( 4 5 6, ,Z Z Z ) surrounding the CBD, as shown 

in the left panel of Figure 2 below. Each zone is assumed to contain approximately 500 
residential parcels, yielding a total of about 3000 parcels for the entire city. In each zone, 
these parcels are distributed on a uniform grid (so that parcels in the smaller inner zones 
are more densely distributed).  
 

 
 
The local population is assumed to consist of two types of households. First there are 
about 2000 young families with children and with bread-winners working in the CBD 
(which is here idealized to be a point location). These families are naturally interested in 
homes with more bedroom space and located closer to the CBD. In addition, it is 
assumed that all children are of school age, so that proximity to schools is important for 
each of these families. As shown in Figure 2, there are two school districts, with District 

1 consisting of zones 1 4( , )Z Z  and District 2 consisting of zones 2 5( , )Z Z . School busing 

is provided within each district, so that there is a strong incentive for families to live in 
one of these two districts. The remaining households (about 1000 in number) are assumed 
to consist mostly of older retired couples (or individuals) who have smaller space needs, 
and no need for either school busing or commuting to the CBD. Consequently, their 
preferences are quite different from the younger families.  
 

In this framework, housing prices are assumed to be generated by competitive bidding. In 
particular, it is assumed that families are strongly motivated to outbid retirees for 
properties in school districts, so that housing prices in Districts 1 and 2, consisting of 

zones 1 2 4 5( , , , )Z Z Z Z , reflect the preferences of these families. Similarly, housing prices 

in zones 3 6( , )Z Z  are assumed to reflect the preferences of retirees. To model the price 

per square foot,
i

P , for each house, i , we now let 
i

B  denote the number of bedrooms in i , 

and let 
i

D  denote the (straight line) distance from i  to the CBD. Finally, letting the 

indicator variable, 
i

S , denote whether i  is in a school district or not, the expected price, 

( )
i

E P , for house i  is assumed to be of the following (highly nonlinear) form: 
 

(82) 
3

1 1 2 2

0 1 2 4( ) exp{ (1 ) } | 1| {(1 ) / }
a

b d d b

i i i i i i iE P a S a B a D S a D B             

 

Figure 2 
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where all parameters 0 1 2 3 4 1 2 1 2( , , , , , , , , )a a a a a b b d d  are positive.13 To interpret this 

expression, note first that by construction, ( )
i

E P  is equal to the first term for those 

houses in school districts ( 1
i

S  ), and is equal to the second term for houses outside 

school districts ( 0
i

S  ). Hence housing prices in school districts are seen to be 

increasing in the number of bedrooms and decreasing in distance from the CBD. On the 
other hand, these relations are reversed for houses not in school districts. Here retirees are 
assumed to prefer smaller residences that are more easily maintained. Moreover, they are 
not working and are thus assumed to prefer living away from the noise and traffic of the 
CBD.  
 

In this setting, the existing housing stock in each zone is assumed to have average values 
for each relevant variable as shown in Table 3 (where the bottom row can be ignored for 
the present). 
 

 
 
Values of S and average values of D are direct consequences of the city layout in Figure 
2. With respect to bedrooms, B, note that these average values do not perfectly match the 
desires of relevant households in each zone, and thus that there must be tradeoffs between 
these attributes. But the single most important feature of these values for our purposes is 
the nonseparability of mean prices, ( )E P , created by the different preferences of 

consumer types [in a manner paralleling the simpler examples in expressions (66) and 
(67) above]. The average values of these mean prices are given in the last row of Table 3, 
and a more detailed representation of the overall spatial price pattern is shown in the right 
panel of Figure 2.  Here the highest expected prices are in Zones 1 and 6, which contain 
the most preferred house-location combinations for young families and retirees, 
respectively. (Note also that the sharp contrasts in housing values near the center are 
mainly a consequence of our simplifying assumption that the CBD is a single point.) 
 

4.3  Simulation Results 
 

Using this second spatial simulation, we investigate how well each technique does on the 
twin tasks of explanation and prediction by examining, in turn, their ability to correctly 
classify the statistical relevance of individual explanatory variables, and their ability to 
predict out-of-sample price values. We first present the variable selection results for all 
four techniques, and then discuss out-of-sample performance for GPR-BMA and GWR. 
These metrics are evaluated using 10 different simulations per sample size with sample 
sizes ranging from 60 (10 observations per candidate explanatory variable) to 270 (45 
observations per candidate explanatory variable) by increments of 30.14   

                                                 
13 The specific parameter values chosen for simulation purposes are 

0 1 2
104.75, 1.041, 1.0685,a a a    

3 4 1 2 1
0.1792, 54.598, 0.9328, 0.1083, 1.9334,a a b b d     and 

2
1.5186d  . 

14  Other implementation details include the following. All parameter and model vectors are tested for 
convergence after each 10 iterations, and a jitter of 0.01 is used for numerical stability. Whenever the 
model vector changes in the outer loop, the inner loop HMC procedure uses 30 iterations. Otherwise, only 
5 additional iterations are used. In addition, this HMC procedure takes 10 steps in each iteration, with step 
adjustments of 0.05. Finally, the first 75 passes of the full Gibbs sampling procedure are used as burn-in.  

Table 3 
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4.3.1 Results for Variable Selection 

The assessment of variable selection ability proceeds in a fashion similar to Simulation 1. 
We augment the three model variables, ( , , )D B S , with three non-model variables, 

1 2 3( , , )z z z , each independently normally distributed with individual spatial correlation. 

Our criterion for an estimation method to be successful is that it should identify ( , , )D B S  

as statistically relevant and 1 2 3( , , )z z z  as statistically irrelevant. Given that these four 

methods include both Bayesian and non-Bayesian approaches, we use two different 
measures of statistical relevance.  

For Bayesian methods (SAR-BMA, SEM-BMA, GPR-BMA) statistical relevance is 
evaluated in terms of posterior variable-inclusion probabilities [as in expressions (48) and 
(63) above]. Here higher inclusion probabilities are taken to imply stronger relevance for 
individual variables.  For the non-Bayesian method of GWR, statistical relevance is 
evaluated in terms of p-value calculations for its associated semiparametric test 
[following expression (80) above]. It should be noted that p-value scaling is the opposite 
of inclusion probabilities, with lower p-values denoting higher levels of statistical 
significance. In this context, our specific evaluation criteria are that the model variables, 
( , , )D B S , should all have inclusion probabilities of no less than 0.95 (or p-values of no 

greater than 0.05). Similarly, the non-model variables, 1 2 3( , , )z z z , should have inclusion 

probabilities less than 0.95 (or p-values greater than 0.05).  

Table 4 contains four panels, one for each estimation method. Panels A, B, and C show 
the results for the Bayesian methods, SAR-BMA, SEM-BMA, and GPR-BMA, 
respectively. In particular, Panels A through C contain inclusion probabilities averaged 
across 10 simulation runs for each of the sample sizes shown. Similarly, Panel D contains  
p-values for GWR averaged across these 10 simulations. 

 

 

The SAR-BMA results (Panel A) and SEM-BMA results (Panel B) are seen to be similar 
to those in Simulation 1. Again as a result of their separable parametric specifications, 
neither method is able to identify any of these strongly nonseparable variables, ( , , )D B S , 

as being statistically relevant (at any sample size). In fact, these inclusion probabilities 
are not substantially higher than those for non-model variables, with the maximum value, 
0.26, being far less than the 0.95 needed for statistical relevance. Moreover, no noticeable 
improvement occurs with increasing sample size. 

Turning next to the GWR results in Panel D, we see substantial improvement with 
respect to model variables B and S, which are both strongly significant for all sample 
sizes of 90 and higher, while all non-model variables are very insignificant.  The only 
notable failure is the inability of GWR to identify distance, D, as statistically significant. 
More generally, this inability to identify variables that are systematically dependent on 

   Table 4 
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location appears to be an inherent property of locally weighted regression methods, as 
discussed further by [MR].15  

Finally we turn to the GPR-BMA results in Panel C.  As in Simulation 1, this Bayesian 
nonparametric method achieves essentially perfect identification of both model and non-
model variables. These strong results appear to be attributable to the fact that regardless 
of the random initialization of the model vector,  , GPR-BMA quickly converges to the 
true model. However, it should be emphasized that this degree of accuracy occurs at a 
price. In particular, a comparison of time scales for GWR and GPR-BMA shows that the 
latter is relatively very costly in terms of computation time. So the present version of this 
model is limited to small and medium sized data sets.  This limitation is currently a very 
active area of research, as discussed further in the concluding section of the paper. 
 

4.3.2 Results for Out-of-Sample Prediction 

Turning next to out-of-sample predictions, we shall focus exclusively on the two 
nonparametric estimation methods, GWR and GPR-BMA. The flexibility of these 
methods with respect to unknown relationships between the dependent and independent 
variables makes them particularly well suited for out-of-sample predictions. As noted by 
McMillen et al. (2010, 2012), this is particularly true in spatial contexts, where such 
approaches avoid many of the misspecification problems inherent, for example, in 
standard spatial lag models.  

In addition, while SAR-BMA and SEM-BMA provide only global marginal effects, 
GWR and GPR-BMA yield localized out-of-sample predictions for both values of the 
dependent variable and marginal effects of the explanatory variables.  The relevant 
marginal effects in the present simulation model involve both the effects of distance 
(ME-D) and number of bedrooms (ME-B). With respect to ME-B in particular, the 
number of bedrooms, B, is treated as a smooth variable in GPR-BMA to maintain some 
degree of comparability with the regression-slope estimates in GWR. In addition, GWR 
predictions are based on the true set of explanatory variables rather than on the 
statistically relevant variables (since Dwould be excluded).  In contrast, predictions in 
GPR-BMA are based on the selected model vector and set of parameters. Also, while 
GWR only has one set of localized forecasts per simulation, GPR-BMA has numerous 
forecasts based on multiple draws of model vectors and parameters. Consequently, GPR-
BMA uses all models from each post burn-in run across the 10 simulations to calculate 
predictions. Finally, prediction accuracy is here measured in terms of root mean square 
error (RMSE), where lower values of RMSE are taken to imply more accuracy. The 
results of these calculations are shown in Table 5 below: 

 

                                                 
15 [MR] suggest that the optimal bandwidth parameter may depend on the type of variable. In particular, 
they recommend [following Pagan and Ullah (1999)] that larger window sizes should be used for locational 
variables such as distance. How much larger still remains an important and unanswered question. In 
unreported results, we doubled the size of the optimal bandwidth parameter, yet did not find any change in 
the statistical relevance of the distance variable. (In contrast to the semiparametric test, GPR-BMA uses the 
same set of three parameters regardless of variable type.) 
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For both techniques, price prediction is seen to improve (lower RMSE) with increased 
sample size.  While the performance of GWR improves at a faster rate, the corresponding 
results for GPR-BMA are uniformly sharper. In particular, the RMSE values for GWR 
are everywhere more than twice as high as those for GPR-BMA (and often three times as 
high).16 
 

The results for marginal effects are very similar.  GPR-BMA provides more accurate 
predictions of marginal effects at every sample size. In relative terms, the performance of 
GWR is noticeably worse than for price prediction, with RMSE values ranging from 2.7 
to 4.8 times higher than those for GPR-BMA.17  But again, the area where GWR does 
excel is in terms of computation time, which is nearly an order of magnitude better than 
GPR-BMA.  
 

We next observe that the marginal-effect results in Table 5 deal exclusively with error 
magnitudes. But often the most important question about such effects is their direction. 
For example, since the critical nonseparabilities in the present model are generated 
precisely by sign reversals in preferences among household types, it is of particular 
interest to determine how well these reversals are picked up by each estimation method.   
 

Before doing so, however, it is important to recognize one limitation inherent in such 
local analyses of marginal effects. Even when sample sizes are large and spatially dense, 
there is always a problem of multiple testing that arises from the overlap of regression 
neighborhoods. In particular, this implies that marginal estimates at nearby locations 
must necessarily be positively correlated, which makes it more difficult to gauge the joint 
significance of marginal effects between such locations. While these dependencies are 
mitigated to a certain degree by model-averaging procedures such as GPR-BMA, they are 
still present. Moreover, while there have been numerous efforts to discount such effects 
in a systematic way, this issue remains an ongoing area of active research. [For a 
discussion these issues in the specific context of GWR see Charlton and Fotheringham 
(2009). For more general reviews of such work in a spatial context see Castro et al. 
(2006) and Robertson et al. (2010).]  So the approach adopted here is simply to employ 
standard diagnostic methods, and to compare the results of these diagnostics for both 
GWR and GPR-BMA. One advantage of the present simulation framework is that such 
diagnostics can be directly compared against true values to see how well they perform in 
the presence of such correlations. 
 

                                                 
16 Here it should also be noted that the prediction accuracy of GWR has been compared with non-Bayesian 
GPR (Kriging) by Harris et al. (2010, 2011). While these comparisons focus more on non-stationary 
versions of these models, it is nonetheless clear that in terms of prediction accuracy their results are 
qualitatively similar to ours.  
17 It should be noted however the bandwidth parameter for GWR is optimized only with respect to 
prediction of the dependent variable, though it is used also for marginal effects. This may in part account 
for the slight degradation in performance with respect to marginal effects. It is also of interest to note that 
[MR] have suggested (in addition to footnote 12 above) that appropriate bandwidths for marginal effects 
should probably be larger than those for value predictions. But this question has not been pursued further in 
the present paper. 
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There is one final issue that must be addressed in comparing Bayesian versus non-
Bayesian methods, namely the absence of a classical testing framework in Bayesian 
approaches that is based on “null hypotheses”. But since there is some degree of 
comparability between Bayesian credible intervals and non-Bayesian confidence 

intervals, we choose this approach for purposes of comparison.18 In this context, our 
basic diagnostic approach is to construct appropriate one-sided 95% confidence (or 
credible) intervals to gauge the “credibility” of signs. In the case of GWR, the appropriate 

confidence intervals are for the coefficients, 
sv , of variables, v , in the (weighted) 

regression at each location s [in expression (81) above]. In particular, 
sv  is said to be 

significantly positive (negative) if the upper (lower) 95% confidence interval for 
sv  lies 

above zero (below zero). [For any threshold value, 0 , such upper and lower 95% 

confidence intervals for 
sv  are of the form, 0[ , )   and 0( , ] , respectively.] 

Moreover, since it is well known (from the symmetry of normal and t-distributions) that 

the critical region for an upper (or lower) tailed test of 
sv  at the 0.05 level is precisely 

the upper (or lower) 95% confidence interval for
sv , it follows that such intervals can be 

constructed entirely in terms of the standard t-statistics for ˆ
sv . In the case of GPR-BMA, 

such beta parameters, 
sv ,  are replaced  by the BMA marginal effect, 

svME , of 

explanatory variable, v, at location, s [where for sake of comparison we here replace l and 
j in expression (57) above with s and v, respectively]. Here the appropriate credible 

intervals are based on the posterior distribution of 
svME . In particular, the marginal effect 

of variable v and location s is said to be credibly positive (negative) if the upper (lower) 

95% credible interval for 
svME  lies above zero (below zero) [where for any threshold 

value, 0ME , the upper and lower credibility intervals for 
svME have the same respective 

forms, 0[ , )ME   and 0( , ]ME , as above]. These credible intervals are estimated from 

the corresponding frequency distribution of 
svME obtained from Gibbs sampling (which 

approximates the posterior distribution of 
svME ).  

 

Before reporting these comparative results, we note finally that a distinction must be 
made between “significant effects” and “correct effects”. While it is of course desirable 
that an estimation method identifies the signs correctly in those cases deemed to be 
significant, it is also important that a large fraction of cases with true non-zero signs 
actually be deemed significant. With this in mind, we report both measures. In particular, 
the fractions of those (out-of-sample) cases deemed to be significant (either positive or 
negative) for each method and the fractions of these cases with correct signs are both 
shown in Table 6 below. Turning to the left panel of Table 6, we see that both GPR-BMA 
and GWR do quite well at identifying non-zero marginal effects as significant. 
 
 
 

                                                 
18 There do exist Bayesian variants of GWR [Lesage (2004)] that would allow Bayesian credible intervals 
to be used for both GWR and GPR-BMA. But since such Bayesian versions of GWR are used far less 
frequently, we opt for the standard non-Bayesian approach.  

   Table 6 
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Notice also that for both methods, the fractions of cases deemed significant for ME-D are 
uniformly higher than for ME-B. This is not surprising in view of the fact that “marginal 
effects” themselves are more problematic for the discrete number-of-bedrooms variable, 
B, then for the continuous distance variable, D.  
 

This difference in results between ME-D and ME-B is even more evident when 
comparing the relative performance of these two methods. For the continuous variable, 
D, the results for GPR-BMA are uniformly higher than for GWR (in a manner similar to, 
but less dramatic than, the prediction results above). However, for the discrete variable, 
B, it appears that while GPR-BMA performs better for small samples, the results are 
mixed for larger samples. Here, in addition to the general “discreteness” problem 
mentioned above, it should be noted that in this particular simulation model most of the 

“insignificant” results for both methods occur in Sector 3Z  of Figure 2 close to the CBD, 

where (as can be seen from the sharp price variations in the right panel of Figure 2) 
values of B tend to exhibit variations that are exaggerated by the idealized assumption of 
a point CBD. So the “smoothness” assumptions implicit in such marginal analyses are 
most severely tested in this region. 
 

Turning finally to the fractions of correct signs occurring in cases deemed to be 
significant as shown in the right panel of Table 6, the overall pattern seems roughly 
similar to the previous set of results. But there are two key differences that should be 
stressed. First, GWR is performing uniformly worse than in the previous exercise. 
Second, GPR-BMA is performing uniformly better than GWR. So at least in this 
simulated model, the occurrence of significant but incorrect signs for local marginal 
effects appears to be much less of a problem for GPR-BMA than for GWR.  
 
 

5. EMPIRICAL EXAMPLE: Predictors of Economic Growth 

 
In this final section, we apply GPR-BMA to a real dataset to highlight how well this 
technique performs in practice. Here we use a standard BMA benchmark dataset focusing 
on economic growth [FLS (2001), Sala-i-Martin (1997)], which includes 42 candidate 
explanatory variables for each of 72 countries. To capture possible spatial effects, we 
include the spatial location (latitude and longitude) of each country. As one such 
example, it has been claimed by Sachs (2001) and others that technology diffuses more 
readily across the same latitude than the same longitude. Such assertions can be tested 
within the present framework (as shown below). 
Since OLS-BMA is most often used in conjunction with this dataset, we provide OLS-
BMA results alongside GPR-BMA results. To facilitate this comparison, GPR-BMA was 
calibrated to have a prior expected model size equal to the estimated average model size 
of OLS-BMA. In particular, since expected model size is given by the sum of inclusion 

probabilities for all variables 1 1 1[ ( ) ( ) ( ) ( 1)]k k k
j j j j j jE q E E p          , this 

realized sum for OLS-BMA ( 10.5 ) was taken as the mean of the prior distribution for q 

in expression (19) and used to solve numerically for  , yielding a value of 0.088  (as 
shown in Figure 1 above). The resulting Variable Inclusion Probabilities (V.I.P.) for both 
OLS-BMA and GPR-BMA are shown in in the first two columns of Table 7 below 
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[where the OLS-BMA results were calculated using Matlab code from Koop, Poirier and 
Tobias (2007)]. The first two rows include the spatial variables, and the remaining rows 
are ordered by inclusion probabilities under GPR-BMA. 
 

 
 
 
 

Observe first that there is strong agreement between these two sets of inclusion 
probabilities, with an overall correlation of nearly 85%. In particular, both methods are in 
agreement as to the most important variables (with inclusion probabilities above .90), 
with the single exception, Non-Equipment Investment. Here the inclusion probability 
under GPR-BMA (.947) is more than twice that of OLS-BMA. Further investigation 
suggests that there are collinearities between Equipment Investment and Non-Equipment 

Investment (depending on which other explanatory variables are present). Moreover, 
since the linear specification of OLS is well known to be more sensitive to such 
colinearities than GPR, this could well be the main source of the difference.  
  
Turning next to the spatial variables, latitude and longitude, it is clear that neither is a 
relevant predictor of economic growth in the present data set. So even though the 
inclusion probabilities for latitude are uniformly higher than those for longitude, these 
values provide little support for the Sachs (2001) hypothesis.19 Note also from the 
specification of the squared exponential kernel in (2) that the presence of both latitude 
and longitude should, in principle, capture any effects of squared euclidean (decimal-
degree) distances on covariance. So for GPR-BMA in particular, these low inclusion 
probabilities suggest that there is little in the way of spatial dependency among these 
national economic growth rates (after controlling for the other explanatory variables).  
 
5.1 Average Marginal Effects 
 

Estimates of the Average Marginal Effects (A.M.E.) of each variable are shown in the 
last two columns of Table 7, where it is again seen that the results for OLS-BMA and 
GPR-BMA are quite similar. Moreover, this similarity is even stronger when one 
considers the influence of inclusion probabilities on marginal effects [as seen for GPR-
BMA in expression (53) above]. In particular, differences in average marginal effects 
between these methods are often the result of corresponding differences between their 
associated inclusion probabilities.  As one example, recall that for Non-Equipment 
Investment the inclusion probability under GPR-BMA is roughly twice that under OLS-
BMA. So given that the average marginal effect of this variable in GPR-BMA is also 
roughly twice that in OLS-BMA, one can conclude that average marginal effects 
restricted to those models where Non-Equipment Investment is present are actually quite 
similar for these two methods. 
 
 

                                                 
19 A more direct test of this particular hypothesis would be to use ‘absolute latitude’ (to distinguish between 
tropical and temperate zones), as is done in both Sala-i-Martin (1997) and FLS (2001). But since 
experiments with this variable produced lower inclusion probabilities than latitude, we chose to report only 
results for the latter.  

Table 7 
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5.2. Local Marginal Effects 
 

But while average marginal effects under GPR-BMA are similar to those under OLS-
BMA, it is possible to probe deeper with GPR-BMA. Unlike OLS-BMA, where the 
marginal effect of each variable is constant across space, one can “drill down” with GPR-
BMA and examine marginal effects at different data locations, such as countries in the 
present case. Moreover, such local results can in principle reveal structural relations 
between marginal effects and other variables that are not readily accessible by OLS-
BMA. As one illustration, we now consider differences between the marginal effects of 
Equipment Investment (E_Inv) and Non-Equipment Investment (NE_Inv) across countries, 
as displayed in Table 8 below (where the marginal effects of equipment investment are 
shown in descending order).  
 
 
 

Not surprisingly, the highest marginal effects of equipment investment are exhibited by 
less developed countries (such as Cameroon) and the lowest marginal effects by more 
developed countries (such as the United States). But a more interesting relation can be 
seen by plotting marginal effects for both E_Inv and NE_Inv against their corresponding 
investment levels for each country, as  shown in Figure 3 (where circles and stars are 
used to represent marginal effects for E_Inv and NE_Inv, respectively). 
 
 

 
 

Here the negative slopes of both sets of values suggest that both types of investments 
exhibit diminishing returns with respect to their marginal effects on economic growth. In 
addition, this plot also suggests that economic growth is more sensitive to changes in 
equipment investment than other types of investment. Both of these observations are 
easily quantified by regressing marginal effects on investment levels together with a 
categorical investment-type variable and interaction term. These regression results (not 
reported) show that both observations above are strongly supported, and in particular, that 
the response slope for equipment investment ( 0.76 ) is indeed much steeper than that for 
other investments ( 0.43 ) [as seen graphically by the regression lines plotted in Figure 
3]. In summary, such results serve to illustrate how GPR-BMA can be used to address a 
wide range of questions not accessible by the more standard OLS-BMA approach. 
 

6. Concluding Remarks 
 

The objective of this paper has been to develop Gaussian Process Regression with 
Bayesian Model Averaging (GPR-BMA) as an alternative tool for spatial data analysis. 
This method combines the predictive capabilities of nonparametric methods with many of 
the more explanatory capabilities of parametric methods. Here our main effort has been 
to show by means of selected simulation studies that this method can serve as a powerful 
exploratory tool when little is known about the underlying structural relations governing 
spatial processes. Our specific strategy has been to focus on the simplest types of 
nonseparable relations beyond the range of standard exploratory linear regression 
specifications, and to show that with only a minimum number of parameters, GPR-BMA 

Table 8 

Figure 3 
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is able to identify not only the relevant variables governing such relations, but also the 
local marginal effects of such variables.  
 

As noted in Section 3.3 above, it is in principle possible to construct sufficiently elaborate 
specifications of parametric regressions that will also identify the particular nonseparable 
relationships used here, or indeed almost any type of relationship.  But it must be stressed 
that the introduction of such “contingent interaction” parameters requires large sample 
sizes and tends to suffer from over-fitting problems. Alternatively, one can capture such 
relationships by directly parameterizing local marginal effects themselves, as in local 
linear regression methods such as GWR. But while such “nonparametric” methods are 
indeed better able to capture local variations in relationships, they do so by in fact 
introducing a host of local regression parameters that are highly susceptible to 
collinearity problems (not to mention the need for exogenously specified bandwidth 
parameters that are essential for spatially weighted regressions). Moreover, the focus of 
these models on local effects of variables tends to ignore the possible global relations 
among them.20  So the main result of our simulations is to show that by modeling 
covariance relations rather than conditional means, the simple version of GPR-BMA 
developed here is able to identify complex relationships with only three model 
parameters. This is in part explained by the general robustness properties of Bayesian 
Model Averaging. But as we have seen in both SAR-BMA and SEM-BMA, such model 
averaging by itself may not be very effective when un-modeled nonseparabilities are 
present. So an important part of the explanation for the success of present GPR-BMA 
model appears to be the ability of the squared-exponential covariance kernel in GPR to 
capture both global and local interactions in terms of its scale and bandwidth parameters, 
v  and  .  
 

This ability to capture both global and local interactions has a wide range of applications 
in empirical analyses, as seen in the economic growth example of Section 5. Here we saw 
that GPR-BMA was not only able to capture global determinants of economic growth in a 
manner similar to OLS-BMA, but was also able to delve deeper. In particular, the 
localized marginal effects of investment estimated by GPR-BMA (across countries) were 
used to obtain evidence for diminishing returns to investment, and in particular, for 
stronger diminishing returns with respect to equipment investment.     
 

But in spite of these advantages, it must also be emphasized that the parsimonious 
parameterization of the present GPR-BMA model is only made possible by the 
underlying assumptions of zero means together with both stationarity and isotropy of the 
covariance kernel. While the zero-mean and isotropy assumptions have been mollified to 
a certain degree by the use of standardized variables, it is nonetheless of interest to 
consider extensions of the present model that avoid the need for such artificial 
standardizations. For example, as we have already seen in expression (17) above, 
extended parameterizations are possible in which individual bandwidths are assigned to 
each parameter. In addition, it is possible to relax the zero mean assumption by internally 

                                                 
20 While there are indeed “mixed” versions of such models that incorporate both global (parametric) and 
local (nonparametric) specifications [as detailed for example in Wei and Qi (2012), Mei, Wang, and Zhang 
(2006) and in Chapter 3 of Fotheringham, Brunsdon, and Charlton (2002)], such models involve a prior 
partitioning of these variable types, so that no variable is treated both globally and locally.  
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estimating a constant mean, ( )x  , in expression (1) or even by modeling means as 

parameterized functions of x (as for example in Section 2.7 of [RW]). But a key point to 
bear in mind here is that the important conditional means in expression (8) are much less 
sensitive to such specifications that the overall Gaussian process itself.  
 

Perhaps the most interesting extensions of the present model are in terms of possible 
relaxations of the covariance stationarity assumption (which cannot be mollified by any 
simple standardization procedures).  A number of extensions along these lines have  
been proposed that amount to partitioning space into regions that are approximately 
stationary, and patching together appropriate covariance kernels for each region. The 
most recent contribution along these lines appears to be the work of Konomi, Sang, and 
Mallick (2013), in which regression-tree methods are used for adaptively partitioning 
space, and in which covariance kernels are constructed using the “full approximation” 
method of Sang and Huang (2012). Adaptations of such schemes to the present GPR-
BMA framework will be explored in subsequent work. 
 

In addition to these structural assumptions, the single strongest limitation of the present 
GPR-BMA model is the scaling of its computation time with respect to the number of 
observations. This is an active area of research where a variety of methods having been 
proposed over the past few years. Generally speaking, most approaches recommend some 
type of data reduction technique [see Cornford et. al. (2005) for an early example]. 
Solutions range from direct sub-sampling of the data itself to more sophisticated 
constructions of “best representative” virtual data set [as compared in detail by Chalupka, 
Williams and Murray (2013)]. Alternative approaches have been proposed that involve 
lower dimensional approximations to covariance kernels, as in the recent the “random 
projection” method of Banerjee, Dunson and Tokdar (2013).  But for our purposes, data 
reduction methods have the advantage of allowing our Bayesian Model Averaging 
methods to be preserved intact. 
 
In conclusion, while much work remains to be done in this burgeoning field, our own 
next steps will be to explore methods for increasing the computational efficiency GPR-
BMA in a manner that broadens its range of applications. Our particular focus will be on 
richer covariance structures that can capture both anisotropic and nonstationary 
phenomena. For example, by relaxing the present isotropy assumption and using different 
length scales for latitude and longitude, we can in principle sharpen our test of Sach’s 
(2001) hypothesis discussed in Section 5. Such extensions will be reported in a 
subsequent paper. 
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Tables 

 SEPARABLE NONSEPARABLE NONSEPARABLE 

Variables  
SAR-BMA 

Eq. 65 

SEM-BMA 

Eq. 66 

SAR-BMA 

Eq. 67 

SEM-BMA  

Eq. 68 

GPR-BMA 

Eq. 67 

GPR-BMA  

Eq. 68  

1x   1.00 1.00   0.14  0.42  1.00 1.00 

2x   1.00  1.00   0.09  0.06  1.00 1.00 

3x   1.00 1.00   0.05  0.14  1.00 1.00 

1z  0.05  0.05  0.06  0.17  0.0  0.0  

2z   0.05  0.05  0.15  0.06  0.0  0.0  

3z   0.05  0.05  0.05  0.08  0.0  0.0  

Time 
(s.) 

77.8 88.9 74.8 68.7 933.2 713.4 
Nobs 367 367 367 367 367 367 
Draws 50,000 50,000 50,000 50,000 400 250 
 

 

 

Panel A. Equation 66               

 SAR-BMA 1x   2x   3x   1z   2z  3z  Prob. 

 Model 1 0 0 0 0 0 0 0.57  

 Model 2 0 0 0 0 1 0 0.10  

 Model 3 1 0 0 0 0 0 0.09  

 Model 4 0 1 0 0 0 0 0.05  

 Model 5 0 0 0 1 0 0 0.03  

         

 GPR-BMA 1x   2x   3x   1z   2z  3z  Prob. 

 Model 1 1 1 1 0 0 0 1.00  

         

Panel B. Equation 67               

 SEM-BMA 1x   2x   3x   1z   2z  3z  Prob. 

 Model 1 0 0 0 0 0 0 0.35 

 Model 2 1 0 0 0 0 0 0.24  

 Model 3 0 0 0 1 0 0 0.06  

 Model 4 0 0 1 0 0 0 0.06 

 Model 5 1 0 0 1 0 0 0.06 

         

 GPR- BMA 1x   2x   3x   1z   2z  3z  Prob. 

 Model 1 1 1 1 0 0 0 1.00  

Table 1. Variable Inclusion Probabilities 

Table 2.  Selected Model Probabilities 
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 Z1 Z2 Z3 Z4 Z5 Z6 

Number of Parcels 487 501 493 496 483 493 

Avg. Distance ( D ) 0.33 0.33 0.33 0.78 0.78 0.78 

Avg. Bedrooms ( B  ) 3.0 1.5 3.0 3.0 1.5 1.5 

School District ( S ) 1 1 0 1 1 0 

Avg. Exp. Price [ ( )E P ] 126.0 98.9 75.2 98.6 76.7 126.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Table 3. Sample Summary Statistics for Simulation 

Average SAR-BMA Posterior Probabilities as a Function of Sample Size 

D   
  

0.16 0.20 0.13 0.15 0.10 0.07 0.09 0.12 

B   
 

0.18 0.13 0.13 0.12 0.09 0.10 0.10 0.08 

S   
 

0.21 0.16 0.12 0.14 0.13 0.14 0.13 0.13 

1z   
0.13 0.16 0.18 0.13 0.15 0.11 0.12 0.13 

2z   
0.23 0.16 0.12 0.10 0.15 0.10 0.08 0.13 

3z   
0.21 0.16 0.25 0.15 0.11 0.12 0.10 0.08 

Time (s.) 124 123 122 122 122 122 123 123 

Sample Size 60 90 120 150 180 210 240 270 

Panel A. SAR-BMA Posterior Probabilities. Averaged across 10 simulation runs per 
sample size with 50,000 draws. 
 

Average SEM-BMA Posterior Probabilities as a Function of Sample Size 

D   
  

0.17 0.21 0.12 0.18 0.10 0.07 0.09 0.11 

B   
 

0.21 0.13 0.11 0.13 0.10 0.19 0.15 0.10 

S   
 

0.20 0.14 0.19 0.23 0.15 0.24 0.11 0.26 

1z   
0.12 0.16 0.15 0.12 0.16 0.10 0.12 0.13 

2z   
0.21 0.18 0.13 0.11 0.16 0.10 0.10 0.14 

3z   
0.21 0.16 0.19 0.14 0.12 0.17 0.09 0.09 

Time (s.) 71 70 69 69 70 70 70 70 

Sample Size 60 90 120 150 180 210 240 270 

Panel B. SEM-BMA Posterior Probabilities. Averaged across 10 simulation runs per 
sample size with 50,000 draws. 
 

D

B

S

1z

2z

3z

Table 4a. Variable Selection Results 
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Average GPR-BMA Posterior Probabilities as a Function of Sample Size 

D   
  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

B   
 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

S   
 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1z   
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2z   
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3z   
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Time (s.) 142 268 302 396 411 517 693 749 

Sample Size 60 90 120 150 180 210 240 270 

Panel C. GPR-BMA Posterior Probabilities. Averaged across 10 simulation runs per 
sample size. Program terminated after convergence was achieved. 
 

Average GWR p-values as a Function of Sample Size 

D   
  

0.24 0.19 0.21 0.29 0.45 0.40 0.35 0.36 

B   
 

0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S   
 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1z   
0.43 0.50 0.50 0.59 0.60 0.46 0.40 0.43 

2z   
0.39 0.53 0.58 0.40 0.32 0.60 0.25 0.46 

3z   
0.41 0.66 0.64 0.35 0.45 0.39 0.52 0.40 

Time (s.) 2 2 4 5 6 7 8 10 

Sample Size 60 90 120 150 180 210 240 270 

Panel D. GWR p-values. Averaged across 10 simulation runs per sample size. 
 

Table 4b. Variable Selection Results 

 GPR-BMA RMSE GWR RMSE 

Sample 

Size 
P  ME D   ME B  

Time    

(s.) 
P  ME D   ME B  

Time    

(s.) 

60 2.14 13.52 4.41 6.91 6.83 36.85 14.57 1.91 
90 1.83 11.83 3.65 14.19 5.80 31.92 16.47 2.48 
120 1.57 9.69 3.20 15.58 4.58 30.63 14.87 2.99 
150 1.40 8.17 3.14 23.21 3.78 27.40 13.30 3.49 
180 1.32 7.58 2.91 22.94 3.36 27.26 12.92 4.01 
210 1.28 7.12 2.89 28.26 3.92 28.58 13.88 5.07 

Table 5. RMSE Comparisons  
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Table 6. Left Panel: Fraction of Significant Marginal Effects, Right Panel: Fraction 

of Significant Marginal Effects with Correct Sign

 GPR-BMA GWR GPR-BMA GWR 

Sample 

Size 
ME-D ME-B ME-D ME-B ME-D ME-B ME-D ME-B 

60 0.992 0.924 0.924 0.876 0.992 0.924 0.876 0.739 

90 0.999 0.903 0.942 0.881 0.999 0.903 0.91 0.748 

120 1 0.89 0.95 0.915 1 0.882 0.917 0.775 

150 1 0.903 0.97 0.88 1 0.898 0.938 0.77 

180 1 0.876 0.964 0.913 1 0.858 0.939 0.791 

210 1 0.878 0.973 0.884 1 0.865 0.937 0.775 

240 1 0.889 0.971 0.921 1 0.872 0.947 0.805 

270 1 0.909 0.979 0.92 1 0.897 0.954 0.817 

 



 

 

Variable 

GPR-BMA 

V.I.P. 

OLS-BMA 

V.I.P. 

GPR-BMA 

A.M.E. 

OLS-BMA 

A.M.E. 

Latitude 0.339 0.070 0.000 0.000 

Longitude 0.274 0.043 0.000 0.000 

ln(GDP) in 1960 0.997 1.000 -0.011 -0.016 

Life Expectancy 0.963 0.931 0.001 0.001 

Equipment Investment 0.952 0.918 0.144 0.159 

Non-equipment Investment 0.947 0.429 0.046 0.025 

Fraction Confucian 0.917 0.988 0.051 0.056 

Sub-Saharan Africa 0.755 0.744 -0.008 -0.012 

Age 0.693 0.086 0.000 0.000 

Fraction Hindu 0.687 0.122 -0.029 -0.003 

Degree of Capitalism 0.641 0.472 0.001 0.001 

Number of Years Open 0.634 0.495 0.006 0.007 

Rule of Law 0.632 0.503 0.006 0.007 

Latin America 0.557 0.205 -0.004 -0.002 

Fraction Muslim 0.539 0.625 0.004 0.009 

Fraction Buddhist 0.535 0.210 0.009 0.003 

Fraction Protestants 0.508 0.466 -0.006 -0.006 

Size of Labor Force 0.453 0.067 0.000 0.000 

Political Rights 0.438 0.095 0.000 0.000 

Black Market Premium 0.423 0.181 -0.001 -0.001 

% of Pop. Speaking English 0.408 0.066 -0.002 0.000 

Ratio Workers to Population  0.402 0.040 -0.002 0.000 

Primary Exports 0.400 0.095 -0.003 -0.001 

Fraction of GDP in Mining 0.387 0.466 0.006 0.020 

Primary School Enrollment 0.366 0.206 0.000 0.004 

Higher Education Enrollment 0.362 0.039 -0.018 -0.001 

Fraction Catholic 0.350 0.134 -0.001 0.000 

Civil Liberties 0.342 0.119 0.000 0.000 

Ethnolinguistic Fractionalization 0.309 0.051 0.002 0.000 

Spanish Colony 0.293 0.056 0.001 0.000 

Population Growth 0.277 0.039 -0.017 0.005 

War 0.256 0.078 -0.001 0.000 

% of Pop. Speaking Foreign Language 0.220 0.065 0.000 0.000 

French Colony 0.213 0.044 0.001 0.000 

St. Dev. of Black Market Premium 0.203 0.047 0.000 0.000 

Exchange Rate Distortions 0.195 0.076 0.000 0.000 

British Colony 0.188 0.035 0.000 0.000 

Fraction Jewish 0.186 0.037 0.001 0.000 

Public Education Share 0.174 0.031 0.010 0.001 

Area 0.169 0.028 0.000 0.000 

Outward Orientation 0.163 0.039 0.000 0.000 

Revolutions and Coups 0.129 0.028 0.000 0.000 

 

Table 7. Variable Inclusion Probabilities and Average Marginal Effects 



 

 

 

Country E_Inv NE_Inv Country E_Inv NE_Inv 

Malawi 0.211 0.092 Algeria 0.145 0.016 

Cameroon 0.202 0.089 Brazil 0.144 0.053 

Kenya 0.201 0.060 Chile 0.143 0.056 

Tanzania 0.199 0.082 Panama 0.141 0.040 

Nigeria 0.199 0.076 Mexico 0.138 0.045 

Madagascar 0.198 0.104 Costa Rica 0.136 0.041 

Ethiopia 0.196 0.110 Argentina 0.136 0.066 

Uganda 0.195 0.099 Taiwan 0.135 0.042 

Zimbabwe 0.191 0.069 Portugal 0.133 0.038 

Congo 0.190 0.054 Uruguay 0.132 0.055 

Zaire 0.189 0.098 Venezuela 0.129 0.039 

Ghana 0.188 0.086 Spain 0.128 0.033 

Senegal 0.187 0.084 Cyprus 0.124 0.006 

Zambia 0.178 0.013 India 0.123 0.035 

Philippines 0.174 0.081 Greece 0.120 0.004 

Pakistan 0.174 0.069 United Kingdom 0.119 0.038 

Haiti 0.169 0.097 Hong Kong 0.117 0.043 

Morocco 0.164 0.073 South Korea 0.117 0.038 

Thailand 0.164 0.061 Ireland 0.116 0.011 

Bolivia 0.161 0.063 Italy 0.113 0.013 

Tunisia 0.160 0.061 Denmark 0.110 0.019 

Botswana 0.160 0.045 Australia 0.108 0.010 

Turkey 0.159 0.056 Belgium 0.107 0.008 

Honduras 0.159 0.054 Sweden 0.107 0.002 

Sri Lanka 0.158 0.062 Austria 0.105 0.039 

El Salvador 0.155 0.077 Germany 0.102 0.000 

Malaysia 0.155 0.025 Israel 0.102 0.019 

Paraguay 0.154 0.078 Canada 0.102 0.022 

Peru 0.154 0.070 Switzerland 0.101 0.001 

Jordan 0.153 0.045 Netherlands 0.101 0.007 

Guatemala 0.153 0.052 France 0.100 0.007 

Dominican Republic 0.153 0.061 United States 0.098 0.023 

Nicaragua 0.152 0.047 Norway 0.097 0.000 

Colombia 0.148 0.056 Finland 0.091 -0.015 

Ecuador 0.146 0.028 Japan 0.075 0.001 

Jamaica 0.146 0.046 Singapore 0.064 0.023 

 

 
Table 8. Marginal Effect of Equipment and Non-Equipment 

Investment by Country 



 

 

 

Appendix: Calculation of Acceptance Ratios 

 
To calculate acceptance ratios in (37), there are two cases to consider.  
 
1. Birth Proposals 

 
First if  1 1q k    then a birth proposal is feasible, so that each transition 

1
1( )q q q

q  
   is possible. Here the acceptance ratio, r , in (36) is given by   
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To evaluate this expression, we note from (23) that the first ratio on the right hand side 
can be written as, 
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where the last uses the assumption that the priors of   and   are independent. Hence by 
(18) together with (20), 
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where ( )p q  and ( 1)p q  are given by (19). But since 
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it follows from (A.2) through (A.4) that 
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Turning next to the ratio of proposal probabilities in (A.1), it follows from (34) and (35) 
that 
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Finally, substituting (A.5) and (A.6) into (A.1), we may conclude that 
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Here the last term is seen from (30) and (31) to be identically one unless 1q k  , in 

which case ( | 1) 1p d q   , and this term is equal to 2. 

 
2. Death Proposals 

 

Next, if 2 q k   then a death proposal is feasible, so that each transition 
1

1( )q q q

q  
   is possible. In these cases the acceptance ratio is always of the form 
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( | , , ) ( | )

q q q
q q r

q q q

r

p y X p
r

p y X p

    
   

 


   

 
But if we now let 1h q   so that 1h q  , then clearly 2 1 1q k h k      . So by 

rewriting (A.8) in terms of h  we have  
 

(A.9) 
1

1

1 1

( | , , ) ( | )
( , )

( | , , ) ( | )

h h h
h h r

h h h

r

p y X p
r

p y X p

    
   




    

 
which is seen to be exactly the reciprocal of  (A.1) with h  replacing q . So all arguments 

in (A.2) through (A.7) hold exactly for the reciprocals of these expressions. In particular, 
it now follows from (A.7) that 
 

(A.10) 1

1 1

( | , , ) ( ) ( | )
( , )

( | , , ) ( 1) ( | )

h h
h h

h h

p y X p h b
r

p y X p h p d

    
  


   


 

 
Hence, substituting back 1q h   we may conclude that, 

 

(A.11) 
1 1

1 ( | , , ) ( 1) ( | )
( , )

( | , , ) ( ) ( | )

q q
q q

q q

p y X p q b
r

p y X p q p d

    
  

 
 

    

 
In this case it again follows from (30) and (31) the last term is identically one unless 

2q  , in which case ( | 1) 1p b q    and the last term is again equal to 2. 

 


