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Abstract

Recognition of motions and activities of objects in videos

requires effective representations for analysis and match-

ing of motion trajectories. In this paper, we introduce a

new representation specifically aimed at matching motion

trajectories. We model a trajectory as a continuous dense

flow field from a sparse set of vector sequences using Gaus-

sian Process Regression. Furthermore, we introduce a ran-

dom sampling strategy for learning stable classes of mo-

tions from limited data. Our representation allows for in-

crementally predicting possible paths and detecting anoma-

lous events from online trajectories. This representation

also supports matching of complex motions with acceler-

ation changes and pauses or stops within a trajectory. We

use the proposed approach for classifying and predicting

motion trajectories in traffic monitoring domains and test

on several data sets. We show that our approach works well

on various types of complete and incomplete trajectories

from a variety of video data sets with different frame rates.

1. Introduction

Motion trajectories of moving targets are essential for pro-

viding information about an object’s movement patterns

over time. Visual analysis of such moving objects in videos,

is therefore a considerably important topic [6, 10, 14, 20,

24]. A key element in such analysis is representing the tra-

jectory patterns of objects in a manner that allows for ef-

fective discrimination of these trajectories from specifically

known and unknown patterns. Such forms of discrimina-

tion are usually evaluated by comparing spatial proximity

between trajectory points with known (or learned) reference

patterns or by clustering all the input trajectories to find sim-

ilar patterns [6, 11, 25].

Such approaches for analysis of trajectories are useful for

recognizing motion patterns that are representative of the

data, but do not necessarily support (1) detecting complex

time-varying patterns, caused by subtle changes of acceler-

ation or sudden stops, which may be important for predict-

ing changes in headings or detecting unknown or anoma-

lous patterns, or (2) recognizing incomplete trajectories for

instant and online monitoring. Such instances require mod-

eling and analyzing motion trajectories in a spatio-temporal

domain. Furthermore, constructing reference models from

videos having (a) sufficiently representative patterns for se-

quences of varying lengths, and (b) different temporal sam-

pling (frame-rates) remains a difficult task. The goal of this

(a) (b)
Figure 1. Gaussian Process Regression Flows (GPRF): (a)

Video frames having trajectories, and the normalized mean flows

representing 17 different spatio-temporal patterns of motion tra-

jectories are visualized in different colors. Each mean flow is gen-

erated from trajectories extracted from videos using Gaussian pro-

cess regression. We classify each online track by traversing inside

the flow fields and collecting posterior densities along their paths.

(b) Some of individual mean flows are shown : blue indicates that

the mean flows in the region have lower variances (and thus higher

certainty), and red indicates higher variances.

paper is to present a representation that allows for matching

of complex trajectories. We demonstrate the validity of this

representation for observing and modeling traffic patterns

from video.

Specifically, in this paper, we propose a novel represen-

tation of motion trajectories using Gaussian Process Regres-

sion (GPR). This representation supports effective recogni-

tion of normal and anomalous patterns by generating a con-

tinuous vector field, a Gaussian Process Regression Flow

(GPRF) (Fig. 1). We demonstrate using this framework

(Fig. 2) a process to take visual observations (trajectories)

and generating a flow field that provides representative mo-

tion tendencies even with a minimal amount of data in each

training set. Furthermore, this representation is invariant to

temporal sampling constraints (i.e., frame-rates of data can

vary from trajectory to trajectory). Our use of flow fields,

which describe statistical certainties in terms of their spa-

tial shape and temporal tendency, can effectively classify

and predict motion patterns, and detect anomalous tracks

from incremental online trajectories. We show that the pro-

posed spatio-temporal flow can efficiently model complex

motions, such as stopping or accelerating of cars in traffic

videos.

The main contributions of this paper are: (1) A novel

method for modeling a trajectory as a 3D continuous dense

flow field from sparse set of vector sequences using Gaus-



Figure 2. Overview of our framework: From tracks to GPRF.

sian Process Regression; this enables modeling complex

patterns, especially as seen in videos of traffic. (2) A ran-

dom sampling strategy for learning stable multiple classes

of flow field; this generates a fair distribution of certain-

ties and alleviates unwanted variation. (3) A set of effective

metrics to compare an input trajectory (incomplete or com-

plete) to learned flow fields. And, (4) a locally dominant

ratio for effectively discriminating a correct pattern from in-

correct ones, and calculating ambiguities used for detecting

anomalous patterns.

1.1. Related Work

Analysis of motion trajectories has recently been applied to

video surveillance with variety of approaches [6, 8, 9, 23].

Effective methods for motion trajectory matching are neces-

sary for such analysis. Zhang [25] and Morris [11] compare

different distance metrics used for motion trajectory match-

ing and show that alignment based approaches such as Dy-

namic Time Warping (DTW) and Longest Common Subse-

quences (LCS) give the most stable results. However, these

approaches compare only the spatial proximity of tempo-

ral vector sequences, and do not model second order move-

ments (i.e., acceleration and deceleration). In other efforts,

Hu [6] successfully demonstrates a framework that clusters

traffic motions and detects anomalous trajectories using sta-

tistical analysis of tracks. While our work focuses on a sim-

ilar analysis of motions, their method does not support mod-

eling complex scenarios like stop-and-go.

Recently, Gaussian Process (GP) has been widely used in

the field of human motion analysis [21], tracking [18], sur-

face modeling/completion [17], and data classification [2]

for its compactness and powerful inference mechanism for

missing data. Ellis et al. [5] models 2D displacement vec-

tors with GPR, and the regressed vectors are used to update

state space equations in tracking algorithms. In our work,

we adopt the GP regression method to build a 3D spatio-

temporal flow field and use that to generate a representation

for matching.

Time series signal analysis of this form is also applica-

ble to event/action retrieval. Lin [10] introduced a pow-

erful framework measuring a distance between normalized

signals by adding normally distributed weights for output

values. This provides us with an important concept for nor-

malizing flow fields.

2. Gaussian Process Regression for Flow

To model time-varying motions, we first extend the mo-

tion trajectories extracted from video sequences into the

Figure 3. Example of GPRF, and mean flows: (Upper row) (a)

Sample trajectory having a duration of 16 frames: each arrow

starts from the location of x(u, v, t), and has the velocity values

(b) The trajectory in (u, v, t) space ∈ ℜ3 (c) GPRF generated

from the trajectory (Bottom row) The projected mean flows in

each of u− v slice at t = 0 (d), t = 8 (e), and t = 16 (f) respec-

tively. Mean flows with different levels of confidence exist in any

grid points in the space. In each image, only mean flows having

the variance of less than half the maximum variance among 95%
confidence are shown as color values. The colors vary from the

larger posterior variances (red) to smaller variances (blue).

spatio-temporal domain. We define a trajectory as a

discrete vector sequence in ℜ3. Let x ∈ ℜ3 be the

position (u, v, t), and the position sequence be x =
{x1, . . . , xn}. Moreover, let y ∈ ℜ3 be the veloc-

ity of each direction (yu, yv, yt)
1, and the velocity se-

quence be y = {(y1,u, y1,v, y1,t), . . . , (yn,u, yn,v, yn,t)}.

We also denote the sequence of each velocity component

as: yu = {y1,u, . . . , yn,u}, yv = {y1,v, . . . , yn,v}, yt =
{y1,t, . . . , yn,t}. The trajectory sequence of n vectors are

defined as Tn = {x,y}. We first briefly introduce Gaus-

sian Process Regression (GPR) and explain how we use it

for modeling the dense vector field from the set of sparse

vector sequences (Fig. 2).

2.1. Constructing Posterior Density

We consider the regression model y = f(x) + ε, where

ε ∼ N (0, σ2). We use a Gaussian process model on f with

a mean function m(x) = E[f(x)] = 0 and a covariance

function K(x, x′′) = E[(f(x)−m(x))(f(x′′)−m(x′′))] =
E[f(x)f(x′′)]. The observation vector y = {y1, · · · , yn}
then follows a zero-mean multivariate Gaussian with a co-

variance matrix, K∗ = K+σ2I, where [K]ij = K(xi, xj).
The posterior density for a test point x∗, p(y∗|x∗,x,y), is

a univariate normal distribution with the mean ȳ∗ and the

variance var(y∗):

ȳ∗ = k(x∗)T (K∗)−1y

var(y∗) = K(x∗, x∗)− k(x∗)T (K∗)−1k(x∗), (1)

1
yt is a frame difference, thus it is usually a constant. See Section 2.2



Figure 4. Normalizing frames: (a) Each red, blue, green and ma-

genta line indicates the trajectories from tracks started from a same

spatial position toward a same destination with different velocities,

and accelerations (or in different frame rates). The image in the

upper-right shows trajectories projected onto the spatial domain.

(b) All of the trajectories are normalized in time (t) axis as l. (c)

Another example showing that each colored line has the same tra-

jectory with the same velocity and acceleration but diverges later.

The dashed black line shows the normalized trajectory.

where k(x∗) = [K(x∗, x1), . . . ,K(x∗, xn)]
T

. In our case,

we train a separate GP regression for each of yu, yv , and yt

at a given point set x.

We chose Gaussian Automatic Relevance Determination

(ARD) kernel [4] as the covariance function. We select

its hyper-parameters using the limited memory Broyden-

Fletcher-Goldfarb-Shanno (BFGS) optimizer [12] by maxi-

mizing the marginal log-likelihood.

2.2. Mean Flow and Confidence Band

Since we want to model a continuous flow field where the

function represents velocities for each spatial direction and

the uniform temporal grid (frame difference) at any point

x = (u, v, t), we calculate a GP regression model for each

velocity component. Hence, each of the posterior densi-

ties p(y∗u|x
∗,Tn), p(y

∗

v |x
∗,Tn), and p(y∗t |x

∗,Tn) are com-

puted separately. We can then express the mean flow (see

Fig. 3) as a vector field:

Φ(x) = ȳ∗u(x)i+ ȳ∗v(x)j+ ȳ∗t (x)k ∈ ℜ3, (2)

with a variance for each velocity component

var(y∗u(x)), var(y∗v(x)), var(y∗t (x)) respectively. The

sequence of mean flow vectors with minimum vari-

ances over each time u–v slice (see Fig. 3) defines the

approximated version of input trajectories.

We denote the pair of the mean flow Φ and its variances

as Gaussian Process Regression Flow (GPRF), the size of

output variance in posterior density having 95% of certainty

(1.96σ2) as a confidence band (CB), and the sequence of

mean flow having a minimum variance over each time grid

as a Approximation of Learned Trajectory (ALT).

3. Learning Stable GPRFs

In learning GPRFs, there are two issues we need to address:

(1) How to model a GPRF from different trajectories, which

may have different lengths, and (2) How to handle multiple

GPRF models trained from different numbers of trajectories

Figure 5. Sampling points for training: Suppose we are training

a class using three trajectories. (a) All trajectories are normal-

ized in l evenly distributed grid in time axis. (b) Adding all the

samples per time grid for generating GPRF. In this case, training

the same number of trajectories have to be guaranteed for all the

other classes. (c) If we need only two samples per time grid, we

randomly sample without replacement two points from three tra-

jectories at each time slice.

with heterogeneous scales and frame rates. Before applying

the Gaussian process regression framework, we need to nor-

malize the length of the tracks used for constructing classes

(Section 3.1).

3.1. Normalization

Unlike alignment-based approaches (i.e. DTW and LCS)

[15, 20], our flow field uses a normalized frame, which is

similar to the method introduced in [10]. Therefore, the

time axis is discretized into l equal sized frames. In practice,

when we construct multiple GPRFs from different train-

ing sets, the positions of each sample along the t axis and

their velocity components of yt should be normalized by
l
ni

, where ni is the number of sample per trajectory.

Consequently, as shown in Fig. 4, all the GPRFs or tra-

jectories are distributed in the same scale, and we can com-

pare motion trajectories with same re-sampled scale regard-

less of their actual lengths and frame rates. We consider

two tracks with different starting positions to be in different

classes, even if they have the same set of velocities. How-

ever, one should choose an adequate number of samples

from each normalized trajectory for constructing a GPRF

for each class. In the next subsection, we describe some

essential steps for the selection.

3.2. Number of Samples and Variances

The computed variances for each velocity component in

Eq. 2 (i.e. var(y∗u(x)), var(y∗v(x)), var(y∗t (x))) depend

on (1) the number of nearby samples and (2) the hyper-

parameters for the selected covariance function used in each

GP model. Unfortunately, the marginal log-likelihood ob-

jective is non-concave [16] and we can hope to obtain

only locally optimal hyper-parameters unless good initial

starting sets of hyper-parameters are provided. Therefore,

balancing the adequate number of samples for each train-

ing set is a key element for stable GPRF learning. For

Gaussian process regression (and GPRF consequently), the

confidence band is narrower in regions with more sam-

ples. Therefore, comparing an input trajectory to each of



the learned GPRFs, without the consideration of balancing,

may be unfair, since it will favor the one with more samples.

In addition, redundant observations and noise may affect the

variances which would incorrectly quantify the level of cer-

tainty.

To tackle these problems, we first determine the num-

ber of samples per time step and allocate this same num-

ber of samples for each of the trained GPRFs. For each

time step, we sample among the entire set of trajectories,

which are chosen for a specific class, with random uniform

probability and allocate samples among them. The random

sampling method can alleviate both the unwanted reduction

of variance due to the noise and the uneven distribution of

variance levels in different classes. In our test, we use three

samples per time step, as it gives us maximum confidence

difference of 0.8 (worst case) in a resolution of our region

of interest (the size of u− v slice).

4. Similarity Measurement

We now have GPRFs computed for each class. Our next

task is to evaluate the posterior probability density of a

given online testing point xo and its velocity vector yo using

Eq. 1 and 2 to measure similarity as a form of likelihood in

the given training set (class). Let us first denote the online

trajectory Tn = {xo,yo} as a trajectory with n observa-

tions, and the N–learned classes represented by GPRFs as

Xk (k = 1 : N ). Assume that the time component of the

online point is already normalized in unit lengths of l.

4.1. Measuring the Local Likelihood of Testing Data

As discussed earlier, we can evaluate a GPRF on any

point regardless of the scale of the point. This evalua-

tion is analogous to a prediction using the learned GPRF.

In other words, given a GPRF class, the mean velocity

vector in the location of testing point xo is computed as:

ȳ∗u(x
o)i + ȳ∗v(x

o)j + ȳ∗t (x
o)k with the variances for each

direction.

If the velocity vector of xo becomes different, the pos-

terior probability density will decrease upon the variance

(confidence) of the point (See Fig. 6 (a), and (b)). If the po-

sition of xo is further away from ALT, the variances for the

velocity components become larger and result in a smaller

posterior probability density (Fig. 6 (c)).

Suppose that we evaluate our online test point using the

k–th GPRF, Xk. Given an independent GP prior on each

velocity component, we define the local likelihood of the

testing point, χ on the training set Xk, as:

χ(xo, yo)|
Xk

= p(you|x
o,Xk)p(y

o
v|x

o,Xk)p(y
o
t |x

o,Xk)
(3)

Note that the magnitude of yo is normalized, and set to

|ȳ∗(xo)| before the calculation. This likelihood is a main

local similarity measurement in our approach. The details

(a) (b) (c)
Figure 6. Measuring similarity with certainties: A red dashed

arrow indicates the approximation of learned trajectory. A blue

dotted arrow is a mean flow vector at each test point and a black

arrow indicates its velocity vector. In the right side of each image,

posterior densities for each u, v, t are shown. (a) The test point

xa is close to ALT, but the vectors are quite different. (b) Both

the location of the input point xb, and its velocity are close to

mean flow and ALT respectively. (c) The example of the worst

case: The test point xc is further away from ALT (large variances

of the posterior probability densities), and the velocity vectors are

different (away from mean).

of how we use this likelihood in multiple classes of GPRF

will be discussed in the following section.

5. Classification and Prediction of Trajectories

In this section, we first describe a method to compute the

global similarity between the trajectory and learned GPRFs.

Using the local likelihood criterion (Eq. 3), we then describe

methods for classifying patterns of trajectories, which can

be either complete or incomplete. A complete trajectory

consists of an entire set of segments collected from the mo-

ment a car enters to the moment it exits the observation re-

gion. Otherwise, a trajectory is incomplete. Incomplete tra-

jectories are hard to classify because we do not know (1)

when a trajectory ends (i.e. the car exits from the obser-

vation region) and (2) how the trajectory varies within the

observation region.

5.1. Similarity for Complete Trajectories

Suppose that we have N GPRFs constructed from train-

ing datasets Xk(k ∈ [1, N ]), and a complete test trajectory

Tn = {xi, yi}
n
i=1. We define the global likelihood of an

input trajectory to be the k-th GPRF:

Lk(Tn) =
1

n

n
∑

i=1

[

χ(xi, yi)|Xk

]

(4)

We also assign each part of the test trajectory i = 1 : n
to the class with the highest local likelihood:

l(i) = arg max
k∈[1,N ]

[

χ(xi, yi)|Xk

]

(5)

We define ck (k = 1 : N ) as the number of times l(i)
is equal to k for i = 1 : n. We can then compute the

proportion of the input trajectory to be the k-th GPRF as

ρk(Tn) =
ck
n

. The proportion is an effective parameter for

the trajectory matching since it reflects how dominant the



chosen class is. We refer to ρk(Tn) as a proportion of dom-

inance. The final global similarity of the input trajectory to

the specific GPRF k is then defined as:

Sk(Tn) = ρk(Tn)Lk(Tn). (6)

The index of the closest GPRF is argmaxk∈[1,N ] Sk(Tn).
While the classification procedure based on the propor-

tion of dominance is similar to the weighted nearest neigh-

bor approach, we demonstrate that knowing the distribution

of ρk over all the classes gives us the notion of ambiguity.

We will discuss this in Section 6. Fig. 10 shows a simple

validation test of the above procedure.

5.2. Prediction from Incomplete Trajectory

We now assume that we are given an online trajectory of

unknown length. Therefore, we have to predict the adequate

scale for the incomplete track at time τ .

Let us first denote the function φ(x, α) , which scales

only the third component (t axis) of the input point x by

scalar α. We then evaluate Eq. 4 as:

L∗

k(Tτ ) =
1

τ

τ
∑

i=1

[

χ(φ(xi,
l

τ+j
), φ(yi,

l
τ+j

))
∣

∣

∣

Xk

]

(7)

by varying k and j, where the l is a normalized length used

for constructing GPRFs. If we take the j∗ and k∗, which

maximize the L∗

k, the selected j∗ gives us the right scale

for the time axis, and k∗ is an index of the chosen GPRF.

Then, the percentage of local selection for i = 1 : τ can be

calculated by counting c∗k from the following function:

l∗(i) = arg max
k∈[1,N ]

[

χ(φ(xi,
l

τ+j∗
), φ(yi,

l
τ+j∗

))
∣

∣

∣

Xk

]

(8)

From Eq. 6, we can then measure the global similarity as:

S∗

k(Tτ ) = ρ∗k(Tτ )L
∗

k(Tτ ). An incomplete trajectory often

contains few vectors. Its similarity measure is thus incor-

rectly computed from a small number of earlier observa-

tions. To avoid this, we weight each term in L∗

k and each

l∗(i) in computing c∗k to give larger weights to the testing

vectors close to the current position at τ .

6. Anomaly Detection

Inspired by previous work on anomaly detection [3, 14, 6],

we first define the properties of anomalous events in traf-

fic motion trajectories and deal with the events from an

unsupervised perspective while the normal patterns are la-

beled [6]. The properties of anomalous events we assume

in this work (and our criteria to detect anomalies under the

constraints) are the following:

Unlikelihood against normal patterns : Obviously, an

anomalous trajectory is not likely to be learned from nor-

mal patterns (i.e. wrong direction, undefined pattern etc.).

Figure 7. Kurtosis and Normality examples: Graphs in the first

and third rows show the distribution of sorted ρk(Tn) of some

examples. Images in the second and the fourth row are the corre-

sponding trajectories. In each graph, y–axis denotes the proportion

of dominance (0.0 to 1.0), and x–axis shows grids of 17 different

classes (shown in Fig. 1). The leftmost bar in each graph shows a

dominance level of the chosen class. Listed with each graph are the

excess kurtosis κ, global similarity Sk(Tn), and normality value

Nk(Tn). Our method classified the examples in the upper row as

normal and lower ones as anomalous trajectories. Notice that the

third example in the upper row models a car which stopped for a

while at the red light.

Our solution is to measure the global similarity of tracks

to learned normal classes (Eq. 6), and see how much the

similarity of the chosen class is far from the similarity from

normal trajectories. Let us first denote the selected class as

k, and its maximum global similarity as Sk(Tn).
Ambiguity : Subsequences of a pattern sometimes fluctuate

between normal patterns (i.e. zigzag patterns) or change

from one class to another class. Even though we are not

certain whether the subsequence goes into the category of

anomaly or not (since it was not labeled), the fluctuation

and different selection of subsequences could increase the

ambiguity for decision.

As discussed in section. 5.1, the proportion of dominance

value ρk(Tn) effectively reflects this tendency. A distribu-

tion of ρk(Tn) with a broader spread represents a case of

ambiguity in which there is no one dominant class. We in-

terpret this as one of our criteria to detect anomalous events.

To verify this, we first sort the dominant proportion val-

ues ρk(Tn) (k = 1 : N ) in a non-increasing order. We

then measure the excess kurtosis of this distribution. The

excess kurtosis is calculated from κ = µ4

σ4 − 3, where µ4

is the fourth moment of the mean from sorted ρk, and σ

is the standard deviation. In any case, −2 < κ < ∞. If

κ < 0, the distribution of the sorted ρ becomes broader and

the peak (dominance) becomes smaller. If κ = 0, the distri-

bution is almost similar to normal distribution. We assume

a trajectory with κ ≥ 0 as more likely to be a normal.

Using the criteria above, we define the normality func-

tion N such that the online trajectory Tn to be a class k as:



Figure 8. Datasets and each of their GPRFs : Example images

from the videos used in this paper, and their learned GPRFs are

shown. For each row, first column shows a normalized mean flows

constructed from some of trajectories in each data set, and the sec-

ond column shows testing trajectories, and the last column shows

testing trajectories labeled in different colors for testing purpose.

Set Data type #GP frame rate ANO

Adam [22] Intersection 8 10–30 Y

Ocean [13] St.Road 11 5 Y

UCF [1] Intersection 6 30 N

CLIF [19] Intersection 17 varying Y

Table 1. Dataset description: #GP refers to the number of trained

classes (different types of straight, left-right turns, u-turns, stop-

and-go, and parking with many of 2nd order movements) and

ANO refers if there is anomalous sample exist in the data or not.

For non-anomaly data set, we only evaluate the similarity.

Nk(Tn) =
1
2 [(κ+ 2)Sk(Tn)] (9)

Using the normality function, we first define m–trajectories,

Ti
n(i) (i ∈ [1,m]), used for training the class k, and the γk

as the minimum normality value of evaluating all the m–

trajectories to the class k. The decision criterion for the

anomalous trajectory is then defined as Nk(Tn) < 0.5γk.

Fig. 7 shows examples of the normalcy test using some

of our trajectory data using learned GPRF classes shown

earlier in Fig. 1.

7. Results and Evaluation

We evaluate our method on four different video data sets

taken from different locations (Fig. 8, and Table. 1). Since

CLIF data does not have a sufficient number of trajectories,

we added simulated trajectories generated from our traffic

simulation software. Each data set has different frame rates

GPRF DDTW

Set Accuracy Precision Accuracy Precision

Adam 0.9955 0.9843 0.8928 0.7296

Ocean 0.966 0.8782 0.9488 0.7424

UCF 1.0000 1.0000 1.0000 1.0000

CLIF 0.9929 0.9488 0.9881 0.9274

Table 2. Trajectory recognition using complete trajectories :

Each value denotes the average of each class. Our proposed ap-

proach works better in most of datasets except UCF data, which

has small number of very distinctive motion patterns. See Fig. 8

and durations. Since our approach generating GPRF is not

affine invariant, we rectified all the video sequences and

used their trajectories in a canonical view (top-view). Each

data set has more than 100 trajectories, which are labeled for

testing purposes (Fig. 8, third column), and all have anoma-

lous trajectories, except the UCF data. The UCF data set

has a relatively shorter duration compared to the other data

sets, and does not contain anomalous events. Each data set

is divided into a training set, from which GPRFs are trained,

and a test set for evaluation.

Similarity measurement of complete trajectory: We

empirically evaluate the effectiveness of our method in tra-

jectory classification by comparing to a well-known trajec-

tory matching algorithm. We consider the Derivative Direct

Time Warping (DDTW) [7] method, because of its robust-

ness in higher dimensional signals. For a fair comparison,

we do not consider anomalous events. Table. 2 enumerates

the average accuracy and precision of all classes using com-

plete trajectories.

To evaluate the effectiveness in discriminating a specific

pattern of trajectory from different patterns, we measure

the global likelihood and the global similarity of randomly

chosen trajectories from each trained class. Fig. 10 shows

a comparison of the similarity measurements. Our global

similarity measurement dramatically discriminates the in-

put trajectories from ones belonging to incorrect classes and

even from anomalous tracks.

Similarity measurement of incomplete trajectory : We

evaluate our method on incomplete trajectories both quan-

titatively and qualitatively. The graph in Fig. 9 shows the

quantitative result. Our approach works better in most of

the data sets even with short duration of sequences from the

input trajectory. Fig. 12 demonstrates how our approach

works in incomplete trajectories from online video.

Notice that the examples in Fig. 12 A and B describe

how our approach can model and recognize complex mo-

tions such as deceleration and stopping situation, which is

not possible in spatial proximity based approaches.

Evaluation of anomaly detection Fig. 11 shows ROC

curves for each data set. Except the results from the Ocean

data, other results show that TPR is more than 90% with

less than 20% of FPR. As shown in Table 1, the Ocean data



Figure 9. Trajectory recognition using incomplete trajectories :

For each graph, x–axis indicates the percentage of sub-tracks used

for evaluation (i.e. 50% means by the first 50% of total length of

testing trajectory). (Upper row) Results from our approach, and

(Bottom row) Results from DDTW

Figure 10. Similarity validation test : In each image, the row

indicates learned 17 classes, and the first 17 columns are the tra-

jectories which are randomly chosen from each of labeled sets (for

the visualization purpose, we arranged each trajectory correspond-

ing to the order of classes). The last 6 columns consist of randomly

chosen anomalous trajectories from our anomalous sets. Note that

all values are normalized from 0 to 255 by the maximum similarity

of each classes. (Left) Using global likelihood (Eq. 4), (Middle)

Using Global Similarity (Eq. 6). (Right) Minimum distances from

DDTW : a darker color represents a better score.

Figure 11. ROC curves for anomaly detection : x axis refers to

False Positive Rate (FPR), and y axis for True Positive Rate (TPR),

we evaluate each curve by varying a threshold on each normality

function (Eq.9). (Left) : Adam, (Middle) : Ocean, (Right) : CLIF

has very low frame rate, thus, its actual online trajectory is

too sparse. Therefore, the kurtosis measurements were too

sensitive, since the distribution were constructed from too

few samples. However, it still gives us 80% of TPR with

30% FPR. Fig. 13 demonstrates that our method effectively

detects anomalous events in incomplete trajectories.

8. Conclusions, Limitations and Future work

In this paper, we introduce a new framework for model-

ing motion trajectories in the spatio-temporal domain us-

ing flow fields generated from a GPRF. Our experiments

demonstrate that our approach can recognize motion pat-

terns from both complete and incomplete tracks even with

GPRFs trained from a minimal number of labeled samples.

There are some limitations and avenues of improve-

ments. First, our approach assumes that the types of nor-

mal patterns are defined a priori. Secondly, if the trajectory

is too sparse, the kurtosis measurements in earlier stages of

the track can be unstable due to the sensitivity of kurtosis

in a sparse distribution. Finally, our approach does not rec-

ognize traffic jams and such patterns would be detected as

an anomaly. A traffic jam, however, can be represented as a

step shape function in the normalized (u, v, t) coordinates,

and we plan to use this method to model traffic jams.
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