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In this paper, we offer a gentle introduction to
Gaussian processes for time-series data analysis. The
conceptual framework of Bayesian modelling for
time-series data is discussed and the foundations
of Bayesian non-parametric modelling presented
for Gaussian processes. We discuss how domain
knowledge influences design of the Gaussian process
models and provide case examples to highlight the
approaches.

1. Introduction
If we are to take full advantage of the richness of
scientific data available to us, we must consider a
principled framework under which we may reason and
infer. To fail to do this is to ignore uncertainty and risk
false analysis, decision-making and forecasting. What we
regard as a prerequisite for intelligent data analysis is
ultimately concerned with the problem of computing in
the presence of uncertainty. Considering data analysis
under the mathematics of modern probability theory
allows us to exploit a profound framework under which
information, uncertainty and risk for actions, events and
outcomes may be readily defined. Much recent research
hence focuses on the principled handling of uncertainty
for modelling in environments that are dynamic,
noisy, observation costly and time sensitive. The
machinery of probabilistic inference brings to the field
of time-series analysis and monitoring robust, stable,
computationally practical and principled approaches
that naturally accommodate these real-world challenges.
As a framework for reasoning in the presence of
uncertain, incomplete and delayed information, we
appeal to Bayesian inference. This allows us to perform
robust modelling even in highly uncertain situations,
and has a long pedigree in inference. Being able to

c© 2012 The Author(s) Published by the Royal Society. All rights reserved.
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include measures of uncertainty allows, for example, us to actively select where and when
we would like to observe samples and offers approaches by which we may readily combine
information from multiple noisy sources.

This paper favours the conceptual over the mathematical (of course, the mathematical details
are important and elegant but would obscure the aims of this paper; the interested reader is
encouraged to read the cited material and a canonical text such as Rasmussen & Williams [1]).
We start §2 with a short overview of why Bayesian modelling is important in time-series analysis,
culminating in arguments that provoke us to use non-parametric models. Section 3 presents
a conceptual overview of a particular flavour of non-parametric model, the Gaussian process
(GP), which is well suited to time-series modelling [1]. We discuss in more detail the role of
covariance functions, the influence they have on our models and explore, by example, how the
(apparently subjective) function choices we make are in fact motivated by domain knowledge.
Section 5 presents real-world time-series examples, from sensor networks, changepoint data
and astronomy, to highlight the practical application of GP models. The more mathematical
framework of inference is detailed in §4.

2. Bayesian time-series analysis
We start by casting time-series analysis into the format of a regression problem, of the form y(x) =
f (x) + η, in which f () is a (typically) unknown function and η is a (typically white) additive noise
process. The goal of inference in such problems is twofold: firstly to evaluate the putative form
of f () and secondly to evaluate the probability distribution of y∗ for some x∗, i.e. p(y∗ | x∗). To
enable us to perform this inference, we assume the existence of a dataset of observations, typically
obtained as input–output pairs, D = (xi, yi) for example. For the purposes of this study, we make
the tacit assumption that the inputs xi (representing, e.g. time locations of samples) are known
precisely, i.e. there is no input noise, but that observation noise is present on the yi. When we come
to analyse time-series data, there are two approaches we might consider. The first function mapping

and the second curve fitting.
The mapping approach considers inference of a function f that maps some observed x to an

outcome variable y without explicit reference to the (time) ordering of the data. For example, if we
choose x to be a datum in a time series, and y to be the next datum, then inferring f (x) models
the relationship between one datum and its successor. Problematically, the mapping is (typically)
static, so poorly models non-stationary time series, and there is difficulty in incorporating time-
series domain knowledge, such as beliefs about smoothness and continuity. Furthermore, if
the periods between samples are uneven, this approach fails to accommodate this knowledge
with ease.

Curve fitting, on the other hand, makes the tacit assumption that y is ordered by x, the latter
normally taken to be the time variable, with inference proceeding by fitting a curve to the set
of x, y points. Prediction, for example, is thence achieved by extrapolating the curve that models
the observed past data. The relationship between x and y is hence not fixed, but conditioned on
observed data that (typically) lies close, in time, to the point we are investigating. In this study,
we make the decision to concentrate on this approach, as we believe it offers a more profound
model for much of the time-series data we are concerned with.

As a simple example to introduce the canonical concepts of Bayesian modelling, we consider
a small set of data samples, located at x = 0, 1, 2, and associated observed target values. Least-
squares regression on this data using a simple model (based on polynomial splines) gives rise to
the curve shown as the line in figure 1a. We see that, naturally, this curve fits our observed data
very well. What about the credibility of the model in regions where we see no data, importantly
x > 2? If we look at a larger set of example curves from the same model, we obtain a family of
curves that explains the observed data identically yet differ very significantly in regions where
we have no observations, both interpolating between sample points, and in extrapolation. This
simple example leads naturally to us considering a distribution of curves. Working with some
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Figure 1. A simple example of curve 
tting. (a) The least-squares 
t of a simple spline to the observeddata (circles). (b) Example

curves with identical 
t to the data as the least-squares spline. These curves have high similarity close to the data yet high

variability in regions of no observations, both interpolating and, importantly for time series, as we extrapolate beyond x = 2.

(Online version in colour.)

distribution over the curves, each of which offers an explanation for the observed data, is central
to Bayesian modelling. We note that curves which lie towards the edges of this distribution have
higher average curvature than those which lie close to the middle. In the simple example under
consideration, there is an intimate relationship between curvature, complexity and Bayesian
inference, leading naturally to posterior beliefs over models being a combination of how well
observed data are explained and how complex the explanatory functions are. This elegant
formalism encodes in a single mathematical framework such ideas as Occam’s razor, such that
simple explanations of observed data are favoured.

(a) Parametric and non-parametric models

The simple example above showed that there are many functions which can equally well
explain data that we have observed. How should we choose from the bewildering array of
mathematical functions that give rise to such explanatory curves? If we have strong prior
knowledge regarding a system, then this (infinite-dimensional) function space may be reduced to
a single family; perhaps the family of quartic polynomials may be the right choice. Such models
are considered to be parametric, in the sense that a finite number of unknown parameters (in
our polynomial example, these are the coefficients of the model) need to be inferred as part
of the data modelling process. Although there is a very large literature (rightly so) on such
parametric modelling methods, there are many scenarios in which we have little, or no, prior
knowledge regarding appropriate models to use. We may, however, have seemingly less specific
domain knowledge; for example, we may know that our observations are visible examples from
an underlying process that is smooth, continuous and variations in the function take place
over characteristic time scales (not too slowly yet not so fast) and have typical amplitude.
Surprisingly, we may work mathematically with the infinite space of all functions that have
these characteristics. Furthermore, we may even contemplate probability distributions over this
function space, such that the work of modelling, explaining and forecasting data is performed
by refining these distributions, so focusing on regions of the function space that are excellent
contenders to model our data. As these functions are not characterized with explicit sets of
parameters to be inferred (unlike our simple polynomial example, in which sets of coefficients
need to be evaluated), this approach is referred to as a branch of non-parametric modelling.1

1This always feels rather disingenuous though, as these models do have hyperparameters, which we discuss later in this paper.
These still need to be inferred! They are referred to as hyperparameters, as they govern such things as the scale of a distribution
rather than acting explicitly on the functional form of the curves.
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x1

x2

Figure 2. The conceptual basis of GPs starts with an appeal to simple multi-variate Gaussian distributions. A joint distribution

(covariance ellipse) formsmarginal distributions p(x1), p(x2) that are vague (black solid line). Observing x1 at a value indicated

by the vertical dashed line changes our beliefs about x2, giving rise to a conditional distribution (black dashed-dot line).

Knowledge of the covariance lets us shrink uncertainty in one variable, based on observation of the other. (Online version

in colour.)

As the dominant machinery for working with these models is that of probability theory, they are
often referred to as Bayesian non-parametric models. We now focus on a particular member, namely
the GP.

3. Gaussian processes
We start this introduction to GPs by considering a simple two-variable Gaussian distribution,
which is defined for variables x1, x2 say, by a mean and a 2 × 2 covariance matrix, which we
may visualize as a covariance ellipse corresponding to equal probability contours of the joint
distribution p(x1, x2). Figure 2 shows an example of a two-dimensional distribution as a series
of elliptical contours. The corresponding marginal distributions p(x1) and p(x2) are shown as
‘projections’ of this along the x1 and x2 axes (solid black lines). We now consider the effect of
observing one of the variables such that, for example, we observe x1 at the location of the dashed
vertical line in the figure. The resultant conditional distribution p(x2 | x1 = known), indicated by the
dash-dotted curve, now deviates significantly from the marginal p(x2). Because of the relationship
between the variables implied by the covariance, knowledge of one shrinks our uncertainty in
the other.

To see the intimate link between this simple example and time-series analysis, we represent
the same effect in a different format. Figure 3 shows the mean (black line) and ±σ (grey-shaded
region) for p(x1) and p(x2). Figure 3a depicts our initial state of ignorance and figure 3b after we
observe x1. Note how the observation changes the location and uncertainty of the distribution
over x2. Why stop at only two variables? We can extend this example to arbitrarily large numbers
of variables, the relationships between which are defined by an ever larger covariance. Figure 4
shows the posterior distribution for a 10 day example in which observations are made at locations
2, 6 and 8. Figure 4a shows the posterior mean and ±σ as in our previous examples. Figure 4b

extends the posterior distribution evaluation densely in the same interval (here, we evaluate the
distribution over several hundred points). We note that the ‘discrete’ distribution is now rather
continuous. In principle, we can extend this procedure to the limit in which the locations of the
xi are infinitely dense (here, on the real line) and so the infinite joint distribution over them all
is equivalent to a distribution over a function space. In practice, we will not need to work with

 on January 4, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


5

rsta.royalsocietypublishing.org
PhilTransR

Soc
A
371:20110550

......................................................

x1 x2 x1 x2

(a) (b)

Figure 3. The change in distributions on x1 and x2 is here presented in a form more familiar to time-series analysis. (a) The

initial, vague, distributions (the black line showing the mean and the grey shading±σ ) and (b) subsequent to observing x1.

The distribution over x2 has become less uncertain and the most-likely ‘forecast’ of x2 has also shifted.

0 2 4 6 8 10
–2
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0
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2

0 2 4 6 8 10

(a) (b)

Figure 4. (a) The posterior distribution (the black line showing the mean and the grey shading±σ ) for a 10 day example,

with observations made at locations 2, 6 and 8. (b) Evaluates the posterior densely in the interval [1,10] showing how arbitrarily

dense evaluation gives rise to a ‘continuous’ posterior distribution with time.

such infinite spaces, it is sufficient that we can choose to evaluate the probability distribution over
the function at any location on the real line and that we incorporate any observations we may have
at any other points. We note, crucially, that the locations of observations and points we wish to
investigate the function are not constrained to lie on any predefined sample points; hence, we are
working in continuous time with a GP.

(a) Covariance functions

As we have seen, the covariance forms the beating heart of GP inference. How do we formulate
a covariance over arbitrarily large sets? The answer lies in defining a covariance kernel function,
k(xi, xj), which provides the covariance element between any two (arbitrary) sample locations, xi

and xj say. For a set of locations x = {x1, x2, . . . , xn}, we hence may define the covariance matrix as

K(x, x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

...
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.1)

This means that the entire function evaluation, associated with the points in x, is a draw from a
multi-variate Gaussian distribution,

p(y(x)) =N (µ(x), K(x, x)), (3.2)
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where y = {y1, y2, . . . , yn} are the dependent function values, evaluated at locations x1, . . . , xn, and
µ is a mean function, again evaluated at the locations of the x variables (which we will briefly
revisit later). If we believe that there is noise associated with the observed function values, yi,
then we may fold this noise term into the covariance. As we expect noise to be uncorrelated from
sample to sample in our data, so the noise term adds only to the diagonal of K, giving a modified
covariance for noisy observations of the form

V(x, x) = K(x, x) + σ 2I, (3.3)

where I is the identity matrix and σ 2 is a hyperparameter representing the noise variance.
How do we evaluate the GP posterior distribution at some test datum, x∗ say? We start with

considering the joint distribution of the observed data D (consisting of x and associated values y)
augmented by x∗ and y∗,

p

([

y

y∗

])

=N

([

µ(x)

µ(x∗)

]

,

[

K(x, x) K(x, x∗)

K(x∗, x) k(x∗, x∗)

])

, (3.4)

where K(x, x∗) is the column vector formed from k(x1, x∗), . . . , k(xn, x∗) and K(x∗, x) is its
transpose. We find, after some manipulation, that the posterior distribution over y∗ is Gaussian
with mean and variance given by

m∗ = µ(x∗) + K(x∗, x)K(x, x)−1(y − µ(x)) (3.5)

and

σ 2
∗ = K(x∗, x∗) − K(x∗, x)K(x, x)−1K(x, x∗). (3.6)

We may readily extend this to infer the GP at a set of locations outside our observations, at x∗
say, to evaluate the posterior distribution of y(x∗). The latter is readily obtained once more by
extending the above equations and using standard results for multi-variate Gaussians. We obtain
a posterior mean and variance given by

p(y∗) =N (m∗, C∗), (3.7)

where

m∗ = µ(x∗) + K(x∗, x)K(x, x)−1(y(x) − µ(x)) (3.8)

and

C∗ = K(x∗, x∗) − K(x∗, x)K(x, x)−1K(x∗, x)T, (3.9)

in which we use the shorthand notation for the covariance, K(a, b), defined as

K(a, b) =

⎛

⎜

⎜

⎜

⎜

⎝

k(a1, b1) k(a1, b2) · · · k(a1, bn)

k(a2, b1) k(a2, b2) · · · k(a2, bn)

...
...

...
...

k(an, b1) k(an, b2) · · · k(anbn)

⎞

⎟

⎟

⎟

⎟

⎠

. (3.10)

If we believe (and in most situations we do) that the observed data are corrupted by a noise
process, we would replace the K(x, x) term above with, for example, V(x, x) from equation (3.3)
above.

What should the functional form of the kernel function k(xi, xj) be? To answer this, we will start
by considering what the covariance elements indicate. In our simple two-dimensional example,
the off-diagonal elements define the correlation between the two variables. By considering time
series in which we believe the informativeness of past observations, in explaining current data, is
a function of how long ago we observed them, we then obtain stationary covariance functions that
are dependent on |xi − xj|. Such covariance functions can be represented as the Fourier transform
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Figure 5. (a–c) Functions drawn from a GPwith a squared exponential covariance functionwith output scale h= 1 and length

scalesλ = 0.1 (a), 1 (b), 10 (c). (Online version in colour.)

of a normalized probability density function (via Bochner’s theorem [1]); this density can be
interpreted as the spectral density of the process. The most widely used covariance function of
this class is arguably the squared exponential (SE) function, given by

k(xi, xj) = h2 exp

[

−
(

xi − xj

λ

)2
]

. (3.11)

In equation (3.11), we see two more hyperparameters, namely h, λ, which respectively govern the
output scale of our function and the input, or time, scale. The role of inference in GP models is
to refine vague distributions over many, very different curves, to more precise distributions that
are focused on curves that explain our observed data. As the form of these curves is uniquely
controlled by the hyperparameters, so, in practice, inference proceeds by refining distributions
over them. As h controls the gain, or magnitude, of the curves, we set this to h = 1 to generate
figure 5, which shows curves drawn from a GP (with an SE covariance function) with varying
λ = 0.1, 1, 10 (figure 5a–c). The important question of how we infer the hyperparameters is left
until later in this paper, in §4. We note that to be a valid covariance function, k(), implies only
that the resultant covariance matrix, generated using the function, is guaranteed to be positive
(semi-)definite. As a simple example, figure 6a shows a small sample of six observed data points,
shown as dots, along with error bars associated with each. The seventh datum, with ‘?’ beneath it,
is unobserved. We fit a GP with the SE covariance kernel (equation (3.11)). Figure 6b shows the GP
posterior mean (black curve) along with ±2σ (the posterior standard deviation). Although only
a few samples are observed, corresponding to the set of x, y of equations (3.8) and (3.9), we here
evaluate the function on a fine set of points, evaluating the corresponding y∗ posterior mean and
variance using these equations and hence providing interpolation between the noisy observations
(this explains the past) and extrapolation for x∗ > 0 that predicts the future. In this simple
example, we have used a ‘simple’ covariance function. As the sum of valid covariance functions is
itself a valid covariance function (more on this in §3c(i) later) so we may entertain more complex
covariance structures, corresponding to our prior belief regarding the data. Figure 7 shows GP
modelling of observed (noisy) data for which we use slightly more complex covariances. Figure 7a

shows data modelled using a sum of SE covariances, one with a bias towards shorter characteristic
time scales than the other. We see how this combination elegantly allows us to model a system
with both long- and short-term dynamics. Figure 7b uses an SE kernel, with bias towards longer
time-scale dynamics, along with a periodic component kernel (which we will discuss in more
detail in §3c(i)). Note here how extrapolation outside the data indicates a strong posterior belief
regarding the continuance of periodicity.
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Figure 6. (a) Given six noisy data points (error bars are indicated with vertical lines), we are interested in estimating a seventh

at x∗ = 0.2. (b) The solid line indicates an estimation of y∗ for x∗ across the range of the plot. Along with the posterior mean,

the posterior uncertainty,±2σ , is shaded. (Online version in colour.)
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Figure 7. (a) Estimation of y∗ (solid line) and±2σ posterior deviance for a functionwith short-term and long-term dynamics,

and (b) long-term dynamics and a periodic component. Observations are shown as pluses. As in the previous example, we

evaluate the posterior GP over an extended range to show both interpolation and extrapolation. (Online version in colour.)

(b) Sequential modelling and active data selection

We start by considering a simple example, shown in figure 8. Figure 8a shows a set of data points
and the GP posterior distribution excluding observation of the right-most datum (darker shaded
point). Figure 8b depicts the same inference including this last datum. We see how the posterior
variance shrinks as we make the observation. The previous example showed how making an
observation, even of a noisy time series, shrinks our uncertainty associated with beliefs about the
function local to the observation. We can see this even more clearly if we successively extrapolate
until we see another datum, as shown in figure 9. Rather than observations coming on a fixed
time-interval grid, we can imagine a scenario in which observations are costly to acquire, and
we wish to find a natural balance between sampling and reducing uncertainty in the functions
of interest. This concept leads us naturally in two directions. Firstly, for the active requesting of
observations when our uncertainty has grown beyond acceptable limits (of course these limits are
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Figure 8. A simple example of a GP applied sequentially. (a) The posterior mean and±2σ prior to observing the right-most

datum (darker shaded) and (b) after observation. (Online version in colour.)
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Figure 9. The GP is run sequentially making forecasts until a new datum is observed. Once we make an observation, the

posterior uncertainty drops to zero (assuming noiseless observations). (Online version in colour.)

related to the cost of sampling and observation and the manner in which uncertainty in the time
series can be balanced against this cost) and secondly to dropping previously observed samples
from our model. The computational cost of GPs is dominated by the inversion of a covariance
matrix (as in equation (3.9)) and hence scales with the cube of the number of retained samples.
This leads to an adaptive sample retention. Once more, the balance is problem specific, in that it
relies on the trade-off between computational speed and (for example) forecasting uncertainty.
The interested reader is pointed to Osborne et al. [2] for more detailed discussions. We provide
some examples of active data selection in operation in real problem domains later in this study.

(c) Choosing covariance and mean functions

The prior mean of a GP represents whatever we expect for our function before seeing any data.
The covariance function of a GP specifies the correlation between any pair of outputs. This
can then be used to generate a covariance matrix over our set of observations and predictants.
Fortunately, there exist a wide variety of functions that can serve in this purpose [3,4], which
can then be combined and modified in a further multitude of ways. This gives us a great deal of
flexibility in our modelling of functions, with covariance functions available to model periodicity,
delay, noise and long-term drifts and other phenomena.
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(i) Covariance functions

In the following section, we briefly describe commonly used kernels. We start with simple white
noise, and then consider common stationary covariances, both uni- and multi-dimensional. We
finish this section with periodic and quasi-periodic kernel functions. The interested reader is
referred to Rasmussen & Williams [1] for more details. Although the following list is not exclusive
by any means, it provides details for most of the covariance functions suitable for analysis of
time series. We note once more that sums (and products) of valid covariance kernels give valid
covariance functions (i.e. the resultant covariance matrices are positive (semi-)definite) and so
we may entertain with ease multiple explanatory hypotheses. The price we pay lies in the extra
complexity of handling the increased number of hyperparameters.

White noise with variance σ 2 is represented by

kWN(xi, xj) = σ 2δ(i, j). (3.12)

This kernel allows us to entertain uncertainty in our observed data and is so typically found
added to other kernels (as we saw in equation (3.3)).

The SE kernel is given by

kSE = h2 exp

[

−
(

xi − xj

λ

)2
]

, (3.13)

where h is an output-scale amplitude and λ is an input (length, or time) scale. This gives rather
smooth variations with a typical time scale of λ and admits functions drawn from the GP that are
infinitely differentiable.

The rational quadratic (RQ) kernel is given by

kRQ(xi, xj) = h2

(

1 +
(xi − xj)

2

αλ2

)−α

, (3.14)

where α is known as the index. Rasmussen & Williams [1] show that this is equivalent to a
scale mixture of SE kernels with different length scales, the latter distributed according to a Beta
distribution with parameters α and λ−2. This gives variations with a range of time scales, the
distribution peaking around λ but extending to significantly longer period (but remaining rather
smooth). When α → ∞, the RQ kernel reduces to the SE kernel with length scale λ.

The Matérn class of covariance functions is defined by

kM(xi, xj) = h2 1
Γ (ν)2ν−1

(

2
√

ν
|xi − xj|

λ

)

Bν

(

2
√

ν
|xi − xj|

λ

)

, (3.15)

where h is the output scale, λ is the input scale, Γ () is the standard Gamma function and B() is the
modified Bessel function of second order. The additional hyperparameter ν controls the degree of
differentiability of the resultant functions modelled by a GP with a Matérn covariance function,
such that they are only (ν + 1

2 ) times differentiable. As ν → ∞, so the functions become infinitely
differentiable and the Matérn kernel becomes the SE one. Taking ν = 1

2 gives the exponential
kernel

k(xi, xj) = h2 exp
(

−
|xi − xj|

λ

)

, (3.16)

which results in functions that are only once differentiable, and correspond to the Ornstein–
Ulenbeck process, the continuous time equivalent of a first-order autoregressive model, AR(1).
Indeed, as discussed in Rasmussen & Williams [1], time-series models corresponding to AR(p)
processes are discrete time equivalents of GP models with Matérn covariance functions with
ν = p − 1

2 .
Multiple inputs and outputs. The simple distance metric, |x1 − x2|, used thus far clearly allows

only for the simplest case of a one-dimensional input x, which we have hitherto tacitly assumed
to represent a time measure. In general, however, we assume our input space has finite dimension
and write x(e) for the value of the eth element in x and denote x(e)

i as the value of the eth element at
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the ith index point. In such scenarios, we entertain multiple exogenous variables. Fortunately, it is
not difficult to extend covariance functions to allow for these multiple input dimensions. Perhaps
the simplest approach is to take a covariance function that is the product of one-dimensional
covariances over each input (the product correlation rule [5]),

k(xi, xj) =
∏

e

k(e)(x(e)
i , x(e)

j ), (3.17)

where k(e) is a valid covariance function over the eth input. As the product of covariances is a
covariance, so equation (3.17) defines a valid covariance over the multi-dimensional input space.
We can also introduce distance functions appropriate for multiple inputs, such as the Mahalanobis
distance,

d(M)(xi, xj; Σ) =
√

(xi − xj)
TΣ−1(xi − xj), (3.18)

where Σ is a covariance matrix over the input variable vector x. Note that this is a matrix
which represents hyperparameters of the model, and should not be confused with covariances
formed from covariance functions (which are always denoted by K in this study). If Σ is
a diagonal matrix, its role in equation (3.18) is simply to provide an individual input scale
λe =

√
Σ(e, e) for the eth dimension. However, by introducing off-diagonal elements, we can

allow for correlations among the input dimensions. To form the multi-dimensional kernel, we
simply replace the scaled distance measure |xi − xj|/λ of, e.g. equation (3.13) with d(M)(x1, x2) from
equation (3.18) above.

For multi-dimensional outputs, we consider a multi-dimensional space consisting of a set of
time series along with a label l, which indexes the time series, and x denoting time. Together,
these thence form the two-dimensional set of [l, x]. We will then exploit the fact that a product of
covariance functions is a covariance function in its own right, and write

k([lm, xi], [ln, xj]) = kx(xi, xj) kl(lm, ln) ,

taking covariance function terms over both time and time-series label. If the number of time
series is not too large, we can arbitrarily represent the covariance matrix over the labels, using
the spherical decomposition [6]. This allows us to represent any covariance structure over the
labels. More details of this approach, which enables the dependencies between time series to be
modelled, are found in Roberts et al. [7], and we use this as the focus of one of our examples in §5.

Periodic and quasi-periodic kernels. Note that a valid covariance function under any arbitrary
(smooth) map remains a valid covariance function [1,8]. For any function u : x → u(x), a covariance
function k() defined over the range of x gives rise to a valid covariance k′() over the domain of u.
Hence, we can use simple, stationary covariances in order to construct more complex (possibly
non-stationary) covariances. A particularly relevant example of this,

u(x) = (u(a)(x), u(b)(x)) =
(

cos
(

2π
x

T

)

, sin
(

2π
x

T

))

, (3.19)

allows us to modify our simple covariance functions above to model periodic functions. We can
now take this covariance over u as a valid covariance over x. As a result, we have the covariance
function, for the example of the SE (3.13),

kper-SE(xj, xj; h, w, T) = h2 exp
(

−
1

2w2 sin2
(

π

∣

∣

∣

∣

xj − xj

T

∣

∣

∣

∣

))

. (3.20)

In this case, the output scale h serves as the amplitude and T is the period. The hyperparameter
w is a ‘roughness’ parameter that serves a role similar to the input scale λ in stationary
covariances. With this formulation, we can perform inference about functions of arbitrary
roughness and with arbitrary period. Indeed a periodic covariance function can be constructed
from any kernel involving the squared distance (xi − xj)

2 by replacing the latter with sin2[π(xi −
xj)/T], where T is the period. The length scale w is now relative to the period, and letting w → ∞
gives sinusoidal variations, while increasingly small values of w give periodic variations with
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Figure 10. Random draws from GPs with di�erent kernels. (a) Shows the SE kernel (equation (3.13), with h= 1, λ = 1), (b)

the RQ (equation (3.14), with h= 1,λ = 1 andα = 0.5) and (c) a periodic kernel based on the SE (equation (3.20), with h= 1,

T = 2 andw = 0.5). (d) Shows a quasi-periodic kernel constructed by multiplying the periodic kernel of equation (3.13) (with

h= 1, T = 2,w = 1) with the RQ kernel of equation (3.14) (withλ = 4 andα = 0.5). (e, f ) Show noisy versions of this kernel

obtained by adding, respectively, a white noise term (equation (3.13), with σ = 0.2) and an SE term (equation (3.13), with

h= 0.1, λ = 0.1). Each line consists of equally spaced samples over the interval [−5, 5], and is o�set from the previous one

by 3 for clarity. The random number generated was initiated with the same seed before generating the samples shown in each

panel. (Online version in colour.)

increasingly complex harmonic content. Similar periodic functions could be constructed from
any kernel. Other periodic functions could also be used, so long as they give rise to a symmetric,
positive definite covariance matrix – sin2 is merely the simplest.

As described in Rasmussen & Williams [1], valid covariance functions can be constructed by
adding or multiplying simpler covariance functions. Thus, we can obtain a quasi-periodic kernel
simply by multiplying a periodic kernel with one of the basic stationary kernels described earlier.
The latter then specifies the rate of evolution of the periodic signal. For example, we can multiply
equation (3.20) with an SE kernel,

kQP,SE(xi, xj) = h2 exp

(

−
sin2[π(xi − xj)/T]

2w2 −
(xi − xj)

2

λ2

)

, (3.21)

to model a quasi-periodic signal with a single evolutionary time scale λ.
Examples of functions drawn from these kernels are shown in figure 10. There are many more

types of covariance functions in use, including some (such as the Matérn family above) that are
better suited to model rougher, less smooth variations. However, the SE and RQ kernels already
offer a great degree of freedom with relatively few hyperparameters, and covariance functions
based on these are widely used to model time-series data.

Changepoints. We now describe how to construct appropriate covariance functions for functions
that experience sudden changes in their characteristics. This section is meant to be expository;
the covariance functions we describe are intended as examples rather than an exhaustive list of
possibilities. To ease exposition, we assume the (single) input variable of interest, x, represents
time. If additional features are available, they may be readily incorporated into the derived
covariances [1].

A drastic change in covariance: we start by considering a function of interest as well behaved,
except for a drastic change at the point xc, which separates the function into two regions with
associated covariance functions k1(·, ·; θ1) before xc and k2(·, ·; θ2) after, where θ1 and θ2 represent
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Figure 11. Example covariance functions (a) for the modelling of data with changepoints and associated draws (b) from the

resultant GPs, indicating what kind of data that they might be appropriate for. Each changepoint covariance function is drawn

as a bold line, with the standard SE kernel shown as kSE for comparison (thin line). For ease of comparison, we 
x the location

of the changepoint hyperparameter to xc = 500 and plot the functions over the interval from 460≤ x ≤ 560. (Online version

in colour.)

the values of any hyperparameters associated with k1 and k2, respectively. The change is so
drastic that the observations before xc are completely uninformative about the observations
after the changepoint. The full set of hyperparameters for this covariance function are hence the
hyperparameters of the two covariance functions as well as the location of the changepoint, xc.
This covariance function is easily seen to be semi-positive definite and hence admissible [9,10].
The covariance function, and an example draw from the GP associated with it, are presented in
the left-most plots of figure 11.

A drastic change in covariance with constraints: suppose a continuous function of interest is
best modelled by different covariance functions, before and after a changepoint xc. The function
values after the changepoint are conditionally independent of the function values before, given
the value at the changepoint itself. This represents an extension to the drastic covariance described
earlier; our two regions can be drastically different, but we can still enforce continuity and
smoothness constraints across the boundary between them. We call this covariance function the
continuous conditionally independent covariance function. This covariance function can be extended
to multiple changepoints, boundaries in multi-dimensional spaces, and also to cases where
function derivatives are continuous at the changepoint. For proofs and details of this covariance
function, the reader is invited to see Osborne et al. [10] and Reece et al. [11].

A sudden change in input scale: suppose a function of interest is well behaved, except for
a drastic change in the input scale λ at time xc, which separates the function into two regions
with different degrees of long-term dependence. We let λ1 and λ2 represent the input scale of
the function before and after the changepoint at xc, respectively. The hyperparameters of this
covariance consist of the two input scales, λ1, λ2 along with a common output scale, h, and the
changepoint location, xc. The second panel in figure 11 shows an example covariance function of
this form (figure 11a) and an example function (figure 11b).

A sudden change in output scale: we now consider a function of interest as well behaved,
except for a drastic change in the output scale h at time xc, which separates the function into two
regions. As before, we let h1 and h2 represent the output scales before and after the changepoint
at xc. The full set of hyperparameters of this model consists of the two output scales, h1, h2, a
common input scale, λ, and the location of the changepoint, xc. The third panel of figure 11 shows
an example covariance and associated example function. We note that we may readily combine
changes in input and output scale into a single changepoint covariance (an example of which is
shown in the right-most plots of figure 11).
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A change in observation likelihood: hitherto, we have taken the observation likelihood as being
defined by a single GP. We now consider other possible observation models, motivated by fault
detection and removal [11,12]. For example, a sensor fault implies that the relationship between
the underlying process model and the observed values is temporarily corrupted. In situations
where a model of the fault is known, the faulty observations need not be discarded; they may
still contain valuable information about the plant process. The interested reader is directed to
Reece et al. [11,12], in which covariances for biased readings, stuck sensors and sensor drifts
are discussed.

(ii) Mean functions

As the mean function will dominate our forecasts in regions far from the data, the choice of the
prior mean function can have a profound impact on our predictions and must be chosen with this
in mind. In the majority of cases in the literature, we find vague (i.e. high uncertainty) flat mean
functions used. This choice is reinforced by considering the prior mean function as the expectation
function, prior to any observed data, of our domain beliefs. In the vast majority of situations, the
symmetry of our ignorance (i.e. we are equally unsure that a trend is up or down) leads to flat,
often zero-offset, mean functions. As a simple example, we may have domain knowledge that our
functions have a linear drift term, but we do not know the magnitude or direction. Whatever prior
we place over the gradient of the drift will be necessarily symmetric and leads to a zero mean with
variance defined by the vagueness of our priors. If we do have such domain knowledge, then we
are free to incorporate this into our GP models. For example, consider the case in which we know
that the observed time series consists of a deterministic component and an unknown additive
component. Draws from our GP are hence

y(x) ∼N (m(x; θm), K(x, x; θC)), (3.22)

in which the mean function, m, has hyperparameters θm that encode domain knowledge
regarding the deterministic component and the covariance matrix K has hyperparameters θC.
For example, we may know that our observations are obtained from an underlying exponential
decay with an unknown additive function along with coloured noise. Our mean function will
hence be of the form m(x∗) = A exp(−ax∗) where A, a are unknown hyperparameters. Figure 12a

shows a standard SE covariance GP used to model a small set of noisy data samples (dots) drawn
from a function with an underlying exponential decay. The GP models the observed data well,
but long-term predictions are naturally dominated by a flat prior mean function. In figure 12b, a
GP with identical covariance is used, but the mean function is that of an exponential decay with
unknown hyperparameters. Even a few data points are sufficient for the exponential function
hyperparameters to be inferred, leading to long-term forecasts that are dominated by a (albeit
uncertain) decay function.

4. Marginalizing hyperparameters
GP models have a number of hyperparameters (owing to both the covariance and mean functions)
that we must marginalize2 in order to perform inference. That is, we must first assign a prior p(θ)

to these hyperparameters, informed by our domain knowledge. For example, in assigning a prior
to the period of a tidal signal (as in §5a), we would use a prior that expressed that the most
important period was of the order of days, rather than nanoseconds or millenia. In the absence of
hard domain knowledge, these priors are chosen to be diffuse: for example, a Gaussian with high
variance. Then, the quantity we are interested in is

p
(

y∗
∣

∣y
)

=
∫

p
(

y∗
∣

∣y, θ
)

p
(

y
∣

∣θ
)

p(θ) dθ∫
p
(

y
∣

∣θ
)

p(θ) dθ
, (4.1)

2The process of marginalization refers to ‘integrating out’ uncertainty. For example, given p(y, θ) = p(y|θ)p(θ), we may obtain
p(y) by marginalizing over the unknown parameter θ , such that p(y) =

∫
p(y|θ)p(θ) dθ .

 on January 4, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


15

rsta.royalsocietypublishing.org
PhilTransR

Soc
A
371:20110550

......................................................

0 2 4 6 8 100 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

1.2

(a) (b)

Figure 12. The e�ect of including a simple mean function. (a) A GP model with a �at prior mean and SE covariance function.

The noisy observations are indicated by dots. The posterior from the GP is shown, along with±2σ . (b) The same covariance

function is used, but now the mean function has extra hyperparameters corresponding to an exponential decay with unknown

time constant and scale. We see that the long-term forecasts in this example encode our prior belief in the decay function.

(Online version in colour.)
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Figure 13. Samples (dots) obtained by optimizing the log-likelihood (grey curve) using a global optimizer, and themaximum-

likelihood approximation (vertical line) of the likelihood surface. (Online version in colour.)

which requires two integrals to be evaluated. These are both typically non-analytic, owing to the
complex form of the likelihood p

(

y
∣

∣θ
)

when considered as a function of hyperparameters θ . As
such, we are forced to resort to approximate techniques.

Approximating an integral requires two problems to be solved. First, we need to make
observations of the integrand, to explore it, and then those observations need to be used to
construct an estimate for the integral. There are a number of approaches to both problems.

Optimizing an integrand (figure 13) is one fairly effective means of exploring it: we will take
samples around the maxima of the integrand, which are likely to describe the majority of the mass
comprising the integral. A local optimizer, such as a gradient ascent algorithm, will sample the
integrand around the peak local to the start point, giving us information pertinent to at least that
part of the integrand. If we use a global optimizer, our attempts to find the global extremum will
ultimately result in all the integrand being explored, as desired.

Maximizing an integrand is most common when performing maximum likelihood. The
integrands in (4.1) are proportional to the likelihood p

(

y
∣

∣θ
)

: if the prior p(θ) is relatively
flat, the likelihood will explain most of the variation of the integrands as a function of θ .
Maximizing the likelihood hence gives a reasonable means of integrand exploration, as above.
Maximum likelihood, however, specifies a generally unreasonable means of integral estimation:
the likelihood is approximated as a Dirac delta function located at the θ that maximized the
likelihood. As per figure 13, this completely ignores the width of the integrands, leading to
potentially problematic features [13]. This approximation finds use when the likelihood is very
peaked, as is the case when we have a great deal of data.
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Figure 14. Samples obtained by taking draws from the posterior using a Markov chain Monte Carlo method.
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Figure 15. A set of samples that would lead to unsatisfactory behaviour from simple Monte Carlo.

A slightly more sophisticated approach to integral estimation is to take a Laplace approximation,
which fits a Gaussian around the maximum-likelihood peak. This gives at least some
representation of the width of the integrands. Yet further sophistication is displayed by the
methods of variational Bayes [14], which treat the fitting of probability distributions to the
problematic terms in our integrands as an optimization problem.

Monte Carlo techniques represent a very popular means of exploring an integrand. Simple

Monte Carlo techniques draw random samples from the prior p(φ), to which our integrands are
proportional. Note that (4.1) can be rewritten as

p
(

y∗
∣

∣y
)

=
∫

p
(

y∗
∣

∣y, θ
)

p
(

θ
∣

∣y
)

dθ . (4.2)

More sophisticated Markov chain Monte Carlo techniques [15] attempt to generate samples from
the hyperparameter posterior

p
(

θ
∣

∣y
)

=
p
(

y
∣

∣θ
)

p(θ)∫
p
(

y
∣

∣θ
)

p(θ) dθ
, (4.3)

to which (4.2) is proportional (figure 14 illustrates samples drawn using such a method). Sampling
in this way ensures that we have many samples where the prior/posterior is large, and hence,
where our integrands are likely to be large. This is a particular concern for multi-dimensional
integrals, where the problem is complicated by the ‘curse of dimensionality’ [16]. Essentially, the
volume of space that could potentially be explored is exponential in its dimension. However,
a probability distribution, which must always have a total probability mass of one, will be
highly concentrated in this space, ensuring our samples are likewise concentrated is a great boon.
Moreover, Monte Carlo sampling ensures a non-zero probability of obtaining samples from any
region where the prior is non-zero. This means that we can achieve some measure of broader
exploration of our integrands.

Monte Carlo, does not, however, provide a very satisfactory means of integral estimation: it
simply approximates the integral as the average over the obtained samples. As discussed by
O’Hagan [17], this ignores the information content contained in the locations of the samples,
leading to unsatisfactory behaviour. For example, imagine that we had three samples, two of
which were identical: θ1 = θ2. In this case, the identical value will receive two-thirds of the weight,
whereas the equally useful other value will receive only one-third. This is illustrated in figure 15.
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Figure 16. Bayesian quadrature 
ts a GP to the integrand, and thereby performs inference about the integral. (Online version

in colour.)

In an attempt to address these issues, Bayesian quadrature [18,19] provides a model-based
means of integral estimation. This approach assumes GPs over the integrands, using the obtained
samples to determine a distribution for the integrals (figure 16). This probabilistic approach means
that we can use the obtained variance in the integral as a measure of our confidence in its estimate.
Of course, we still need to determine the hyperparameters for the GPs over the integrands. This
problem is solved by adopting simple covariance functions for these GPs and using maximum
likelihood to fit their hyperparameters (the maximum-likelihood output scale even has a closed-
form solution). This renders the approach computationally tractable, to complement its superior
accuracy.

In the examples to follow, we will exclusively use Bayesian quadrature to marginalize the
hyperparameters of our GP models. Where desired, similar techniques are also used to calculate
the posteriors for such hyperparameters

p
(

θ
∣

∣y
)

=
p
(

y
∣

∣θ
)

p(θ)∫
p
(

y
∣

∣θ
)

p(θ) dθ
. (4.4)

Where the posterior for a hyperparameter is highly concentrated around a particular value, we
will informally describe the hyperparameter as having been learned as having that value.

5. Examples
In the following examples, we briefly illustrate the GP approach to practical time-series analysis,
highlighting the use of a variety of covariance and mean functions.

(a) Multi-dimensional weather sensor data

The first example we provide is based on real-time data that are collected by a set of weather, sea
state and environment sensors on the south coast of the UK (see Roberts et al. [7] for more details).
The network (Bramblemet) consists of four sensors (named Bramblemet, Sotonmet, Cambermet
and Chimet), each of which measures a range of environmental variables (including wind speed
and direction, air temperature, sea temperature and tide height) and makes up-to-date sensor
measurements. We have two data streams for each variable at our disposal. The first is the real-
time, but sporadic, measurements of the environmental variables; it is these that are presented as
a multi-dimensional time series to the GP. Second we have access, retrospectively, to finer-grained
data. We use this latter dataset for assessment only.

Figure 17 illustrates the efficacy our GP prediction for a tide height dataset. In order to manage
the four outputs of our tide function (one for each sensor), we rewrite so that we have a single
output and inputs t, time, and l, a sensor label, as discussed in §3a and in §3c.

Note that our covariance over time is the sum of a periodic term and a disturbance term.
Both are of the Matérn form with ν = 5

2 . This form is a consequence of our expectation that
the tides would be well modelled by the superposition of a simple periodic signal and an
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Figure 17. Prediction and regression of tide height data for (a) independent and (b)multi-output GPs. (Online version in colour.)

occasional disturbance signal due to exceptional conditions. Of course, for a better fit over
the course of, say, a year, it would be possible to additionally incorporate longer term drifts
and periods.

The period T of the periodic covariance term was unsurprisingly learnt as being about half
a day, whereas for the disturbance term, the time scale w was found to be about two and a half
hours. Note that this latter result is concordant with our expectations for the time scales of the
weather events we intend our disturbance term to model.

Our algorithm learned that all four sensors were very strongly correlated, with spherical
decomposition of the inferred correlation elements all very close to one. The hyperparameter
matrix Σ of equation (3.18) (which defines relationships between variables) additionally gives an
appropriate length scale for each sensor. From this inference, we determined weather events to
have induced changes in tide height of the order of 20 per cent.

We also make allowances for the prospect of relative latency among the sensors by
incorporating delay variables, introduced by a vector of delays in time observations [7]. We found
that the tide signals at the Cambermet and Chimet stations were delayed by about 10 minutes
relative to the other two. This makes physical sense—the Bramblemet and Sotonmet stations are
located to the west of the Cambermet and Chimet stations, and the timing of high tide increases
from west to east within the English channel.

Note the performance of our multi-output GP formalism when the Bramblemet sensor drops
out at t = 1.45 days. In this case, the independent GP quite reasonably predicts that the tide will
repeat the same periodic signal it has observed in the past. However, the GP can achieve better
results if it is allowed to benefit from the knowledge of the other sensors’ readings during this
interval of missing data. Thus, in the case of the multi-output GP, by t = 1.45 days, the GP has
successfully determined that the sensors are all very strongly correlated. Hence, when it sees
an unexpected low tide in the Chimet sensor data (caused in this case by the strong northerly
wind), these correlations lead it to infer a similarly low tide in the Bramblemet reading. Hence,
the multi-output GP produces significantly more accurate predictions during the missing data
interval, with associated smaller error bars. Exactly the same effect is seen in the later predictions
of the Chimet tide height, where the multi-output GP predictions use observations from the other
sensors to better predict the high tide height at t = 2.45 days.
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Table 1. Predictive performances for 5 day Bramblemet tide height dataset. We note the superior performance of the GP

compared with a more standard Kalman 
lter model. Error metrics shown are root mean square error (r.m.s.e) and normalized

mean square error (n.m.s.e.), which is presented on a logarithmic, decibel scale.

algorithm r.m.s.e (m) n.m.s.e. (dB)

naive 7.5×10−1 − 2.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kalman 
lter 1.7×10−1 −15.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

independent GPs 8.7×10−2 −20.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

multi-output GP 3.8×10−2 −27.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note also that there are two brief intervals of missing data for all sensors just after both
of the first two peak tides. During the second interval, the GP’s predictions for the tide are
notably better than for the first—the greater quantity of data it has observed allows it to produce
more accurate predictions. With time, the GP is able to build successively better models for
the series.

The predictive performances for our various algorithms over this dataset can be found in
table 1. For the Kalman filter comparison, a history length of 16 observations was used to generate
each prediction because this gave rise to the best predictive ability for the Kalman model on out-
of-sample data. However, note that our multi-output GP, which exploits correlations between the
sensors, and the periodicity in each individual sensors’ measurements, significantly outperforms
both the Kalman filter and the independent GP [7]. The naive result is obtained by repeating the
last observed sensor value as a forecast and is included as a baseline only.

(b) Active data selection

We now demonstrate our active data selection algorithm. Using the fine-grained data
(downloaded directly from the Bramblemet weather sensors), we can simulate how our GP
would have chosen its observations had it been in control. Results from the active selection
of observations from all four tide sensors are displayed in figure 18. Again, these plots
depict dynamic choices; at time t, the GP must decide when next to observe, and from
which sensor, given knowledge only of the observations recorded prior to t, in an attempt to
maintain the uncertainty in tide height below 10 cm. The covariance function used was that
described in the previous example, namely a sum of two ν = 5

2 Matérn covariance functions,
one stationary and the other of periodic form. Consider first the case shown in figure 18a, in
which separate independent GPs are used to represent each sensor. Note that a large number
of observations are taken initially as the dynamics of the sensor readings are learnt, followed
by a low but constant rate of observation. By contrast, for the multi-output case shown in
figure 18b, the GP is allowed to explicitly represent correlations and delays between the sensors.
As mentioned earlier, this dataset is notable for the slight delay of the tide heights at the
Chimet and Cambermet sensors relative to the Sotonmet and Bramblemet sensors, due to the
nature of tidal flows in the area. Note that after an initial learning phase as the dynamics,
correlations and delays are inferred, the GP chooses to sample predominantly from the undelayed
Sotonmet and Bramblemet sensors. The dynamics of the tide height at the Sotonmet sensor
are more complex than the other sensors owing to the existence of a ‘young flood stand’ and
a ‘double high tide’ in Southampton. For this reason, the GP selects Sotonmet as the most
informative sensor and samples it most often. Despite no observations of the Chimet sensor
being made within the time span plotted, the resulting predictions remain remarkably accurate.
Consequently, only 119 observations are required to keep the uncertainty below the specified
tolerance, whereas 358 observations were required in the independent case. This represents
another clear demonstration of how our prediction is able to benefit from the readings of
multiple sensors.
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Figure 18. (a) Comparison of active sampling of tide data using independent and (b)multi-output GPs. Note that, in the case of

multi-output GPs, one sensor reading (Sotonmet) slightly leads the other readings and is hence sampledmuchmore frequently.

In some cases, such as the Cambermet readings, only occasional samples are taken, yet the GP forecasts are excellent. (Online

version in colour.)

(c) Changepoint detection

In Garnett et al. [9] and Osborne et al. [10], a fully Bayesian framework was introduced for
performing sequential time-series prediction in the presence of changepoints. The position of
a particular changepoint becomes a hyperparameter of the model that is marginalized using
Bayesian quadrature. If the locations of changepoints in the data are of interest, the full posterior
distribution of these hyperparameters can be obtained given the data. The result is a robust
time-series prediction algorithm that makes well-informed predictions, even in the presence of
sudden changes in the data. If desired, the algorithm additionally performs changepoint and fault
detection as a natural by-product of the prediction process. In this section, we briefly present some
exemplar datasets and the associated changepoint inference.

(i) Nile dataset

We first consider a canonical changepoint dataset, the minimum water levels of the Nile river
during the period AD 622–1284 [20]. Several authors have found evidence supporting a change in
input scale for this data around the year AD 722 [21]. The conjectured reason for this changepoint
is the construction in AD 715 of a new device (a ‘nilometer’) on the island of Roda, which affected
the nature and accuracy of the measurements.
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Figure 20. Online (sequential) one-step predictions (a) and posterior for the location of changepoint for the Dow–Jones

industrial average data using an output-scale changepoint covariance (b). (Online version in colour.)

We performed one-step (next datum) lookahead prediction on this dataset using the input-
scale changepoint covariance discussed earlier. The results can be seen in figure 19. Figure 19a

shows our one-step predictions on the dataset, including the mean and ±σ error bars. Figure 19b

shows the posterior distribution of the number of years since the last changepoint. A changepoint
around AD 720–722 is clearly visible and agrees with previous results [21].

(ii) 1972–1975 Dow–Jones industrial average

As a second canonical changepoint dataset, we present the series of daily returns of the Dow–
Jones industrial average between 3 July 1972 and 30 June 1975 [22]. This period included a number
of newsworthy events that had significant macroeconomic influences, as reflected in the Dow–
Jones returns.

We performed sequential one-step (next datum) prediction on this data using a GP with
a diagonal covariance that assumed all measurements were independent and identically
distributed (as under the efficient market hypothesis, returns should be uncorrelated). However,
the variance of these observations was assumed to undergo changes, and as such, we used a
covariance that incorporated such changes in output scale. We had three hyperparameters to
marginalize: the variance before the changepoint, the variance after the changepoint and, finally,
the location of that changepoint.

Our results are plotted in figure 20. Our model clearly identifies the important changepoints
that likely correspond to the commencement of the Organization of the Petroleum Exporting
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Countries embargo on 19 October 1973, and the resignation of Richard Nixon as President of
the USA on 9 August 1974. A weaker changepoint is identified early in 1973, which Adams &
MacKay [22] speculate is due to the beginning of the Watergate scandal.

(d) Quasi-periodic modelling of stellar light curves

Many Sun-like stars display quasi-periodic brightness variations on time scales of days to weeks,
with amplitudes ranging from a few parts per million to a few per cent. These variations are
caused by the evolution and rotational modulation of magnetically active regions, which are
typically fainter than the surrounding photosphere. In this case, we may expect a range of both
periodic covariance scales w and evolutionary time scales λ, corresponding to different active
region sizes and lifetimes, respectively. This can be achieved by replacing one or both of the SE
kernels in equation (3.13) by RQ kernels (equation (3.14)). Finally, we can also allow for short-term
irregular variability or correlated observational noise by including a separate, additive SE or RQ
kernel. For example, Pont et al. [23] used a GP with such quasi-periodic kernels to model the total
irradiance variations of the Sun in order to predict its radial velocity variations.

In figure 21, we show the results of a quasi-periodic GP regression to photometric observations
of the well-known planet host star HD 189733, taken from Henry & Winn [24]. The kernel used
consists of a periodic SE component (equation (3.21)) multiplied by an RQ term (equation (3.14)) to
allow for a range of evolutionary time scales, plus an additive white noise term (equation (3.12)).
Inference over the hyperparameters of interest yielded expected values of h = 6.68 mmag, T =
11.86 days, w = 0.91, α = 0.23, λ = 17.81 days and σ = 2.1 mmag, where σ is the amplitude of the
white noise term. Our period is in excellent agreement with Henry & Winn [24]. The relatively
long periodic length scale w indicates that the variations are dominated by a small number of
fairly large active regions. The evolutionary term has a relatively short time scale, λ, but a shallow
index, α, which is consistent with the notion that the active regions on this star evolve relatively
fast and/or that, as in the Sun, active regions located at different latitudes have different rotation
rates (known as differential rotation).

(e) Modelling light curves of transiting exoplanets

One of the most successful ways of discovering and characterizing extra-solar planets (i.e. planets
not in our solar system) is through observing transit light curves. A transit occurs when a

 on January 4, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


23

rsta.royalsocietypublishing.org
PhilTransR

Soc
A
371:20110550

......................................................

1.010

1.000

1.005

0.995

0.990

0.985

0.980

f(t)

t

–0.2 –0.1 0 0.1 0.2

Figure 22. As an example of a complex mean function, we here model data from an exoplanet transit light curve. The data are


tted with a GP with an exoplanet transit mean function and a squared exponential covariance kernel to model the correlated

noise process and the e�ects of external state variables. The shaded regions are at±1, 2σ from the posterior mean. (Online

version in colour.)

planet periodically passes between its host star and the Earth, blocking a portion of the stellar
light, and produces a characteristic dip in the light curve. From this transit, we can measure
such physical parameters as the planet-to-star radius ratio and the inclination of the orbit.
While transit light curves are readily described by a deterministic parametric function, real
observations are corrupted by systematic noise in the detector, external state variables (such as
the temperature of the detector, orbital phase, position of the host star on the charge-coupled
device array, etc.), as well as the underlying flux variability of the host star. As it is not possible to
produce a deterministic model to account for all these systematics, a GP may be used to place a
distribution over possible artefact functions, modelling correlated noise as well as subtle changes
in observed light curves due to external state variables. We hence encode the transit curve as
the mean function of a GP. The covariance function has inputs given by time and external state
variables (hence, this is a multi-input, single-output model). By integrating out our uncertainty
(see §4) in the hyperparameters of the GP (which model all the systematic artefacts and noise
processes), we can gain much more realistic inference of probability distribution of the transit
function parameters (the hyperparameters of the mean function). For a detailed discussion of
the application of GPs to transit light curves, see Gibson et al. [25], in which the instrumental
systematics are represented by a GP with an SE kernel (equation (3.13)) and input parameters
representing the external state variables. Robust inference of transit parameters is required to
perform detailed studies of transiting systems, including the search for atomic and molecular
signatures in the atmospheres of exoplanets. Figure 22 shows this GP model fitting to the time
series of observations. More details are found in Gibson et al. [25].

6. Conclusion
In this paper, we have presented a brief outline of the conceptual and mathematical
basis of GP modelling of time series. As ever, a practical implementation of the ideas
concerned requires jumping algorithmic rather than theoretical hurdles, which we do not
discuss here because of space constraints. Some introductory code may be found at
ftp://ftp.robots.ox.ac.uk/pub/outgoing/mebden/misc/GPtut.zip and more general code can be
downloaded from http://www.gaussianprocess.org/gpml. Space has not permitted discussion
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of exciting recent trends in GP modelling that allow for more explicit incorporation of differential
equations governing the system dynamics (either observed or not), such as latent force models

[26]. Further extensions, using GPs as building blocks in more complex probabilistic models,
are of course possible, and recent research has also highlighted the use of GPs for numerical
integration, global optimization, mixture-of-experts models, unsupervised learning models and
much more.
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