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Abstract

We exploit some useful properties of Gaussian process (GP) regression
models for reinforcement learning in continuous state spaces and dis-
crete time. We demonstrate how the GP model allows evaluation of the
value function in closed form. The resulting policy iteration algorithm is
demonstrated on a simple problem with a two dimensional state space.
Further, we speculate that the intrinsic ability of GP models to charac-
terise distributions of functions would allow the method to capture entire
distributions over future values instead of merely their expectation, which
has traditionally been the focus of much of reinforcement learning.

1 Introduction

Model-based control of discrete-time non-linear dynamical systems is typically exacer-
bated by the existence of multiple relevant time scales: a short time scale (the sampling
time) on which the controller makes decisions and where the dynamics are simple enough
to be conveniently captured by a model learning from observations, and a longer time scale
which captures the long-term consequences of control actions. For most non-trivial (non-
minimum phase) control tasks a policy relying solely on short time rewards will fail.

In reinforcement learning this problem is explicitly recognised by the distinction between
short-term (reward) and long-term (value) desiderata. The consistency between short- and
long-term goals are expressed by the Bellman equation, for discrete statess and actionsa:

V π(s) =
∑
a

π(s,a)
∑
s′

Pa
s,s′

[
Ra

s,s′ + γV π(s′)
]

(1)

whereV π(s) is the value (the expected long term reward) of states while following policy
π(s,a), which is the probability of taking actiona in states, andPa

s,s′ is the transition
probability of going to states′ when applying actiona given that we are in states, Ra

s,s′

denotes the immediate expected reward and0<γ<1 is the discount factor (see Sutton and
Barto (1998) for a thorough review). The Bellman equations are used inpolicy evaluation
either for iterative updates or alternatively solved directly (the equations are linear) and
commonly interleaved withpolicy improvementsteps in apolicy iterationscheme.

While the concept of a value function is ubiquitous in reinforcement learning, this is not
the case in the control community. Some non-linear model-based control is restricted to the
easier minimum-phase systems. Alternatively, longer-term predictions can be achieved by
concatenating short-term predictions, an approach which is made difficult by the fact that



uncertainty in predictions typically grow (precluding approaches based on thecertainty
equivalence principle) as the time horizon lengthens. See Quiñonero-Candela et al. (2003)
for a full probabilistic approach based on Gaussian processes; however, implementing a
controller based on this approach requires numerically solving multivariate optimisation
problems for every control action. In contrast, having access to a value function makes
computation of control actions much easier.

Much previous work has involved the use of function approximation techniques to represent
the value function. In this paper, we exploit a number of useful properties of Gaussian
process models for this purpose. This approach can be naturally applied in discrete time,
continuous state space systems. This avoids the tedious discretisation of state spaces often
required by other methods, eg. Moore and Atkeson (1995). In Dietterich and Wang (2002)
kernel based methods (support vector regression) were also applied to learning of the value
function, but in discrete state spaces.

In the current paper we use Gaussian process (GP) models for two distinct purposes: first
to model the dynamics of the system (actually, we use one GP per dimension of the state
space) which we will refer to as thedynamicsGPs and secondly thevalueGP for repre-
senting the value function. When computing the values, we explicitly take the uncertainties
from the dynamics GP into account, and using the linearity of the GP, we are able to solve
directly for the value function, avoiding slow policy evaluation iterations.

Experiments on a simple problem illustrates the viability of the method. For these exper-
iments we use a greedy policy wrt. the value function. However, since our representation
of the value function is stochastic, we could represent uncertainty about values enabling a
principled attack of the exploration vs. exploitation tradeoff, such as in Bayesian Q-learning
as proposed by Dearden et al. (1998). This potential is outlined in the discussion section.

2 Gaussian Processes and Value Functions

In a continuous state space we straight-forwardly generalise the Bellman equation (1) by
substituting sums with integrals; further, we assume for simplicity of exposition that the
policy is deterministic (see Section 4 for a further discussion):

V π(s) =
∫
Pπ(s)

s,s′

[
Rπ(s)

s,s′ + γV π(s′)
]
ds′ (2)

=
∫
Pπ(s)

s,s′ Rπ(s)
s,s′ ds′ + γ

∫
Pπ(s)

s,s′ V π(s′)ds′. (3)

This involves two integrals over the distribution of consecutive statess′ visited when fol-
lowing the policyπ. The transition probabilitiesPπ

s,s′ may be composed of two sources of
stochasticity: uncertainty in the model of the dynamics and stochasticity in the dynamics
itself.

Gaussian Process Regression ModelsIn GP models we put a prior directly on functions
and condition on observations to make predictions (see Williams and Rasmussen (1996) for
details). The noisy targetsyi = f(xi) + εi are assumed jointly Gaussian with covariance
functionk:

y|x ∼ N
(
0, K), where Kpq = k(xp,xq). (4)

Throughout the remainder of this paper we use a squared exponential covariance function:

k(xp,xq|θ) = v2 exp
(
− (xp − xq)>Λ−1(xp − xq)/2

)
+ δpqσ

2
n, (5)

where the positive elements of the diagonal matrixΛ, v andσ2
n are hyperparameters col-

lected inθ. The hyperparameters are fit by maximising the marginal likelihood (see again



Williams and Rasmussen (1996)) using conjugate gradients. The predictive distribution for
a novel test inputx∗ is Gaussian:

y∗|x∗,X,y, θ ∼ N (µ, σ2) (6)

where meanµ = k(x∗,X)K−1y and varianceσ2 = k(x∗,x∗)− k(x∗,X)K−1k(X,x∗).

Model Identification of System Dynamics Given a set of observations of the form
(s,a, s′) where the state space isD-dimensional, we use a separate Gaussian process model
for predicting each coordinate of the system dynamics. The input to each model is a state
and action pairx = (s,a), the output is a (Gaussian) distribution over the consecutive state
variable,y = s′d, d = 1, . . . , D using eq. (6). Combining the predictive models we obtain
a (factorized) multivariate Gaussian distribution over the consecutive state: the transition
probabilitiesPπ

s,s′ .

Policy Evaluation We now turn towards the problem of evaluatingV (s) for a given pol-
icy π over the continuous state space. Inpolicy evaluationthe Bellman equations are used
as update rules. In order to apply this approach in the continuous case, we have to solve
the two integrals in eq. (3).

For simple (eg. polynomial or Gaussian) reward functionsR we can directly compute1

the first Gaussian integral of eq. (3). Thus, the expected immediate reward, from statesi,
following π is:

Ri =
∫
Pπ(si)

si,s′ Rπ(si)
si,s′ ds′, where Pπ

si,s′ = N
(
µi,Σi = diag(σ2

1 , . . . , σ2
D)

)
, (7)

in which the mean and covariance for the consecutive state are coordinate-wise given by
eq. (6) evaluated on thedynamicsGP.

The second integral of eq. (3) involves an expectation over the value function, which is
modelled by thevalueGP as a function of the states. We need access to the value function
at every point in the continuous state space, but we only explicitly represent values at a finite
number ofsupport points, S = {s1, . . . , sm} and let the GP generalise to the entire space.
Here we use themeanof thevalueGP to represent the value function2 – see section 4 for
an elaboration. Thus, we need to average the values over the distribution predicted fors′.
For a squared exponential covariance function3 this can be done in closed form as shown
by Girard et al. (2002). In detail, the Bellman equation for the value at support pointsi is:

Vi = Ri +γ

∫
Pπ

si,s′V (s′)ds′ = Ri + γWiK−1
v V, where Pπ

si,s′ = N (µi,Σi) (8)

and Wij = |Λ−1Σi + I|−1/2v2 exp
(
− (sj − µi)>(Λ + Σi)−1(sj − µi)/2

)
, (9)

where Kv denotes the covariance matrix of thevalue GP, Wi is the i’th row of
the W matrix and boldfaceV is the vector of values at the support points:V =
(V (s1), . . . , V (sm))>. Note, that this equation implies a consistency between the value
at the support points with the values at all other points. Equation (8) could be used for
iterative policy evaluation. Notice however, that eq. (8) is a set ofm linear simultaneous
equations inV, which we can solve4 explicitly:

V = R + γWK−1
v V =⇒ V =

(
I− γWK−1

v

)−1
R. (10)

1For more complex reward functions we may approximate it using eg. a Taylor expansion.
2Thus, here we are using the GP for noise free interpolation of the value function, and conse-

quently set its noise parameter to a small positive constant (to avoid numerical problems)
3The covariance functions allowing analytical treatment in this way include squared exponential

and polynomial, and mixtures of these.
4We conjecture that the matrixI− γWK−1

v is non-singular under mild conditions, but have not
yet devised a formal proof.



The computational cost of solving this system isO(m3), which is no more expensive than
doing iterative policy evaluation, and equal to the cost ofvalueGP prediction.

Policy Improvement Above we demonstrated how to compute the value function for a
given policyπ. Now given a value function we can act greedily, thereby defining an implicit
policy:

π(s)← argmax
a∈A(s)

∫
Pa

s,s′

[
Ra

s,s′ + γV (s′)
]
ds′, (11)

giving rise tom one-dimensional optimisation problems (when the possible actionsa are
scalar). As above we can solve the relevant integrals and in addition compute derivatives
wrt. the action. Note also that application-specific constraints can often be reformulated as
constraints in the above optimisation problem.

The Policy Iteration Algorithm We now combinepolicy evaluationand policy im-
provementinto policy iteration in which both steps alternate until a stable configuration
is reached5. Thus given observations of system dynamics and a reward function we can
compute a continuous value function and thereby an implicitly defined policy.

Algorithm 1 Policy iteration, batch version

1. Given: n observations of system dynamics of the form(s,a, s′) for a fixed time
interval∆t, discount factorγ and reward functionR
2. Model Identification: Model the system dynamics by Gaussian processes for each
state coordinate and combine them to obtain a modelPa

s,s′ = N (µs′ ,Σs′)
3. Initialise Value Function: Choose a setS = {s1, . . . , sm} of m support points and
initialise Vi ← R(si). Fit Gaussian process hyperparameters for representingV (s)
using conjugate gradient optimisation of the marginal likelihood and setσ2

n to a small
positive constant.
4. Policy Iteration:
repeat

for all si ∈ S do
Find actionai by solving equation (11) subject to problem specific constraints.
ComputePai

si,s′
i

using thedynamicsGaussian processes
Solve equation (7) in order to obtainRi

Computei’th row of W as in equation (9)
end for
V← (I− γWK−1

v )−1R
Update Gaussian process hyperparameter for representingV (s) to fit the newV

until stabilisation ofV

The selection of the support points remains to be determined. When using the algorithm
in an online setting, support points could naturally be chosen as the states visited, possibly
selecting the ones which conveyed most new information about the system. In the experi-
mental section, for simplicity of exposition we consider only the batch case, and use simply
a regular grid of support points.

We have assumed for simplicity that the reward function is deterministic and known, but it
would not be too difficult to also use a (GP) model for the rewards; any model that allows
evaluation of eq. (7) could be used. Similarly the greedy policy has been assumed, but
generalisation to stochastic policies would not be difficult.

5Assuming convergence, which we have not proven.
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Figure 1: Figure (a) illustrates the mountain car problem. The car is initially standing
motionless atx = −0.5 and the goal is to bring it up and hold it in the region0.5 ≤ x ≤ 0.7
such that−0.1 ≤ ẋ ≤ 0.1. The hatched area marks the target region and below the
approximation by a Gaussian is shown (both projected onto thex axis). Figure (b) shows
the positionx of the car when controlled according to (11) using the approximated value
function after 6 policy improvements shown in Figure 3. The car reaches the target region
in about five time steps but does not end up exactly atx = 0.6 due to uncertainty in the
dynamics model. The circles mark the∆t = 0.3 second time steps.

3 Illustrative Example

For reasons of presentability of the value function, we below consider the well-known
mountain car problem “park on the hill”, as described by Moore and Atkeson (1995) where
the state-space is only two-dimensional. The setting depicted in Figure 1(a) consists of a
frictionless, point-like, unit mass car on a hilly landscape described by

H(x) =
{

x2 + x for x < 0,
x√

1+5x2 for x ≥ 0. (12)

The state of the systems = (x, ẋ) is described by the position of the car and its speed which
are constrained to−1 ≤ x ≤ 1 and−2 ≤ ẋ ≤ 2 respectively. As action a horizontal force
F in the range−4 ≤ F ≤ 4 can be applied in order to bring the car up into the target region
which is a rectangle in state space such that0.5 ≤ x ≤ 0.7 and−0.1 ≤ ẋ ≤ 0.1. Note that
the admissible range of forces is not sufficient to drive up the car greedily from the initial
states0 = (−0.5, 0) such that a strategy has to be found which utilises the landscape in
order to accelerate up the slope, which gives the problem its non-minimum phase character.

For system identification we draw samples{(si, Fi)|i = 1, . . . , n = 50} uniformly from
their respective admissible regions and simulate time steps of∆t = 0.3 seconds6 forward
in time using an ODE solver in order to get the consecutive statess′i. We then use two
Gaussian processes to build a model to predict the system behaviour from these examples
for the two state variables independently using covariance functions of type eq. (5). Based
on 50 random examples, the relations can already be approximated to within root mean
squared errors (estimated on1000 test samples and considering the mean of the predicted
distribution) of0.02 for predictingx and0.2 for predictingẋ.

Having a model of the system dynamics, the other necessary element to provide to the
proposed algorithm is a reward function. In the formulation by Moore and Atkeson (1995)

6Note that∆t = 0.3 seconds seems to be an order of magnitude slower than the time scale
usually considered in the literature. Our algorithm works equally well for shorter time steps (γ
should be increased); for even longer time steps, modelling of the dynamics gets more complicated,
and eventually for large enough∆t control is no-longer possible.
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Figure 2: Figures (a-c) show the estimated value function for the mountain car example af-
ter initialisation (a), after the first iteration overS (b) and a nearly stabilised value function
after 3 iterations (c). See also Figure 3 for the final value function and the corresponding
state transition diagram

the reward is equal to1 if the car is in the target region and0 elsewhere. For convenience we
approximate this cube by a Gaussian proportional toN ([0.6, 0]′, 0.052I) with maximum
reward1 as indicated in Figure 1(a). We now can solve the update equation (10) and also
evaluate its gradient with respect toF . This enables us to efficiently solve the optimisation
problem eq. (11) subject to the constraints onx, ẋ andF described above. States outside
the feasible region are assigned zero value and reward.

As support points for the value function we simply put a regular21 × 21 grid onto the
state-space and initialise the value function with the immediate rewards for these states,
Figure 2(a). The standard deviation of the noise of thevalue GP representingV (s) is
set toσv = 0.01, and the discount factor toγ = 0.8. Following the policy iteration
algorithm we estimate the value of all support points following the implicit policy (11)
wrt. the initial value function, Figure 2(a). We then evaluate this policy and obtain an
updated value function shown in Figure 2(b) where all points which can expect to reach
the reward region in one time step gain value. If we iterate this procedure two times we
obtain a value function as shown in Figure 2(c) in which the state space is already well
organised. After five policy iterations the value function and therefore the implicit policy is
stable, Figure 3(a). In Figure 3(b) a dynamic GP based state-transition diagram is shown,
in which each support pointsi is connected to its predicted (mean) consecutive states′i
when following the implicit policy. For some of the support points the model correctly
predicts that the car will leave the feasible region, no matter what|F |≤4 is applied, which
corresponds to areas with zero value in Figure 3(a).

If we control the car froms0 = (−0.5, 0) according to the found policy the car gathers
momentum by first accelerating left before driving up into the target region where it is
balanced as illustrated in Figure 1(b). It shows that the50 random examples of the system
dynamics are sufficient for this task. The control policy found is probably very close to the
optimally achievable one.

4 Perspectives and Conclusion

Commonly the value function is defined to be theexpected(discounted) future reward.
Conceptually however, there is more to values than their expectations. The distribution over
future reward could have small or large variance and identical means, two fairly different
situations, that are treated identically when only the value expectation is considered. It
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Figure 3: Figures (a) shows the estimated value function after 6 policy improvements (sub-
sequent to Figures 2(a-c)) overS whereV has stabilised. Figure (b) is the corresponding
state transition diagram illustrating the implicit policy on the support points. The black
lines connectsi and the respectives′i estimated by thedynamicsGP when following the
implicit greedy policy with respect to (a). The thick line marks the trajectory of the car
for the movement described in Figure 1(b) based on the physics of the system. Note that
the temporary violation of the constraintẋ < 2 remains unnoticed using time intervals of
∆t = 0.3; to avoid this the constraints could be enforced continuously in the training set.

is clear however, that a principled approach to the exploitation vs. exploration tradeoff
requires a more faithful representation of value, as was recently proposed in Bayesian Q-
learning (Dearden et al. 1998), and see also Attias (2003). For example, the large variance
case it may be more attractive for exploration than the small variance case.

The GP representation of value functions proposed here lends itself naturally to this more
elaborate concept of value. The GP model inherently maintains a full distribution over
values, although in the present paper we have only used its expectation. Implementation
of this would require a second set of Bellman-like equations for the second moment of
the values at the support points. These equations would simply express consistency of
uncertainty: the uncertainty of a value should be consistent with the uncertainty when
following the policy. The values at the support points would be (Gaussian) distributions
with individual variances, which is readily handled by using a full diagonal noise term in
the place ofδpqσ

2
n in eq. (5). The individual second moments can be computed in closed

form (see derivations in Quiñonero-Candela et al. (2003)). However, iteration would be
necessary to solve the combined system, as there would be no linearity corresponding to
eq. (10) for the second moments. In the near future we will be exploring these possibilities.

Whereas only a batch version of the algorithm has been described here, it would obviously
be interesting to explore its capabilities in an online setting, starting from scratch. This
will require that we abandon the use of a greedy policy, to avoid risking to get stuck in a
local minima caused by an incomplete model of the dynamics. Instead, a stochastic policy
should be used, which should not cause further computational problems as long as it is
represented by a Gaussian (or perhaps more appropriately a mixture of Gaussians). A good
policy should actively explore regions where we may gain a lot of information, requiring
the notion of the value of information (Dearden et al. 1998). Since the information gain
would come from a betterdynamicsGP model, it may not be an easy task in practice to



optimise jointly information and value.

We have introduced Gaussian process models into continuous-state reinforcement learning
tasks, to model the state dynamics and the value function. We believe that the good gen-
eralisation properties, and the simplicity of manipulation of GP models make them ideal
candidates for these tasks. In a simple demonstration, our parameter-free algorithm con-
verges rapidly to a good approximation of the value function. Nevertheless, we have to
emphasise that the proposed method relies on the assumption that we can adequately cap-
ture the system dynamics and the value function using GP models given the set of support
points. This implies potential difficulties in handling problems which exhibit discontinuous
value functions particularly in higher dimensions.

Only the batch version of the algorithm was demonstrated. We believe that the full proba-
bilistic nature of the transition model should facilitate the early states of an on-line process.
Also, online addition of new observations in GP model can be done very efficiently. Only
a simple problem was used, and it will be interesting to see how the algorithm performs
on more realistic tasks. Direct implementation of GP models are suitable for up to a few
thousand support points; in recent years a number of fast approximate GP algorithms have
been developed, which could be used in more complex settings.

We are convinced that recent developments in powerful kernel-based probabilistic mod-
els for supervised learning such as GPs, will integrate well into reinforcement learning
and control. Both the modelling and analytic properties make them excellent candidates
for reinforcement learning tasks. We speculate that their fully probabilistic nature offers
promising prospects for some fundamental problems of reinforcement learning.
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