
 Open access Journal Article DOI:10.1109/TASL.2013.2282190

Gaussian Processes for POMDP-Based Dialogue Manager Optimization
— Source link

Milica Gasic, Steve Young

Institutions: University of Cambridge

Published on: 01 Jan 2014 - IEEE Transactions on Audio, Speech, and Language Processing (IEEE)

Topics: Partially observable Markov decision process and Dialog box

Related papers:

 POMDP-Based Statistical Spoken Dialog Systems: A Review

 Partially observable Markov decision processes for spoken dialog systems

 Hybrid Code Networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning

 Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems

 The Second Dialog State Tracking Challenge

Share this paper:

View more about this paper here: https://typeset.io/papers/gaussian-processes-for-pomdp-based-dialogue-manager-
3kfc9y0fzh

https://typeset.io/
https://www.doi.org/10.1109/TASL.2013.2282190
https://typeset.io/papers/gaussian-processes-for-pomdp-based-dialogue-manager-3kfc9y0fzh
https://typeset.io/authors/milica-gasic-24mr5atj7t
https://typeset.io/authors/steve-young-oob05uy00c
https://typeset.io/institutions/university-of-cambridge-2qc4lk4s
https://typeset.io/journals/ieee-transactions-on-audio-speech-and-language-processing-69yosvt5
https://typeset.io/topics/partially-observable-markov-decision-process-1mdtwr7t
https://typeset.io/topics/dialog-box-18v8497h
https://typeset.io/papers/pomdp-based-statistical-spoken-dialog-systems-a-review-52td9wfczr
https://typeset.io/papers/partially-observable-markov-decision-processes-for-spoken-h4afigl34o
https://typeset.io/papers/hybrid-code-networks-practical-and-efficient-end-to-end-33ti2je43n
https://typeset.io/papers/bayesian-update-of-dialogue-state-a-pomdp-framework-for-44rsx6gu7p
https://typeset.io/papers/the-second-dialog-state-tracking-challenge-39leu8jw9r
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/gaussian-processes-for-pomdp-based-dialogue-manager-3kfc9y0fzh
https://twitter.com/intent/tweet?text=Gaussian%20Processes%20for%20POMDP-Based%20Dialogue%20Manager%20Optimization&url=https://typeset.io/papers/gaussian-processes-for-pomdp-based-dialogue-manager-3kfc9y0fzh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/gaussian-processes-for-pomdp-based-dialogue-manager-3kfc9y0fzh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/gaussian-processes-for-pomdp-based-dialogue-manager-3kfc9y0fzh
https://typeset.io/papers/gaussian-processes-for-pomdp-based-dialogue-manager-3kfc9y0fzh

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 1

Gaussian processes for POMDP-based dialogue

manager optimisation
Milica Gašić, Member, IEEE, Steve Young, Fellow, IEEE

Abstract—A partially observable Markov decision pro-
cess (POMDP) has been proposed as a dialogue model that
enables automatic optimisation of the dialogue policy and
provides robustness to speech understanding errors. Various
approximations allow such a model to be used for building real-
world dialogue systems. However, they require a large number
of dialogues to train the dialogue policy and hence they typically
rely on the availability of a user simulator. They also require
significant designer effort to hand-craft the policy representation.
We investigate the use of Gaussian processes (GPs) in policy
modelling to overcome these problems. We show that GP policy
optimisation can be implemented for a real world POMDP
dialogue manager, and in particular: 1) we examine different
formulations of a GP policy to minimise variability in the learning
process; 2) we find that the use of GP increases the learning
rate by an order of magnitude thereby allowing learning by
direct interaction with human users; and 3) we demonstrate
that designer effort can be substantially reduced by basing the
policy directly on the full belief space thereby avoiding ad hoc
feature space modelling. Overall, the GP approach represents an
important step forward towards fully automatic dialogue policy
optimisation in real world systems.

Index Terms—Statistical dialogue systems, POMDP, Gaussian
process

I. INTRODUCTION

SPOKEN dialogue systems enable human-computer inter-

action where the primary input is speech. As such they

have innumerable benefits. However, building such systems to

operate robustly is challenging as they are very sensitive to

speech recognition errors and require designer effort to define

their behaviour. The focus of this paper is automatic dialogue

optimisation using a small amount of training data.

A partially observable Markov decision process (POMDP)

has been proposed as a dialogue model which intrinsically

deals with uncertainty from the recogniser, providing more

robust system operation [1], [2], [3], [4], [5]. It assumes

that the dialogue state st is only partially observable and

depends on a noisy observation ot. Since the dialogue state

is unobservable, at every dialogue step a distribution over

all states is maintained, which is called the belief state bt.

It takes values b ∈ B, where B is a continuous space of

dimensionality |S|, namely [0, 1]|S|. The dialogue policy π

then maps the belief state b into an action a at every dialogue

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

M. Gašić* and S. Young are with the Department of Engineering, Uni-
versity of Cambridge, Trumpington St, Cambridge, CB2 1PZ, UK, e-mail:
{mg436,sjy}@eng.cam.ac.uk

Manuscript received January 2013

turn, π(b) = a. In each state, the system receives a reward

rt, which is a measure of how good the system action is for

that particular state. The aim is then to find a policy such

that the total accumulated reward at the end of the dialogue

is maximised, which is measured by the Q-function.

The process of exact belief state updating becomes in-

tractable for very large state spaces. However, there exist

real-world dialogue systems based on the POMDP model

which maintain an approximate belief state distribution in

real-time throughout the dialogue. These include the Hidden

Information State (HIS) system [6] and the Bayesian Update

of Dialogue State (BUDS) system [5]. Policy optimisation,

however, involves a large amount of training data and requires

the designer to explicitly define the policy representation [7],

[8]. This paper explores ways of overcoming these limitations.

II. POMDP POLICY OPTIMISATION

Exact policy optimisation for POMDPs is intractable for

everything but very simple cases [9]. Approximate POMDP

solutions, as in the point-based value iteration algorithm [10],

[11], are only suitable for relatively small state/action prob-

lems. However, a POMDP with discrete state and observation

spaces can be viewed as an MDP with a continuous state

space [9]. This allows standard MDP algorithms to be used

for policy optimisation and this usually introduces the need

for some form of parametrisation.

For example, it is proposed in [12] that the Q-function is

parametrised as a linear combination of features from the

belief state. Optimisation is then performed using a mod-

ified Sarsa algorithm. In the BUDS system, the policy is

parametrised as a softmax function of features of the belief

state [13]. Then, gradient methods and the natural-actor critic

algorithm are used for policy optimisation. While this achieves

tractability, in the case of the BUDS system it requires from

105 to 106 dialogues to train a policy, and this is only possible

in interaction with a simulated user [8]. Moreover, the basis

feature functions must be chosen by the designer and the

solution is only optimal within the chosen basis. In [14], an

algorithm is proposed that automatically selects useful features

from an initial set of features predefined by a designer. An

alternative approach is taken in [15] where Krylov iteration for

lossless compression is used to compress the dialogue states,

however the effectiveness of this approach in practice greatly

depends on the definition of the reward function. A more

recent thread of research has focused on parametric models

of the Q-function where the uncertainty of the approximation

can be encoded in the estimate of the parameters. Here,

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 2

a Gaussian distribution is placed over each parameter and

Kalman filters are used for optimisation. It is shown that this

leads to increased speed of training, however it still requires

a set of basis functions [16].

In the HIS system [6], the belief space is heuristically

mapped into a much smaller summary space, which is then

discretised into a grid, allowing the Monte Carlo control algo-

rithm to be used for the policy optimisation. This optimisation

requires 105 dialogues, which is still too large for the policy to

be optimised in direct interaction with humans and the forced

use of a summary space again raises optimality questions.

Our aim is to reduce designer effort in defining a suitable

policy representation and to speed up the process of policy

optimisation to avoid reliance on user simulators. For this

purpose, we propose non-parametric policy modelling which

achieves operational efficiency by exploiting the similarities

between different parts of the belief space. For instance, if

the system action is reliably estimated in one belief state, that

estimate should contribute to the unexplored parts of the belief

space. In addition, it is not only important to estimate the

system action for a given belief state, but also to provide a

measure of how confident the system is about that estimate.

This information is a useful indication of the extent to which

different parts of the belief space have been explored during

policy optimisation. A Gaussian process (GP) is proposed

because it is a non-parametric model of Bayesian inference

that has these desirable properties.

The next section introduces non-parametric policy mod-

elling. It explains how the Q-function can be modelled as a

Gaussian process and how a stochastic policy can be derived

from this model that is well-suited for on-line learning. Then,

in Section IV, experimental results using the BUDS dialogue

manager are presented. Several issues concerning policy de-

sign are examined with the aim of reducing variability in the

learning process. The resulting GP-based policy is shown to

learn faster than a standard method and this is confirmed

in a human evaluation using the Amazon MTurk crowd-

sourcing service [17]. A similar training scheme is conducted

in interaction with humans via the Amazon MTurk service

and is shown to perform significantly better than a simulator

trained policy. The final set of experiments discuss policy

training in the full belief space where it is shown that the GP

approach will scale to handle the full space obviating the need

for hand-crafted summary space mapping. Section V presents

conclusions and directions for future work.

III. NON-PARAMETRIC POLICY MODELLING

Non-parametric policy modelling avoids the limitations that

occur when the solution is constrained by the chosen basis.

This does not necessarily mean that it is parameter-free, but

rather that the solution is not restricted by the choice of

parameters. Instead, the choice of parameters only influences

the speed at which the optimal solution is found.

A Gaussian process is a non-parametric Bayesian model

used for function approximation. It has been success-

fully applied to reinforcement learning for continuous-space

MDPs [18], [19], [20], [21]. An advantage of Bayesian ap-

proaches to policy optimisation is that they offer a principled

way of incorporating prior knowledge about the underlying

task and this provides the potential to improve the learning

rate. As already noted, it is important that the dependencies

of different parts of the belief state space are taken into

consideration during learning. Gaussian processes are able to

incorporate the knowledge of these dependencies elegantly

through the choice of a kernel function, the purpose of which

is to describe correlations in different parts of the space. In

addition, Gaussian processes can provide the uncertainty of

the approximation by estimating the variance of the posterior.

In the GP approach, the size of the state space only

impacts the evaluation of the kernel. Hence, it is not sensitive

to the size of the POMDP summary space and indeed it

can be used to model correlations directly in the full belief

space. In this paper, the properties of the GP approach are

evaluated in summary space in order to allow comparison with

conventional gradient methods, but preliminary results using

GP in the full belief space are also given.

This section provides an overview of the Gaussian process

model of the Q-function based on the description given in [19].

Several policy formulations derived from the GP model are

presented which are suitable for dialogue management. Issues

of computational complexity and sparse approximation solu-

tions are also discussed.

A. Gaussian process model for the Q-function

This section describes how the Q-function can be modelled

as a Gaussian process. As outlined in the introduction, a

discrete-space POMDP can be viewed as a continuous-space

MDP. In dialogue management, however, this space is often

reduced to a summary space that contains both continuous

and discrete variables [6]. Therefore, in the most general case,

the approximation framework needs to support modelling of

the Q-function in a multidimensional space that consists of

both continuous and discrete variables. A Gaussian process

allows such modelling. For now, however, an MDP with a full

continuous belief state space B is considered.

The discounted return Rπ
t for time step t and a given policy

π is the total accumulated reward acquired over time:

Rπ
t =

∞∑

i=0

γirt+i+1, (1)

where rt is the immediate reward at time step t and γ ∈ [0, 1],
is the discount factor. If the immediate reward is a random

process, the discounted return is also a random process.

The discounted return can be written recursively as:

Rπ
t = rt+1 + γRπ

t+1. (2)

The Q-function for policy π is the expectation of the

discounted return given belief state b and action a at time t,

over all possible belief state sequences that can be generated:

Qπ(b, a) = Eπ (Rt|b(st) = b, at = a) . (3)

Due to the stochasticity of transitions, the discounted return

is a random variable and can be decomposed into a mean

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 3

Qπ(b, a) and a residual ∆Qπ(b, a):

Rπ
t (b(st) = b, at = a) = Qπ(b, a) + ∆Qπ(b, a). (4)

Substituting Rπ
t and Rπ

t+1 from (4) into (2) yields:

rt+1(b(st) = b, at = a) = Qπ(b, a)− γQπ(b′, a′)
+∆Qπ(b, a)− γ∆Qπ(b′, a′),

(5)

where b(st+1) = b′ is the next belief state and a′ = π(b′) is

the next action, at+1 = a′.

Let Bt = [(b0, a0), . . . , (bt, at)]T be a sequence of t belief

states and action samples1 generated with policy π. Then, (5)

becomes:

r1 = Qπ(b0, a0)− γQπ(b1, a1)
+∆Qπ(b0, a0)− γ∆Qπ(b1, a1)

r2 = Qπ(b1, a1)− γQπ(b2, a2)
+∆Qπ(b1, a1)− γ∆Qπ(b2, a2)

...

rt = Qπ(bt−1, at−1)− γQπ(bt, at)
+∆Qπ(bt−1, at−1)− γ∆Qπ(bt, at),

(6)

where r1, . . . , rt are the acquired immediate rewards. This can

be written in a more compact form as

rt = Htq
π
t +Ht∆qπ

t , (7a)

where

rt = [r1, . . . , rt]T (7b)

qπ
t = [Qπ(b0, a0), . . . , Qπ(bt, at)]T, (7c)

∆qπ
t = [∆Qπ(b0, a0), . . . ,∆Qπ(bt, at)]T, (7d)

Ht =

1 −γ · · · 0 0
0 1 · · · 0 0
...

. . .
. . .

...
...

0 · · · 0 1 −γ

 . (7e)

If the transition probabilities and policy π do not change

over time, Qπ(b, a) is not a random variable, however, dur-

ing the process of estimation π changes, so Qπ(b, a) can

be modelled as a random variable. By modelling Qπ(b, a)
as a Gaussian process, Qπ(b, a) ∼ GP (0, k((b, a), (b, a))),
where the kernel k(·, ·) is factored into separate kernels

over the belief state and action spaces kB(b,b
′)kA(a, a

′)
and ∆Qπ(b, a) ∼ N (0, σ2) is Gaussian noise, Gaussian pro-

cess regression [22] can be applied to find the posterior of

Qπ(b, a), given a set of belief state-action pairs Bt and the

observed rewards rt:

Qπ(b, a)|rt,Bt ∼ N (Q(b, a), cov((b, a), (b, a))),

Q(b, a) = kt(b, a)
THT

t (HtKtH
T

t + σ2HtH
T

t)
−1rt,

cov((b, a), (b, a)) = k((b, a), (b, a))

− kt(b, a)
THT

t (HtKtH
T

t + σ2HtH
T

t)
−1Htkt(b, a) (8)

where kt(b, a) = [k((b0, a0), (b, a)), . . . , k((bt, at), (b, a))]T

1Random variables are denoted with a subscript, e.g., at is a random
variable at some time step t. Samples are denoted with a superscript e.g.,

at is the action that was taken at time step t.

and Kt = [kt((b
0, a0)), . . . ,kt((b

t, at))].
This Gaussian process model of the Q-function exploits the

relationship between distributions of the Q-function at differ-

ing time steps. This is in contrast to standard reinforcement

learning algorithms which exploit the relationship between

values of the Q-function at differing time steps. An important

implication of this property is that prior knowledge about the

Q-function can be incorporated in the prior distribution. Ini-

tially, the estimated Q-function distribution is just a zero-mean

Gaussian process with the kernel function k((b, a), (b, a)),
since no data has been observed. By time step t, the estimate

is the posterior distribution given the set of observed rewards

rt and associate belief state-action pairs Bt.

It can be shown [23] that the marginal likelihood of the

observed rewards is modelled by

rt|Bt ∼ N (0,Ht(Kt + σ2I)HT

t). (9)

If the kernel function is parametrised, this relationship can be

used to optimise the kernel parameters as well as the noise

parameter σ [24].

In the next section the derivation of a policy model from

the Gaussian process model of the Q-function is discussed.

B. Gaussian process-based policy model

The description so far has presented a Gaussian process

model for the Q-function associated with a policy π given

belief state-action pairs Bt and rewards rt (8). What remains

is to define the policy.

The simplest way of deriving such a policy to select the

action associated with the highest mean of the Q-function:

π(b) = argmax
a

Q(b, a). (10)

However, since the objective is to learn the Q-function

associated with the optimal policy from interaction, the policy

must exhibit some form of stochastic behaviour in order to

explore alternatives during the process of learning. One way

of defining a policy that can be optimised on-line is to use an ǫ-

greedy approach. This requires setting an additional parameter

ǫ which balances how often an action is taken according to the

current best estimate of the Q-function mean (the exploitation

stage) compared to how often an action is taken randomly (the

exploration stage). This policy is defined as:

π(b) =

{
argmaxa Q(b, a) with prob 1− ǫ,

random a with prob ǫ.
(11)

However, such random exploration can be inefficient since

not all parts of belief-action space are equally informative.

Using active learning to provide more efficient exploration

should yield faster learning [25]. Instead of selecting actions

randomly, active learning selects actions according to some

utility function which normally includes some measure of

information gain through which various heuristics can be

incorporated [26]. Gaussian process reinforcement learning

provides a measure of uncertainty at each point in belief-

action space. This uncertainty can then be used directly in the

active learning utility function [21]. This enables the model

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 4

to explore the parts of the space it is less certain about.

Therefore, during exploration, actions are chosen according to

the variance of the GP estimate for the Q-function and during

exploitation, actions are chosen according to the mean:

π(b) =

{
argmaxa Q(b, a) with prob 1− ǫ,

argmaxa cov ((b, a), (b, a)) with prob ǫ.
(12)

Both of the policies defined in (11) and (12) require the

proportions of exploration and exploitation to be balanced

manually by tuning the parameter ǫ. Since the Gaussian

process for the Q-function defines a Gaussian distribution for

every belief state-action pair (8), when a new belief point b is

encountered, for each action a ∈ A, there is a Gaussian distri-

bution Q̂(b, a) ∼ N (Q(b, a), cov((b, a), (b, a)))). Sampling

from these Gaussian distributions gives Q-values from which

the action with the highest sampled Q-value can be selected:

π(b) = argmax
a

{
Q̂(b, a) : a ∈ A

}
. (13)

If two actions have overlapping distributions then sampling

from these distributions will result in the system randomly

switching between them. Thus, in contrast to the ǫ-greedy

policies defined by (11) and (12), this approach maps the

GP approximation of the Q-function into a stochastic policy

model. Note however that all three policies are greedy in the

sense that as either ǫ or the variance tends to zero, they tend to

select the locally optimal action. The performance of different

policy models is discussed further below in Section IV-B.

C. Gaussian process-based policy optimisation

If the Q-function of a greedy policy is estimated on-line

using temporal differences, then it will in the limit tend

to the Q-function of the optimal policy. A commonly used

embodiment of this idea for MDPs is the Sarsa algorithm

which iteratively updates the Q-function on-line using the rule:

Q(b, a)← Q(b, a)

+ α[rt+1(bt = b, at = a) + γQ(b′, a′)−Q(b, a)].
(14)

If the Q-function correction provided by the right hand side

of (14) is replaced by the update of the GP-based Q-function

posterior given by (8), the GP-Sarsa algorithm is obtained.

This is shown in Fig. 1 amended for episodic reinforcement

learning and hence applicable to dialogue optimisation.

In practice, however, the exact computation of the posterior

using (8) is intractable as it requires the inversion of a matrix

of dimensionality t. A solution is discussed in the next section.

D. Computational complexity and sparse approximation

Due to the matrix inversion in (8), the computational com-

plexity of calculating the Q-function posterior is O(t3), where

t is the number of data points. In the case of a dialogue system,

this will be equal to the total number of turns, summed over

all dialogues, which poses a serious computational problem.

One solution to this problem is to restrict the set of data

points used for the Q-function approximation. This has the

obvious drawback that useful information will be discarded

Fig. 1. Episodic GP-Sarsa (without computational constraints)

1: for each episode do

2: Initialise b

3: if first episode then

4: Choose a arbitrary

5: B0 ← (b, a)
6: K0 ← k((b, a), (b, a))
7: H0 ←

[
1 −γ

]

8: else

9: if initial step then

10: Choose a← π(b) (11), (12) or (13)

11: end if

12: end if

13: for each step in the episode do

14: Take a, observe r′, update b′

15: if non-terminal step then

16: Choose new action a′ ← π(b′) (11), (12) or (13)

17: Bt+1 ←
[
Bt (b′, a′)

]

18: Ht+1 ←

[
Ht 0

uT −γ

]
, where u =

[
0 1

]T

19: Kt+1 ←

[
Kt kt(b

′, a′)
kt(b

′, a′) k(b′, a′,b′, a′)

]

20: else

21: Bt+1 ← Bt, Kt+1 ← Kt

22: Ht+1 ←

[
Ht

uT

]
, where u =

[
0 1

]T

23: end if

24: rt+1 ←
[
rt r′

]

25: Update Q-function posterior Qπ|rt+1,Bt+1 (8)

26: if non-terminal step then

27: b← b′, a← a′

28: end if

29: end for

30: end for

and this is exacerbated when the space is continuous since the

exact same state is never visited twice. Sparse approximation

methods for Gaussian processes aim to take into account all

data points whilst reducing the computational complexity.

A significant research effort has been invested into solving

this problem, and a number of methods have been devel-

oped [27]. However, these rely on the pre-selection of a

fixed set of m support points. This reduces the complexity

of calculating the posterior from O(t3) to O(tm2) and if

the number of support points is significantly smaller than

the number of data points, this approach is very effective

for reducing the computational cost. This class of methods

is not useful for learning on-line, since the support points

cannot be determined a priori. An alternative algorithm which

approximates the Gaussian process without first obtaining a

set of support points is the kernel span sparsification method

described in [28]. In this case, a representative set of data

points is acquired as the belief-action space is traversed during

interaction with the user. It is assumed that the environment

dynamics do not change over time hence obviating the need

to remove support points and thereby avoiding the difficulties

discussed in [29].

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 5

A kernel function can be thought of as the dot prod-

uct of a (potentially infinite) set of feature functions

k((b, a), (b, a)) = 〈φ(b, a),φ(b, a)〉 where φ(b, a) is the

vector of feature functions [φ1(b, a), φ2(b, a), . . .]
T. Any lin-

ear combination of feature vectors {φ(b0, a0), . . . ,φ(bt, at)}
for a given set of points {(b0, a0), . . . , (bt, at)} is called the

kernel span. The aim then is to find the subset of points that

approximates this kernel span. These points are called the

representative points and the set of representative points is

called the dictionary D = {(b̃0, ã0), . . . , (b̃m, ãm)}.
A sparsification parameter ν places a threshold on the

squared distance between the feature function span at the

representative points, and the true feature function value at

each visited point:

min
gt

‖
m∑

j=0

gtjφ(b̃
j , ãj)− φ(bt, at) ‖2≤ ν, (15)

where (bt, at) is the current point, gt = [gt1, . . . , gtj] is

a vector of coefficients and m is the size of the current

dictionary, D = {(b̃0, ã0), . . . , (b̃m, ãm)}. This is equivalent

to [28]:

min
gt

(
k((bt, at), (bt, at))− k̃t−1(b

t, at)Tgt

)
≤ ν, (16)

where k̃t−1(b
t, at) = [k((bt, at), (b̃0, ã0)), . . . ,

k((bt, at), (b̃m, ãm))]T. It can also be shown that the

expression on the left side of (16) is minimised when

gt = K̃−1
t−1k̃t−1(b

t, at), where K̃t−1 is the Gram matrix

of the current set of representative points. If the threshold

ν is exceeded then (bt, at) is added to the dictionary,

otherwise the dictionary stays the same. This constitutes

the sparsification criterion and it allows the posterior to be

approximated with bounded complexity as follows.

Since the kernel function is the dot product of the feature

functions, the Gram matrix is Kt = ΦT

t Φt where Φt =
[φ(b0, a0), . . . ,φ(bt, at)]. The feature function values for

each point are then approximated as the linear combination

of the representative points φ(bi, ai) ≈
∑m

j=1 gijφ(b̃
j , ãj),

for all i ∈ 0, . . . , t. Also, the Gram matrix is approximated as

Kt = ΦT

t Φt ≈ GtK̃tG
T

t , (17)

where Gt = [g1, . . . ,gt]. Similarly, kt(b, a) ≈ Gtk̃t(b, a).
This allows the posterior (8) to be approximated as:

Q(b, a)|Bt, rt ∼ N
(
Q̃(b, a), c̃ov((b, a), (b, a))

)
,

Q̃(b, a) = k̃t(b, a)
T(H̃T

t (H̃tK̃tH̃
T

t + σ2H̃tH̃
T

t)
−1rt),

c̃ov((b, a), (b, a)) = k((b, a), (b, a))

− k̃t(b, a)
T(H̃T

t (H̃tK̃tH̃
T

t + σ2H̃tH̃
T

t)
−1H̃t)k̃t(b, a),

(18)

where H̃t = HtGt. It can be shown that this reduces the

complexity to O(tm2), where m is the size of the dictionary,

see [19] for details.

This sparsification method has a drawback that it turns

a non-parametric method into a parametric method. More

precisely, the kernel is now approximated using only a limited

number of points, which is equivalent to defining a functional

basis for the kernel function. This can be shown to be equiv-

alent to parametrising the Q-function [19]. This may limit the

accuracy of the solution, however, the fact that the basis is

chosen dynamically, without an initial set of basis functions,

still allows for more appropriate functions than when using a

fixed basis defined by a designer.

An advantage of this sparsification approach is that it

enables non-positive definite kernel functions to be used in the

approximation, for example see [24]. This is due to the fact

that the sparsification method essentially changes the kernel

function in a manner which ensures that the approximated

Gram matrix is positive definite and this is sufficient to

guarantee that the model remains well-defined [30].

This sparsification method allows observations to be pro-

cessed sequentially, in direct interaction with the user, and

it can be incorporated directly into the GP-Sarsa algorithm

out-lined in Fig. 1. The full GP-Sarsa algorithm with kernel

sparsification is given in Fig. 2.

IV. EXPERIMENTS

The previous sections have introduced the theory of Gaus-

sian process-based POMDP policy optimisation. Here we

examine their application in practice and investigate three

important research issues. Firstly, section IV-B addresses the

detailed design trade-offs involved in practical implementation

of a GP-based dialogue policy. Secondly, section IV-C inves-

tigates the speed of the GP policy optimisation process and

whether in practice it can be performed in direct interaction

with real users. Finally, section IV-D addresses the extent to

which design time effort can be reduced by applying a GP-

policy directly to the full belief space.

A. Experimental set-up

A spoken dialogue system providing restaurant information

for Cambridge UK was used as a test-bed for all of the reported

experiments. This system uses the BUDS dialogue manager in

which beliefs are modelled by a Bayesian network. Training

and testing was provided by an agenda-based simulated user

and by real users recruited using the Amazon MTurk service.

1) Bayesian Update of Dialogue State dialogue manager:

The Bayesian Update of Dialogue State (BUDS) dialogue

manager is a POMDP-based dialogue manager [13] whose

belief state consists of the marginal posterior probability distri-

bution over hidden nodes in a Bayesian network. Each concept

in the dialogue, eg. area, food-type, address is represented by

a pair of hidden nodes recording the history and the goal.

The history nodes define possible states eg. system-informed,

user-informed and the goal nodes define possible values for a

particular concept, eg. Chinese, Indian.

In order to train an optimal policy the belief space B is

mapped into a summary space C. Likewise, the action space

is mapped into a smaller scale summary action space A. This

summary space C ×A is then mapped into a feature space F .

This space is then used to produce a parametric representation

of the policy. A weighted set of these basis functions can then

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 6

Fig. 2. Episodic GP-Sarsa

1: Initialise µ̃← [], C̃← [], c̃← [], d← 0, 1/v ← 0
2: for each episode do
3: Initialise b
4: if first episode then
5: Choose a arbitrary, D = {(b, a)}, K̃−1 ←

1/k((b, a), (b, a))
6: else
7: if initial step then
8: Choose a← π(b)
9: end if

10: end if
11: c̃← 0 {size |D|}, d← 0, 1/v ← 0
12: g← K̃−1k̃(b, a), δ ← k((b, a), (b, a))− k̃(b, a)Tg
13: if δ > ν then

14: D ← {(b, a)} ∪ D, K̃−1 ← 1

δ

[

δK̃−1 + ggT −g
−gT 1

]

15: g ← [0, . . . , 0, 1]T {size |D|}, µ̃ ←

[

µ̃

0

]

, C̃ ←
[

C̃ 0

0T 0

]

, c̃←

[

c̃
0

]

16: end if
17: for each step in the episode do
18: Take a, observe r′, update b′

19: if non-terminal step then
20: Choose new action a′ ← π(b′)
21: g′ ← K̃−1k̃(b′, a′), δ ← k((b′, a′), (b′, a′)) −

k̃(b′, a′)Tg′

22: ∆k̃← k̃(b, a)− γk̃(b′, a′)
23: else
24: g′ ← [0] {size |D|}, δ ← 0, ∆k̃← k̃(b, a)
25: end if
26: d← γσ2

v
d+ r′ −∆k̃T

µ̃

27: if δ > ν and non-terminal step then

28: D ← {(b′, a′)}∪D, K̃−1 ← 1

δ

[

δK̃−1 + ggT −g
−gT 1

]

29: g′ ← [0, . . . , 0, 1]T, h̃← [gT,−γ]T

30: ∆ktt ← gT(k̃(b, a) − 2γk̃(b′, a′)) +
γ2k((b′, a′), (b′, a′))

31: c̃′ ← γσ2

v

[

c̃
0

]

+ h̃−

[

C̃∆k̃
0

]

32: v ← (1+γ2)σ2+∆ktt−∆k̃TC̃∆k̃+ 2γσ2

v
c̃∆k̃− γ2σ4

v

33: µ̃←

[

µ̃

0

]

, C̃←

[

C̃ 0

0T 0

]

34: else
35: h̃← g − γg′, c̃′ ← γσ2

v
c̃+ h̃− C̃∆k̃

36: if non-terminal step then

37: v ← (1 + γ2)σ2 +∆k̃T(c̃′ + γσ2

v
c̃)− γ2σ4

v
38: else
39: v ← σ2 +∆k̃T(c̃′ + γσ2

v
c̃)− γ2σ4

v
40: end if
41: end if
42: µ̃← µ̃+ c̃

v
d, C̃← C̃+ 1

v
c̃′c̃′T, c̃← c̃′, g← g′

43: if non-terminal step then
44: b← b′, a← a′

45: end if
46: end for
47: end for

be cast into a probability via a soft-max function

π(a|c; θ) =
eθ·fa(c)∑
a e

θ·fa(c)
. (19)

where fa(c) is the vector of features derived from summary

state c for action a. The policy is then optimised using the

natural actor critic (NAC) algorithm which is a gradient-based

method [31]. In operation, system responses are generated by

sampling (19) and then heuristically mapping the summary ac-

tion back into a full system action. Once the system has chosen

the summary action, the mapping to a full action is usually

straightforward. For instance, if the action is ConfirmArea

the system simply confirms the most likely value of the area

slot.

Mappings B → C and C × A → F , however, require a

significant amount of hand-crafting. Also, due to the paramet-

ric policy representation, the solution is only optimal within

the given basis. Finally, gradient-based optimisation methods

are inherently slow which prevents direct on-line optimisation

with real users. Here we show that the GP-Sarsa algorithm

can overcome these limitations.

2) The Cambridge restaurant domain: The Cambridge

restaurant domain consists of a selection of approximately

150 restaurants, referred to as entities, which have been

automatically extracted from various web-based sources. Each

restaurant has 8 attributes (slots) and this results in a belief

space consisting of 25 concepts where each concept takes from

3 to 150 values and each value has a probability in [0, 1].2 The

summary space is formed from discrete, as well as continuous,

features. Continuous features represent the entropy of the

distribution for each hidden node in the Bayesian network.

In addition, there are a few discrete features that correspond

to history nodes, e.g. if the highest probability method that the

user used to inform the system was by name of the venue or

if the highest probability discourse act used was repeat. Also,

there is a count of the number of top probability goal values

that are greater than 0.8. Finally, there is a list which defines

the order in which the goal slots can be accepted. In total,

there are 129 features. The summary action space consists of

16 summary actions.

3) The agenda-based simulated user: In training and test-

ing, an agenda-based user simulator was used [32], [33].

The user state is factored into an agenda and a goal. The

goal ensures that the user simulator exhibits consistent, goal-

directed behaviour. The role of the agenda is to elicit the

dialogue acts that are needed for the user simulator to fulfil the

goal. Both the goal and the agenda are dynamically updated

throughout the dialogue. These updates are controlled by

deterministic or stochastic decision points, allowing a wide

spread of realistic dialogues to be generated.

In addition, an error model was used to add confusions to

the simulated user input such that it resembles those found

in real data [34]. The output of the error model is an N-best

list of possible user responses. The length of this list was set

2It should be emphasised that the system is not sensitive to the number of
values in a slot or the number of entities in the database since only values
and entities which are actually mentioned in the dialogue are modelled at run
time.

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 7

to 10 and the confusion rate was set to 15%, which means

that 15% of time the true hypothesis is not in the N-best list.

Intermediate experiments showed that these settings match the

confusions typically found in real data.

The reward function was set to give a reward of 20 for

successful dialogues, zero otherwise, less the number of dia-

logue turns. A successful dialogue is one in which the user

goal is fulfilled. If the user goal changes, success depends on

satisfying the final the user goal. The discount factor γ is set

to 1 and the dialogue length is limited to 30 turns.

4) The evaluation schedule: When evaluating a policy

optimisation technique one is typically interested in the per-

formance of the resulting policy. However, it is also important

to know how many dialogue sessions are needed to reach that

performance. Policy optimisation is a random process itself.

A lucky choice of actions at the beginning may lead to very

good performance, whereas an unlucky choice of actions can

slow down the process of learning. Therefore, it is important

to examine the variability in performance during training.

For this reason, in all the user simulator-based experiments

reported here, unless stated otherwise, 10 training sessions

were seeded with different random seeds and after every 1000
dialogues the performance of the partially trained policies were

evaluated. Each evaluation was performed with 1000 dialogues

ensuring that the simulated user had a different random seed

to the one used in training. The results were then averaged

and presented with one standard error.

5) The MTurk Amazon Service: In order to evaluate differ-

ent policies with real people we recruited subjects using the

Amazon MTurk crowd-sourcing service in a set-up similar

to [35]. The BUDS dialogue manager was incorporated in a

live telephone-based spoken dialogue system in which human

users were assigned specific tasks which involved finding

restaurants that have particular features. To elicit more com-

plex dialogues, users were sometimes asked to find more than

one restaurant, or a restaurant that does not exist. In the latter

case, they were asked to change one of their constraints, for

example find a Chinese restaurant instead of a Vietnamese one.

After each dialogue, users filled in a feedback form indicating

whether they thought the dialogue was successful. This rating

was then used to calculate the average success and reward.

B. Design of Gaussian process-based policy optimisation

To use the GP-Sarsa algorithm, the kernel function, the noise

parameter σ and the sparsification parameter ν need to be

defined. Whilst the choice of the kernel function and the choice

of σ do not greatly affect the resulting policy, they do influence

the speed of learning. In addition, the parameter ν controls

the approximation of the kernel function, essentially turning

a non-parametric optimisation into a parametric one, and if

set inappropriately it can lead to the resulting policy being

suboptimal. Below we examine the different design choices.

1) Kernel function: The kernel function defines prior cor-

relations in different parts of the space and if correctly defined

can speed up the process of learning. It ideally should be

defined to suit the particular domain. However, there are a

number of standard kernel functions that can be used.

As explained in Section IV-A2, the summary space C con-

sists of both continuous and discrete variables. We therefore

define the kernel function on C as the sum3 of kernels on

continuous and discrete spaces:

kC(c, c
′) = kcont(C)(c, c

′) + kdisc(C)(c, c
′) (20)

We investigated two standard kernels on the continuous part

of the summary space.

The polynomial kernel function is defined as:

k(c, c′;σ0, p) = (〈c, c′〉+ σ2
0)

p, (21)

where 〈·, ·〉 is the dot-product, with hyper-parameters σ0 >= 0
and p > 0. In the case where p = 1 this is the linear kernel.

Higher order polynomial kernels can lead to better results for

small input spaces [23]. However, they are less suitable for

large input spaces such as the one used here since the prior

variance k(c, c) grows rapidly with |c| > 1 [22].

The Gaussian kernel function4 is defined as:

k(c, c′; p, σk) = p2 exp

(
−
‖c− c′‖2

2σ2
k

)
, (22)

where σk determines how close the points have to be for the

values of the function to be correlated, and p defines the prior

variance at each data point since k(c, c) = p2. The main

advantage of the Gaussian kernel over the polynomial kernel

is that it is a dot product of an infinite vector of feature func-

tions [22], which gives it the potential to model covariances

better. The Gaussian kernel is a stationary kernel meaning that

that the covariances only depend on the distance between two

summary states. This is in contrast to the polynomial kernel

which is non-stationary since the covariance depends on the

part of the space where the two summary states are.

The GP-Sarsa algorithm requires that the kernel function

is defined on the summary actions space too. Since this is a

small discrete space, the δ-kernel was used:

k(a, a′) = δa(a
′). (23)

The same function is also used on the discrete part of the

summary space.

Fig. 3 compares a linear kernel (σ0 = 1 and p = 1)

with a Gaussian kernel (σk = 5 and p = 4). The results

suggest that the Gaussian kernel is more effective as it results

in less variable training. This kernel is therefore used in all

subsequent experiments unless stated otherwise.

2) Residual noise: The second element of policy design

is the choice of parameter σ, the noise of the residual ∆Q

(see Section III-A). As already noted, this controls how much

change in the estimate of the Q-function is expected to take

place during the process of learning. It is directly related to

the randomness of the return (1) and therefore depends on

the reward function. The rule of thumb is that σ should be

the square root of the half length of the interval over possible

values of the reward function. The intuition behind this is that

the return in principle can take any value between the highest

3A product is also possible but has not been examined here.
4Also called the squared exponential kernel function in the literature.

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 8

0 5000 10000 15000 20000
Training dialogues

5

6

7

8

9

10

Re
w

ar
d

Linear
Gaussian

Fig. 3. Influence of the kernel choice on the performance. The performance is
measured as the mean average reward as a function of the number of training
dialogues. The thinner lines denote one standard error.

and the lowest possible reward. Since the process of learning

is non-stationary, the return can vary significantly during the

optimisation process. The reward function used here gives 20
for a successful dialogue less the number of turns, where the

user can take up to 30 turns. Therefore, the interval is [−30, 20]
so σ is fixed at 5. To experimentally support this claim, values

of σ = 1, σ = 5 and σ = 10 were tested and the results are

shown in Fig 4 where it can be seen that σ = 5 does indeed

give the best performance.

0 5000 10000 15000 20000
Training dialogues

5

6

7

8

9

10

Re
w

ar
d

σ=10

σ=5

σ=1

Fig. 4. Influence of the choice of the noise residual parameter σ on the
performance. The thinner lines denote one standard error.

3) Sparsification threshold: The sparsification threshold ν

represents a trade-off between the computational complexity

and the precision to which the kernel function is computed.

Therefore, this should be some small percentage of the min-

imal value for k(c, c′). Fig. 5 compares performance for

ν = 0.1, ν = 1 and ν = 10. As can be seen, the smaller ν

is the better performance is. It is interesting to note however

that the difference in performance between ν = 0.1 and ν = 1
is almost negligible in comparison to the difference between

ν = 1 and ν = 10. Fig. 6 gives the number of dictionary

points for different thresholds. Comparing the two, it can be

seen that for a very small improvement in performance the

number of dictionary points dramatically increases.

0 5000 10000 15000 20000
Training dialogues

5

6

7

8

9

10

Re
w

ar
d

ν=0.1
ν=1
ν=10

Fig. 5. Influence of the sparsification threshold ν on the performance. The
thinner lines denote one standard error.

0 20000 40000 60000 80000 100000
Training dialogues

0

200

400

600

800

1000

1200

1400

1600

1800

Av
er

ag
e

nu
m

be
r o

f d
ic

tio
na

ry
 p

oi
nt

s

ν=0.1
ν=1
ν=10

Fig. 6. Average number of dictionary points for different settings of ν as a
function of the number of training dialogues.

4) Policy model: As already noted in Section III-B, the

policy model can be defined ǫ-greedily (11), using active

learning (12), or stochastically (13). It has already been

shown that active learning has the potential to lead to faster

learning [24] as well as other learning strategies that exploit

the variance [36], [37]. Here we focus on the stochastic policy

since it avoids the need to explicitly control the exploration

rate during training, and it provides a uniform mechanism for

both optimisation and normal run-time operation.

Gaussian process estimation has an inherent problem in that

the estimate of the variance depends only on the number of

points from the input space rather than their values in the

output space. This is exacerbated in the set-up used here since

the form of Gaussian process approximation used can lead to

overly confident estimates [27] whilst at the same time, as

input spaces become larger, the same points need to be visited

more and more times in order to achieve optimal performance.

Hence, when defining a stochastic policy for a large input

space, such as the one used here, it is helpful to scale

the variances during training to ensure an adequate degree

of exploration: Q(b, a) ∼ N (Q(b, a), η2cov((b, a), (b, a))))
where η is the scaling factor.

Figs. 7 and 8 show performance during training and testing,

respectively, for a stochastic policy with variances scaled by

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 9

η = 1, η = 2 and η = 3.5 For comparison, the performance

of an ǫ-greedy policy is also shown as a baseline.

As can be seen, varying the scale factor η has a significant

influence on performance. Setting η to a low value results

in the system learning quickly, but also converging to a

local optimum. Whilst the best stochastic policy model shows

only a small improvement in comparison to ǫ-greedy learning

during testing (Fig. 8), the performance during training is

significantly higher (Fig. 7) because ǫ-greedy learning requires

an action to be chosen randomly some percentage of time,

whereas the stochastic policy always follows the current

estimate of the Q-function. This is particularly important when

training in interaction with real users since poor performance

during the early stages of training may impact on the user’s

willingness to continue to interact with the system.

0 5000 10000 15000 20000
Training dialogues

5

6

7

8

9

10

Re
w

ar
d

greedy
η=1

η=2
η=3

Fig. 7. Influence of variance scaling and the choice of the policy model on
the performance during training.

0 5000 10000 15000 20000
Training dialogues

5

6

7

8

9

10

Re
w

ar
d

greedy
η=1

η=2
η=3

Fig. 8. Influence of variance scaling and the choice of the policy model on
the performance during testing.

C. Fast policy optimisation

One of the claimed advantages of the GP-Sarsa algorithm

is its ability to learn from a small amount of data. It has been

shown that GP-Sarsa outperforms standard non-parametric

5Higher values of η did not produce any further improvements in perfor-
mance.

policy approaches [24]. In this section, we compare the GP-

Sarsa learning rate with the NAC gradient-based algorithm.

1) Comparison with standard methods: NAC policy optimi-

sation for the BUDS dialogue manager relies on the parametric

representation of the policy π using a set of feature functions

F , as explained in Section IV-A1. The GP-Sarsa algorithm

directly optimises the policy in the summary state C.

To measure the rate at which each algorithm learns, the

partially optimised policies were evaluated on 1000 random

dialogues after being trained on 5000 dialogues. This process

was repeated until the policies had been trained with 100, 000
dialogues in total. The confusion rate was set to 15% through-

out. The simulated user had a different random seed in testing

mode to the one set in training mode. The average reward,

the success rate and the average number of turns are shown in

Figs. 9, 10 and 11 respectively. The error bars represent one

standard error.

0 20000 40000 60000 80000 100000
Training dialogues

10

5

0

5

10

15

Re
w

ar
d

NAC
GP

Fig. 9. Comparison of the performance of GP-Sarsa vs the natural actor
critic algorithm, where the performance is measured as the average reward as
a function of the number of training dialogues.

0 20000 40000 60000 80000 100000
Training dialogues

0

20

40

60

80

100

Su
cc

es
s

NAC
GP

Fig. 10. Comparison of the performance of GP-Sarsa vs the natural actor
critic algorithm, where the performance is measured as the average success
as a function of the number of training dialogues.

The results show that the GP-based policy reaches a perfor-

mance comparable to the fully trained NAC policy in only

10, 000 dialogues. This is consistent with related research

which has shown that Gaussian processes can be deployed

to guide gradient descent and improve its efficiency [38].

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 10

0 20000 40000 60000 80000 100000
Training dialogues

6

7

8

9

10

11

12

13

14

15

Tu
rn

s
NAC
GP

Fig. 11. Comparison of the performance of GP-Sarsa vs the natural actor
critic algorithm, where the performance is measured as the average number
of turns as a function of the number of training dialogues.

Also, the fully trained GP policy outperforms the NAC policy

in terms of dialogue length showing that parametric policy

modelling limits the optimality of the solution.

The fully trained GP and NAC policies were also compared

by performing 1000 simulated dialogues over a range of

confusion rates. The average reward is given in Fig. 12.

0 10 20 30 40 50 60
Confusion rate

5

6

7

8

9

10

11

12

13

Re
w

ar
d

NAC
GP

Fig. 12. Comparison of the performance of GP-Sarsa vs the natural actor
critic algorithm, where the performance is measured as the average reward as
a function of the confusion rate in the user input.

The results show that the GP policy outperforms the NAC

policy across confusion rates in the neighbourhood of 15%

confusion rate where the policies are trained. This shows that

while the GP has a potential for more robust performance, it is

important that the training conditions match testing conditions.

Evaluating policy performance on the same simulated user

as used for training may be misleading. Hence, the policies

were also tested with human users recruited using the Amazon

MTurk service. Four policies were compared: partially trained

GP and NAC policies, using only 10, 000 dialogues, and the

fully trained GP and NAC policies.

The results are given in Table I, where for each policy

the number of dialogues is given together with the average

reward, the success rate, the average number of turns as well

as their respective one-standard errors, and the number of

dictionary points used by the GP sparsification algorithm.

The average word error rate was 19%. These results show

that the partially trained GP policy outperforms the partially

trained NAC policy. Indeed, the partially trained GP policy

outperforms all of the other policies including the fully trained

GP policy. The latter result may from exploitation of traits in

the simulated user that are not normally present in real human

interaction.

2) Real world application: GP-Sarsa has been previously

used for training a dialogue manager in direct interaction with

real users [37], however, the summary state space used in

that experiment was only four dimensional. In addition, the

learning process exhibited inconsistencies due to the users

not providing accurate ratings. Here we report on an on-line

learning experiment with the Bayesian Update of Dialogue

State manager using a refined reward function.

The GP-Sarsa algorithm was implemented in a live

telephone-based spoken dialogue system based on the BUDS

framework operating with the summary space described in

Section IV-A2. The GP-Sarsa configuration consisted of the

Gaussian kernel (σk = 5 and p = 4) with a stochastic policy

model where η = 3, the noise of the residual σ = 5 and the

sparsification threshold ν = 0.1.

Human users were assigned specific tasks in the Cambridge

restaurant domain using the Amazon MTurk service. At the

end of each call, users were asked to press 1 if they were

satisfied and 0 otherwise. Previous experience suggests that

this subjective user feedback is not sufficiently robust to rely

on solely for the reward function. Therefore, at the end of each

call the objective success was also calculated by comparing the

predefined task with the system actions. The user rating was

then used to compute the reward function only if it agreed

with the objective measure of success. It has been shown that

this can result in better policy performance [37].

The performance achieved during on-line learning on the

initial 1274 dialogues was compared to the performance of

the policy trained on 10, 000 dialogues using the simulated

user (GPPartlyTrained policy from the previous section). The

results are given in Fig. 13 where the moving average success

is given for a window of 400 dialogues along with the 95%
confidence interval. Of the 1274 dialogues, 1081 had the same

subjective and objective success ratings and were used for

training. It can be seen from Fig. 13 that the policy trained on-

line reaches a comparable asymptotic reward as the simulator-

trained policy but in substantially fewer training dialogues.

Moreover, the learning curve is smooth and it does not exhibit

inconsistencies as was the case in earlier experiments [37] due

to the refined definition of the reward function.

Finally, the policy trained on 1000 dialogues with real users

was tested under the same conditions as for the simulator

trained policies (i.e. the scaling factor η = 1). Comparing Ta-

ble II with Table I, it can be seen that the policy trained on real

users significantly outperforms the simulator trained policies.

D. Policy optimisation on the full belief space

The second major benefit of using Gaussian process policy

optimisation is its potential to substantially reduce designer

effort in defining the policy representation by avoiding the

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 11

TABLE I
HUMAN EVALUATION OF SIMULATOR TRAINED POLICIES

#of dialogues Reward Success Turns #of dict points

NAC-PartlyTrained 402 8.9± 0.4 87.3± 1.7 8.5± 0.2 –

NAC-FullyTrained 415 11.9± 0.3 91.8± 1.3 6.5± 0.2 –

GP-PartlyTrained 400 12.5± 0.3 93.5± 1.2 6.2± 0.2 1569
GP-FullyTrained 397 11.6± 0.4 91.2± 1.4 6.6± 0.2 1699

TABLE II
HUMAN EVALUATION OF THE POLICY TRAINED ONLINE

#of dialogues Reward Success Turns #of dict points

GP-OnlineTrained 410 13.4± 0.3 96.8± 0.9 6.0± 0.1 1132

0 200 400 600 800 1000 1200
Dialogues

0

20

40

60

80

100

M
ov

in
g

av
er

ag
e

su
cc

es
s

On-lineLearning
SimulatorTrained

Fig. 13. Comparison of the performance of the policy trained with the
simulated user and tested with real people with the policy that is optimised
online with interaction with real people. The performance is measured as the
moving average success as a function of the number of dialogues.

need to construct ad hoc feature mapping functions. In this

section, the ability to optimise a policy on the full belief space

is examined in practice.

1) The kernel function on the full belief space: In the

case of the full belief space, the kernel function must be

defined over distributions. For the experiments described here,

the kernel functions were defined following the approaches

described in [39], [40] but modified to suit the dialogue system

application. The kernel function was constructed from the sum

of individual kernels over the distributions bk for each hidden

node k in the Bayesian network belief state b.

We examined three kernel functions. The first is the ex-

pected likelihood kernel, which is also a simple linear inner

product:

kB(b,b
′) =

∑

k

〈bk,b
′
k〉, (24)

the expected value of distribution bk under distribution b′
k.

The second is the Bhattacharyya kernel

kB(b,b
′) =

∑

k

i<dk∑

i=0

√
bk(i)

√
b′
k(i), (25)

where dk is the dimensionality of the k concept in the

Bayesian network. It is related to Hellinger’s distance, which

can be viewed as a symmetric approximation of the Kullback-

Leibler divergence [39].

The third kernel that we compare is given by

kB(b,b
′) = −1

log(2)

∑
k

∑i<dk

i=0 bk(i) log(
bk(i)

bk(i)+b′

k
(i))

+b′
k(i) log(

b′

k
(i)

bk(i)+b′

k
(i)).

(26)

This is related to Jansen-Shannon divergence, a symmetric and

smoothed variant of the Kullback-Leibler divergence [40].

The kernel functions of the history nodes are defined

directly over their respective distributions. Whilst it is possible

to calculate the kernel function for the goal nodes in the same

way, in this case, the choice of system action, such as confirm

or inform, does not depend on the distribution of actual values,

rather it depends on the shape of the distribution. Therefore,

the kernel functions for goal nodes are calculated over vectors,

where each vector represents the corresponding distribution

sorted into order of probability. The only exceptions are the

method goal node and the discourse act node. The former

defines whether the user is searching for a venue by name or

by constraints and the latter defines which discourse act the

user used, eg. acknowledgement, thank you. Their kernels are

calculated in the same way as for the history nodes.

The sparsification threshold ν for this space is set at 0.001.

Some intermediate experimentation showed that the kernel

requires a finer span, so the threshold here is low. Since the

same reward function is used for both the summary space and

the full belief space, the variance of the Q-function residual

σ was also fixed at 5. The sampling scale η was set to 3.

2) Training and evaluation on simulated user: The GP-

Sarsa stochastic policy (13) that operates on the summary

space was compared to the two policies operating on the full

belief space that use different kernel functions in the same

training schedule as described in Section IV-A4.

The results are shown in Fig. 14. As can be seen, the

GP policies trained on the full belief space do converge to

an optimum, with the Bhattacharyya kernel performing best.

Furthermore, increasing the dimensionality of the input space

from the summary space to the full belief space did not

slow down the process of learning. Overall performance is

not however competitive with the summary space stochastic

policy. This is disappointing but perhaps not surprising since

defining a feature based summary space mapping can be

viewed as designing a special kind of kernel that is hand-

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 12

0 5000 10000 15000 20000
Training dialogues

5

6

7

8

9

10

Re
w

ar
d

B-ExpectedLikelihood
B-Bhattacharyya
B-Jansen-Shannon
C-Gaussian

Fig. 14. Comparison of the performance of 3 different policies operating on
the full belief space (B) with a policy operating on the summary space (C).

crafted to suit this task well. This is also the first attempt at

designing a general-purpose kernel to fit an arbitrarily large

belief space, and further work is needed to refine this process.

V. CONCLUSION

This paper has described how Gaussian processes can be

successfully applied to POMDP-based dialogue management.

Various aspects of Gaussian process reinforcement learning

have been discussed, including sparse approximations, the

use of a GP-based stochastic policy model and the GP-Sarsa

algorithm.

Using a system based on the Bayesian Update of Dialogue

State (BUDS) dialogue manager, various issues have been

investigated experimentally both in simulation and with real

users. The principal results are firstly that GP-based pol-

icy optimisation is faster than conventional gradient based

methods and furthermore, performance in the early stages of

learning becomes acceptable very quickly making it feasible

to train systems from scratch directly in interaction with real

users. Secondly, policies trained with real users significantly

outperform policies trained on user simulators. Thirdly, al-

though there is clearly more work to be done, it is feasible

to construct a GP-based policy directly on the full POMDP

belief space obviating the need for hand-crafting a summary

space mapping. These three results represent an important step

towards building flexible dialogue systems that can range over

large and varied domains dynamically adapting to the local

context.

Future research in this area will need to address a number

of issues. Firstly, methods are needed for optimising the kernel

function parameters. It has been shown on a toy dialogue

problem that these parameters can be learnt off-line directly

from data by maximising the marginal likelihood (9) [24],

[23]. This type of approach needs to be extended to work

effectively in a full-scale real-world dialogue manager.

Secondly, the work presented here still requires the use of

a summary action space and heuristic mapping functions to

generate actual system responses. For the experiments here, a

simple δ-kernel was used as the kernel function over the sum-

mary action space. However, Gaussian process reinforcement

learning should allow more elaborate kernel functions to be

defined which can be applied directly to the full action space.

Since the full action space is not finite, sampling methods

would then need to be developed to select an appropriate

system response as in [19].

Finally, more work is needed to develop effective train-

ing strategies which allow optimisation of GP-Sarsa policies

operating on the full belief state space in direct interaction

with real users. The preliminary experiments reported in this

paper suggest this is possible, but work is clearly needed to

achieve performance levels which are competitive with current

summary space models. A related issue concerns the design

of reward functions, and robust methods of computing them

on-line. In all of the work described in this paper, a simple

fixed reward for success is given at the end of the dialogue in

conjunction with a per turn penalty and the primary measure of

success is determined by asking the user to give feedback. This

learning regime would not be possible in real applications.

Ideally the reward needs to be computed without the conscious

engagement of users and it needs to be refined to encourage

the type of desirable dialogue behaviours that are embodied in

the design of current hand-crafted spoken dialogue systems.

ACKNOWLEDGMENTS

The authors would like to thank Blaise Thomson, who built

the Bayesian Update of Dialogue State system used here, Jost

Schatzmann and Simon Keizer, who built the user simulator

and Pirros Tsiakoulis for his help with the user trials. The

authors would also like to thank Matt Henderson, Kai Yu,

Martin Szummer, Catherine Breslin and Dongho Kim for

useful comments and discussions.

REFERENCES

[1] S. Young, “Talking to Machines (Statistically Speaking),” in Proc. of

ICSLP, 2002.
[2] N. Roy, J. Pineau, and S. Thrun, “Spoken dialogue management using

probabilistic reasoning,” in Proc. of ACL, 2000.
[3] B. Zhang, Q. Cai, J. Mao, E. Chang, and B. Guo, “Spoken Dialogue

Management as Planning and Acting under Uncertainty,” in Proc. of

Eurospeech, 2001.
[4] J. Williams and S. Young, “Partially Observable Markov Decision

Processes for Spoken Dialog Systems,” Computer Speech and Language,
vol. 21, no. 2, pp. 393–422, 2007.

[5] B. Thomson, “Statistical methods for spoken dialogue management,”
Ph.D. dissertation, University of Cambridge, 2009.

[6] S. Young, M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson,
and K. Yu, “The Hidden Information State model: A practical framework
for POMDP-based spoken dialogue management,” Computer Speech and

Language, vol. 24, no. 2, pp. 150–174, 2010.
[7] M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson, K. Yu,

and S. Young, “Training and evaluation of the HIS-POMDP dialogue
system in noise,” in Proc. of SIGDIAL, 2008.

[8] F. Jurčı́ček, B. Thomson, and S. Young, “Natural actor and belief critic:
Reinforcement algorithm for learning parameters of dialogue systems
modelled as POMDPs,” ACM Transactions on Speech and Language

Processing, 2011.
[9] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and Acting in

Partially Observable Stochastic Domains,” Artificial Intelligence, vol.
101, pp. 99–134, 1998.

[10] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” in Proc. of IJCAI, 2003, pp. 1025–
1032.

[11] J. Williams and S. Young, “Scaling POMDPs for Spoken Dialog
Management,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 15, no. 7, pp. 2116–2129, 2007.

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, JANUARY 2013 13

[12] J. Henderson, O. Lemon, and K. Georgila, “Hybrid Reinforce-
ment/Supervised Learning for Dialogue Policies from fixed data sets,”
Computational Linguistics, vol. 34, no. 4, pp. 487–511, 2008.

[13] B. Thomson and S. Young, “Bayesian update of dialogue state: A
POMDP framework for spoken dialogue systems,” Computer Speech

and Language, vol. 24, no. 4, pp. 562–588, 2010.
[14] L. Li, J. Williams, and S. Balakrishnan, “Reinforcement Learning

for Dialog Management using Least-Squares Policy Iteration and Fast
Feature Selection,” in Proc. of Interspeech, 2009.

[15] P. Crook and O. Lemon, “Lossless Value Directed Compression of
Complex User Goal States for Statistical Spoken Dialogue Systems,”
in Proc. of Interspeech, 2011.

[16] L. Daubigney, M. Geist, and O. Pietquin, “Off-policy Learning in Large-
scale POMDP-based Dialogue Systems,” in Proc. of ICASSP, 2012.

[17] Amazon, “Amazon Mechanical Turk,” 2011,
https://www.mturk.com/mturk/welcome.

[18] Y. Engel, S. Mannor, and R. Meir, “Bayes Meets Bellman: The Gaussian
Process Approach to Temporal Difference Learning,” in Proc. of ICML,
2003.

[19] ——, “Reinforcement learning with Gaussian processes,” in Proc. of

ICML, 2005.
[20] C. E. Rasmussen and M. Kuss, “Gaussian processes in reinforcement

learning,” in Advances in Neural Information Processing Systems,
vol. 16. MIT Press, 2004, pp. 751–759.

[21] M. Deisenroth, C. Rasmussen, and J. Peters, “Gaussian Process Dynamic
Programming,” Neurocomputing, vol. 72, no. 7-9, pp. 1508–1524, 2009.

[22] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learn-

ing. Cambridge, Massachusetts: MIT Press, 2005.
[23] M. Gašić, “Statistical Dialogue Modelling,” PhD thesis, University of

Cambridge, 2011.
[24] M. Gašić, F. Jurčı́ček, S. Keizer, F. Mairesse, J. Schatzmann, B. Thom-

son, K. Yu, and S. Young, “Gaussian processes for fast policy optimisa-
tion of pomdp-based dialogue managers,” in Proc. of SIGDIAL, 2010.

[25] D. Cohn, L. Atlas, and R. Ladner, “Improving Generalization with
Active Learning,” Machine Learning, vol. 15, pp. 201–221, 1994.

[26] MacKay, D.J.C., “Information-based objective functions for active data
selection,” Neural Computation, vol. 4, no. 4, pp. 590–604, 1992.

[27] J. Quinonero-Candela and C. Rasmussen, “A Unifying View of Sparse
Approximate Gaussian Process Regression,” Journal of Machine Learn-

ing Research, vol. 6, pp. 1939–1959, 2005.
[28] Y. Engel, “Algorithms and Representations for Reinforcement Learning,”

PhD thesis, Hebrew University, 2005.
[29] D. Nguyen-Tuong and J. Peters, “Incremental sparsication for real-time

online model learning,” in Proc. of AISTATS 2010, 2010.
[30] B. Scholkopf and A. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA:
MIT Press, 2001.

[31] J. Peters and S. Schaal, “Natural Actor-Critic,” Neurocomputing, vol. 71,
pp. 1180–1190, 2008.

[32] J. Schatzmann, “Statistical User and Error Modelling for Spoken Dia-
logue Systems,” Ph.D. dissertation, University of Cambridge, 2008.

[33] S. Keizer, M. Gašić, F. Jurčı́ček, F. Mairesse, B. Thomson, K. Yu, and
S. Young, “Parameter estimation for agenda-based user simulation,” in
Proc. of SIGDIAL, 2010.

[34] B. Thomson, M. Gasic, M. Henderson, P. Tsiakoulis, and S. Young, “N-
Best error simulation for training spoken dialogue systems,” in Proc. of

SLT, 2012.
[35] F. Jurčı́ček, S. Keizer, M. Gašić, F. Mairesse, B. Thomson, K. Yu,

and S. Young, “Real user evaluation of spoken dialogue systems using
Amazon Mechanical Turk,” in Proc. of Interspeech, 2011.

[36] L. Daubigney, M. Gašić, S. Chandramohan, M. Geist, O. Pietquin,
and S. Young, “Uncertainty management for on-line optimisation of
a POMDP-based large-scale spoken dialogue system,” in Proc. of

Interspeech, 2011.
[37] M. Gašić, F. Jurčı́ček, B. Thomson, K. Yu, and S. Young, “On-line

policy optimisation of spoken dialogue systems via live interaction with
human subjects,” in Proc. of ASRU, 2011.

[38] H. Jakab and L. Csató, “Reinforcement learning with guided policy
search using gaussian processes,” in Neural Networks (IJCNN), The 2012

International Joint Conference on. IEEE, 2012, pp. 1–8.
[39] T. Jebara, R. Kondor, and A. Howard, “Probability product kernels,” J.

Mach. Learn. Res., vol. 5, pp. 819–844, Dec. 2004.
[40] M. Hein and O. Bousquet, “Hilbertian metrics and positive definite

kernels on probability measures,” in Proc. of AISTATS 2005, 2004.

Milica Gašić Milica Gašić is a Research Associate
in the Dialogue Systems Group at the University
of Cambridge. She graduated in Computer Science
and Mathematics from the University of Belgrade
in 2006. Since then she has been at the University
of Cambridge first as an MPhil student reading
Computer Speech, Text and Internet Technology.
Subsequently, she did a PhD in Statistical Dialogue
Modelling in 2011. She has published around 20
peer-reviewed conference and journal papers in the
area of dialogue management. She served on the

organising committee for Young Researcher’s Roundtable on Spoken Dialogue
Systems in 2009.

Steve Young Steve Young received a BA in Elec-
trical Sciences from Cambridge University in 1973
and a PhD in Speech Processing in 1978. He was
elected to the Chair of Information Engineering
at Cambridge University in 1994. He was a co-
founder and Technical Director of Entropic Ltd from
1995 until 1999 when the company was taken over
by Microsoft. After a short period as an Architect
at Microsoft, he returned full-time to Cambridge
University in January 2001 where he was Head
of Information Engineering until 2009 and is now

Senior Pro-Vice-Chancellor.
His research interests include speech recognition, expressive synthesis and

spoken dialogue systems. He has written and edited books on software
engineering and speech processing, and he has published as author and co-
author, more than 200 papers in these areas. He is a Fellow of the UK Royal
Academy of Engineering, the IET, IEEE and RSA. He served as the senior
editor of Computer Speech and Language from 1993 to 2004, and he was
Chair of the IEEE Speech and Language Technical Committee from 2008 to
2010. He was the recipient of an IEEE Signal Processing Society Technical
Achievement Award in 2004. He was elected a Fellow of the International
Speech Communication Association (ISCA) in 2009 and he was the recipient
of the ISCA Medal in 2010 for Scientific Achievement.

