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GAUSSIAN PROCESSES, MOVING AVERAGES AND
QUICK DETECTION PROBLEMS!
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In this paper, we are interested in moving averages of the type
§&ft — 5) dX(s), where X(t) is a Wiener process and {° f2(t)dt < co. Bya
suitable choice of the weighting function f, such processes can be used to
detect a change in the drift of X(¢). First passage times of these moving-
average processes and more general Gaussian processes are studied. Limit
theorems for Gaussian processes and Gaussian sequences which include
these moving-average procssses and their discrete-time analogs as special
cases are also proved.

1. Introduction. In a continuous production process, samples of fixed size are
taken at regular intervals of time and a statistic X, is computed from the nth
sample, n = 1,2,.... In [6], we have considered process inspection schemes
based on moving averages of the type X 7, c,_; X;, where (c,) is a suitably chosen
sequence of weights. Unlike weighted sums of the form Y7, a, X;, the moving
averages Y, = Y7, ¢, , X, do not have a Markovian or martingale structure,
and the exact performance of the process inspection schemes based on Y, is dif-
ficult to analyze. In the case where the X, ’s are normal, the particular Gaussian
structure of the sequence Y, has enabled us to find sharp bounds and to study
the asymptotic behavior of the average run length (i.e., the expected number of
articles sampled before action is taken when the quality of the output has re-
mained at a constant level), and numerical comparisons with the average run
length of the Shewhart chart have also been given in [6].

In Section 2, we shall apply the continuous-time moving average analogs to
detect a change in the drift of a Wiener process. The average run length of such
procedures is studied. In Section 3, we shall consider the first passage times of
more general continuous-time Gaussian processes. Sections 4 and 5 are devoted
to limit theorems for Gaussian sequences and Gaussian processes which include
2.1 ¢,_.X; and their continuous-time analogs as special cases.

2. Continuous-time moving-average analogs and their applications to quick
detection procedures. Let X(), r > 0, be a Wiener process with EX(¢) = 61,
where § may be increasing over time. We say that a disorder has occurred if ¢
exceeds a certain value ,, in which case corrective action should be taken. We
shall assume for simplicity that §, = 0, for otherwise we can consider X(f) — 6,¢
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instead of X(#). The longer action is delayed, the more serious the consequences
of the occurrence of the disorder would be, and so we want a procedure which
can detect quickly the presence of a disorder. The procedure proposed by Page
[10] for discrete-time problems can be extended to the present situation: Take
corrective action as soon as X(f) — min,.,., X(s) = k, some preassigned number.
Shiryaev [13] has proposed another procedure based on a process derived from
the trajectory of X(#) via a stochastic differential equation. In this section, we
shall study a class of detection procedures which use continuous-time analogs
of moving averages of the type 317, ¢,_;X;. Letf be a nonnegative, nonincreas-
ing function on [0, o) such that co > {7 f(7) dt > 0. We shall assert that a
disorder has occurred and take corrective action as soon as §; f{(t — s5) dX(s) = ¢,
where c is a suitably chosen constant.

To evaluate the performance of our detection procedures, let us consider the
continuous-time analog of the average run length, i.e., the expected duration
E, T before action is taken when 6 has remained at a constant level. Foréd > 0,
it is desired that E, T be small, while for § < 0, we want E, T to be large. Define
T = inf{¢: §} f(t — 5) dX(s) = c}, where the constant c is so chosen that E,T = M,
some large preassigned number. This guarantees that the expected duration be-
fore a false alarm is at least M.

A convenient choice of the weighting function fis the following: f(#) = 1 for
0 <t<aand f(f) = 0 for t > a. The process {{ f(+ — s) dX(s) then reduces to
X(f) — X(t — @) for t = a (and to X(7) for ¢t < a). Letting T,(c) = inf{t = a:
X(t) — X(t — @) = c}, wehave E, T (c) = E, T ,(c — fa). Let W(t)be the standard
Wiener process and define T(x) = inf{r = 0: W(¢ + 1) — W(r) = x}. Then it
is easy to see that
(1) E,T(x) = a + aET(xa™t).

The distribution of T(x) is given by Shepp [12] who has proved that for
n=12 ...,

©) PIT(x) > n] = 1§20 - §det (y, — Yiua o+ X) dyy -+ dynya i

where D ={x —u <y, < y3< +++ < Jny1} and the determinant is of size
(n+ 1) x(n+1),0=<i, j< nwith y, =0, y, = x — u. Asimilar formula for
P[T(x) > n + 0] with 0 < 6 < 1 is also given in [12].

Since for large n, the expression on the right-hand side of (2) is not suited for
either numerical calculation or asymptotic evaluation, the following upper and
lower bounds on ET(x) are given below:

3) (= D) + p(x) §7. D) du) — 1
< ET(x) < {@(x) — (x) 2.0 () du/A(x)
where we set ¥(x) = ., ®(u) du and
A(x) = (1 = )P (x) — ¢()¥(x)) + ()PNY(x) — ¢*(x) §7 W(K) du
— §% 2w 0(2x — 2)p(u + 2z — x)D(2) dz du
+ e Vi o(x — u + 2)p(x + u — 2)P(2) dz du .
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To prove (3), we shall use the following lemma.
Lemma 1. Let S(t) = W(t + 1) — W(t), t = 0. Then for any g > 2,
P[maxyg,cq 1 S(1) < X, MaX, 10, S(7) = X] = A(x)P[max,g, g, S(7) < x] .

Proor. S(¢) is a stationary Gaussian process with covariance ES(z) S(¢) =
max(l — |t —¢],0). Let /=[0,8—2],/,=[8—2,8—1],/,=(B — 1, 8],
J=1J,UJ, Suppose t, -, t,€l, 4, -+, t,,€J and ¢ eJ, such that = >
max {t, -+, t,,,}. Then

PIS(L) < X, -+ -2 S(tyrn) < %, S(2) > x]

) > PIS(t) < x, -+, () < x]
X P[S(tip1) = X5+ v 05 S(tym) = %, S(7) > ]
To prove (4), it is well known that if g(y,, - - -, y,) is the density function of the

multivariate normal distribution with means 0, variances 1 and correlation ma-
trix (4,;), then

ag d%g ..

—_ 1 .

04;; 0y, 0y; =/
(cf.[14]). Using this, it can be shown that P[S(#,) < x, - - -, S(t;1,) < X, S(7) > x]
is a non-decreasing function of the correlation coefficient 4,; between S(z,) and
S(t;) for 1 < i < j< k + m. The inequality (4) follows easily from this fact.

Let D be a countable dense subset of [0, 8] and let D, 1 D as n 1 co. Then

using (4), we obtain

P[maxyg,,_1 S(2) < X, max, ;. , S(f) = x]
= lim,_, lim,, . Plmax, ., ap,p-115(f) = X, MaX,.p o, () > x]
3) > lim Plmax,., .;S(f) < x]
X P[max,, ., S(f) < X, max,cp o;,S(f) > x]
= P[max,.; S(t) < x]P[max,., S(f) < x, max,,, S(1) > x]
= P[max,.,;S(f) < x]P[max;_;c.<, 1 S(f) < x, max, .,.,S(f) = x] .

oo 1IN,

Since S(¢) is stationary Gaussian, we have

Plmax,_qicp-15(7) < x, max, i, S(f) = x]
(6) = P[maXyg,<, S(f) < X, MaX,.,<, S(f) = x]
= P[1 < T(x) < 2] = P[T(x) > 1] — P[T(x) < 2] = A(x) .
The last relation in (6) follows from (2). Using (5) and (6), we obtain the desired
conclusion. []

To prove (3), we note that > v, P[T(x) > n] < ET(x) £ Y7, P[T(x) > n].
It is well known that if Y,, Y,, --., Y, has a multivariate normal distribution
with EY; = 0 and EY? =1, then P[Y, <¢, ..+, Y, < ¢,] is a non-decreasing
function of the correlation coefficient r,; between Y, and Y, for 1 < i< j< n.
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From this it easily follows that

(7) P[T(x) > n] = P[max,.,, S(?) < x] - - - P[max,_,_,., S() < x]
= (P[T(x) > 1])" = {P*(x) — ¢(x)¥(x)}" .
The last relation in (7) follows from (2). Using (7), we easily obtain the lower
bound in (3).
To obtain the upper bound in (3), we let ¢, = 1 and a, = P[max,,, S(f) < x] =
P[T(x) > n] for n = 1. It follows from Lemma 1 that for n > 3,

3) a, =a, , — P[max,,., , S(f) < x, max,_,,, S(f) = x]
é an—l - an—ZZ(x) *
Summing over (8) for n > 3, we have
ET(x) <1+ (a/A(x)) = P[T(x) > 1]/A(x)
and so we obtain the upper bound in (3).
It is easy to see that as x — co, W(x) ~ x. Therefore the lower bound in (3)

is asymptotic to (xp(x))~'. Also it can be shown that 2(x) ~ x¢(x) as x — oo.
Hence it follows from (3) that

9) ET(x) ~ (2m)ix~ exp (x¥/2) as x— oo .
Compare this result with the discrete-time relation:

(10) EN(x) = (1 — @(x))™* ~ (27)tx exp (x*/2) as x — oo
where N(x) = inf{n = 1: S(n) = x}.

Another interesting choice of the weighting function f is the negative ex-
ponential function f(f) = e, t > 0, a > 0. If EX(r) = 0t, then the process
§6 f(t — 5) dX(s) has the same distribution as the process V(f) 4 6(1 — e~ *!)/a,
where V,(¢) denotes the Ornstein—-Uhlenbeck process (with infinitesimal generator
defined by 4(d?/dx*) — ax(d/dx)) starting at V,(0) = x. Let r(c) = inf{r > 0:
§6/(t — 5)dX(s) = ¢}, 7,(c) = inf{r = 0: V,(f) = c}. Since the process V,(f) —

(0/a)e=* has the same distribution as the process V,(f) with x = —8/a, it follows
that
(11) Eyt(c) = Et (¢ + x), where x = —0/a .

LEMMA 2. Forb < x < h, define r,(h)‘as before and define t (h, b) = inf{t>0:
V() & (b, k)}. Then
(A2)  Ery(h, b) = 2ma)}(§} e dy){(§5 e dy)(§: D((2a)Ey)es” dy)
— (§2 e dy)(§3 O((2a)ty)e dy)} ;
(13) Er (k) = 2z/a)t §; O((2a)ty)es dy .
Proor. Darling and Siegert [2] have found the Laplace transform of the first

passage distribution for the Ornstein-Uhlenbeck process. Instead of using their
result which involves the Weber functions, we give here a simple martingale
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derivation of (12) and (13). We shall make use of the fact that {s(V,(¢)), t = 0}
and {§{= m(y) ds(y) — ¢, t = 0} are martingales (cf. [5]), where s(z) = {z e’ dy
is the scale function and m(z) = 2 {; e* dy = 2(r/a)}{D((2)*z) — 4} defines
the speed measure of the Ornstein-Uhlenbeck process V,(7). (We use the
convention that {} = —{3if b < a.) Letting K = 2(n/a)?, it then follows that
{K 7= O((2a)ty)e*s* dy — t, t = 0} is also a martingale. From this we obtain

Er(h, b) = KE §[:+%:2) O((2a)ty)e™ dy
(14) = KP[V,(z,(h, b)) = h] i ©((2a)ty)es* dy
— KP[V,(z.(h, b)) = b] §5 D((2a)ty)e+* dy .
We also note that

(15) PIVo(zo(h, b)) = ] = (s(x) — 5(6))/(s(h) — (b))

= (e dy)/(§i e dy) .
The relation (12) then follows from (14) and (15). Letting b — — oo in (12), we
obtain (13). []

Now let F(¢) be the stationary Ornstein—Uhlenbeck process which is stationary
Gaussian with EV(f) = 0 and Cov (¥(s), V(1)) = (2a)*exp (—als — 1)), i.e.,
V(1) = Vy(t) + e **Z, where Z is N(0, (2a)™*) and is independent of the process
Vo(t). Let t*(c) = inf{t = 0: V(f) = c¢}. Then it follows from (13) that

Er*(c) = (a/n)t §°, e~%* Et,(c) dx
= a~Y(2x)} {20t ©*(z) exp (22/2) dz .
From this it is easy to see that if U(r) is the stationary Ornstein-Uhlenbeck

process with EU(t) = 0 and Cov (U(s), U(1)) = p exp(—a|s — ¢]) and if Ty(c) =
inf{r > 0: U(f) = ¢}, then

(16) ETy(c) = a™'(2x)} gc_/g} D*(z) exp (22/2) dz .
It then follows from (16) that as ¢ — oo,
(17) ET,(c) ~ a™(2m)¥(c/o})™" exp(c*/2p) -

On the other hand, letting N,(c) = inf{n = 1: U(n) = c}, we have proved in
[6] that

(18) ENy(c) ~ (27)¥(c/p?) exp(c*/2p) as ¢ —o0.

We conclude this section with some remarks on the moving-average process
Y(1) = §§f(t — 5) dW(s), where 0 < {5 f*(r)dt < oo. This process is nonsta-
tionary Gaussian, unlike the stationary moving-average process of the form
2 f(t — 5) dé(s) considered in [3], where &(s) is a process with orthogonal
increments. We now list some properties of the process Y(¢) below:

(A) EY(t) =0, EY()Y(t + s) = R(t, t + s) = §¢ f(w)f(s + u) du for t,5 > 0,
and the covariance function R(s, f) is positive definite if inf, ., | f(x)| > 0 for
some ¢ > 0.
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(B) If fis continuous, then with probability 1, Y(r) has continuous sample
paths.

(C) If fis continuously differentiable and f(0) = 1, then the Gaussian measure
on the space of continuous functions on [0, T'] induced by the process {Y(),
0 <t £ T} is equivalent to the Wiener measure (i.e., both measures have the
same sets of measure 0).

Property (C) above follows from a result of Shepp ([11] pages 322-323), noting
that the covariance function R(s, ) in the present case is positive definite by
property (A). By making use of the Radon-Nikodym derivative with respect to
the Wiener measure, Shepp [11] has computed the first passage probability
P[T(x) > t|S(0) = a] for r < 1, where S(¢) is as defined in Lemma 1 and T(x)
is the first time the process S(¢) hits x.

3. First passage times for Gaussian processes. The asymptotic behavior of
the mean first passage times for the processes S(7) and V() considered in the
preceding section is now generalized in the following theorem, a discrete-time
version of which is proved in [6].

THEOREM 1. Let Y(¢), t = 0, be a real-valued separable Gaussian process with
EY(t) = 0 and lim,_ EY*(t) = 0® > 0. For any real number c, define T(c) =
inf{tr = 0: Y(t) = c}. Let R(s, t) = EY(5)Y(?).

(1) If lim, .. SUP,_,20 02 R(s, ) < 0, then forv = 1,2, ..., ET*(c) < oo and
(19) n > 1/(20%) = ET*(c) = o(exp (vyc?)) as ¢c—oo.

(ii) If R(s, ) = 0 and there exists a continuous non-decreasing function W on [0, 5]
such that {3 W(Be~"") du < oo and E(Y(r) — Y(s)* < W¥(|t — s|) for |t — 5| < B,
then forv =1,2, ...,

(20) 7 < 1/(20%) = lim,__,, (exp (vyc?))/ET*(c) = 0.

Proor. (i) follows from the corresponding discrete-time result in [6] since
T(c) < inf{n =1 : Y(n) = ¢}. To prove (ii), choose 9, > 1, d, > 0 such that
n < (0,0 + 08,)7%, and pick s, = 0 such that EY*(s) < d,%* fors > s,. Let], =
[0, 5], I, =[ss + (n — 1)B, s, + np] for n = 1, and Z, = sup,., Y(¢). Define
N(c) = inf{n = 0: Z, = c}. Clearly T(c) = B(N(c) — 1) and so we need only
prove that

(21) lim,_, (exp (vnc?))/EN*(c) = 0.
As in the proof of the lower bound of (3), it can be shown that
(22) P[N(c) >n] = P[Z,< ¢} --- P[Z, < c].

Choose an integer p > e such that 4 {3 W(8p~**) du < ,. By Fernique’s lemma
(cf. [4], [7]), it follows that for x = (1 4 4logp)tandn = 1,2, ...,

P[Z, = x(3,0 + 8)]
< P[supier, |Y(0)] = x{supier, RY(t, 7) + 4 §7 W(Bp~") du}]
<4p§re v du.
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Therefore from (22), we obtain
(23)  PIN(©) > 1] = P[Z, < {1 — 4p* §5 011 XP (—13[2) du}" .

Since lim,,,, P[Z, < ¢] = 1 by Fernique’s lemma and 7 < (3,0 + d,)7%, (21)
follows easily from (23). []

Let us now consider the moving-average process Y(¢) = §{ f(t — 5) dW(s),
where {§ f*(f)dt = ¢* € (0, o). Define T(c)as in Theorem 1. Then |R(?, ¢ + a)| £
1§ SO0+ u)du] < (55 f(u) du}H{§3 () du}t, and so lim, . SUp, _, | R(s, 1) = 0.
Hence by Theorem 1, ET*(c) < oo forv = 1,2, .- . and (19) holds. Now assume
that f > 0 a.e. and that

(24) 1 a continuous non-decreasing function ¥ on [0, 8] such that
{2 W(Be ™) du < oo and forallz > 0,0 < x < B, §:** f2(u) du + 2§ flu)(f(u) —
[l + x)) du < ¥*(x).

Then by Theorem 1, (20) holds. A sufficient condition to guarantee (24) is that
fis bounded and §7 { f(v) — f(u + x)}’ du = O(|log x|=*~?) as x | O for some 6 > 0.
It is easy to see that the following three interesting choices of f all satisfy this
condition:

@) fluy=1for0 < u < a, flu)y=0foru > a;

(b) flu) = pe=* with p >0, a > 0;

(c) flu) = + w)y~= with a > 3.

4. Analogs of the law of the iterated logarithm. Let Y(¢), t = 0, be a real-
valued separable Gaussian process with EY(r) = 0 and lim,_, EY?*(f) = ¢* > 0.
Let R(s, £y = EY(s)Y(#). Nisio [9] has proved that if lim,_,, sup,_,.. R(s, f) < 0,
then

(25) lim inf, ., {(20* log T)~¥sup,.,<, Y(1)} =1 a.e.

(Actually Nisio has only considered the case EY*(r) = ¢ for all ¢, but a trivial
modification of her argument proves (25) with lim,_,, EY*(r) = ¢.) In particu-
lar, (25) holds for the moving-average process Y(r) = (¢ f(t — s5) dW(s) where
o> f*(u) du = ¢*. Furthermore, if there exists a continuous non-decreasing func-
tion on [0, 8] such that (¢ W(Be*")du < oo and E(Y(f) — Y(s))* < W¥(|t — s|)
for [t — 5| < B, then

(26) lim sup, .. {(20% log T)" sup,,<, | Y()|} = 1 a.e.
(cf. [7], [9]). Therefore if {{ f*(u) du = o* and f satisfies (24), then

(27) limy_, {(21og T)~* supyg,<r |§5 (1 — 5) dW(s)]}
= lim,_. {(2log T)~} sup,c,<, §5 f(t — 5)dW(s)} = o a.e.

The following theorem gives the discrete-time analog of Nisio’s result. It can
be proved by using Nisio’s methods [9].

THEOREM 2. Let Y, Y,, ... be a real-valued Gaussian sequence with EY; = 0,



832 TZE LEUNG LAI

EY,Y; = r;; such that lim,_ r; = ¢* > 0. Iflim, o SUP; ;5,2 7i; = 0, then
(28)  limy._., {(210g N)} max,g,cy |Y,}
= lim,__, {(2log N)"* max,.,., Y,} = ¢ a.e.
As an application of Theorem 2, we obtain
(29) lim sup, .. (2logn)~t 3* ¢, X, = (25 ¢t a.e.
where X}, X,, - .. are i.i.d. N(0, 1) random variables and (c,) is a sequence of

real numbers such that 3] ¢, < co. This result can also be proved by a direct
application of the Borel-Cantelli Lemma without making use of Theorem 2 (cf.

(1.
5. Upper and lower class boundaries. Suppose Z,, Z,, ... are i.i.d. N(0, ¢%)

random variables. Let (b,) be an increasing sequence of positive numbers. Then
it is easy to see that
(30) P[Z,=b, i.0.]=1 or 0 according as

2 b, texp(—b,220") = 0 or < oo.
We shall call the sequence (b,) an upper class boundary if the series in (30) con-
verges, and say that (b,) belongs to the lower class if the series = oo.

Now consider a real-valued Gaussian sequence Y, Y,, --. with EY, =0,
EY,Y; = r; such that lim, ., r,, = ¢* and lim, ., sup;_;., 7;; < 0. Theorem 2
suggests that the fluctuation behavior of the sequence Y, resembles that of the
sequence Z,, and so it is natural to ask if (30) still holds if Z, is replaced by Y.
In general, (30) may fail to hold for the sequence Y,, for example, when r,; = 0
for i + jand r,, converges to ¢ very slowly. However, under mild conditions
on the rate of convergence of r,, to ¢* and that of sup,;_, ., 7 to 0 (see Corollary
2 below), (30) can be extended to the sequence Y,.

Given a real-valued Guassian sequence Y3, Y,, - - -, there exists a double array
(a,;: n=1,1 < i < n)of real numbers such that Y, = Y7 a,,X,, where X,
X,, --- are i.i.d. N(0, 1) random variables. To be slightly more general, let us
consider representations of the form Y, = >7.__ a,,X;, where ..., X_, X, X,
X,, - -- are i.i.d. standard normal. The following theorem gives conditions on
the double array (a,;: n = 1, —oo < i < n) so that (30) can be extended to the
sequence Y,.

THEOREM 3. Let ..., X_;, X, X3, X, - -+ bei.i.d. normal random variables such
that EX, = 0, EX? = 1. Supposec > Oand(a,;: n = 1,n =i > —oo) isa double
array of real numbers satisfying
(31) SUp,s; ik, ak, = O((log k)~?) as k— oo
(32) SUP,s, |0 — 2t @] = O((log k)™1) as k—co.
Let the sequence (b,, n = 1) of positive numbers be ultimately non-decreasing. Then
Pl e, X, = b,i.0.] =1 or 0 according as Y b,”*exp(—>b,2/20%) = oo or
< oo.
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Proor. LetY,=>7 _.a,X,0, =37 _.ak. Suppose )b, ~texp(—b,}[20%) <
oo. Then conditions (31) and (32) 1mp1y that |¢*> — ¢,/ logn = O(1) as n — oo,
and therefore ) 6,7 exp(—b,/20,?) < co. From this, it follows that 3} P[Y, >
b,] < oo, and so by the Borel-Cantelli lemma, P[Y, > b,i.0.] = 0.

Now assume that ; b,7' exp(—b5,?/20%) = co. We shall prove that P[Y, = b,
i.0.] = 1. Since by (28), P[Y, < 20¢(log n)? for all large n] = 1, we can assume
that b, < 20(log n) for all large n. Let y > 1,0 < 5 < 1,0 < & < 1 such that
r(1 — »*%) < 1. Without loss of generality, we can assume that b, > ¢(2¢ log n)?
for all large n. To see this, let m; < m, < ... be the set of positive integers
where b,, < (2§ log m,)}, and suppose that this set is infinite. Since the sequence
(b,) is non-decreasing, b, < d(2§ log m,)} for n < m,. Define b, = 4(2¢ log m,)?
ifm,_, < n < m, Then 3 b, exp(—b,’/20%) = (280" (m; — m,_,)/m; = oo.
Also if P[Y, = b,i.0.] = 1, then P[Y, = b,i.0.] = 1. Hence we shall assume
below that for all large n,

(33) c(26logn)t < b, < 20(log n)t.

Letn, = [k"]fork > 1,Y, = > a,X, o2 r_;ai, forn > j. By (31),
there exists 4 > 1 such that
(34) SUp,s; itk al, < di(log k)~?, k>e.
Choose ¢ > 0 such that
(35) &y — 1) > 8d'*

For n, £ m < n,,,, define
Ape = [by + b, < Y, < by, + 26b,7]
Ak = :bnk=+n1,:1 Am,k .

It is easy to see from (32) that as k — oo,

(36) sup{lo® — oq ., _ |t = m < n} = O((log k)™) .
From (33) and (36), we obtain that for n, < m < n,_,,
(37) P4, , = Cb, *exp(—b,2/20?)

where C is a positive constant.
We now show that for all k large,

38)- PA, > C, 0171 b, ~1exp (—b,?/20"
P (—b,*/20%

where C, is a positive constant. Let N be a positive integer (to be chosen later)
and for n, < m < n,,,, define

AT = Ap — Aps 0 (USER Y A,0) -
Then since AM, N AY, = @ if |m; — m,| = N, it follows that
my,k mg. k 2l =

(39) P(4,) = % "1 p(gun)

m—nk

> 1 sms {PA,, — ZPE N P(Apy 0 A, )}

W m=np p=m+N
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Forn, <m, m + N < o < n,,,, define

(40) Vom = 2oy, 91X s Vom = 2ten,_, Dpi -

We note that by (34), v}, < Xn_.a), < d’(log N)%. Letting Z,:m denote the

correlation coefficient between V, , and Y,, , _ . the conditional distribution of
Vomwgiven Y, . =y isa normal distribution with mean y2,,v, /0 ,,_, and

variance v} (1 — 22,). We note that

(41) (App N A, p) C (Apy N B, ) U (A, 0 D,,)

where

B, .= [le, 'lpmvp m L nk_l/om np— 1] > (b /0‘)?)’, n(l = Z )&]
Dy =Yy mir > b, 4 €0, — 2,00y m(b + 260,71) [0,
— (6,/0)V,m(1 — 20)'] -

Since b, 1 oo and |4,,| < 1, it follows from (36) that we can choose k, such
thatfork > kjand p > m>n,, D, ,, C[Y, .1 > b, —3(b,/0), ,]- Letde(p,1).
Since v, ,, < d(logN)™'and |¢* — }}0_,,,a,,| < constant (logN)™* for p =m+ N,
we can choose N sufficiently large such that fork > kjandp = m + N> m =n,,
we have

(42) PD, . < PY pomil > 5bp] =1- (D(abp(Zz m+1 @p )

< exp(—17,%/20") < exp(—7 log p) .
The last inequality above follows from (33). Recalling that 7%y >y — 1, we
can pick k, > k,such that for k > k,, (n,,, — n,) exp(—79*ylogk) < §. By the
independence of 4, , and D, ,, we then obtain from (42) that for k > k, and
ne=m< g,

oty P(Ay 0 D, ) = PA, , F0k50 PD,,

oym?

(43) = (PAu ) (Ma — 1) eXP(—ﬂ"r log k)
< 1ipP4,
Letting f{y) denote the density functlon of Y, . _, We have
(44) P(Ay 4 0 By ) = Simiains P[By | Yo, = YIAY) dy

=2(1 — ®(b,/0))PA,, ,

Hence for k > k, > k, and n, < m < n,,,, we have from (44) that

(45) oty P(Aps 0 Byp) < PA, , Y05 exp(—1°b220%) < §PA,, ,
It therefore follows from (39), (41), (43) and (45) that for k > k,,
(46) PA, =z (3N) T k" PA,,

Using (37) and (46), we obtain (38). From (38), it follows that 3 PA, = oo,
andso 3] PA4,, = oo or }; PA,,,, = oo. Now {4,,: k = 1,2, .. .}is independent,
and so is the family {4,,,,: Kk = 1,2, ...}. Hence either P[A4,, i.0.] =1 or
P[A,,,,i.0.] = 1. Therefore P[4,i.0.] = 1.
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Forn, < m < myy, let Z, , = 317%21" a,, X, By (34), EZ} , < d*(log (n, —
n,_1))"* ~ d(y — 1)7’(log k)=* as k — oo. Using this fact, together with (33) and
(35), it is easy to check that Y;, S1oetr! P[|Z, | = ¢b, '] < co. Therefore

m=nk

Pz, < eb,*foralln, < m < n,,, for all large k] = 1. []

CoRrROLLARY 1. Suppose (f(n), n = 0) is a sequence of real numbers such that
220 (i) = * > 0and 37, (i) = O((logn)=*) as n — co. Let (b,) be an ulti-
mately non-decreasing sequence of positive numbers, and let - .., X_,, Xy, X;, X,, - - -
be i.i.d. normal random variables with EX,=0, EX;*=1. If 3 b,~*exp(—b,%/20%) <
o0, then

(47)  P[Ni_ofin— )X, = b, i.0.] = P[Xr, fin— DX, = b, i.0]=0.

If ¥ b, exp(—b,*/20%) = oo, then
(48) PN . fin—i)X,=b, i0]=P[Xr fin— )X, =b, i.0]=1.

i=

Proor. Let Y, = X7 f(n — )X, = 3*__.a,X,, wherea,, = f(n — i); and

i==—00

let Z, = X7, f(n — )X, = X7 _.b,, X, where b,, = 0if i < 0andb,, = f(n — i)

ni (2

if 1 <7< n. Itisclear that the double arrays (a,;) and (b,,) satisfy conditions
(31) and (32), and so (47) and (48) follow from Theorem 3. []

COROLLARY 2. Let Y,, Y,, --- be areal-valued Gaussian sequence with EY, = 0,
EY,Y; =r;. Leto >0, andlet (b,) be an ultimately non-decreasing sequence of
positive numbers. Suppose
(49) |o* — 1., = O((log n)™%) as n— oo,
(50) lim sup,_., {(10g n)* SUP; iz 124 715} < O .

Then P[Y, = b,i.0.] =1 or 0 according as 3 b, exp(—b,?/20*) = oo or < oo.

Proor. Suppose 3 b, exp(—b,’/20”) < oo. Then condition (49) implies that
2.b,7texp(—b,’/2r,,) < co,andso 3 P[Y, = b,] < co. Therefore by the Borel-
Cantelli lemma, P[Y, > b,1.0.] = 0.

Now assume that 3] 5,7* exp(—5,?/2¢%) = co. As in the proof of Theorem 3,
we can assume that for all large n, o(logn)? < b, < 20(logn)t. Let ¥, = (a¥/r,,)}Y,,
b, = (a*r,,)%,. Then ¥ b, 'exp(—b,?20®) = oo, and Var ¥, = ¢®. Define
J{n) =c for 0 < n< e and f(n) = c[n(logn)’}~* for n > e, where ¢ > 0 is so
chosen that Dinzofi(n) = 0% Let ..., X_'l, X Xiy X3, - - - bei.i.d. normal random
variables with EX, = 0, EX? = 1, and let Z, = >* —w f(n — )X, n = 1. Since

1=

2252, 2(i) = O((log n)7*), it follows from Corollary 1 that
(51) PlZ,=b, i0]=1.
The sequence Z,, Z,, - - - is stationary Gaussian with EZ, — 0, EZ? = ¢? and
Cov(Zy, Ziya) = D7- N + 1)
(52) = (L + 0(1)) Zjsnioga Lilog /)
= 3¢*(1 + o(1))(log n)~2.
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Therefore by (50), we can choose n > 1 such that

(53) Cov(Y,Y)<Cov(Z,2Z;) ifixzijand j—ix=n.

Since Var ¥, = ¢* = Var Z,, it follows (53) that for j =iy, ---, i, +n — 1, the
sequence (¥,,,,i = 1,2, -..) is stochastically larger than the sequence (Z;,,,
i=1,2, -..), and hence (51) implies that P[Y, = b,i.0.] = 1, or equivalently,
PlY,=b,i0]=1.]

As an application of Corollary 2, consider the Ornstein-Uhlenbeck process
Y(t) = 2t {fe~ = dW(s), and let b(f) be an ultimately non-decreasing positive
function on [0, c0). Since Cov (Y(m), Y(n)) = e~'m" — e~tm*+™ it follows that
the conditions of Corollary 2 are satisfied. Therefore

(54) P[Y(n) < b(n) for all large n] = 0 or 1 according as
3 (b(m)* exp(—b¥()j2) = 00 o < oo,
or equivalently, according as § (b(¢))~! exp (—b%(f)/2) dt = oo or < oo.
On the other hand, it is well known (cf. [8]) that
(55) P[Y(t) < b(¢) for all large ] = 0 or 1 according as
§b(H) exp(—b%(#)/2)dt = c0 oOr < oo.

This gives us an example that a different upper and lower class boundary classi-
fication may arise when a continuous-time process is restricted to integer time
points.

REFERENCES

[1] CHow, Y. S. and Lar, T. L. (1973). Limiting behavior of weighted sums of independent
random variables. Ann. Probability 1 810-824.
[2] DARLING, D. A. and SIEGERT, A. J. F. (1953). The first passage problem for a continuous
Markov process. Ann. Math. Statist. 24 624-639.
[3] Doos, J. L. (1953). Stochastic Processes. Wiley, New York.
[4] FERNIQUE, X. (1964). Continuité des processus Gaussiens. C. R. Acad. Sci. Paris 258 6058-
6060.
[5] Lar, T. L. (1973). Space-time processes, parabolic functions and one-dimensional diffu-
sions. Trans. Amer. Math. Soc. 175 409-438.
[6] Lar, T. L. (1974). Control charts based on weighted sums. Ann. Statist. 2.
[71 MARcus, M. (1970). A bound for the distribution of the maximum of continuous Gaussian
processes. Ann. Math. Statist. 41 305-309.
[8] Mortoo, M. (1959). Proof of the law of iterated logarithm through diffusion equation. Ann.
Inst. Statist. Math. 10 21-28.
[9] Nisio, M. (1967). On the extreme values of Gaussian processes. Osaka J. Math. 4313-326.
[10] PAGE, E. S. (1954). Continuous inspection schemes. Biometrika 41 100-114.
[11] SHepp,L. A.(1966). Radon-Nikodym derivatives of Gaussian measures. Ann. Math. Statist.
37 321-354.
[12] SuEepp, L. A.(1971). First passage time for a particular Gaussian process. Ann. Math. Statist.
42 946-951.
[13] SHIRYAEV, A. N. (1963). On optimum methods in quickest detection problems. Theor.
Probability Appl. 8 22-46.



GAUSSIAN PROCESSES AND MOVING AVERAGES 837

[14] SLEPIAN, D. (1962). The one-sided barrier problem for Gaussian noise. Bell System Techni-
cal J. 41 463-501.
DEPARTMENT OF MATHEMATICAL STATISTICS
COLUMBIA UNIVERSITY
New York, NEw York 10027



