
1

Gaussian Process Regression for Fingerprinting

based Localization
Sudhir Kumar, Rajesh M. Hegde, and ∗Niki Trigoni

Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
∗Department of Computer Science, University of Oxford, United Kingdom

Email: {sudhirkr@iitk.ac.in, rhegde@iitk.ac.in}, ∗niki.trigoni@cs.ox.ac.uk

Abstract—In this paper, Gaussian process regression (GPR)
for fingerprinting based localization is presented. In contrast
to general regression techniques, the GPR not only infers the
posterior received signal strength (RSS) mean but also the
variance at each fingerprint location. The GPR does take into
account the variance of input i.e., noisy RSS data. The hyper-
parameters of GPR are estimated using trust-region-reflective
algorithm. The Cramér-Rao bound is analysed to highlight the
performance of the parameter estimator. The posterior mean
and variance of RSS data is utilized in fingerprinting based
localization. The principal component analysis is employed to
choose the k strongest wi-fi access points (APs). The performance
of the proposed algorithm is validated using using real field
deployments. Accuracy improvements of 10% and 30% are
observed in two sites compared to the Horus fingerprinting
approach.

Keywords—Localization, Gaussian Process Regression, Cramér-
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I. INTRODUCTION

The received signal strength (RSS) based mobile user lo-
calization method has recently attracted significant attention.
Perhaps this happened because RSS measurements from the
wi-fi access points in indoor scenarios provide a cost-effective
positioning system. It does not require any additional hard-
ware unlike time of arrival (TOA), time-difference of arrival
(TDOA) and angle of arrival (AOA). The time based local-
ization techniques are also limited by the fact that it requires
highly precise synchronization. On the other hand, RSS based
localization techniques suffer from the harsh wireless channel
such as multipath fading, and non-homogeneous environment.
Hence, it is of sufficient interest to develop the robust finger-
print method which is relatively stable during different days
with high localization accuracy.

Several localization algorithms in literature are based on two
steps procedures. In the first step, inter-nodal range is estimated
with learning of radio propagation model. Subsequently, these
estimated ranges are further utilized in positioning the user.
In doing so, large range error propagates into positioning
phase. In contrast, fingerprinting based localization methods
provide higher accuracy at the expense of extensive training.
It may be noted that training is required even for learning radio
propagation model to some extent. In this paper, sparse RSS
data are collected from the given area of interest. Subsequently,
Gaussian process regression (GPR) is employed to build the

posterior mean and variance at each of the locations. These
predicted variances are further utilized for localization during
test phase. The motivation for using Gaussian process in this
work stems from the fact that it not only predicts the RSS
mean but also infers the variance at each location. The main
contributions of the paper are enumerated herein.

1) We present the textbook derivation of Cramér-Rao
Lower Bound (CRLB) on estimation error of ker-
nel function hyper-parameters in the context of GPR
framework using basic CRLB theory. This helps us
in obtaining the minimum variance of the unbiased
estimator for given hyper-parameter. We also obtain the
required number of snapshots for the good estimate of
hyper-parameters using CRLB expression.

2) We show that the localization accuracy with fingerprint
constructed using GPR is higher than the Horus fin-
gerprinting approach. Further, localization accuracy is
not significantly affected by the reduction in number
of samples at each fingerprint location. Accuracy im-
provements of 10% and 30% are observed in two sites
compared to the Horus fingerprinting approach.

3) We further illustrate that localization accuracy is rel-
atively insensitive to the choice of different kernel
functions such as Gaussian, Laplacian and Exponential.
The performance of Laplacian and Exponential kernel
functions is the same because the only difference lies
with the length scale parameter.

4) There are plenty of insignificant APs like commuter
phone wi-fi, vehicle wi-fi besides fixed APs, in crowded
wireless environment, e.g, supermarket. To find out
the set of strongest APs in the given area of interest,
a criterion based on dimensionality reduction using
principal component analysis is employed.

The remainder of the paper is organized as follows: Section
2 overviews existing techniques for localization. Section 3
describes the Gaussian process regression for fingerprinting
based localization. Performance evaluation is presented in Sec-
tion 4. A brief conclusion is presented in Section 5. Cramér-
Rao lower bound (CRLB) analysis for the kernel function
parameters is discussed in Appendix.

II. BACKGROUND

In this section, various kind of localization techniques are
reviewed: 1) indoor positioning based on propagation model;
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2) multi-sensor data fusion based method; 3) fingerprinting
based methods, and 4) regression based methods.

A. Indoor Positioning Based on Radio Propagation Model

The localization methods based on propagation model [1],
[2], [3], [4] are generally two step procedures. First the inter-
nodal range is estimated. Subsequently, these estimated ranges
are utilized for positioning with the set of APs coordinates.
The path-loss model [2] increases exponentially with range.
The break point path loss model (also called dual slope
model) [3] to account for different path loss in two breakpoint
regions. The wall and floor attenuation factors are consid-
ered in COST231-MWM model [4]. Estimated range using
these propagation models is highly erroneous. The error is
in the range of 7 m - 8 m for our considered experimental
scenario. This is because the propagation model assumes
wi-fi signal strength due to a particular AP decreases with
the distance isotropically. However, it is not true because of
non-homogeneous environment. Finally, these errors further
propagate into the positioning phase and make the indoor
positioning system highly inaccurate.

B. Multi-Sensor Data Fusion Based Localization

In order to enhance the accuracy of a localization system, we
may resort to fusion based approach. Wi-fi based SLAM [5],
[6], [7], [8] fuses RSS and motion sensor data for simultaneous
building a map and locating a user. The RAVEL, radio and
vision enhanced localization system, which fuses wi-fi with
visual data is explored in [9]. Further, the organic landmark
maps utilize the unique identifiable signatures within the
building [10], [11]. These signatures then correct the dead-
reckoning error for enhanced accuracy in this unsupervised
localization method.

C. Fingerprinting Based Localization

Standard fingerprinting based localization methods available
in the literature are RADAR [12], PlaceLab [13], and Horus
[14]. These methods comprise primarily two phase: training
and testing. During training phase, radio map is generated at
each of the fingerprint location. Subsequently, a location is
chosen corresponding to the minimum error between test RSS
data and fingerprint RSS. [15], [16] are presented to cope up
with heterogeneous devices during training and testing phase.
[15] utilizes ratio of RSS, whereas, [16] uses relative RSS data
and performance deteriorates [17].

The channel state information (CSI) utilizes physical layer
information to deal with the multipath fading effect and it
performs better than RSS based methods under certain condi-
tions [18]. Choosing the location dependent, temporally stable,
and noise resilient feature is a challenging task in both CSI
and RSS framework [18]. Fingerprinting database is built and
updated in both CSI and RSS framework which is labour-
intensive and time-consuming [19]. CSI based method is also
constrained by the underlying bandwidth. Additionally, CSI
based methods, in particular, require additional hardware to
estimate the angle of arrival of multipath components [20]

or time of flight information from physical layer [21] or
wifi network interface cards (NIC) or 802.11a/g/n wireless
connection [22], [23]. On the contrary, RSS measurements are
accessible on mobile phones in wireless techniques ranging
from ZigBee, UWB and WiFi to cellular networks [18]. It
can be easily measured using hand-held devices, e.g., mobile
phone, smart watch and tablet from fixed APs without any
modification in the existing hardware [22], [24].

Notably, fingerprinting based localization methods provide
good location accuracy at the expense of heavy training during
radio map construction. In order to reduce the calibration
efforts, crowdsourcing for localization is explored in [22],
[25], [26], [8], [27], [11], [28], [29]. However, these methods
provide coarse location resolution.

D. Regression Based Localization

General regression or interpolation based approaches such
as polynomial fitting [30], exponential fitting, and log model
are limited by the fact that it only predicts the RSS mean not
the variance of the estimate. However, for localization using
probabilistic based method, we are interested not only in the
posterior RSS mean but also how certain that mean is. The
polynomial models have poor interpolatory, and asymptotic
properties and it is also difficult to extrapolate outside the range
of observations. The exponential regression is suitable for line-
of-sight (LOS) scenario. It may be noted that variants of the
log based regression are explained above in Section 2.1.

The Gaussian process regression for sensor networks under
localization uncertainty is proposed in [31]. The Monte Carlo
sampling and Laplace approximation are used to compute
analytically intractable posterior distribution. Notably, this
method does not consider the location estimation problem
using Gaussian process. The Gaussian process inference ap-
proximation using multi-sensor data such as inertial, magnetic,
signal strength and time-of-flight measurements for indoor
pedestrian localization is discussed in [32]. [33] considers
the near-optimal sensors placement problem using mutual
information in this context. The wi-fi SLAM using Gaussian
process latent variable models is presented in [5]. Gaussian
process assisted fingerprinting localization is discussed in [34].
In this work, user’s location is obtained through exhaustive
search of likelihood function. Moreover, this is a discrete
location estimator. Learning-based indoor localization using
Gaussian processes is described in [35]. The method used to
train hyper-parameters is not clearly mentioned [35], [34].

In summary, all the localization algorithms either use radio
propagation model, multi-sensor data fusion, training based
fingerprinting or regression based localization. The multi-
sensor data fusion based localization utilizes rich sensors
for good accuracy. It may lead to high cost at implemen-
tation stage. Localization based on radio propagation model
is inaccurate, whereas, fingerprinting localization yields good
accuracy at the expense of extensive training. In this paper, the
proposed method is semi-supervised due to the fact that RSS
measurements are collected sparsely across the indoor area
and subsequently entire fingerprinting database is constructed
for localization. This extends the applicability of the proposed
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method for practical situations. It may be noted that indoor
multipath reflections and shadowing problem can be mitigated
upto a large extent by employing a large number of existing
APs. Although, Gaussian process has been widely used in the
sensor networks. However, none of the methods consider the
problem to obtain the CRLB of the kernel function hyper-
parameters and this was an open problem, to the author’s best
knowledge. This is especially relevant to know the sensitivity
of the hyper-parameters estimation on the localization error.

III. GPR FOR FINGERPRINTING BASED LOCALIZATION

In this section, first the introduction to Gaussian process
regression is presented, as in [36], [37]. Kernel parameters
estimation using gradient based method is then detailed. Sub-
sequently, Cramér-Rao lower bound analysis and fingerprinting
based localization are followed.

A. Gaussian Process Regression

A Gaussian process is a stochastic process, and any finite
number of collections follow a joint Gaussian distribution [36].
Consider the following observation model.

y = f(x) + η (1)

where η represents the i.i.d. (independent, identically dis-
tributed) Gaussian noise with zero mean and variance, σ2

n, i.e.,
η ∼ N (0, σ2

n). In this work, letters in bold (upper or lower)
denote matrix. It may be noted that y denotes the observations
which is wi-fi signal strength at particular location. x is the
input features, i.e., location coordinates.

The mean function, m(x), and covariance function,
k(xi,xj), for latent function, f , can be stated as

m(x) = E[f(x)] (2)

k(xi,xj) = E[(f(xi)−m(xi))(f(xj)−m(xj))] (3)

where E(.) denotes the expectation operator. Without loss of
generality, mean can be considered as zero. The kernel function
considered in this work is expressed as

k(xi,xj) = σ2
f exp

(

−
||xi − xj ||

2l2

)

(4)

where σ2
f and l are called the hyper-parameters. σ2

f denotes
the signal variance, while l the length scale parameter, which
characterizes the smoothness of a function. L2 norm is repre-
sented by ||.||, which denotes the Euclidean distance between

two vectors. The Gramian matrix, K̃, is defined using Equation
4 as

K̃ =







k(x1,x1) k(x1,x2) . . . k(x1,xN )
k(x2,x1) k(x2,x2) . . . k(x2,xN )

...
...

. . .
...

k(xN ,x1) k(xN ,x2) . . . k(xN ,xN )







(5)

where the total number of fingerprint locations is denoted by
N . Thus, f(x) can be stated as Gaussian process.

f(x) ∼ GP(m(x), k(xi,xj)) (6)

where latent function, f is characterized using Gaussian
process with mean function, m(x), and covariance function,
k(xi,xj).

The training y and test y∗ wi-fi data can follow multivariate
Gaussian distribution jointly as

[
y
y∗

]

∼ N

(

0,

[
K̃(X,X)N×N K̃(X,X∗)N×N∗

K̃(X∗,X)N∗×N K̃(X∗,X∗)N∗×N∗

])

(7)
where suffix of the block covariance matrix denotes the size
of that particular matrix, for N training wi-fi data and N∗ test
data. The posterior distribution, p(y∗|y), which signifies how
likely is a prediction y∗, given the data y is

y∗|y ∼ N
(
K̃(X∗,X)K̃(X,X)−1y,

K̃(X∗,X∗)− K̃(X∗,X)K̃(X,X)−1K̃(X,X∗)
) (8)

Thus, posterior RSS mean and variance at each fingerprint lo-
cation can be computed. In order to estimate these, we require
the kernel function hyper-parameters which is described in the
ensuing subsection.

B. GPR Parameters Estimation

Generally, we have noisy wi-fi signal observations at each
of the fingerprint locations. The Gaussian process allow us
to include variance of the noise, σ2

n, present in the wi-fi
data. First, Gaussian process learns the hyper-parameters using
optimization technique from noisy wi-fi data. The optimiza-
tion technique utilized in this work is subspace trust-region
method which is based on interior-reflective Newton method
[38], [39], [37]. It minimizes a non linear function subject
to simple bounds. Since the hyper-parameters need to be
positive, we set a large positive number as an upper bound,
whereas zero as a lower bound. Ten initial guess of hyper-
parameters are chosen uniformly within this lower and upper
bound, and then optimization is carried out. The parameters
which maximize the marginal log-likelihood function is finally
opted as a solution of this problem. Additionally, gradient of
the optimization problem is easy to compute because of the
continuity and differentiability properties. It may be noted that
we have also increased the number of initial guess, typically
10 to 1000 and upper bound, typically 1 to 1000, and found
that parameters which maximize the marginal log-likelihood
function is insensitive to it.

Subsequently, we compute posterior RSS mean and vari-
ance at each locations in the building using these estimated
hyper-parameters. We have explained herein an optimization
approach to estimate the hyper-parameters. In order to know
that how well the estimated parameters is, we need minimum
variance of the estimated parameters. For this, Cramér-Rao
bound analysis is presented in ensuing subsection and ap-
pendix.

C. Cramér-Rao Lower Bound Analysis

Cramér-Rao bound [40], [41] provides the lower bound
on the variance of any unbiased estimator. It is the standard
benchmark with respect to which, variance of any estimator
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is compared. Hence, it is of sufficient interest to develop
an expression for Cramér-Rao bound for the kernel function
parameters.

The variance of any unbiased estimator θ̂ of θ is lower
bounded by the inverse-fisher information, I−1(θ). The FIM is
the amount of information that an wi-fi observation y contains

about unknown parameters, θ = [l σf ]
T
, where (.)T represents

the transpose of a matrix. It measures on an average how
peaked the likelihood function will be for an observation y,
given parameter θ. It can be also interpreted as how much
curvature the likelihood function will have at maximum. If it
is peaked around maximum, it will have lower variance and
consequently more information.

In order to develop the CRLB for unknown parameter θ,
we first need to derive log-likelihood function of a θ, given an
wi-fi observation y. Subsequently, FIM is computed, having
verified the regularity condition. Finally, the square root of
trace of a inverse-FIM is evaluated for CRLB. For the sake
of simplicity and shortness, the Cramér-Rao bound analysis is
presented in Appendix.

D. Fingerprinting based Localization

Each of the fingerprint location in the given area of interest
is assigned a probability. This is computed as probability of a
fingerprint location, zn, given the wi-fi signal observation vec-
tor, S. According to Bayes theorem, p(zn|S) can be expressed
in terms of p(S|zn). The unknown location estimate can be
expressed as the weighted sum of probabilities.

ẑ =

N∑

i=n

znp(S|zn)

N∑

n=1
p(S|zn)

(9)

where zn = [xn yn]
T represents the nth fingerprinting loca-

tion, n ∈ {1, 2, . . . , N}. S denotes the wi-fi signal observation
vector at each of the fingerprinting location. The total number
of APs is represented by A and A << N . The p(S|zn) can
be computed, assuming the independence between all APs as

p(S|zn) =
A∏

a=1

1
√

2πΣn(a, a)
exp

(

−
(sa − µa)

2

2Σn(a, a)

)

(10)

It may be noted that localization is carried out in two-
dimensional coordinate system herein, however, extension to
three dimensions is straightforward.

IV. PERFORMANCE EVALUATION

In this section, first the experimental conditions for local-
ization in two different scenarios are presented. Subsequently,
experimental results for fingerprinting based localization are
detailed.

A. Experimental Conditions

The extensive experiments are conducted in two different
environmental conditions such as academic area of a university
and supermarket.

1) Academic Area: Figure 7(a) shows the floor plan of third
floor of Wolfson building, University of Oxford. The four APs
(TP-Link, TL-WA901ND) are manually deployed as shown in
figure. The wi-fi data are collected for five different days at
each of the fingerprint locations using Moto-E android mobile
phone. The wi-fi signal for fifth day is chosen to build the
fingerprint database, whereas wi-fi data of other days are for
online test data. Measurements are recorded at total twenty
eight locations on a closed path for duration of approximately
ten seconds at each. Approximately ten wi-fi samples are
captured in this given durations at each location, however,
sampling rate depends upon the hardware of mobile phone
being used. We present the localization results for two days
only. Notably, similar results are obtained for other days in
this scenario. The similar results are seen for fourth floor of
this building too.

2) Supermarket: The experiments are conducted in another
environmental conditions like supermarket as shown in Figure
7(b). The slab between fingerprint locations is basically the
shelf for grocery items. People movements in supermarket are
far more than the academic area which impact the localization
performance. Similar to our academic area experimental set-
up, wi-fi data are collected at 56 locations using android mobile
phone for duration of 10 seconds at each location. The total
23 APs are noticed in the basement of this market. There are
numerous insignificant APs such as commuter phone wi-fi,
and vehicle wi-fi. Some of the wi-fis are static and many of
them are mobile. There is not any reasonable improvement in
localization accuracy with utilization of the weakest APs. This
also makes sense because we need same set of static APs over
training and testing phase for different days. To find out the
set of strongest APs in the given area of interest, a criterion
based on dimensionality reduction using principal component
analysis is employed as following.

Let S be the signal observation matrix of dimension N ×
A. The eigen values of the signal covariance matrix [STS]
is denoted by λa, ∀ a = {1, 2, . . . , A}. The objective is find
minimum Ā such that following criteria is met.

T =

Ā∑

a=1
λa

A∑

a=1
λa

≥ 99.9 (11)

In this work, 99.9% variance criterion is retained to choose
the 9 strongest APs out of total 23 APs. Note that, different
variance threshold may be opted depending upon the applica-
tions specific requirements. It may be noted here that we were
not intended to know the APs location, neither we had any
privilege to the placement of these APs.

B. Experimental Results

In this Section, first impact of hyper-parameters and insen-
sitivity to different closely related kernels on the localization
error performance are followed next. Subsequently, average
localization error and trajectory analysis in two different sce-
narios are presented.
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(a) (l, σf ) = (1, 16.08), LE = 3.04 m
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(b) (l, σf ) = (21.18, 16.08), LE =
2.41 m
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(c) (l, σf ) = (40, 16.08), LE = 2.77
m
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(d) (l, σf ) = (21.18, 1), LE = 8.60
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(e) (l, σf ) = (21.18, 16.08), LE =
2.41 m
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(f) (l, σf ) = (21.18, 30), LE = 2.46
m

Fig. 1: Figure illustrating the posterior RSS mean (in black curve) and confidence interval (in shaded green). Real wi-fi data are
shown in Blue.

1) Cramér-Rao Lower Bound Analysis: In order to assess
minimum variance of the parameter estimate, CRLB analysis
is described in Figure 3. It can be seen that the RMSE of
the hyper-parameters attains the derived CRLB and achieves
an asymptotically efficient performance. Forty snap-shots are
sufficient for good estimate of hyper-parameters as in Figure
3.

2) Significance of Hyper-parameters Estimation: Figure 1
depicts the impact of hyper-parameter estimation on the pos-
terior RSS mean and variance. It eventually impacts the
localization performance. Posterior RSS mean and variance
using optimal hyper-parameters is shown in Figure 1(b) and
1(e). Note that Figure 1(b) and Figure 1(e) are same and it is
just for the symmetric placement of figures. Figure 1(a) and
Figure 1(c) denote the localization performance using lower
(l = 1) and larger (l = 40) length scale values respectively,
keeping σf fixed. In fact, length scale characterizes how
smooth our predicted mean is. If l is lower, we can distinguish
neighbouring location i.e., high resolution. On the other hand,
larger l signifies slower variation in predicted RSS mean at
neighbouring locations and hence lower resolution. Although,
lower l has higher resolution, but it can have poor interpolatory
and extrapolatory capability. It may provide low RSS training
error but may have significant test error.

Additionally, σ2
f denotes the wi-fi signal variance. This

measures the variation of RSS prediction from the mean.
Smaller the σ2

f , slower the variation of the function, and high
similarity at neighbouring location and vice-versa. Therefore,
optimal hyper-parameters are required for the given scenario.

3) Illustration of Insensitivity of Different Kernels: Figure 2
depicts the impact of different closely related kernels on the
performance of average localization error deviation. Gaussian,
Exponential and Laplacian kernels are utilized for the same
and compared it with standard fingerprinting based Horus
localization method. The localization error with the use of
Exponential and Laplacian kernels are same because the only
difference lies with the length scale parameter. Localization
performance using Exponential kernel performs slightly better
than Gaussian kernel. Notably, our proposed fingerprinting
based GPR with these kernels performs better than Horus
method.

4) Impact of Number of APs on Localization Error: The
localization error with confidence intervals is shown in Figure
4 for two scenarios. The fifth day is chosen for training the
GPR, while day 1 and day 2 are utilized for test sites. The
localization performance in academic area is better than su-
permarket as expected and reason mentioned above. The result
using GPR is relatively better in supermarket than academic
area. Since, Horus uses time averaged RSS for training and
test database. Therefore, time average RSS tends to deteriorate
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Fig. 2: Figure illustrating the insensitivity of kernels over localization accuracy
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Fig. 3: Variation of CRLB and RMSE with number of wi-fi
signal snap-shots

relatively higher than predicted (or smoothed) RSS, in crowded
place. It may be noted that similar localization results are found
if we change the order of training and test days.

5) Impact of Fingerprint Locations on Localization Error:
Figure 5 depicts the impact of varying fraction of total fin-
gerprinting location on the average localization error. This
much fraction of fingerprint locations are utilized in weighted
sum of probabilities for location estimation. As the fraction
of fingerprinting locations increases, average localization error
goes down. Considering a large number of fingerprinting
locations improves the localization accuracy on an average
sense. Average localization error reduces approximately from
5 m and 12 m to 3 m in academic area and supermarket
respectively.

6) Comparison of Average Localization Errors: We have
illustrated the effectiveness of the proposed GPR method in
comparison with RADAR [12], HORUS [14], EZ [42], and
UIL [43] in Figure 6. The average localization errors in site
1 for HORUS, RADAR, EZ, UIL and GPR methods are 2.8

m, 4.81 m, 3.78 m, 3.6 m, 2.3 m respectively. Similarly, the
average localization errors in site 2 for those methods are
4.41 m, 6.81 m, 5.32 m, 4.54 m, 2.41 m respectively. The
proposed method outperforms the existing methods in terms
of localization error and its standard deviation for both sites.

7) Trajectory Analysis: In order to know the individual
estimated location accuracy, trajectory analysis is shown in
Figure 7 for two scenarios. Blue color represents the ground
truth, while red and green the estimated location with Horus
and GPR method respectively. In Figure 7(a), GPR performs
marginally better than Horus because of less people move-
ments. The localization error for GPR is 2.3 m, whereas 2.8
m for Horus. Horus tends to deteriorates in supermarket as
shown in Figure 7(b), as expected. The average localization
for all locations is 4.03 m and 2.41 m for Horus and GPR
method respectively is supermarket. Thus, it can be concluded
that GPR based localization method is more effective in harsh
environment.

V. CONCLUSION AND FUTURE WORK

In this paper, localization accuracy with respect to the
standard Horus technique is achieved at the expense of O(N3)
computational complexity. This complexity arises from wi-
fi signal prediction at each location using Gaussian process
regression (GPR). To further reduce it, network segmentation
having complexity O(N ′3), N ′ ≤ N , can be employed. Future
work includes developing a real-time positioning system that
localize as we go, i.e, calibration-free localization.

We collect approximately ten wi-fi signal snap-shots at each
location to minimize the effect of small-scale fading. The
performance of this localization system will be affected if we
collect a very few number of snap-shots. This is because wi-
fi signal is not very reliable. In this case, at some locations,
corresponding wi-fi signal may be treated as outliers. If the
number of such outliers is less than the 50% of the total
wi-fi observations at all locations, Gaussian process with
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Fig. 4: Figure illustrating the average localization error (m) and confidence interval for two sites

Student-t likelihood can be utilized, in this context to deal
with outliers. Although, conditional posterior is intractable for
this non-Gaussian likelihood, and approximation is required
with Markov chain Monte Carlo, Laplace approximation, or
expectation propagation algorithm.

The fingerprint location can slightly differ with untrained
labours, and it of course affects the localization performance.
Therefore, we need to take fingerprint location uncertainty into
account. It can be scattered inside a circle with certain radii,
and follow Gaussian or uniform distribution.
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VII. APPENDIX

A. Cramér-Rao Lower Bound (CRLB) Analysis for the Kernel
Function Parameters

Let unknown hyper-parameters, θ = [l σf ]
T
, where (.)T

represents the transpose of a matrix. The variance of any

unbiased estimator θ̂ of θ is lower bounded by the inverse-
fisher information, I(θ).

vr(θ̂j) ≥ [I−1(θ)]jj (12)

where vr(.) denotes the variance operator. The Fisher Infor-
mation Matrix (FIM) is expressed as

I(θ) = −




E[∂

2lnp(.)
∂l2

] E[∂
2lnp(.)
∂l∂σf

]

E[∂
2lnp(.)
∂l∂σf

] E[∂
2lnp(.)
∂σ2

f

]



 (13)

The marginal likelihood in terms of latent function, f , can
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Fig. 5: Figure illustrating the average localization error (m) and confidence interval with varying fraction of total fingerprint
locations in weighted average

be written as

p(y|X) =

∫

p(y|f ,X)
︸ ︷︷ ︸

likelihood

p(f |X)
︸ ︷︷ ︸

prior

df (14)

The prior is generally assumed to be Gaussian in Gaussian
process i.e.,

f |X ∼ N (0, K̃) (15)

Therefore,

log p(f |X) = −
1

2
fT K̃−1f −

1

2
log |K̃| −

N

2
log 2π (16)

where N is the size of a observation vector. The likelihood

can be thought as a Gaussian, i.e.,

y|f ∼ N (f , σ2
nI) (17)

where I denotes the identity matrix of appropriate dimensions.
Thus, log marginal likelihood in Equation 14 can be recast as

log p(y|X) = −
1

2
yT (K̃+σ2

nI)
−1y−

1

2
log |K̃+σ2

nI|−
N

2
log 2π

(18)
In order to compute the FIM, we require double derivative
of the log likelihood function with respect to each unknown
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Fig. 6: Figure illustrating the comparison of localization error for different methods in two sites

(a) Academic area, LE: (Horus, GPR) = (2.8 m,
2.3 m)

 

 

Horus
GPR

Ground truth

(b) Supermarket, LE: (Horus, GPR) = (4.03 m, 2.41 m)

Fig. 7: Illustrative examples showing the effectiveness of the proposed algorithm with respect to Horus in two sites

parameter.

∂ log p(y|X)

∂θj
=

1

2
yTK−1 ∂K

∂θj
K−1y −

1

2
tr

(

K−1 ∂K

∂θj

)

,

∀j = 1, 2
(19)

where tr(.) represents the trace of a matrix, which is the sum

of diagonal elements. For notational brevity, [K̃ + σ2
nI] is

represented by K. Notably, likelihood function does satisfy
the regularity condition, which is desirable according to CRLB
theorem.

Ey

[
∂ log p(y|X)

∂θj

]

= 0 (20)

The following identities may be noted which will be used in
this work.

• Derivative of a matrix inverse:

∂K−1

∂θ
= −K−1 ∂K

∂θ
K−1 (21)

where ∂K
∂θ

is matrix of element wise derivative.

• Derivative of log determinant of a positive definite
symmetric matrix:

∂ log |K|

∂θ
= tr

(

K−1 ∂K

∂θ

)

(22)

The double derivative of log likelihood function in Equation
19 with respect to parameter, θj , can be succinctly written as

∂2 log p(y|X)

∂θ2j
= −yT

(

K−1 ∂K

∂θj

)2

K−1y +
1

2
yTK−1 ∂

2K

∂θ2j

K−1y +
1

2
tr

[(

K−1 ∂K

∂θj

)2

−K−1 ∂
2K

∂θ2j

]

(23)
Assuming the statistics of y and then taking the expectation
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with respect to y both sides, we get

=⇒ Ey

[
∂2 log p(y|X)

∂θ2j

]

= −
1

2
tr

[(

K−1 ∂K

∂θj

)2]

(24)

On the similar lines, the cross diagonal element of FIM using
Equation 19 can be given as

∂2 log p(y|X)

∂θj∂θk
= −

1

2

[

yTK−1

(
∂K

∂θk
K−1 ∂K

∂θj
+

∂K

∂θj
K−1 ∂K

∂θk

)

K−1y − yTK−1 ∂2K

∂θj∂θk
K−1y

−tr

(

K−1 ∂K

∂θk
K−1 ∂K

∂θj
−K−1 ∂2K

∂θj∂θk

)]

(25)

=⇒ Ey

[
∂2 log p(y|X)

∂θj∂θk

]

= −
1

2
tr

[

K−1 ∂K

∂θj
K−1 ∂K

∂θk

]

(26)
In computation of Equation 24 and Equation 26, we require the
following derivatives of k with respect to each hyper-parameter
using Equation 4.

∂k

∂σf

= 2σf exp

(

−
||xi − xj ||

2l2

)

(27)

∂k

∂l
=

σ2
f ||xi − xj ||

l3
exp

(

−
||xi − xj ||

2l2

)

(28)

Now, substitute Equation 24 and Equation 26 into Equation 13
to get the FIM. To recapitulate, CRLB can be finally given as

CRLB(θ) ,
√

[I−1(θ)]1,1 + [I−1(θ)]2,2 =
√

tr(I−1(θ))

(29)
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