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Abstract

In a variety of disciplines such as social sci-

ences, psychology, medicine and economics, the

recorded data are considered to be noisy mea-

surements of latent variables connected by some

causal structure. This corresponds to a fam-

ily of graphical models known as the structural

equation model with latent variables. While

linear non-Gaussian variants have been well-

studied, inference in nonparametric structural

equation models is still underdeveloped. We in-

troduce a sparse Gaussian process parameteriza-

tion that defines a non-linear structure connect-

ing latent variables, unlike common formulations

of Gaussian process latent variable models. The

sparse parameterization is given a full Bayesian

treatment without compromising Markov chain

Monte Carlo efficiency. We compare the stabil-

ity of the sampling procedure and the predictive

ability of the model against the current practice.

1 CONTRIBUTION

A cornerstone principle of many disciplines is that obser-

vations are noisy measurements of hidden variables of in-

terest. This is particularly prominent in fields such as so-

cial sciences, psychology, marketing and medicine. For

instance, data can come in the form of social and eco-

nomical indicators, answers to questionnaires in a medical

exam or marketing survey, and instrument readings such as

fMRI scans. Such indicators are treated as measures of la-

tent factors such as the latent ability levels of a subject in

a psychological study, or the abstract level of democrati-

zation of a country. The literature on structural equation

models (SEMs) (Bartholomew et al., 2008; Bollen, 1989)

approaches such problems with directed graphical models,

where each node in the graph is a noisy function of its par-

ents. The goals of the analysis include typical applications

of latent variable models, such as projecting points in a la-

tent space (with confidence regions) for ranking, clustering

and visualization; density estimation; missing data imputa-

tion; and causal inference (Pearl, 2000; Spirtes et al., 2000).

This paper introduces a nonparametric formulation of

SEMs with hidden nodes, where functions connecting la-

tent variables are given a Gaussian process prior. An effi-

cient but flexible sparse formulation is adopted. To the best

of our knowledge, our contribution is the first full Gaussian

process treatment of SEMs with latent variables.

We assume that the model graphical structure is given.

Structural model selection with latent variables is a com-

plex topic which we will not pursue here: a detailed dis-

cussion of model selection is left as future work. As-

parouhov and Muthén (2009) and Silva et al. (2006) discuss

relevant issues. Our goal is to be able to generate poste-

rior distributions over parameters and latent variables with

scalable sampling procedures with good mixing properties,

while being competitive against non-sparse Gaussian pro-

cess models.

In Section 2, we specify the likelihood function for our

structural equation models and its implications. In Sec-

tion 3, we elaborate on priors, Bayesian learning, and a

sparse variation of the basic model which is able to handle

larger datasets. Section 4 describes a Markov chain Monte

Carlo (MCMC) procedure. Section 5 evaluates the useful-

ness of the model and the stability of the sampler in a set of

real-world SEM applications with comparisons to modern

alternatives. Finally, in Section 6 we discuss related work.

2 THE MODEL: LIKELIHOOD

Let G be a given directed acyclic graph (DAG). For sim-

plicity, in this paper we assume that no observed variable

is a parent in G of any latent variable. Many SEM appli-

cations are of this type (Bollen, 1989; Silva et al., 2006),

and this will simplify our presentation. Likewise, we will

treat models for continuous variables only. Although cyclic

SEMs are also well-defined for the linear case (Bollen,

1989), non-linear cyclic models are not trivial to define and
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Figure 1: (a) An example adapted from Palomo et al. (2007): latent variable IL corresponds to a scalar labeled as the

industrialization level of a country. PDL is the corresponding political democratization level. Variables Y1, Y2, Y3 are

indicators of industrialization (e.g., gross national product) while Y4, . . . , Y7 are indicators of democratization (e.g., expert

assessements of freedom of press). Each variable is a function of its parents with a corresponding additive error term: ǫi for

each Yi, and ζ for democratization levels. For instance, PDL = f(IL)+ζ for some function f(·). (b) Dependence among

latent variables is essential to obtain sparsity in the measurement structure. Here we depict how the graphical dependence

structure would look like if we regressed the observed variables on the independent latent variables of (a).

as such we will exclude them from this paper.

Let X be our set of latent variables and Xi ∈ X be a partic-

ular latent variable. Let XPi
be the set of parents of Xi in

G. The latent structure in our SEM is given by the follow-

ing generative model: if the parent set of Xi is not empty,

Xi = fi(XPi
) + ζi, where ζi ∼ N (0, vζi

) (1)

N (m, v) is the Gaussian distribution with mean m and

variance v. If Xi has no parents (i.e., it is an exogenous

latent variable, in SEM terminology), it is given a mixture

of Gaussians marginal1.

The measurement model, i.e., the model that describes the

distribution of observations Y given latent variables X , is

as follows. For each Yj ∈ Y with parent set XPj
, we have

Yj = λj0 + X
T

Pj
Λj + ǫj , where ǫj ∼ N (0, vǫj

) (2)

Error terms {ǫj} are assumed to be mutually independent

and independent of all latent variables in X . Moreover, Λj

is a vector of linear coefficients Λj = [λj1 . . . λj|XPj
|]

T.

Following SEM terminology, we say that Yj is an indicator

of the latent variables in XPj
.

An example is shown in Figure 1(a). Following the nota-

tion of Bollen (1989), squares represent observed variables

and circles, latent variables. SEMs are graphical models

with an emphasis on sparse models where: 1. latent vari-

ables are dependent according to a directed graph model;

2. observed variables measure (i.e., are children of) very

few latent variables. Although sparse latent variable mod-

els have been the object of study in machine learning and

statistics (e.g., Wood et al. (2006); Zou et al. (2006)), not

1For simplicity of presentation, in this paper we adopt a fi-
nite mixture of Gaussians marginal for the exogenous variables.
However, introducing a Dirichlet process mixture of Gaussians
marginal is conceptually straightforward.

much has been done on exploring nonparametric models

with dependent latent structure (a loosely related excep-

tion being dynamic systems, where filtering is the typical

application). Figure 1(b) illustrates how modeling can be

affected by discarding the structure among latents2.

2.1 Identifiability Conditions

Latent variable models might be unidentifiable. In the con-

text of Bayesian inference, this is less of a theoretical issue

than a computational one: unidentifiable models might lead

to poor mixing in MCMC, as discussed in Section 5. More-

over, in many applications, the latent embedding of the data

points is of interest itself, or the latent regression functions

are relevant for causal inference purposes. In such appli-

cations, an unidentifiable model is of limited interest. In

this Section, we show how to derive sufficient conditions

for identifiability.

Consider the case where a latent variable Xi has at least

three unique indicators Yi ≡ {Yiα, Yiβ , Yiγ}, in the sense

that no element in Yi has any other parent in G but Xi. It is

known that in this case (Bollen, 1989) the parameters of the

structural equations for each element of Yi are identifiable

(i.e., the linear coefficients and the error term variance) up

to a scale and sign of the latent variable. This can be re-

solved by setting the linear structural equation of (say) Yiα

to Yiα = Xi + ǫiα. The distribution of the error terms

is then identifiable. The distribution of Xi follows from a

deconvolution between the observed distribution of an ele-

ment of Yi and the identified distribution of the error term.

2Another consequence of modeling latent dependencies is re-
ducing the number of parameters of the model: a SEM with a lin-
ear measurement model can be seen as a type of module network
(Segal et al., 2005) where the observed children of a particular
latent Xi share the same nonlinearities propagated from XPi

: in
the context of Figure 1, each indicator Yi ∈ {Y4, . . . , Y7} has a
conditional expected value of λi0 + λi1f2(X1) for a given X1:
function f2(·) is shared among the indicators of X2.



Identifiability of the joint of X can be resolved by mul-

tivariate deconvolution under extra assumptions. For in-

stance, Masry (2003) describes one setup for the problem in

the context of kernel density estimation (with known joint

distribution of error terms, but unknown joint of Y).

Assumptions for the identifiability of functions fi(·), given

the identifiability of the joint of X , have been discussed

in the literature of error-in-variables regression (Fan and

Truong, 1993; Carroll et al., 2004). Error-in-variables re-

gression is a special case of our problem, where Xi is ob-

served but XPi
is not. However, since we have Yiα =

Xi + ǫi, this is equivalent to a error-in-variables regres-

sion Yiα = fi(XPi
) + ǫiα + ζi, where the compound error

term ǫiα + ζi is still independent of XPi
.

It can be shown that such identifiability conditions can be

exploited in order to identify causal directionality among

latent variables under additional assumptions, as discussed

by Hoyer et al. (2008a) for the fully observed case3. In our

context, we focus on the implications of identifiabilty on

MCMC (Section 5).

3 THE MODEL: PRIORS

Each fi(·) can be given a Gaussian process prior (Ras-

mussen and Williams, 2006). In this case, we call this class

of models the GPSEM-LV family, standing for Gaussian

Process Structural Equation Model with Latent Variables.

Models without latent variables and measurement models

have been discussed by Friedman and Nachman (2000)4.

3.1 Gaussian Process Prior and Notation

Let Xi be an arbitrary latent variable in the graph, with

latent parents XPi
. We will use X

(d) to represent the

dth
X sampled from the distribution of random vector X,

and X
(d)
i indexes its ith component. For instance, X

(d)
Pi

is the dth sample of the parents of Xi. A training set of

size N is represented as {Z(1), . . . ,Z(N)}, where Z is the

set of all variables. Lower case x represents fixed val-

ues of latent variables, and x
1:N represents a whole set

{x(1), . . . ,x(N)}.

3Notice that if the distribution of the error terms is non-
Gaussian, identification is easier: we only need two unique indi-
cators Yiα and Yiβ : since ǫiα, ǫiβ and Xi are mutually indepen-
dent, identification follows from known results derived in the lit-
erature of overcomplete independent component analysis (Hoyer
et al., 2008b).

4To see how the Gaussian process networks of Friedman and
Nachman (2000) are a special case of GPSEM-LV, imagine a
model where each latent variable is measured without error. That
is, each Xi has at least one observed child Yi such that Yi = Xi.
The measurement model is still linear, but each structural equa-
tion among latent variables can be equivalently written in terms
of the observed variables: i.e., Xi = fi(XPi

) + ζi is equivalent
to Yi = fi(YPi

) + ζi, as in Friedman and Nachman.

For each xPi
, the corresponding Gaussian process prior for

function values f
1:N
i ≡ {f

(1)
i , . . . , f

(N)
i } is

f
1:N
i | x1:N

Pi
∼ N (0,Ki)

where Ki is a N × N kernel matrix (Rasmussen and

Williams, 2006), as determined by x
1:N
Pi

. Each correspond-

ing x
(d)
i is given by f

(d)
i + ζ

(d)
i , as in Equation (1).

MCMC can be used to sample from the posterior distri-

bution over latent variables and functions. However, each

sampling step in this model costs O(N3), making sampling

very slow when N is at the order of hundreds, and essen-

tially undoable when N is in the thousands. As an alter-

native, we introduce a multilayered representation adapted

from the pseudo-inputs model of Snelson and Ghahramani

(2006). The goal is to reduce the sampling cost down to

O(M2N), M < N . M can be chosen according to the

available computational resources.

3.2 Pseudo-inputs Review

We briefly review the pseudo-inputs model (Snelson and

Ghahramani, 2006) in our notation. As before, let X
(d)

represent the dth data point for some X. For a set

X
1:N
i ≡ {X

(1)
i , . . . , X

(N)
i } with corresponding parent set

X
1:N
Pi

≡ {X
(1)
Pi

, . . . ,X
(N)
Pi

} and corresponding latent func-

tion values f
1:N
i , we define a pseudo-input set X̄

1:M
i ≡

{X̄
(1)
i , . . . , X̄

(M)
i } such that

f
1:N
i | x1:N

Pi
, f̄i, x̄

1:M
i ∼ N (Ki;NMK

−1
i;M f̄i, Vi)

f̄i | x̄
1:M
i ∼ N (0,Ki;M ) (3)

where Ki;NM is a N × M matrix with each (j, k) ele-

ment given by the kernel function ki(x
(j)
Pi

, x̄
(k)
i ). Simi-

larly, Ki;M is a M × M matrix where element (j, k) is

ki(x̄
(j)
i , x̄

(k)
i ). It is important to notice that each pseudo-

input X̄
(d)
i , d = 1, . . . , M , has the same dimensionality as

XPi
. The motivation for this is that X̄i works as an alter-

native training set, with the original prior predictive means

and variances being recovered if M = N and X̄i = XPi
.

Let ki;dM be the dth row of Ki;NM . Matrix Vi is

a diagonal matrix with entry vi;dd given by vi;dd =

ki(x
(d)
Pi

,x
(d)
Pi

)−k
T

i;dMK
−1
i;Mki;dM . This implies that all la-

tent function values {f
(1)
i , . . . , f

(N)
i } are conditionally in-

dependent.

3.3 Pseudo-inputs: A Fully Bayesian Formulation

The density function implied by (3) replaces the stan-

dard Gaussian process prior. In the context of Snelson

and Ghahramani (2006), input and output variables are

observed, and as such Snelson and Ghahramani optimize

x̄
1:M
i by maximizing the marginal likelihood of the model.



This is practical but sometimes prone to overfitting, since

pseudo-inputs are in fact free parameters, and the pseudo-

inputs model is best seen as a variation of the Gaussian pro-

cess prior rather than an approximation to it (Titsias, 2009).

In our setup, there is limited motivation to optimize the

pseudo-inputs since the inputs themselves are random vari-

ables. For instance, we show in the next section that the

cost of sampling pseudo-inputs is no greater than the cost

of sampling latent variables, while avoiding cumbersome

optimization techniques to choose pseudo-input values. In-

stead we put a prior on the pseudo-inputs and extend the

sampling procedure. By conditioning on the data, a good

placement for the pseudo-inputs can be learned, since XPi

and X̄
(d)
i are dependent in the posterior. Moreover, it natu-

rally provides a protection against overfitting.

A simple choice of priors for pseudo-inputs is as fol-

lows: each pseudo-input X̄
(d)
i , d = 1, . . . , M , is given

a N (µd
i , Σd

i ) prior, independent of all other random vari-

ables. A partially informative (empirical) prior can be eas-

ily defined in the case where, for each Xk, we have the

freedom of choosing a particular indicator Yq with fixed

structural equation Yq = Xk + ǫq (see Section 2.1), imply-

ing E[Xk] = E[Yq]. This means if Xk is a parent Xi, we

set the respective entry in µd
i (recall µd

i is a vector with an

entry for every parent of Xi) to the empirical mean of Yq .

Each prior covariance matrix Σd
i is set to be diagonal with

a common variance.

Alternatively, we would like to spread the pseudo-inputs a

priori: other things being equal, pseudo-inputs that are too

close to each can be wasteful given their limited number.

One prior, inspired by space-filling designs from the exper-

imental design literature (Santner et al., 2003), is

p(x̄1:M
i ) ∝ det(Di)

the determinant of a kernel matrix Di. We use a squared

exponential covariance function with characteristic length

scale of 0.1 (Rasmussen and Williams, 2006), and a

“nugget” constant that adds 10−4 to each diagonal term.

This prior has support over a [−L, L]|XPi
| hypercube. We

set L to be three times the largest standard deviation of ob-

served variables in the training data. This is the pseudo-

input prior we adopt in our experiments, where we center

all observed variables at their empirical means.

3.4 Other Priors

We adopt standard priors for the parametric components of

this model: independent Gaussians for each coefficient λij ,

inverse gamma priors for the variances of the error terms

and a Dirichlet prior for the distribution of the mixture in-

dicators of the exogenous variables.

4 INFERENCE

We use a Metropolis-Hastings scheme to sample from our

space of latent variables and parameters. Similarly to Gibbs

sampling, we sample blocks of random variables while

conditioning on the remaining variables. When the corre-

sponding conditional distributions are canonical, we sam-

ple directly from them. Otherwise, we use mostly standard

random walk proposals.

Conditioned on the latent variables, sampling the parame-

ters of the measurement model is identical to the case of

classical Bayesian linear regression. We omit the expres-

sions for simplicity. The same can be said of the sampling

scheme for the posterior variances of each ζi. Sampling the

mixture distribution parameters for the exogenous variables

is also identical to the standard Bayesian case of Gaussian

mixture models, and also omitted.

We describe the remaining stages of the sampler for the

sparse model. The sampler for the model with full Gaus-

sian process priors is simpler and analogous.

4.1 Sampling Latent Functions

In principle, one can analytically marginalize the pseudo-

functions f̄
1:M
i . However, keeping an explicit sample of

the pseudo-functions is advantageous when sampling la-

tent variables X
(d)
i , d = 1, . . . , N : for each child Xc of

Xi, only the corresponding factor for the conditional den-

sity of f
(d)
c needs to be computed (at a O(M) cost), since

function values are independent given latent parents and

pseudo-functions. This issue does not arise in the fully-

observed case of Snelson and Ghahramani (2006), who do

marginalize the pseudo-functions.

Pseudo-functions and functions {f̄1:M
i , f1:N

i } are jointly

Gaussian given all other random variables and data. The

conditional distribution of f̄
1:M
i given everything, except

itself and {f
(1)
i , . . . , f

(N)
i }, is Gaussian with covariance

matrix

S̄i ≡ (K−1
i;M+K

−1
i;MK

T

i;NM (V−1
i +I/υζi

)Ki;NMK
−1
i;M )−1

where Vi is defined in Section 3.2 and I is a M × M
identity matrix. The total cost of computing this matrix

is O(NM2 + M3) = O(NM2). The corresponding mean

is

S̄i × K
−1
i;MK

T

i;NM (V−1
i + I/υζi

)x1:N
i

where x
1:N
i is a column vector of length N .

Given that f̄
1:M
i is sampled according to this multivariate

Gaussian, we can now sample {f
(1)
i , . . . , f

(N)
i } in parallel,

since this becomes a mutually independent set with univari-

ate Gaussian marginals. The conditional variance of f
(d)
i is

v′i ≡ 1/(1/vi;dd +1/υζi
), where vi;dd is defined in Section



3.2. The corresponding mean is v′i(f
(d)
µ /vi;dd + x

(d)
i /υζi

),

where f
(d)
µ = ki;dMK

−1
i;M f̄i.

In Section 5, we also sample from the posterior distribution

of the hyperparameters Θi of the kernel function used by

Ki;M and Ki;NM . Plain Metropolis-Hastings is used to

sample these hyperparameters, using an uniform proposal

in [αΘi, (1/α)Θi] for 0 < α < 1.

4.2 Sampling Pseudo-inputs and Latent Variables

We sample each pseudo-input x̄
(d)
i one at a time, d =

1, 2, . . . , M . Recall that x̄
(d)
i is a vector, with as many

entries as the number of parents of Xi. In our implementa-

tion, we propose all entries of the new x̄
(d)′

i simultaneously

using a Gaussian random walk proposal centered at x̄
(d)′

i

with the same variance in each dimension and no correla-

tion structure. For problems where the number of parents

of Xi is larger than in our examples (i.e., four or more par-

ents), other proposals might be justified.

Let π̄
(\d)
i (x̄

(d)
i ) be the conditional prior for x̄

(d)
i given

x̄
(\d)
i , where (\d) ≡ {1, 2, . . . , d−1, d+1, . . . , M}. Given

a proposed x̄
(d)′

i , we accept the new value with probability

min
{

1, li(x̄
(d)′

i )/li(x̄
(d)
i )

}

where

li(x̄
(d)
i ) = π̄

(\d)
i (x̄

(d)′

i ) × p(f̄
(d)
i | f̄

(\d)
i , x̄i)

×
∏N

d=1 v
−1/2
i;dd e−(f

(d)
i

−ki;dMK
−1
i;M f̄i)

2/(2vi;dd)

and p(f̄
(d)
i | f̄

(\d)
i , x̄i) is the conditional density that fol-

lows from Equation (3). Row vector ki;dM is the dth row

of matrix Ki;NM . Fast submatrix updates of K
−1
i;M and

Ki;NMK
−1
i;M are required in order to calculate li(·) at a

O(NM) cost, which can be done by standard Cholesky up-

dates (Seeger, 2004). The total cost is therefore O(NM2)
for a full sweep over all pseudo-inputs.

The conditional density p(f̄
(d)
i | f̄

(\d)
i , x̄i) is known to be

sharply peaked for moderate sizes of M (at the order of

hundreds) (Titsias et al., 2009), which may cause mixing

problems for the Markov chain. One way to mitigate this

effect is to also propose a value f̄
(d)′

i jointly with x̄
(d)′

i ,

which is possible at no additional cost. We propose the

pseudo-function using the conditional p(f̄
(d)
i | f̄

(\d)
i , x̄i).

The Metropolis-Hastings acceptance probability for this

variation is then simplified to min
{

1, l0i (x̄
(d)′

i )/li(x̄
(d)
i )

}

,

where

l0i (x̄
(d)
i ) = π̄

(\d)
i (x̄

(d)′

i )

×
∏N

d=1 v
−1/2
i;dd e−(f

(d)
i

−ki;dMK
−1
i;M f̄i)

2/(2vi;dd)

Finally, consider the proposal for latent variables X
(d)
i . For

each latent variable Xi, the set of latent variable instan-

tiations {X
(1)
i , X

(2)
i , . . . , X

(N)
i } is mutually independent

given the remaining variables. We propose each new la-

tent variable value x
(d)′

i in parallel, and accept or reject it

based on a Gaussian random walk proposal centered at the

current value x
(d)
i . We accept the move with probability

min
{

1, hXi
(x

(d)′

i )/hXi
(x

(d)
i )

}

where, if Xi is not an ex-

ogenous variable in the graph,

hXi
(x

(d)
i ) = e−(x

(d)
i −f

(d)
i )2/(2υζi

)

×
∏

Xc∈XCi
p(f

(d)
c | f̄c, x̄c, x

(d)
i )

×
∏

Yc∈YCi
p(y

(d)
c | x

(d)
Pc

)

where XCi
is the set of latent children of Xi in the graph,

and YCi
is the corresponding set of observed children.

The conditional p(f
(d)
c | f̄c, x̄c, x

(d)
i ), which follows from

(3), is a non-linear function of x
(d)
i , but crucially does not

depend on any x
(·)
i variable except point d. The evaluation

of this factor costs O(M2). As such, sampling all latent

values for Xi takes O(NM2).

The case where Xi is an exogenous variable is analogous,

given that we also sample the mixture component indica-

tors of such variables.

5 EXPERIMENTS

In this evaluation Section5, we briefly illustrate the algo-

rithm in a synthetic study, followed by an empirical eval-

uation on how identifiability matters in order to obtain an

interpretable distribution of latent variables. We end this

section with a study comparing the performance our model

in predictive tasks against common alternatives6.

5.1 An Illustrative Synthetic Study

We generated data from a model of two latent variables

(X1, X2) where X2 = 4X2
1 + ζ2, Yi = X1 + ǫi for

5MATLAB code to run all of our experiments is available at
http://www.homepages.ucl.ac.uk/∼ucgtrbd/.

6Some implementation details: we used the squared expo-
nential kernel function k(xp,xq) = a exp(− 1

2b
|xp − xq|

2) +

10−4δpq , where δpq = 1 is p = q and 0 otherwise. The hyper-
prior for a is a mixture of a gamma (1, 20) and a gamma (10, 10)
with equal probability each. The same (independent) prior is
given to b. Variance parameters were given inverse gamma (2,
1) priors, and the linear coefficients were given Gaussian priors
with a common large variance of 5. Exogenous latent variables
were modeled as a mixture of five Gaussians where the mixture
distribution is given a Dirichlet prior with parameter 10. Finally,
for each latent Xi variable we choose one of its indicators Yj and
fix the corresponding edge coefficient to 1 and intercept to 0 to
make the model identifiable. We perform 20, 000 MCMC iter-
ations with a burn-in period of 2000 (only 6000 iterations with
1000 of burn-in for the non-sparse GPSEM-LV due to its high
computational cost). Small variations in the priors for coefficients
(using a variance of 10) and variance parameters (using an inverse
gamma (2, 2)), and a mixture of 3 Gaussians instead of 5, were
attempted with no significant differences between models.



i = 1, 2, 3 and Yi = X2 + ǫi, for i = 4, 5, 6. X1 and all

error terms follow standard Gaussians. Given a sample of

150 points from this model, we set the structural equations

for Y1 and Y4 to have a zero intercept and unit slope for

identifiability purposes. Observed data for Y1 against Y4 is

shown in Figure 2(a), which suggests a noisy quadratic re-

lationship (plotted in 2(b), but unknown to the model). We

run a GPSEM-LV model with 50 pseudo-inputs. The ex-

pected posterior value of each latent pair {X
(d)
1 , X

(d)
2 } for

d = 1, . . . , 150 is plotted in Figure 2(c). It is clear that we

were able to reproduce the original non-linear functional

relationship given noisy data using a pseudo-inputs model.

For comparison, the output of the Gaussian process latent

variable model (GPLVM, Lawrence, 2005) with two hid-

den variables is shown in Figure 2(d). GPLVM here as-

sumes that the marginal distribution of each latent variable

is a standard Gaussian, but the measurement model is non-

parametric. In theory, GPLVM is as flexible as GPSEM-

LV in terms of representing observed joints. However, it

does not learn functional relationships among latent vari-

ables, which is often of central interest in SEM applications

(Bollen, 1989). Moreover, since no marginal dependence

among latent variables is allowed, the model adapts itself

to find (unidentifiable) functional relationships between the

exogenous latent variables of the true model and the ob-

servables, analogous to the case illustrated by Figure 1(b).

As a result, despite GPLVM being able to depict, as ex-

pected, some quadratic relationship (up to a rotation), it is

noisier than the one given by GPSEM-LV.

5.2 MCMC and Identifiability

We now explore the effect of enforcing identifiability con-

straints on the MCMC procedure. We consider the dataset

Consumer, a study7 with 333 university students in Greece

(Bartholomew et al., 2008). The aim of the study was to

identify the factors that affect willingness to pay more to

consume environmentally friendly products. We selected

16 indicators of environmental beliefs and attitudes, mea-

suring a total of 4 hidden variables. For simplicity, we will

call these variables X1, . . . , X4. The structure among la-

tents is X1 → X2, X1 → X3, X2 → X3, X2 → X4. Full

details are given by Bartholomew et al. (2008).

All observed variables have a single latent parent in the cor-

responding DAG. As discussed in Section 2.1, the corre-

sponding measurement model is identifiable by fixing the

structural equation for one indicator of each variable to

have a zero intercept and unit slope (Bartholomew et al.,

2008). If the assumptions described in the references of

Section 2.1 hold, then the latent functions are also identifi-

able. We normalized the dataset before running the MCMC

7There was one latent variable marginally independent of ev-
erything else. We eliminated it and its two indicators, as well as
the REC latent variable that had only 1 indicator.

inference algorithm.

An evaluation of the MCMC procedure is done by running

and comparing 5 independent chains, each starting from a

different point. Following Lee (2007), we evaluate conver-

gence using the EPSR statistic (Gelman and Rubin, 1992),

which compares the variability of a given marginal pos-

terior within each chain and between chains. We calcu-

late this statistic for all latent variables {X1, X2, X3, X4}
across all 333 data points.

A comparison is done against a variant of the model where

the measurement model is not sparse: instead, each ob-

served variable has all latent variables as parents, and no

coefficients are fixed. The differences are noticeable and

illustrated in Figure 3. Box-plots of EPSR for the 4 latent

variables are shown in Figure 4. It is difficult to interpret

or trust an embedding that is strongly dependent on the ini-

tialization procedure, as it is the case for the unidentifiable

model. As discussed by Palomo et al. (2007), identifiability

might not be a fundamental issue for Bayesian inference,

but it is an important practical issue in SEMs.
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Figure 4: Boxplots for the EPSR distribution across each of

the 333 datapoints of each latent variable. Boxes represent

the distribution for the non-sparse model. A value less than

1.1 is considered acceptable evidence of convergence (Lee,

2007), but this essentially never happens. For the sparse

model, all EPSR statistics were under 1.03.

5.3 Predictive Verification of the Sparse Model

We evaluate how well the sparse GPSEM-LV model

performs compared against two parametric SEMs and

GPLVM. The linear structural equation model is the SEM,

where each latent variable is given by a linear combination

of its parents with additive Gaussian noise. Latent variables

without parents are given the same mixture of Gaussians

model as our GPSEM-LV implementation. The quadratic

model includes all quadratic and linear terms, plus first-

order interactions, among the parents of any given latent

variable. This is perhaps the most common non-linear SEM

used in practice (Bollen and Paxton, 1998; Lee, 2007).

GPLVM is fit with 50 active points and the rbf kernel with
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Figure 2: (a) Plot of observed variables Y1 and Y4 generated by adding standard Gaussian noise to two latent variables X1

and X2, where X2 = 4X2
1 + ζ2, ζ2 also a standard Gaussian. 150 data points were generated. (b) Plot of the corresponding

latent variables, which are not recorded in the data. (c) The posterior expected values of the 150 latent variable pairs

according to GPSEM-LV. (d) The posterior modes of the 150 pairs according to GPLVM.
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Figure 3: An illustration of the behavior of independent chains for X
(10)
2 and X

(200)
4 using two models for the Consumer

data: the original (sparse) model (Bartholomew et al., 2008); an (unidentifiable) alternative where the each observed

variable is an indicator of all latent variables. In the unidentifiable model, there is no clear pattern across the independent

chains. Our model is robust to initialization, while the alternative unidentifiable approach cannot be easily interpreted.

automatic relevance determination (Lawrence, 2005). Each

sparse GPSEM model uses 50 pseudo-points.

We performed a 5-fold cross-validation study where the av-

erage predictive log-likelihood on the respective test sets is

reported. Three datasets are used. The first is the Con-

sumer dataset, described in the previous section.

The second is the Abalone data (Asuncion and Newman,

2007), where we postulate two latent variables, “Size” and

“Weight.” Size has as indicators the length, diameter and

height of each abalone specimen, while Weight has as indi-

cators the four weight variables. We direct the relationship

among latent variables as Size → Weight.

The third is the Housing dataset (Asuncion and Newman,

2007; Harrison and Rubinfeld, 1978), which includes in-

dicators about features of suburbs in Boston that are rele-

vant for the housing market. Following the original study

(Harrison and Rubinfeld, 1978, Table IV), we postulate

three latent variables: “Structural,” corresponding to the

structure of each residence; “Neighborhood,” correspond-

ing to an index of neighborhood attractiveness; and “Acces-

sibility,” corresponding to an index of accessibility within

Boston8. The corresponding 11 non-binary observed vari-

ables that are associated with the given latent concepts are

used as indicators. The “Neighborhood” concept was re-

fined into two, “Neighborhood I” and “Neighborhood II”

due to the fact that three of its original indicators have

very similar (and highly skewed) marginal distributions,

which were very dissimilar from the others9. The structure

among latent variables is given by a fully connected net-

work directed according to the order {Accessibility, Struc-

tural, Neighborhood II, Neighborhood I}. Harrison and

Rubinfeld (1978) provide full details on the meaning of the

indicators. We note that it is well known that the Hous-

8The analysis by (Harrison and Rubinfeld, 1978, Table IV)
also included a fourth latent concept of “Air pollution,” which we
removed due to the absence of one of its indicators in the elec-
tronic data file that is available.

9The final set of indicators, using the nomenclature of the
UCI repository documentation file, is as follows: “Structural” has
as indicators RM and AGE; “Neighborhood I” has as indica-
tors CRIM , ZN and B; “Neighborhood II” has as indicators
INDUS, TAX, PTRATIO and LSTAT ; “Accessibility” has
as indicators DIS and RAD. See (Asuncion and Newman, 2007)
for detailed information about these indicators. Following Harri-
son and Rubinfield, we log-transformed some of the variables:
INDUS, DIS, RAD and TAX.



ing dataset poses stability problems to density estimation

due to discontinuities in the variable RAD, one of the indi-

cators of accessibility (Friedman and Nachman, 2000). In

order to get more stable results, we use a subset of the data

(374 points) where RAD < 24.

The need for non-linear SEMs is well-illustrated by Figure

5, where fantasy samples of latent variables are generated

from the predictive distributions of two models.
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Figure 5: Scatterplots of 2000 fantasy samples taken from

the predictive distributions of sparse GPSEM-LV models.

In contrast, GPLVM would generate spherical Gaussians.

We also evaluate how the non-sparse GPSEM-LV behaves

compared to the sparse alternative. Notice that while Con-

sumer and Housing have each approximately 300 training

points in each cross-validation fold, Abalone has over 3000

points. For the non-sparse GPSEM, we subsampled all of

Abalone training folds down to 300 samples.

Results are presented in Table 1. Each dataset was cho-

sen to represent a particular type of problem. The data in

Consumer is highly linear. In particular, it is important to

point out that the GPSEM-LV model is able to behave as a

standard structural equation model if necessary, while the

quadratic polynomial model shows some overfitting. The

Abalone study is known for having clear functional rela-

tionships among variables, as also discussed by Friedman

and Nachman (2000). In this case, there is a substantial dif-

ference between the non-linear models and the linear one,

although GPLVM seems suboptimal in this scenario where

observed variables can be easily clustered into groups. Fi-

nally, functional relationships among variables in Housing

are not as clear (Friedman and Nachman, 2000), with mul-

timodal residuals. GPSEM still shows an advantage, but

all SEMs are suboptimal compared to GPLVM. One ex-

planation is that the DAG on which the models rely is not

adequate. Structure learning might be necessary to make

the most out of nonparametric SEMs.

Although results suggest that the sparse model behaved

better that the non-sparse one (which was true of some

cases found by Snelson and Ghahramani, 2006, due to het-

eroscedasticity effects), such results should be interpreted

with care. Abalone had to be subsampled in the non-sparse

case. Mixing is harder in the non-sparse model since all

datapoints {X
(1)
i , . . . , X

(N)
i } are dependent. While we be-

lieve that with larger sample sizes and denser latent struc-

tures the non-sparse model should be the best, large sample

sizes are too expensive to process and, in many SEM appli-

cations, latent variables have very few parents.

It is also important to emphasize that the wallclock sam-

pling time for the non-sparse model was an order of mag-

nitude larger than the sparse case with M = 50. The

sparse pseudo-inputs model was faster even considering

that 3000 training points were used by the sparse model

in the Abalone experiment, against 300 points by the non-

sparse alternative.

6 RELATED WORK

Non-linear factor analysis has been studied for decades in

the psychometrics literature10. A review is provided by

Yalcin and Amemiya (2001). However, most of the clas-

sic work is based on simple parametric models. A modern

approach based on Gaussian processes is the Gaussian pro-

cess latent variable model of Lawrence (2005). By con-

struction, factor analysis cannot be used in applications

where one is interested in learning functions relating latent

variables, such as in causal inference. For embedding, fac-

tor analysis is easier to use and more robust to model mis-

specification than SEM analysis. Conversely, it does not

benefit from well-specified structures and might be harder

to interpret. Bollen (1989) discusses the interplay between

factor analysis and SEM. Practical non-linear structural

equation models are discussed by Lee (2007), but none of

such approaches rely on nonparametric methods. Gaussian

processes latent structures appear mostly in the context of

dynamical systems (e.g., Ko and Fox (2009)). However, the

connection is typically among data points only, not among

variables within a data point, where on-line filtering is the

target application.

7 CONCLUSION

The goal of graphical modeling is to exploit the structure

of real-world problems, but the latent structure is often ig-

nored. We introduced a new nonparametric approach for

SEMs by extending a sparse Gaussian process prior as a

fully Bayesian procedure. Although a standard MCMC

algorithm worked reasonably well, it is possible as future

work to study ways of improving mixing times. This can

be particularly relevant in extensions to ordinal variables,

where the sampling of thresholds will likely make mixing

more difficult. Since the bottleneck of the procedure is the

sampling of the pseudo-inputs, one might consider a hy-

brid approach where a subset of the pseudo-inputs is fixed

10Another instance of the “whatever you do, some-
body in psychometrics already did it long before” law:
http://www.stat.columbia.edu/∼cook/movabletype/archives/
2009/01/a longstanding.html



Table 1: Average predictive log-likelihood in a 5-fold cross-validation setup. The five methods are the GPSEM-LV model

with 50 pseudo-inputs (GPS), GPSEM-LV with standard Gaussian process priors (GP), the linear and quadratic structural

equation models (LIN and QDR) and the Gaussian process latent variable model (GPL) of Lawrence (2005), a nonparamet-

ric factor analysis model. For Abalone, GP uses a subsample of the training data. The p-values given by a paired Wilcoxon

signed-rank test, measuring the significance of positive differences between sparse GPSEM-LV and the quadratic model,

are 0.03 (for Consumer), 0.34 (Abalone) and 0.09 (Housing).

Consumer Abalone Housing

GPS GP LIN QDR GPL GPS GP LIN QDR GPL GPS GP LIN QDR GPL

Fold 1 -20.66 -21.17 -20.67 -21.20 -22.11 -1.96 -2.08 -2.75 -2.00 -3.04 -13.92 -14.10 -14.46 -14.11 -11.94
Fold 2 -21.03 -21.15 -21.06 -21.08 -22.22 -1.90 -2.97 -2.52 -1.92 -3.41 -15.07 -17.70 -16.20 -15.12 -12.98
Fold 3 -20.86 -20.88 -20.84 -20.90 -22.33 -1.91 -5.50 -2.54 -1.93 -3.65 -13.66 -15.75 -14.86 -14.69 -12.58
Fold 4 -20.79 -21.09 -20.78 -20.93 -22.03 -1.77 -2.96 -2.30 -1.80 -3.40 -13.30 -15.98 -14.05 -13.90 -12.84
Fold 5 -21.26 -21.76 -21.27 -21.75 -22.72 -3.85 -4.56 -4.67 -3.84 -4.80 -13.80 -14.46 -14.67 -13.71 -11.87

and determined prior to sampling using a cheap heuris-

tic. New ways of deciding pseudo-input locations based

on a given measurement model will be required. Evalua-

tion with larger datasets (at least a few hundred variables)

remains an open problem. Finally, finding ways of deter-

mining the graphical structure is also a promising area of

research.
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