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1 MOTIVATION

Figure 1 illustrates a typical example of a prediction problem: given some noisy obser-

vations of a dependent variable at certain values of the independent variable , what is

our best estimate of the dependent variable at a new value, ?

If we expect the underlying function to be linear, and can make some as-

sumptions about the input data, we might use a least-squares method to fit a straight

line (linear regression). Moreover, if we suspect may also be quadratic, cubic, or

even nonpolynomial, we can use the principles of model selection to choose among the

various possibilities.

Gaussian process regression (GPR) is an even finer approach than this. Rather

than claiming relates to some specific models (e.g. ), a Gaussian

process can represent obliquely, but rigorously, by letting the data ‘speak’ more

clearly for themselves. GPR is still a form of supervised learning, but the training data

are harnessed in a subtler way.

As such, GPR is a less ‘parametric’ tool. However, it’s not completely free-form,

and if we’re unwilling to make even basic assumptions about , then more gen-

eral techniques should be considered, including those underpinned by the principle of

maximum entropy; Chapter 6 of Sivia and Skilling (2006) offers an introduction.

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

?

x

y

Figure 1: Given six noisy data points (error bars are indicated with vertical lines), we

are interested in estimating a seventh at .
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2 DEFINITION OF A GAUSSIAN PROCESS

Gaussian processes (GPs) extend multivariate Gaussian distributions to infinite dimen-

sionality. Formally, a Gaussian process generates data located throughout some domain

such that any finite subset of the range follows a multivariate Gaussian distribution.

Now, the observations in an arbitrary data set, , can always be

imagined as a single point sampled from some multivariate ( -variate) Gaussian distri-

bution, after enough thought. Hence, working backwards, this data set can be partnered

with a GP. Thus GPs are as universal as they are simple.

Very often, it’s assumed that the mean of this partner GP is zero everywhere. What

relates one observation to another in such cases is just the covariance function, .

A popular choice is the ‘squared exponential’,

(1)

where the maximum allowable covariance is defined as — this should be high for
functions which cover a broad range on the axis. If , then approaches

this maximum, meaning is nearly perfectly correlated with . This is good:

for our function to look smooth, neighbours must be alike. Now if is distant from

, we have instead , i.e. the two points cannot ‘see’ each other. So, for

example, during interpolation at new values, distant observations will have negligible

effect. How much effect this separation has will depend on the length parameter, , so

there is much flexibility built into (1).

Not quite enough flexibility though: the data are often noisy as well, frommeasure-

ment errors and so on. Each observation can be thought of as related to an underlying

function through a Gaussian noise model:

(2)

something which should look familiar to those who’ve done regression before. Re-
gression is the search for . Purely for simplicity of exposition in the next page, we

take the novel approach of folding the noise into , by writing

(3)

where is the Kronecker delta function. (When most people use Gaussian
processes, they keep separate from . However, our redefinition of

is equally suitable for working with problems of the sort posed in Figure 1. So, given

observations , our objective is to predict , not the ‘actual’ ; their expected values

are identical according to (2), but their variances differ owing to the observational noise

process. e.g. in Figure 1, the expected value of , and of , is the dot at .)

To prepare for GPR, we calculate the covariance function, (3), among all possible

combinations of these points, summarizing our findings in three matrices:

...
...

. . .
...

(4)

(5)

Confirm for yourself that the diagonal elements of are , and that its extreme
off-diagonal elements tend to zero when spans a large enough domain.
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3 HOW TO REGRESS USING GAUSSIAN PROCESSES

Since the key assumption in GP modelling is that our data can be represented as a

sample from a multivariate Gaussian distribution, we have that

(6)

where indicates matrix transposition. We are of course interested in the conditional

probability : “given the data, how likely is a certain prediction for ?”. As

explainedmore slowly in the Appendix, the probability follows a Gaussian distribution:

(7)

Our best estimate for is the mean of this distribution:

(8)

and the uncertainty in our estimate is captured in its variance:

(9)

We’re now ready to tackle the data in Figure 1.

1. There are observations , at

We know from the error bars. With judicious choices of and (more

on this later), we have enough to calculate a covariance matrix using (4):

From (5) we also have and

2. From (8) and (9), and .

3. Figure 1 shows a data point with a question mark underneath, representing the

estimation of the dependent variable at .

We can repeat the above procedure for various other points spread over some portion

of the axis, as shown in Figure 2. (In fact, equivalently, we could avoid the repetition

by performing the above procedure once with suitably larger and matrices.

In this case, since there are 1,000 test points spread over the axis, would be

of size 1,000 1,000.) Rather than plotting simple error bars, we’ve decided to plot

, giving a 95% confidence interval.
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Figure 2: The solid line indicates an estimation of for 1,000 values of . Pointwise

95% confidence intervals are shaded.

4 GPR IN THE REAL WORLD

The reliability of our regression is dependent on how well we select the covariance

function. Clearly if its parameters — call them — are not cho-

sen sensibly, the result is nonsense. Our maximum a posteriori estimate of occurs

when is at its greatest. Bayes’ theorem tells us that, assuming we have little

prior knowledge about what should be, this corresponds to maximizing ,

given by

(10)

Simply run your favourite multivariate optimization algorithm (e.g. conjugate gradi-

ents, Nelder-Mead simplex, etc.) on this equation and you’ve found a pretty good

choice for ; in our example, and .

It’s only “pretty good” because, of course, Thomas Bayes is rolling in his grave.

Why commend just one answer for , when you can integrate everything over the many

different possible choices for ? Chapter 5 of Rasmussen andWilliams (2006) presents

the equations necessary in this case.

Finally, if you feel you’ve grasped the toy problem in Figure 2, the next two exam-

ples handle more complicated cases. Figure 3(a), in addition to a long-term downward

trend, has some fluctuations, so we might use a more sophisticated covariance function:

(11)

The first term takes into account the small vicissitudes of the dependent variable, and

the second term has a longer length parameter ( ) to represent its long-term
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Figure 3: Estimation of (solid line) for a function with (a) short-term and long-term

dynamics, and (b) long-term dynamics and a periodic element. Observations are shown

as crosses.

trend. Covariance functions can be grown in this way ad infinitum, to suit the complex-

ity of your particular data.

The function looks as if it might contain a periodic element, but it’s difficult to be

sure. Let’s consider another function, which we’re told has a periodic element. The

solid line in Figure 3(b) was regressed with the following covariance function:

(12)

The first term represents the hill-like trend over the long term, and the second term

gives periodicity with frequency . This is the first time we’ve encountered a case

where and can be distant and yet still ‘see’ each other (that is, for

).

What if the dependent variable has other dynamics which, a priori, you expect to

appear? There’s no limit to how complicated can be, provided is positive

definite. Chapter 4 of Rasmussen and Williams (2006) offers a good outline of the

range of covariance functions you should keep in your toolkit.

“Hang on a minute,” you ask, “isn’t choosing a covariance function from a toolkit

a lot like choosing a model type, such as linear versus cubic — which we discussed

at the outset?” Well, there are indeed similarities. In fact, there is no way to perform

regression without imposing at least a modicum of structure on the data set; such is the

nature of generative modelling. However, it’s worth repeating that Gaussian processes

do allow the data to speak very clearly. For example, there exists excellent theoreti-

cal justification for the use of (1) in many settings (Rasmussen and Williams (2006),

Section 4.3). You will still want to investigate carefully which covariance functions

are appropriate for your data set. Essentially, choosing among alternative functions is

a way of reflecting various forms of prior knowledge about the physical process under

investigation.
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5 DISCUSSION

We’ve presented a brief outline of the mathematics of GPR, but practical implementa-

tion of the above ideas requires the solution of a few algorithmic hurdles as opposed

to those of data analysis. If you aren’t a good computer programmer, then the code

for Figures 1 and 2 is at ftp://ftp.robots.ox.ac.uk/pub/outgoing/mebden/misc/GPtut.zip,

and more general code can be found at http://www.gaussianprocess.org/gpml.

We’ve merely scratched the surface of a powerful technique (MacKay, 1998). First,

although the focus has been on one-dimensional inputs, it’s simple to accept those of

higher dimension. Whereas would then change from a scalar to a vector,

would remain a scalar and so the maths overall would be virtually unchanged. Second,

the zero vector representing the mean of the multivariate Gaussian distribution in (6)

can be replaced with functions of . Third, in addition to their use in regression, GPs

are applicable to integration, global optimization, mixture-of-experts models, unsuper-

vised learning models, and more — see Chapter 9 of Rasmussen and Williams (2006).

The next tutorial will focus on their use in classification.
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APPENDIX

Imagine a data sample taken from some multivariate Gaussian distribution with zero

mean and a covariance given by matrix . Now decompose arbitrarily into two

consecutive subvectors and — in other words, writing would be the

same as writing

(13)

where , , and are the corresponding bits and pieces that make up .

Interestingly, the conditional distribution of given is itself Gaussian-distributed.

If the covariance matrix were diagonal or even block diagonal, then knowing

wouldn’t tell us anything about : specifically, . On the other hand, if

were nonzero, then some matrix algebra leads us to

(14)

The mean, , is known as the ‘matrix of regression coefficients’, and the vari-

ance, , is the ‘Schur complement of in ’.

In summary, if we know some of , we can use that to inform our estimate of what

the rest of might be, thanks to the revealing off-diagonal elements of .
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Gaussian Processes for Classification:
A Quick Introduction

M. Ebden, August 2008

Prerequisite reading: Gaussian Processes for Regression

1 OVERVIEW

As mentioned in the previous document, GPs can be applied to problems other than

regression. For example, if the output of a GP is squashed onto the range , it can

represent the probability of a data point belonging to one of say two types, and voilà,

we can ascertain classifications. This is the subject of the current document.

The big difference between GPR and GPC is how the output data, , are linked to

the underlying function outputs, . They are no longer connected simply via a noise

process as in (2) in the previous document, but are instead now discrete: say

precisely for one class and for the other. In principle, we could try fitting a

GP that produces an output of approximately for some values of and approximately

for others, simulating this discretization. Instead, we interpose the GP between the

data and a squashing function; then, classification of a new data point involves two

steps instead of one:

1. Evaluate a ‘latent function’ which models qualitatively how the likelihood of

one class versus the other changes over the axis. This is the GP.

2. Squash the output of this latent function onto using any sigmoidal function,

prob .

Writing these two steps schematically,

data,
GP

latent function,
sigmoid

class probability, .

The next section will walk you through more slowly how such a classifier operates.

Section 3 explains how to train the classifier, so perhaps we’re presenting things in

reverse order! Section 4 handles classification when there are more than two classes.

Before we get started, a quick note on . Although other forms will do, here

we will prescribe it to be the cumulative Gaussian distribution, . This -shaped

function satisfies our needs, mapping high into , and low into .

A second quick note, revisiting (6) and (7) in the first document: confirm for your-

self that, if there were no noise ( ), the two equations could be rewritten as

(1)

and

(2)
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2 USING THE CLASSIFIER

Suppose we’ve trained a classifier from input data, , and their corresponding expert-

labelled output data, . And suppose that in the process we formed some GP outputs

corresponding to these data, which have some uncertainty but mean values given by

. We’re now ready to input a new data point, , in the left side of our schematic, in

order to determine at the other end the probability of its class membership.

In the first step, finding the probability is similar to GPR, i.e. we adapt (2):

(3)

( will be explained soon, but for now consider it to be very similar to .) In the

second step, we squash to find the probability of class membership,

. The expected value is

(4)

This is the integral of a cumulative Gaussian times a Gaussian, which can be solved

analytically. By Section 3.9 of Rasmussen and Williams (2006), the solution is:

(5)

An example is depicted in Figure 1.

3 TRAINING THE GP IN THE CLASSIFIER

Our objective now is to find and , so that we know everything about the GP pro-

ducing (3), the first step of the classifier. The second step of the classifier does not

require training as it’s a fixed sigmoidal function.

Among the many GPs which could be partnered with our data set, naturally we’d

like to compare their usefulness quantitatively. Considering the outputs of a certain

GP, how likely they are to be appropriate for the training data can be decomposed using

Bayes’ theorem:

(6)

Let’s focus on the two factors in the numerator. Assuming the data set is i.i.d.,

(7)

Dropping the subscripts in the product, is informed by our sigmoid function,

. Specifically, is by definition, and to complete the picture,

. A terse way of combining these two cases is to write

.

The second factor in the numerator is . This is related to the output of the

first step of our schematic drawing, but first we’re interested in the value of

which maximizes the posterior probability . This occurs when the derivative

2
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Figure 1: (a) Toy classification dataset, where circles and crosses indicate class mem-

bership of the input (training) data , at locations . is for one class and for

another, but for illustrative purposes we pretend instead of in this figure.

The solid line is the (mean) probability prob , i.e. the ‘answer’ to our

problem after successfully performing GPC. (b) The corresponding distribution of the

latent function , not constrained to lie between 0 and 1.

of (6) with respect to is zero, or equivalently and more simply, when the derivative

of its logarithm is zero. Doing this, and using the same logic that produced (10) in the

previous document, we find that

(8)

where is the best for our problem. Unfortunately, appears on both sides of the

equation, so we make an initial guess (zero is fine) and go through a few iterations. The

answer to (8) can be used directly in (3), so we’ve found one of the two quantities we

seek therein.

The variance of is given by the negative second derivative of the logarithm of (6),

which turns out to be , with . Making a Laplace

approximation, we pretend is Gaussian distributed, i.e.

(9)

(This assumption is occasionally inaccurate, so if it yields poor classifications, bet-

ter ways of characterizing the uncertainty in should be considered, for example via

expectation propagation.)
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Now for a subtle point. The fact that can vary means that using (2) directly is in-

appropriate: in particular, its mean is correct but its variance no longer tells the whole

story. This is why we use the adapted version, (3), with instead of . Since the

varying quantity in (2), , is beingmultiplied by , we add cov

to the variance in (2). Simplification leads to (3), in which .

With the GP now completely specified, we’re ready to use the classifier as described

in the previous section.

GPC in the Real World

As with GPR, the reliability of our classification is dependent on how well we select

the covariance function in the GP in our first step. The parameters are ,

one fewer now because . However, as usual, is optimized by maximizing

, or (omitting on the righthand side of the equation),

(10)

This can be simplified, using a Laplace approximation, to yield

(11)

This is the equation to run your favourite optimizer on, as performed in GPR.

4 MULTI-CLASS GPC

We’ve described binary classification, where the number of possible classes, , is just

two. In the case of classes, one approach is to fit an for each class. In the first

of the two steps of classification, our GP values are concatenated as

(12)

Let be a vector of the same length as which, for each , is for the class

which is the label and for the other entries. Let grow to being block diagonal

in the matrices . So the first change we see for is a lengthening

of the GP. Section 3.5 of Rasmussen and Williams (2006) offers hints on keeping the

computations manageable.

The second change is that the (merely one-dimensional) cumulative Gaussian dis-

tribution is no longer sufficient to describe the squashing function in our classifier;

instead we use the softmax function. For the th data point,

(13)

where is a nonconsecutive subset of , viz. . We can summa-

rize our results with .

Now that we’ve presented the two big changes needed to go from binary- to multi-

class GPC, we continue as before. Setting to zero the derivative of the logarithm of the

components in (6), we replace (8) with

(14)

The corresponding variance is as before, but now diag ,

where is a matrix obtained by stacking vertically the diagonal matrices

diag , if is the subvector of pertaining to class .
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With these quantities estimated, we have enough to generalize (3) to

diag (15)

where , , and represent the class-relevant information only. Finally, (11) is

replaced with

(16)

We won’t present an example of multi-class GPC, but hopefully you get the idea.

5 DISCUSSION

As with GPR, classification can be extended to accept values with multiple dimen-

sions, while keeping most of the mathematics unchanged. Other possible extensions

include using the expectation propagation method in lieu of the Laplace approximation

as mentioned previously, putting confidence intervals on the classification probabili-

ties, calculating the derivatives of (16) to aid the optimizer, or using the variational

Gaussian process classifiers described in MacKay (1998), to name but four extensions.

Second, we repeat the Bayesian call from the previous document to integrate over

a range of possible covariance function parameters. This should be done regardless

of how much prior knowledge is available — see for example Chapter 5 of Sivia and

Skilling (2006) on how to choose priors in the most opaque situations.

Third, we’ve again spared you a few practical algorithmic details; computer code

is available at http://www.gaussianprocess.org/gpml, with examples.
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