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Abstract— Estimating the location of a mobile device or a
robot from wireless signal strength has become an area of highly
active research. The key problem in this context stems from the
complexity of how signals propagate through space, especially in
the presence of obstacles such as buildings, walls or people. In this
paper we show how Gaussian processes can be used to generate a
likelihood model for signal strength measurements. We also show
how parameters of the model, such as signal noise and spatial
correlation between measurements, can be learned from data
via hyperparameter estimation. Experiments using WiFi indoor
data and GSM cellphone connectivity demonstrate the superior
performance of our approach.

I. INTRODUCTION

Over the last years, the use of wireless signal strength

information to localize mobile devices or robots has gained

significant interest in several research communities. This is

mainly due to the increasing availability of 802.11 WiFi

networks and the importance of location information for

applications such as activity recognition, surveillance, and

context-aware computing.

What distinguishes location estimation using wireless signal

strength from many robotics localization problems is the

unpredictability of signal propagation through indoor environ-

ments. This unpredictability makes it difficult to generate an

adequate likelihood model of signal strength measurements.

Thus, the main focus of research in this area has been on the

development of techniques that can generate such models from

small amounts of calibration data collected in an environment.

Existing approaches to signal strength localization fall into

two main categories. The first class of techniques assume

knowledge about the locations of access points and then model

the propagation of signals through space to determine the

expected signal strength at any location based on the distance

from an access point [15], [1], [8]. Unfortunately, these para-

metric models have only limited accuracy, even when taking

information about the locations of walls and furniture into

account. The second class of techniques compute measurement

likelihoods using location-specific statistics extracted from

calibration data. These local statistics include histograms [7],

Gaussians [5], [4], [10], or even raw measurements [1]. Local

approaches typically result in higher localization accuracy if

enough calibration data is available. A main problem for these

models, however, is to generate likelihoods at locations for

which no calibration data is available. While several groups

have addressed this problem via spatial smoothing [10], [5],

[8], existing techniques have important limitations with respect

to considering all available information in a statistically sound

way.

In this paper we show how Gaussian processes (GP) [13]

can be used to overcome these limitations. GPs are non-

parametric models that estimate Gaussian distributions over

functions based on training data. GP regression has been

used with great success in a variety of applications, including

sensor networks [3], data visualization [9], and computer

animation [12]. GPs have several properties that make them

ideally suited for modeling signal strength measurements:

Continuous locations: GPs do not require a discretized rep-

resentation of an environment, or the collection of cali-

bration data at pre-specified locations. They are able to

predict signal strength measurements at arbitrary loca-

tions.

Arbitrary likelihood models: GPs are non-parametric re-

gression models and thereby able to approximate an

extremely wide range of non-linear signal propagation

models.

Correct uncertainty handling: In contrast to other regres-

sion models, GPs provide uncertainty estimates for pre-

dictions at any set of locations. This uncertainty takes

into account the local density of calibration data and the

noise of the data points.

Consistent parameter estimation: The parameters of GPs

can be learned from the calibration data via hyperpa-

rameter estimation. These parameters include the spatial

correlation between measurements and the measurement

noise.

The use of GPs for signal strength based location estimation

has been proposed by Schwaighofer and colleagues [14]. In

this paper we extend their work in several directions. More

specifically, we introduce a Bayesian filter for location estima-

tion that builds on a mixed graph / free space representation of

indoor environments. While hallways, stair cases, and elevators

are represented by edges in a graph, areas such as rooms are

represented by bounded polygons. Using this representation

we can model both constrained motion such as moving down

a hallway, or going upstairs, and less constrained motion

through rooms and open spaces. The likelihood of signal

strength measurements is extracted from a GP that is learned

from calibration data. In contrast to existing approaches, our

technique explicitly models the probability of not detecting

an access point, which can greatly increase the quality of the

global localization process.



In our experiments we demonstrate various features of GPs

for signal strength localization. We also show that the same

technique can applied to model GSM cellphone connectivity,

which results in significant improvements over existing out-

door localization techniques.

This paper is organized as follows. In the next section,

we will give an overview of GPs and show how they can

be used to model signal strength measurements. Then, in

Section III, we will introduce our mixed graph / free space

representation of indoor environments and describe a particle

filter for location estimation in such models. Related work will

be discussed in Section IV, followed by experimental results.

We conclude in Section VI.

II. GAUSSIAN PROCESSES FOR MODELING SIGNAL

STRENGTH MEASUREMENTS

We perform Bayesian filtering to estimate the location of a

person from signal strength measurements. A key component

of a Bayes filter is the observation model, which describes the

likelihood of making an observation at the different locations

in an environment [16]. Before we discuss the specifics of

our approach to localization, we will show how Gaussian

processes can be used to generate an observation model for

signal strength measurements from calibration data.

A. Preliminaries

GPs can be derived in different ways. Here, we follow

closely the function-space view described in [13]. Let D =
{(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of training samples

drawn from a noisy process

yi = f(xi) + ε, (1)

where each xi is an input sample in R
d and each yi is a target

value, or observation, in R. ε is zero mean, additive Gaussian

noise with known variance σ2
n. For notational convenience, we

aggregate the n input vectors xi into a d × n matrix X, and

the target values yi into the vector denoted y.

A Gaussian process estimates posterior distributions over

functions f from training data D. These distributions are

represented non-parametrically, in terms of the training points.

A key idea underlying GPs is the requirement that the function

values at different points are correlated, where the covariance

between two function values, f(xp) and f(xq), depends on

the input values, xp and xq. This dependency can be specified

via an arbitrary covariance function, or kernel k(xp,xq). The

choice of the kernel function is typically left to the user, the

most widely used being the squared exponential, or Gaussian,

kernel:

k(xp,xq) = σ2
f exp

(

−
1

2l2
|xp − xq|

2

)

(2)

Here, σ2
f is the signal variance and l is a length scale that

determines how strongly the correlation between points drops

off. Both parameters control the smoothness of the functions

estimated by a GP. We will show in Section II-C how these

values can be learned from training data. As can be seen in

(2), the covariance between function values decreases with the

distance between their corresponding input values.

Since we do not have direct access to the function values,

but only noisy observations thereof, it is necessary to represent

the corresponding covariance function for noisy observations:

cov (yp, yq) = k(xp,xq) + σ2
nδpq (3)

Here σ2
n is the Gaussian observation noise and δpq is one if

p = q and zero otherwise. For an entire set of input values X,

the covariance over the corresponding observations y becomes

cov (y) = K + σ2
nI, (4)

where K is the n × n covariance matrix of the input values,

that is, K[p, q] = k(xp,xq).
Note that (4) represents a prior over functions: For any

set of values X, one can generate the matrix K and then

sample a set of corresponding targets y that have the desired

covariance [13]. The sampled values are jointly Gaussian with

y ∼ N (0,K + σ2
nI). More relevant, however, is the posterior

distribution over functions given training data X,y. Here, we

are interested in predicting the function value at an arbitrary

point x∗, conditioned on training data X,y. From (2) follows

that the posterior over function values is Gaussian with mean

µx∗
and variance σ2

x∗
:

p (f(x∗) | x∗,X,y) = N
(

f(x∗);µx∗
, σ2

x∗

)

, where

µx∗
= k∗

T
(

K + σ2
nI
)

−1
y (5)

σ2
x∗

= k(x∗,x∗) − k∗

T
(

K + σ2
nI
)

−1
k∗ (6)

Here k∗ is the n×1 vector of covariances between x∗ and the n
training inputs X, and K is the covariance matrix of the inputs

X. As can be seen from (5), the mean function is a linear

combination of the training observations y, where the weight

of each observation is directly related to k∗, the correlation

between the test point x∗ and the corresponding training input.

The middle term is the inverse of the covariance function (4).

The covariance of the function estimate, σ2
x∗

, is given by the

prior covariance, k(x∗,x∗), minus the information provided

by the training data (via the inverse of the covariance matrix

K). Note that the covariance is independent of the observed

values y.

The predictive distribution in (5) and (6) summarizes the

key advantages of GPs for signal strength likelihood models.

In addition to providing a regression model based on training

data, the GP also represents the uncertainty at any location.

B. Application to Signal Strength Modeling

In the context of signal strength localization, the input

values X correspond to locations, and the observations y

correspond to signal strength measurements obtained at these

locations. The GP posterior is estimated from a calibration

trace of signal strength measurements annotated with their

locations. Assuming independence between different access

points, we estimate a GP for each access point separately.

During localization, the likelihood of observing a measurement

can then be computed at any location using (5) and (6).

2



Fig. 1. Raw signal strength measurements for one access point

Fig. 2. Mean of GP prediction for one access point

Fig. 1 illustrates the GP signal strength model for one access

point on one floor of our test environment. The raw signal

strength measurements are shown in the upper left panel. The

size of the area covered by these measurements is 60 × 50
meters. Obviously, these measurements can not be represented

adequately by a radial signal propagation model. The mean

and variance of the GP posterior for these data points are

shown in Fig. 2 and Fig. 3, respectively. As can be seen, the

GP smoothly approximates the data points. The variance of

the prediction increases in areas that are not covered by the

data. The gap in the middle of the data, generating the “bump”

in the variance function, corresponds to a large, inaccessible

atrium.

This interpolation was achieved with values 17.8 and 8.2

for the parameters l and σ2
f of the covariance function k

defined in (2), and a signal noise σ2
n of 4.0. The impact of

these parameters is illustrated by Fig. 4, which shows the GP

mean values for the same data when using 17.8, 2.0 and 2.0

as parameter values. Obviously, it is extremely important to

determine adequate parameter values,

Fig. 3. Variance of GP prediction for one access point

Fig. 4. Mean of GP prediction with different covariance parameters

C. Hyperparameter Estimation

Fortunately, it is possible to learn these parameters based on

the training data X,y using hyperparameter estimation. More

specifically, we estimate the values of these parameters by

maximizing the log likelihood of the observations y. Let θ =
〈σ2

n, l, σ2
f 〉 denote the hyperparameters we wish to estimate.

The log likelihood of the observations is given by [13]

log p(y | X, θ) =

−
1

2
yT (K + σ2

nI)−1y −
1

2
log |K + σ2

nI| −
n

2
log 2π,

(7)

which follows directly from the fact that the observations

are jointly Gaussian. (7) can be maximized using conjugate

gradient descent (LBFGS). To do so, we need to compute the

partial derivatives of the log likelihood.

∂

∂θj

log p(y | X, θ) =
1

2
tr

(

(K−1y)(K−1y)T ∂K

∂θj

)

. (8)

We now consider the subsequent partial derivatives of the

kernel function with respect to the kernel parameters. Con-
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sider, as an example, the Gaussian kernel function. The partial

derivatives of each element K[p, q] follow as

∂K

∂σ2
f

= 2σf exp

(

−
1

2

(

d

l

)2
)

(9)

∂K

∂l
= σ2

f exp

(

−
1

2

(

d

l

)2
)

d2

l3
(10)

∂K

∂σ2
n

= 2σnδpq, (11)

where d = xp − xq.

The most computationally complex step in the hyperparam-

eter estimation is the inversion of the covariance matrix K
in (8), which takes time O(n3), where n is the number of

training points. This inversion must be performed with each

new value θ, so an efficient gradient descent algorithm is key

for tractable optimization.

D. Zero Mean Offset

A Gaussian process is, by default, a zero mean process. In

absence of training data, the process tends to zero. For simple

data relations, the mean of the data can be subtracted before

training such that the process is centered around the mean.

However for complex data relations, a more nuanced approach

is required.

Modeling WiFi signal strength propagation is such a case

where the zero-mean is an issue. When far enough from the

access point, all readings should tend to zero. However, if we

have a large region near the access point without training data,

we would like the model not to tend to zero completely.

For WiFi, we assume a very simple offset model where

signal strength decreases linearly with distance from the access

point. Such a model takes the following form:

ss = m||x − xAP || + b (12)

where x is the input point, xAP is the location of the access

point, ||x−xAP || is the distance between the input and access

point, m is the propagation slope, b is the signal strength

recorded at the access point, and ss is the resulting signal

strength prediction. We estimate the value of the parameters

m, b, and xAP by minimizing the difference between ss
and actual training values with resepect to the parameters

using conjugate gradient descent. Clearly, real world data will

deviate from this simple model, but in practice the simple

model offers an improvement when confronted with sparse

training data.

III. BAYESIAN FILTERING ON MIXED GRAPH / FREE

SPACE REPRESENTATIONS

The goal of Bayesian localization is to estimate the posterior

over a person’s location, xt, conditioned on all sensor measure-

ments, z1:t, obtained through time t. At the core of each Bayes

filter is the following recursive equation, which is updated

whenever new sensor information becomes available [16]:

p(xt|z1:t) ∝ p(zt|xt)

∫

p(xt|xt−1)p(xt−1|z1:t−1) dxt−1 (13)

Fig. 5. Mixed representation of part of an indoor environment. Hallways,
stair cases, and elevators are modeled as edges on a connectivity graph. Rooms
and break-out areas are modeled as bounded free space areas.

Here, we have the special case that no control information u is

available. The term p(xt|xt−1) represents the motion model,

which we will describe in more detail after discussing our

spatial representation. The term p(zt|xt) is the measurement

likelihood model, which in our case describes the likelihood of

observing a set of signal strength measurements zt at a location

xt. As described in Section II-B, we use a Gaussian process to

generate this likelihood. As is done typically for such types of

sensors, we compute the likelihood of a complete set of read-

ings by multiplying the individual reading likelihoods [16].

However, since the GP models were learned independently

of each other, the resulting likelihood can become highly

peaked, which results in overconfident estimates. We take

this approximation into account by “smoothing” the likelihood

model:

p(zt[1:n]|xt) =

(

n
∏

i=1

p(zt[i] | xt)

)γ

(14)

Here, n is the number of detected access points and γ ∈
[0 : 1] plays the role of a smoothing coefficient [6]. In our

experiments we set γ to 1/n, resulting in the geometric mean

of the individual likelihoods.

A. Mixed Graph / Free Space Representation

Our representation of a person’s locations is motivated

by the Voronoi motion graphs introduced by Liao and col-

leagues [11]. The key idea of their approach is to represent

indoor environments by graphs whose edges correspond to

the Voronoi graph of an environment. Liao et al. showed that

by constraining a person’s location and motion to edges on

such a graph, their system is able to adequately represent

typical motion patterns through indoor environments; resulting

in improved tracking and learning performance.
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While such constraints are adequate for hallway environ-

ments, they are not well-suited to model a person’s motion

through open spaces such as rooms or laboratories. We over-

come this limitation by introducing a mixed graph / free

space representation of indoor environments. While our novel

representation can be applied to both indoor and outdoor

environments, the focus of this paper is on indoor localization.

In outdoor environments, edges would correspond to streets

and walkways, and open spaces would correspond to parks or

parking lots.

Our representation is an enhanced graph structure G =
(E,R, V ), where E is a set of undirected edges ei that

correspond to hallways, stair cases, and elevators; the set R
contains polygonal regions ri that represent open spaces such

as rooms and break-out areas; and V are vertices vi that

connect edges and regions. The vertices play an important

role in the motion model of our tracking algorithm since

they correspond to choice points, which are locations where a

person has a discrete number of choices as to where to move

next. A representation of three floors of our test environment

is shown in Fig. 5. While the lines indicate hallways, elevators,

and a stair case, the shaded regions represent rooms and break-

out areas.

B. Particle Filter-Based Tracking

We implement Bayesian filtering in our representation using

particle filters, which represent and propagate posteriors using

sets St = {〈x
(i)
t , w(i)t〉|i = 1, . . . , n} of weighted samples [2].

Each sample x
(i)
t is a potential location of the person, and each

has an associated importance weight w
(i)
t . Standard particle

filters realize Bayes filter updates by propagating samples

through time according to the following sampling procedure:

Re-sampling: Draw with replacement a random sample x
(i)
t−1

from the previous sample set according to the importance

weights w
(i)
t−1. Sampling: Generate a new particle x

(j)
t by

sampling from the motion model p(x
(j)
t | x

(i)
t−1). Importance

sampling: Weight the sample by the measurement likelihood

p(zt | x
(j)
t ).

When using a particle filter for signal strength localization,

the state xt represents a person’s location inside a building.

The incorporation of the Gaussian process likelihood model

is straightforward; it only requires the evaluation of (5) and

(6) at the corresponding sample location. In addition to the

location in the global reference frame of a building, each

particle contains information that enables us to relate the

person’s location to the enhanced graph structure of our mixed

representation. More specifically, each state is represented as

xt =
〈et, dt,mt〉 if location is on edge

〈rt, xt, yt, αt,mt〉 if location is in region,
(15)

where et is an edge identifier, dt indicates the distance

from the start of the edge, and mt ∈ {stopped,moving}
indicates the current motion state. Furthermore, rt denotes

a region and xt, yt, αt represent the person’s location and

heading within the region. The motion update of the particle

filter requires sampling from the motion model p(x
(j)
t | x

(i)
t−1).

To define the motion model for our enhanced graph structure,

we need to incorporate the following:

Motion state transitions p(mt | mt−1) represent the proba-

bility of motion state mt being moving or stopped

given the previous motion state. This 2 × 2 matrix

models a preference of staying in the previous state,

thereby avoiding too rapid switching between motion

states. Furthermore, our system uses two different motion

state transition matrices, one for particles on edges and

one for particles in regions. This enables the system to

model the fact that a person is far more likely to stop

when being in a room versus a hallway.

Edge transitions p(et | et−1) are stored at each vertex

of the graph. They represent preferences when moving

through the graph structure. For instance, when reaching

a vertex in a hallway, the probability of choosing the next

edge along the hallway is higher than the probability of

entering an edge that leads to a room. The graph also

contains special vertices that connect an edge to a region.

Whenever such a vertex is reached from an edge, then the

particle enters the region with probability one, and vice

versa.

Free space motion is applied to particles in regions. We

use a rather simplistic motion model that prefers straight

motion when the person is in the moving mode and

allows arbitrary rotations when the person is in the

stopped motion mode. Whenever a particle reaches the

boundary of a region, the particle is forced to stay in the

region by reversing its heading direction. The only way

to exit a region is via one of the vertices that connect

the region to an edge. In our model, the probability of

“hopping” onto such a vertex is inverse proportional to

the distance from the vertex.

Sampling from the resulting motion model is done as

follows. If x
(i)
t−1 = 〈et−1, dt−1,mt−1〉 is on an edge in

the graph, then we proceed similar to Liao et al. [11]: We

first sample the discrete motion state mt with probability

proportional to p(mt | mt−1). If mt = stopped, then xt

is set to be xt−1. Otherwise, if mt = moving, then we

randomly draw a motion distance d according to a Gaussian

velocity distribution. For this distance d, we determine whether

the motion along the edge results in a transition over the end

vertex of et−1. If not, then dt = dt−1 + d and et = et−1.

Otherwise, if the end vertex is connected to other edges, then

we set dt = dt−1 +d−|et−1| and the next edge et is sampled

with probability p(et | et−1). If the end vertex is connected

to a region rt, then the next state is initialized with random

heading αt and with location xt, yt within this region, drawn

from a Gaussian with mean at the entry vertex.

If x
(i)
t−1 = 〈rt−1, xt−1, yt−1, αt−1,mt−1〉 was already in

a region, then we first sample whether or not the particle

exits the region. This sampling is done inverse proportional

to the distance between 〈xt−1, yt−1〉 and the closest vertex

connected to the region. If the particle exits the region, then

its location is initialized at the start of the edge connected
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to the corresponding vertex. Otherwise, we first sample the

motion state mt and corresponding motion distance d. The

new position 〈xt, yt〉 is then determined based on a straight

motion starting at 〈xt−1, yt−1〉 in direction αt−1. If the motion

state is moving, then αt is sampled from a Gaussian with

mean at αt−1, otherwise, αt is sampled uniformly from [0 :
2π].

IV. RELATED WORK

Several location estimation techniques model signal strength

measurements by their propagation through space [15], [1],

[8]. They assume an exponential attenuation model for wire-

less signals, and use this path loss to determine likelihoods

based upon distance from an access point, whose location is

assumed known. [15], [1] showed how information about the

location and material of walls and furniture inside buildings

can be used to better estimate path loss. Even with such infor-

mation, however, the accuracy of signal propagation models

is limited due to the inherent unpredictability of how signals

propagate through indoor environments.

Alternative techniques ignore signal attenuation and instead

compute likelihoods from location-specific statistics compiled

from training data. While such techniques require more train-

ing data, they are able to represent arbitrary likelihood models,

which typically results in better localization performance. In

order to generate a probabilistic likelihood model, Ladd and

colleagues [7] used histograms over measurements collected

at a fixed set of locations in an office environment. They

later showed that replacing the histograms by Gaussians re-

quires smaller training sets and results in better localization

performance [4]. Howard and colleagues [5] show how spa-

tial smoothing on a discrete grid of points can significantly

improve the quality of a sensor model, especially when the

training data contains gaps. However, they do not show how

to estimate model parameters, and their technique does not

estimate the uncertainty in the measurement prediction, which

is crucial for adequate likelihood models. Recently, Letchner

et al. [10] introduced a hierarchical Bayesian technique that

incorporates a signal propagation model via hyperparameters

in order to estimate Gaussian likelihoods on a grid. An

important aspect of this method is that the prediction certainty

takes number of training points into account. However, the

spatial smoothing of this technique does not correlate the

signal strengths measured at neighboring locations.

In contrast to our approach, all these existing techniques rely

on a pre-specified set of discrete locations; they are not able

to adequately incorporate training data collected at arbitrary,

continuous locations. Furthermore, none of these approaches

is able to interpolate between data points while correctly

estimating the uncertainty resulting from the interpolation. Our

approach, on the other hand, is able to naturally interpolate

between continuous data points even in 3D environments,

while still being able to estimate the resulting uncertainties

in predictions.

In [14], Schwaighofer and colleagues showed how to apply

Gaussian processes to modeling signal strength measurements.

They achieved 10m location accuracy based on DECT wireless

phone connectivity, without performing any temporal inte-

gration of sensor information. Our work goes beyond their

technique in several aspects: We show the applicability of GPs

for GSM connectivity and WiFi based localization in large

scale, structured environments. To do so, we introduce a novel

Bayesian filter for location estimation that builds on a mixed

graph / free space representation of indoor environments.

This representation combines the advantages of graph-based

tracking [11] with the flexibility of modeling arbitrary paths

through free space.

V. EXPERIMENTAL RESULTS

In our experiments we evaluate Gaussian processes for

signal strength localization using WiFi indoor data and GSM

connectivity data.

A. Setup of Indoor Experiments

Our test environment consists of the three floors shown in

Fig. 5. To collect calibration data, we used an iPAQ hx4705

PDA with a built in wireless device polling WiFi signal

strength every 0.5 seconds. The ground truth locations were

estimated based on manual annotation of waypoints using the

iPAQ during data collection. The path was then estimated

based on linear interpolation between these waypoints, thus

assuming constant velocity.

The calibration data was collected during one hour of walk-

ing through the environment, covering all rooms, hallways,

elevators, and stair cases shown in Fig. 5. All told, the data

referenced 75 unique access points, visiting 54 rooms. The

test data consisted of one hour of trace data, covering about

3 km of travel distance and spread across ten distinct traces.

This data was collected during different times within two days.

During test data collection, the person used the elevators and

stair cases, moving through 30 different rooms, resulting in

a total of 47 room visits. The ordering of rooms visited was

generated by a random ordering of available rooms.

To learn the hyperparameters of the GP, we randomly

sampled 300 data points for each access point. We then used

the gradient descent technique described in Section II-C to find

the global parameter settings that minimized the negative log-

likelihood of the training data of all access points. To avoid

local minima, we used randomly selected start values over

multiple iterations. This learning process took typically less

than one hour on a standard desktop PC. A typical sensor

model generated with the trained hyperparameters is shown in

Fig. 2.

Once learning converged, we used the trained hyperparame-

ters to generate the GP model. For this purpose, we randomly

drew 700 samples from the training data of each access point

and computed the
(

K + σ2
nI
)

−1
y term used for the mean and

variance of the likelihood model given in (5) and (6). This

step, which was dominated by the inversion of the 700× 700
covariance matrix, took typically 30 minutes for the entire set

of access points.
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Fig. 6. Ground truth path (red / grey) and most likely particle path estimate
(black) for one of the test traces.

For localization, we used a particle filter with 200 particles.

At every update of the filter, the likelihood of each signal

strength measurement was computed for each particle by

evaluating the GP for that particle’s location. The complexity

of this update is O(nm), where m is the number of particles

and n is the number of calibration points. The particle filter

ran in real time on a standard PC.

B. Indoor WiFi Localization Accuracy

To evaluate the accuracy of our localization algorithm, we

compared at each iteration the particle with the highest weight

to the ground truth position. The average error over the 3 km

of test data was 2.12 meters. We additionally compared the

complete trajectory of the most likely particle at the end of

each run to the ground truth locations. One of these paths

is shown in Fig. 6. The error of the most likely trajectories

was only 1.69 meters on average. We believe that these error

values are among the best reported in the literature. They were

achieved under extremely challenging localization conditions:

the person moved constantly through the building; entering

rooms, taking stairs and elevators.

In order to assess the quality of the localization process

on a more qualitative scale, we also evaluated the topological

correctness of the path estimated by the most likely particle.

These results are summarized in the following table:

% correct room % wrong room % hallway

Ground truth in room 81 17 2

Estimate in room 83 14 3

TABLE I

The first row evaluates the accuracy when the person was

actually in a room against the path prediction of the most likely

particle. As can be seen, the system confuses a room with its

neighboring rooms and hallways in less than 20% of the time

spent in rooms. The second row evaluates the accuracy when

the most likely particle path is in a room against the ground

truth location. Again, the error rate for the particle is less

than 20%. Note that further smoothing could be applied as

appropriate to regularlize discontinuities in the location trace.

We additionally evaluated the sequence of rooms visited

by the most likely particle path during the test traces. We

compared this sequence against the ground truth room se-

quence with a string edit distance. Specifically, we consider

the number of additions or deletions of rooms to match ground

truth. Over our ten evaluation traces, we had a total edit

distance of only 10, suggesting that our path misclassifies

approximately one room per trace; either visiting a room that

was not in the ground truth sequence, or missing a room that

was actually visited.

C. Dealing with Sparse Data

To evaluate the ability of GPs to deal with sparse data, we

removed the training data collected in 25 out of the 54 rooms

(the test traces visited 10 of these rooms). We then performed

the same localization experiments as done for the complete

training data. In all but one of the 10 test traces, the accuracy

was virtually indistinguishable from the results achieved with

the complete data. In only one of the 10 traces did the filter

lose track, resulting in a path error of 16m.

These results show that the GP is able to accurately ex-

trapolate the signal strength model into rooms for which no

training data is available at all, especially in combination with

a simple zero mean offset model. We have not seen any reports

of such a capability in the literature.

D. GSM Localization

The second experiment is a wide-area localization using

GSM signal information. For the experiment we collected

data using a standard GPS unit (Sirf III) and an Audiovox

SMT5600 mobile phone. The mobile phone is able to collect

information of the connected cell tower as well as the up to

eight neighboring cells. The information includes a unique

identifier for each cell and the corresponding signal strength.

The training data was collected over an area of 465 square

kilometers, driving for 208 hours (see Table II for details).

Training Data Test Data

Downtown Residential Suburban

Duration 208hr 70min 80min 89min

Distance 4350km 24km 38km 51km

Dimension 25.0x18.6km 2.2x2.1km 2.4x4.4km 4.5x5.5km

TABLE II

In addition to the GPS unit, which was mounted on top of

the car roof, we put three phones on the dashboard. Each of the

phones was connected to a different cell phone provider (ATT,

Cingular, and T-mobile). In addition, we collected three test

traces in different areas of town, chosen to cover different cell

tower densities. The density of cell towers is important as a

cell tower can theoretically be seen at distances of up to 35km.

Therefore, GSM signal strength is by far not as discriminative

as WiFi signal strength.

We compared the results achieved with our GP with other

techniques for localization. The simplest one is the centroid

technique where the estimated position is the average of

the locations of the seen cell towers. The weighted centroid

approach uses additional weights for the position of the seen

cell tower corresponding to their current signal strength. In

dense areas these techniques can estimate the location within

a comparable accuracy, but fail in less dense areas (see
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Fig. 7. The left image shows the measurements for one cell tower. The color
of the measurements corresponds to the signal strength. The right image shows
the GP mean estimate of the signal strength.

Technique Median Error in m

Downtown Residential Suburban

Centroid 232 1209 612

Weighted Centroid 184 765 561

Fingerprinting 94 255 293

Gaussian Processes 128 208 236

TABLE III

Table III). The third technique is fingerprinting [1]. The basic

idea here is to mark every location with a unique set of

cell tower identifications and signal strengths. The current

measurement is compared with the database of all fingerprints

and the location of the fingerprint that corresponds at most to

the measurements is then chosen. Fingerprinting needs dense

training coverage as it is not able to localize in areas that

are not included in the training data. Table III shows the

accuracy of this technique which is comparable to the GP

based technique and slightly better in the downtown area. This

area has the highest density of cell towers. This advantage will

be mitigated when evaluated in sparse training environments,

where GPs outperform fingerprinting techniques.

VI. CONCLUSIONS

We presented Gaussian processes for localization based on

signal strength measurements. GPs are ideally suited for repre-

senting the complex likelihood models of such measurements.

They overcome various limitations of previous techniques:

they do not rely on a discrete representation of space, they

are non-parametric and can thus represent arbitrary likelihood

models, they correctly represent uncertainty due to sparse

training data, and they enable the consistent estimation of

hyperparameters.

We show how to incorporate a GP likelihood model into a

Bayesian filter operating in a novel representation of indoor

environments. This representation combines a graph structure

with free space regions. Our representation allows the Bayes

filter to constrain a person’s path when moving through

hallways or elevators while allowing for free movement in

open areas. Our experiments show that the resulting system

can accurately track a person moving through a large indoor

environment. Furthermore, the GP is able to accurately predict

WiFi measurements in rooms that were not visited in the

training phase. We also present results in large scale outdoor

environments using GSM signal strength. We believe that

the results achieved with our approach are superior to those

presented in the literature so far.

One of the main problems of GPs is the complexity of

model learning when using large data sets (≥ 800 data points).

Fortunately, there exist various sparse approximations for GPs

and we are currently investigating their use. We strongly

believe that GP regression can be applied successfully to

various robotics problems, including robot localization [5] and

mobile sensor networks [3]. We are additionally investigating

the use of GPs for WiFi-SLAM, where a signal strength map

is generated by moving through an unknown environment.
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