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Gaussian Processes Online Observation Classification for RSSI-based

Low-cost Indoor Positioning Systems
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Abstract— In this paper, we propose a real-time classification
scheme to cope with noisy Radio Signal Strength Indicator
(RSSI) measurements utilized in indoor positioning systems.
RSSI values are often converted to distances for position
estimation. However due to multipathing and shadowing effects,
finding a unique sensor model using both parametric and non-
parametric methods is highly challenging. We learn decision
regions using the Gaussian Processes classification to accept
measurements that are consistent with the operating sensor
model. The proposed approach can perform online, does not
rely on a particular sensor model or parameters, and is robust
to sensor failures. The experimental results achieved using
hardware show that available positioning algorithms can benefit
from incorporating the classifier into their measurement model
as a meta-sensor modeling technique.

I. INTRODUCTION

The spreading of personal communication systems into

many public and private places, as well as the onset of new

generation of smartphones, has enabled the development of a

vast number of indoor positioning systems based on standard

wireless communication technologies [1], [2]. While indoor

radio propagation follows the same mechanisms as outdoor,

shorter coverage range and greater variability of indoor envi-

ronments, e.g. the presence of tinted metal in windows, make

modeling the radio signal attenuation significantly more

challenging [3]. Further, compared to outdoor scenarios,

the number of Line-Of-Sight (LOS) observations are lower

which means the common Friis free space model cannot

accurately model the radio signal attenuation. Therefore, for

any indoor positioning system that relies on such models,

the ability to differentiate LOS and Non-LOS (NLOS) ob-

servations is beneficial.

In this paper, we propose a probabilistic framework to

explicitly detect and systematically mitigate NLOS radio sig-

nal observations. The proposed approach is non-parametric,

does not require a statistical characterization of waveforms,

and can be incorporated into recursive Bayesian estimation

frameworks such as particle filters as a meta-sensor modeling

technique. We use Gaussian process classification (GPC) for

offline learning of decision regions based on dense distance

and Radio Signal Strength Indicator (RSSI) measurements,

shown in Figure 1, and employ it in online scenarios using

kd-tree structures.
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Fig. 1: The decision surface learned by a Gaussian process classifier using
collected LOS and NLOS measurements. Each LOS/NLOS point is averaged
over 6 RSSI from 6 co-located BLE beacons with the same transmission
power. The groundtruth distances are computed using a laser range-finder
sensor and an iterative closest point-based scan-matching technique.

A. Motivation

The main motivation stems from the challenge faced in

using Bluetooth Low Energy (BLE) beacons for indoor

positioning. Assuming RSSI is the only quantity available to

the receiver, the common practice reported in the literature

is to convert the measured RSSI to distance. However,

in our experience, under realistic conditions, radio signals

are severely impacted due to shadowing and multipathing

effects. These incidents are due to various factors such as

the presence of people, the number of reflective surfaces,

and overall dynamics of the environment. Therefore, a large

number of spurious measurements results in biased dis-

tance conversion and consequently poor position estimation

performance. Through rejecting measurements that are not

compatible with the sensor model, we only add information

to the estimation process if it maintains its consistency.

B. Contributions

The contributions of this paper are two folds. Firstly, we

propose an online (adaptive) technique to model the BLE

sensor so that it can tackle the shadowing and multipathing

effects of the signal. Secondly, we utilize the BLE sensor

model in a position estimation framework to localize a

smartphone user or a robot in a given environment. It should

be noted that by utilizing our approach, we eliminate the

tedious process of fingerprinting the environment to generate

a radio map, rather we collect data to model the BLE sensor

which is a one time process and has considerably lower

overhead compared to fingerprinting the environment.



C. Notation

Probabilities and probability densities are not distin-

guished in general. Matrices are capitalized in bold, such as

in X , and vectors are in lower case bold type, such as in x.

Vectors are column-wise and 1: n means integers from 1 to

n. Random variables, such as X , and their realizations, x, are

sometimes denoted interchangeably. x[i] denotes a reference

to the i-th element of the variable. An alphabet such as X
denotes a set. A reference to a test set quantity is shown

by x∗. Finally, E[·] and V[·] denote the expected value and

variance of a random variable, respectively.

D. Outline

In the following section, we present the related work. In

Section III, the problem formulation, and required prelimi-

naries are explained. We present details of sensor modeling

and analysis in Section IV. The positioning algorithm is

explained in Section V. We present the experimental results

in Section VI and Section VII concludes the paper.

II. RELATED WORK

The idea of integrating non-parametric models into

Bayesian filtering is not new. In [4], the system dynamics

and observation models in extended and unscented Kalman

filters and Particle Filters (PFs) are appropriately replaced by

Gaussian Processes (GPs). In comparison to parametric mod-

els, upon the availability of sufficient training data, results

show improvement in tracking accuracy. Machine learning

techniques are also extensively considered for indoor local-

ization systems. In location fingerprinting approach, kernel

methods in the form of Support Vector Machines (SVMs) and

GPs frameworks have become the standard way of indoor

positioning [5]–[8]. However, these approaches require the

tedious process of mapping the RSSI values in different

locations in the environment, prior to the experiment which

is distinct from the online approach we use in this work.

Furthermore, the likelihood map is non-adaptive and does

not take into account dynamic of the environment.

An important part of online RSSI-based positioning sys-

tems is the radio signal path-loss model [9]. Such models are

usually based on Friis free space model and are only valid if

there is a direct and collision-free path between transmitter

and receiver, with no reflection and refraction due to nearby

obstacles, and in the far-field of transmitting antenna [3],

[10]. A key challenge here is to be able to identify and

mitigate NLOS observations [11]–[16]. To the best of our

knowledge, approaches in [15], [16] are conceptually the

closest to this work. In [15], the problem of range error

mitigation using SVM and GP regression is studied. The

approach uses ℓ2 and ℓ1-minimization and characterizes the

ranging error based on a set of features extracted from the

received waveform. In [16], a set of statistical features are

extracted from the received signal; a classifier discards the

NLOS measurements, and the distance to the transmitter is

estimated using regression techniques. In this work, we do

not rely on feature extraction from the received signal, the

receiver has only access to the received RSSI (unlike [15]),

and the classification output is incorporated into the prob-

abilistic positioning framework for sequential estimations.

In particular, instead of discarding measurements we use a

probabilistic mixture measurement model.

The technique in [17] uses the floor plan to associate

multipath components of the propagated radio signal to

the surrounding geometry. An environment survey prior to

the experiment is required as well as more sophisticated

hardware for data collection. In [18], indoor channel models

for a wider range of frequencies to meet 5G – 5th generation

wireless systems – requirements are studied. The probability

of LOS observations is modeled using exponential decays

as a function of distance. However, it is mentioned that

high variability exists between different deployments and

openness of the area. It is clear that using purely distance

results in a passive model and cannot cope with online radio

signal variations. The proposed solution in this work is a non-

parametric representation of LOS probabilities using distance

and RSSI and takes the spatial correlation of radio signal

propagation into account.

III. PROBLEM FORMULATION AND PRELIMINARIES

We now define the problems we study in this paper

and then briefly explain the required preliminaries to solve

these problems. Let M = {m[j] ∈ R
3|j = 1 : nm} be a set

of known and fully observable features whose elements

represent BLE beacons locations. The robot has a receiver

that can only receive the RSSI of a broadcasted signal.

Let St ⊂ Z be the set of possible RSSI measurements at

time t. The observation consists of an ns-tuple random

variable (S
[1]
t , ..., S

[ns]
t ) whose elements can take values

s
[k]
t ∈ St, k ∈ {1 : ns}. We denote the robot position up to

time t by x0:t , {x0, ...,xt} where xt ∈ R
3. Given the set

of known BLE beacons and noisy observations, we wish to

solve the following problems.

Problem 1 (Measurement model): Let Zt ⊂ R≥0 be the

set of possible range measurements at time t that is calculated

through a nonlinear mapping st 7→ zt. The measurement

model p(zt|xt) is a conditional probability distribution that

represents the likelihood of range measurements. Find the

mapping from signal to range measurements and the likeli-

hood function that describes the measurement noise.

Problem 2 (Positioning): Let z1:t , {z1, ..., zt} be a se-

quence of range measurements up to time t. Let xt be a

Markov process of initial distribution p(x0) and transition

equation p(xt|xt−1). Given p(zt|xt), estimate recursively in

time the posterior distribution p(x0:t|z1:t).
In the first problem, we try to characterize the received

signal and through an appropriate model transform it to

a range measurement. Furthermore, we need to find a

likelihood function that describes the measurement noise.

The second problem can be seen as a range-only self-

localization problem. For simplicity, since the map is known,

it is eliminated from conditional probabilities terms. We now

express the main assumptions we use to solve the defined

problems.



Assumption 1 (Constant transmission power): The trans-

mission power of all beacons during positioning experiments

remain fixed.

Since a different transmission power leads to a different

signal propagation behavior, i.e. a shorter or a longer range,

this assumption guarantees that the sensor model complies

with the employed beacons.

Assumption 2 (Known data association): Each beacon

has a unique hardware identifier that is available to the

receiver device.

This assumption is usually satisfied in practice as each

beacon has a unique MAC-address that broadcasts it together

with the RSSI. Finally, we assume that the only available in-

formation to the receiver is the RSSI, this is the common case

for existing wireless routers and BLE beacons. However, if

the time difference of arrival (transmission time) be available

to the receiver device, the position estimation accuracy can

be improved.

A. Bluetooth low energy technology

Bluetooth Low Energy [19] protocol was devised in 2010.

It operates in the 2.4 GHz license-free band and hence shares

the same indoor propagation characteristics as 2.4 GHz WiFi

transceivers. Unlike WiFi, BLE uses 40 channels each with

a width of 2 MHz [20].

B. Gaussian processes classification

Supervised classification is the problem of learning input-

output mappings from a training dataset for discrete outputs

(class labels). Gaussian process classification [21] is a non-

parametric Bayesian technique that uses statistical inference

to learn dependencies between points in a dataset. The

problem in this paper is a binary classification. We define

a training set D , {(x[i], y[i])|i = 1 : no} of dimension

d which consists of a d-dimensional input vector x and

a class label y ∈ {−1,+1} for no observations. In GPC,

the inference is performed in two steps; first computing the

predictive distribution of the latent variable corresponding

to a query case, f∗|D,x∗ ∼ N (E[f∗],V[f∗]), and then a

probabilistic prediction, p(y∗ = +1|D,x∗), using a sigmoid

function.

The non-Gaussian likelihood and the choice of the sigmoid

function can make the inference analytically intractable.

Hence, approximate techniques such as Expectation Prop-

agation (EP) [22] needs to be used. The vector of hyper-

parameters (parameters of the covariance and mean func-

tions), θ, can be optimized by maximizing the log of the

marginal likelihood function, log p(y|X,θ), where X is

the d × n design matrix of aggregated input vectors x, and

y = [y[1], ..., y[n]]T .

The GPC model implemented in this work uses a con-

stant mean function, squared exponential covariance function

with automatic relevance determination as described in [23],

whereas the error function likelihood (probit regression), and

EP technique for approximate inference is done using the

open source Gaussian process (GP) library in [21].

C. Particle filters

In the problem of localization using RSSI, the observation

space is nonlinear, and the posterior density is often multi-

modal. Particle filters are a non-parametric implementation

of the Bayes filter that are suitable for tracking and local-

ization problems where dealing with global uncertainty is

crucial [24]–[26]. In this work, we use Sample Importance

Resampling (SIR) filter embedded with the systematic re-

sampling algorithm. To detect the degeneracy and perform

resampling, we compute the effective sample size which

corresponds to the reciprocal of the sum of squares of particle

weights.

IV. SENSOR MODELING AND ANALYSIS

In this section, we tackle the first problem. To model

the mapping from the signal to the measurement space,

i.e. RSSI to range, we use Friis free space model [3],

[10] in which the signal attenuation is proportional to the

logarithm of the distance. This model can characterize radio

signals propagation in LOS scenarios; however, in NLOS

and the presence of clutter, it may perform poorly which

negatively affects the positioning algorithm. We first describe

experimental data collection rounds, followed by how we use

the experimental data to estimate the parameters of the path-

loss model and train the GP classifier.

A. Data collection rounds

We employ a robot equipped with an Inertial Measurement

Unit (IMU) and a laser range-finer to localize using laser

odometry. We use this result as a proxy for groundtruth to

estimate distances to the BLE beacons at known locations.

We empirically found that the effective range of BLE

beacons to define a meaningful relation between RSSI and

distance is about 10m, which is consistent with the available

literature [1]. Hence, all data collection rounds for sensor

modeling are performed along a 10m range to capture the

main trend of data. In Round I, RSSIs are collected in LOS

and NLOS scenarios. The NLOS is created artificially by

blocking the LOS using furniture such as chairs. In Round

II, on a different working day, we collected another LOS

dataset. The collected data from Round I and II are illustrated

in Figure 2.

B. Path-loss model parameters estimation

The signal propagation in an indoor environment is a

complex physical phenomenon, and it is often not possible

to find a unique model to characterize it. However, the

simplified free space path-loss model can capture the essence

of signal propagation. The model depends on, aX in dBm,

which captures the transmission power, antenna characteris-

tics and the average channel attenuation, the received power,

pRSSI in dBm, the path-loss exponent γ, and a reference

distance, d0 in m, for the antenna far-field. The model can

be expressed as follows.

pRSSI = aX + 10γ log10(
z

d0
) + ǫ (1)
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Fig. 2: Raw RSSI measurements are from 6 co-located BLE beacons collected along 10m range for (a) Round I: LOS (12680 points) and (b) Round I:
NLOS (9380 points). The NLOS measurements have lower signal strength due to shadowing and non-constructive multipathing effects. (c) shows Round II:
LOS (10640 points), and (d) shows path-loss model parameter estimation using the maximum likelihood and a Gaussian noise model. The points indicate
the median of measurements from all 6 beacons with a similar time-stamp, i.e within ten milliseconds.

where ǫ is the received signal power noise and assumed to

have an independent and identically distributed (i.i.d.) Gaus-

sian distribution, ǫ ∼ N (0, σ2). The three model parameters

aX , γ, and d0 can then be estimated using the nonlinear

least squares parameter estimation technique, i.e. maximum

likelihood estimation with a Gaussian noise assumption.

Figure 2d shows the model with parameters estimated using

the Round II dataset.

Remark 1: From Equation (1), it is clear that if pRSSI , in

dBm, follows a normal distribution, then the received power,

in Watt, follows a log-normal distribution. Therefore, we can

assume that the distance follows a log-normal distribution as

well. In practice, we calculate the range z from a known

value of pRSSI .

C. GP classifier training and validation

To increase the diversity of training data, we use NLOS

observations from Round I and LOS observations from

Round II. The total number of raw observations taken from

6 BLE beacons is about 20, 000. We compute the median

of the observations within ten milliseconds to reduce the

effect of outliers and improve the accuracy of the training

set, leading to about 2000 points. We then downsample data

to about 1000 points to keep the computational aspect of

GPC manageable. Each training point input consists of a

2-dimensional vector concatenated from the RSSI observa-

tion and the corresponding groundtruth range. The target

labels are set to +1 and −1 for LOS and NLOS, respectively.

Figure 1 shows the inferred probability surface in which the

higher probabilities correspond to LOS observations. Note

that in practice one does not have access to the groundtruth

distance. Instead, the estimated distance to a beacon together

with the RSSI observation are the input. To employ the

classifier online, the results are stored in a kd-tree data

structure with an appropriate resolution.

We evaluate the performance of the classifier using the

Receiver Operating Characteristic curve (ROC) and the area

under the ROC (AUC) [27]. The raw measurements without

any filtering are used to conduct two tests. First, we use all

observations from Round I NLOS and Round II LOS. In the

second test, we use all observations from Round I and II

which contain about 32, 000 points. Figure 3 illustrates the

ROC analysis results where the AUC indicates the average

performance of the classifier on each test set.

V. POSITIONING ALGORITHM

We now formulate a measurement model that embeds

the classifier into the Bayesian filtering algorithm. Let C
[i]
t

be a Bernoulli random variable whose realization at time t
indicates LOS probability for the i-th particle. Without loss

of generality, the joint probabilistic measurement model can

be defined as follows.

p(zt, c
[i]
t |x[i]

t ) = p(c
[i]
t |zt,x[i]

t )p(zt|x[i]
t ) (2)

The conditional probability p(zt|x[i]
t ) is the so-called likeli-

hood function of the Bayesian filtering and in the traditional

SIR filter returns an importance weight w
[i]
t for the i-th

particle. Therefore, the joint probability of the range mea-

surement and LOS can be seen as a new likelihood function.

However, this model is only valid if the measurement is

LOS. The classifier can theoretically detect the NLOS when
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Fig. 3: The receiver operating characteristic curve and the area under the
curve for the trained GP classifier. The classifier is validated using the
LOS and NLOS measurements collected on Round I and II. The average
performance of the classifier on the larger test set is lower, 0.591.

p(c
[i]
t |zt,x[i]

t ) ≤ plos, where plos is a threshold for LOS

detection and can be set using the ROC analysis performed

earlier [27]. As such, in the absence of any prior knowledge

about the environment, we treat NLOS measurements as

random with a constant probability prand. Consequently, the

measurement function can be written as:

p(zt, c
[i]
t |x

[i]
t ) =

{

p(c
[i]
t |zt,x

[i]
t )p(zt|x

[i]
t ) if p(c

[i]
t |zt,x

[i]
t ) > plos

prand otherwise
(3)

To query the probability p(c
[i]
t |zt,x[i]

t ) from the classifier,

we use the raw RSSI observation and estimated distance to

the corresponding beacon as

h(x
[i]
t ) ,

√

(x
[i]
t −m[j])T (x

[i]
t −m[j]) (4)

The formulated probabilistic measurement model incorpo-

rates the developed classifier into the SIR filter framework.

As we will see later, one can only use p(zt|xt) to com-

puting the filtering distribution of the robot position, e.g.

using a normal or a log-normal distribution, however, the

joint measurement model improves the confidence about the

correctness of the model-measurement relation.

As it is assumed there is no interoceptive sensor avail-

able, we do not have any knowledge regarding the transi-

tion probability model p(xt+1|xt). Let the state vector be

x̄
[i]
t = [x

[i,1]
t ẋ

[i,1]
t x

[i,2]
t ẋ

[i,2]
t ]T , where ẋ

[i]
t denotes the the i-

th particle’s velocity at time t. Assuming a constant velocity

motion model, the state equation becomes:

x̄
[i]
t+1 = F x̄

[i]
t + u, F =









1 ts 0 0
0 1 0 0
0 0 1 ts
0 0 0 1









(5)

where ts is the sampling time, u ∼ N (0,Q), and Q is

a diagonal motion noise covariance matrix. Note that the

receiver height installed on the robot is fixed as the robot

operates on an even floor.

TABLE I: Parameters used in the positioning experiments.

Parameter Symbol Value

− Compared SIR particle filter variants:
Gaussian PFG -
Gaussian with classifier PFG-C -
Lognormal PFL -
Lognormal with classifier PFL-C -
− Path-loss model parameters:
Attenuated transmission power aX -64.53
The path-loss exponent γ 1.72
Reference distance d0 1.78 m
− Measurement model:
Classifier threshold plos 0.4
Gaussian; standard deviation σn 3 m
Gaussian; random probability prand 0.1
Lognormal; standard deviation σln 0.4 dBm

Lognormal; random probability prand (d0σln

√
2π)−1

− Motion model:
Position standard deviation σu 0.1 m
Velocity standard deviation σv 0.05 m / sec
− Particle filter:
Number of particles np 100
Resampling threshold nthr 20
− BLE Beacon Parameter:
Transmission power - +4 dBm
Broadcasting frequency - 10 Hz

VI. EXPERIMENTAL RESULTS

To validate the proposed measurement modeling using

the GP classifier, we evaluate our approach on an indoor

positioning algorithm using BLE beacons. The dataset is

collected during working hours in an office space and the

robot is moved with a moderate speed of 0.2 m / sec on

average. In the following, we explain the experimental setup

and results as well as a discussion on the limitations of this

work and computational complexity analysis of the proposed

algorithm.

A. Experimental setup and evaluation criteria

Traditionally, Cramér-Rao Lower Bound (CRLB) has been

developed and used for system designs and evaluations, since

it can predict the achievable performance before building

the system [25], [28]. We utilized CRLB to approximate

the theoretical lower bound for the mean-squared error. We

define the efficiency, η, of a system using
√

CRLB and the

Root Mean Squared Error (RMSE) as follows.

η =

√
CRLB

RMSE
× 100 (6)

The explanations of the compared techniques and used

parameters are provided in Table I. We compare the results

for indoor positioning using the SIR Particle Filter (PF) with

Gaussian (PFG) and log-normal (PFL) likelihood functions,

and with and without incorporating the classifier, PFG-C and

PFL-C, respectively. To detect the degeneracy, we calcu-

late the effective sample size, neff = (
∑np

i=1 w
[i]
t )−1, and

perform resampling when neff < nthr; where np is the

number of particles and nthr is a threshold 1 < nthr < np.

All the results presented in this paper use np = 100 and

nthr = 20, and the robot position is estimated using the

weighted average of all particles’ positions. Moreover, the

transmission power of all beacons is +4dBm.



Fig. 4: The indoor positioning results in an office environment populated
with BLE beacons. For clarity, The estimated trajectories are plotted by
skipping 50 time steps between any two successive positions.

TABLE II: Comparison of indoor positioning algorithms using particle
filtering with and without incorporating the online classifier on Dataset I
and II. The results are averaged over 100 runs; mean ± standard error.

PFG PFG-C PFL PFL-C
√

CRLB (m) 0.4254 0.4254 0.0747 0.0747
RMSE (m) 8.08± 0.38 1.99± 0.01 4.11± 0.06 3.06± 0.05
η (%) 5.76± 0.12 21.36± 0.13 1.85± 0.02 2.50± 0.04
Time (sec) 10.6± 0.01 182.7± 0.05 12.0± 0.02 180.8± 0.29

B. Indoor positioning results

The dataset is collected in a research office partitioned

into separate office cabins and consists of traditional office

furniture. The data is collected using a TurtleBot equipped

with an IMU sensor and a laser range-finder which are used

for groundtruth pose estimation. The beacons signals are

recorded using a smartphone Android app. The dataset is

collected by maneuvering the robot over a distance of 70m
in an office space of 20× 40m2, as shown in Figure 4.

The methods are implemented using Robot Operating

System (ROS) [29] and results for indoor positioning are

processed using MATLAB. The nominal sampling rate is

BLE beacons is 10Hz; however, in practice, we experienced

a sampling rate of 7Hz, on average, for the entire dataset.

Figure 5 shows the empirical cumulative distribution func-

tion (CDF) of the four compared techniques. The empirical

CDF is an unbiased estimate of the population CDF and is a

consistent estimator of the true CDF. Each curve illustrates

the median of 100 CDF from 100 independent runs. The

PFG-C demonstrates the best performance by the localization

error of about 2m. Note that faster rise from zero to one

along the vertical axis is a desirable outcome.

The statistical summary of the results is depicted in

Figure 6. As an example, the estimated trajectory using

PFG-C and PFL-C are also illustrated in Figure 4. The

proposed classifier has a desirable effect on the robot position

estimation where the robot position has fewer fluctuations.

The classifier makes the positioning algorithm more robust

to noisy observations and outliers, improving the overall

reliability of the system (Figure 5). This is, in particular,

Fig. 5: The empirical cumulative distribution functions of the four compared
techniques.

Fig. 6: The statistics from indoor positioning results using particle filtering
with normal and log-normal noise distributions. The incorporation of the
classifier into the sensor model leads to a more accurate location and scale
estimation.

appealing for the case of the normal likelihood. From the

physical nature of the radio signal propagation, the ranging

bias is always positive. Therefore, a symmetric distribution

such as the Gaussian likelihood performs poorly in character-

izing the noise. However, depending on the parameters, there

are instances that the normal and log-normal distributions

behave similarly. Nevertheless, the classifier improves the

estimation performance for both types of noise models.

Table II shows the numerical comparison between dif-

ferent algorithms from 100 independent runs. The CRLB

value for normal and log-normal distributions is inherently

different as the noise variance for the former is in meters and

the latter in dBm. Thus, one should compare the efficiency

of methods with a similar likelihood function. However, we

can compare all algorithms using RMSE. Overall, PFG-

C and PFL-C show better performance compared to their

corresponding algorithms that do not use the classifier.

C. Discussion

The main limitation of the proposed online classification

technique is that the RSSI range varies according to the

BLE beacon TP. Therefore, using beacons that have different

TPs as compared to those used for training the classifier

will result in lower performance. Furthermore, the classifier

cannot improve the sensor model if it is not (at least



empirically) compatible with the underlying physical nature

of the RF signal propagation. Therefore, it can only act as a

proxy for consistent observation selection which can detect

and mitigate destructive multipathing, shadowing, or sensor

failures, i.e. weak batteries or hardware failures.

Finally, to our experience, collection of NLOS data is of

great importance. If NLOS data has a substantial overlap

with LOS data, then the performance of the trained classifier

will decrease dramatically. In small environments, this effect

can be understood from constructive multipathing or partially

blockage of LOS during data collection.

D. Computational complexity

For no observations, the approximate inference using EP

scales as O(n3
o) which is performed offline. The kd-tree

structure is suitable for efficient search in low-dimensional

spaces, such as the case in this work. For np particles

and nz nearest neighbor queries, the algorithm scales as

O(npnz log nq), where nq is the number of stored query

points, and usually nz ≪ np.

VII. CONCLUSION AND FUTURE WORK

We studied the problem of indoor positioning using BLE

beacons. We developed an online classification strategy to

improve the consistency of received measurements with the

employed sensor model. Our experimental results under

realistic conditions show promising improvements and the

proposed classifier can be used as a meta-sensor modeling

technique to cope with spurious measurements. The proposed

method is particularly simpler and more scalable than the

popular fingerprinting technique as the training phase is

in the sensor space instead of spatial coordinates of an

environment.

The future work includes further studies and improvement

of the sensor model in the presence of semi-dynamic obsta-

cles. Integration of incremental motion measurements such

as IMUs can also improve the accuracy of position tracking.

Moreover, increasing the sampling rate can provide a better

efficiency through a higher flow of information into the

estimation process. Lastly, the simultaneous estimation of the

robot (receiver) and BLE beacons positions is an interesting

avenue to follow.
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[28] P. Tichavskỳ, C. H. Muravchik, and A. Nehorai, “Posterior Cramér-
Rao bounds for discrete-time nonlinear filtering,” Signal Processing,

IEEE Trans. on, vol. 46, no. 5, pp. 1386–1396, 1998.

[29] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2,

2009, p. 5.


