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Abstract

This paper presents an approach for constrained Gaussian Process (GP) regression where
we assume that a set of linear transformations of the process are bounded. It is motivated
by machine learning applications for high-consequence engineering systems, where this kind
of information is often made available from phenomenological knowledge. We consider a GP
f over functions on X ⊂ R

n taking values in R, where the process Lf is still Gaussian when
L is a linear operator. Our goal is to model f under the constraint that realizations of Lf
are confined to a convex set of functions. In particular, we require that a ≤ Lf ≤ b, given
two functions a and b where a < b pointwise. This formulation provides a consistent way of
encoding multiple linear constraints, such as shape-constraints based on e.g. boundedness,
monotonicity or convexity. We adopt the approach of using a sufficiently dense set of
virtual observation locations where the constraint is required to hold, and derive the exact
posterior for a conjugate likelihood. The results needed for stable numerical implementation
are derived, together with an efficient sampling scheme for estimating the posterior process.

Keywords: Gaussian processes, Linear constraints, Virtual observations, Uncertainty
Quantification, Computer code emulation

1. Introduction

Gaussian Processes (GPs) are a flexible tool for Bayesian nonparametric function estima-
tion, and widely used for applications that require inference on functions such as regression
and classification. A useful property of GPs is that they automatically produce estimates
on prediction uncertainty, and it is often possible to encode prior knowledge in a princi-
pled manner in the modelling of prior covariance. Some early well-known applications of
GPs are within spatial statistics, e.g. meteorology (Thompson, 1956), and in geostatistics
(Matheron, 1973) where it is known as kriging. More recently, GPs have become a popular
choice within probabilistic machine learning (Rasmussen and Williams, 2005; Ghahramani,
2015). Since the GPs can act as interpolators when observations are noiseless, GPs have also
become the main approach for uncertainty quantification and analysis involving computer
experiments (Sacks et al., 1989; Kennedy and O’Hagan, 2001).
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Often, the modeler performing function estimation has prior knowledge, or at least
hypotheses, on some properties of the function to be estimated. This is typically related
to the function shape with respect to some of the input parameters, such as boundedness,
monotonicity or convexity. Various methods have been proposed for imposing these types of
constraints on GPs (see Section 4.1 for a short review). For engineering and physics based
applications, constraints based on integral operators and partial differential equations are
also relevant (Jidling et al., 2017; Särkkä, 2011). What the above constraints have in
common is that they are linear operators, and so any combination of such constraints can
be written as a single linear operator. For instance, the constraints a1(x) ≤ f(x) ≤ b1(x),
∂f/∂xi ≤ 0 and ∂2f/∂x2j ≥ 0 for some function (or distribution over functions) f : X → Y ,
can be written as a(x) ≤ Lf(x) ≤ b(x) for a(x) = [a1(x),−∞, 0], b(x) = [b1(x), 0,∞] and
L : Y X → (Y X)3 being the linear operator Lf = [f, ∂f/∂xi, ∂

2f/∂x2j ].
The motivation for including constraints is usually to improve predictions and to obtain

a reduced and more realistic estimate on the uncertainty, the latter having significant impact
for risk-based applications. For many real-world systems, information related to constraints
in this form is often available from phenomenological knowledge. For engineering systems,
this is typically knowledge related to some underlying physical phenomenon. Being able
to make use of these constraint in probabilistic modelling is particularly relevant for high-
consequence applications, where obtaining realistic uncertainty estimates in subsets of the
domain where data is scarce is a challenge. Furthermore, information on whether these types
of constraints are likely to hold given a set of observations is also useful for explainability
and model falsification. For a broader discussion see (Agrell et al., 2018; Eldevik et al.,
2018).

In this paper, we present a model for estimating a function f : Rnx → R by a constrained
GP (CGP) f |D, a(x) ≤ Lf(x) ≤ b(x). Here D is a set of observations of (xj , yj), possibly
including additive white noise, and f ∼ GP(µ(x),K(x,x′)) is a GP with mean µ(x) and
covariance function K(x,x′) that are chosen such that existence of Lf is ensured. Due to
the linearity of L, both Lf |D and f |D,Lf remain Gaussian, and our approach is based
on modelling f |D,Lf under the constraint a(x) ≤ Lf(x) ≤ b(x). To model the constraint
that a(x) ≤ Lf(x) ≤ b(x) for all inputs x, we take the approach of using a finite set of
input locations where the constraint is required to hold. That is, we require that a(xv) ≤
Lf(xv) ≤ b(xv) for a finite set of inputs {xv} called the set of virtual observation locations.
With this approach the CGP is not guaranteed to satisfy the constraint on the entire
domain, but a finite set of points {xv} can be found so that the constraint holds globally
with sufficiently high probability.

The model presented in this paper is inspired by the research on shape-constrained
GPs, in particular (Wang and Berger, 2016; Da Veiga and Marrel, 2012, 2015; Riihimki and
Vehtari, 2010; Golchi et al., 2015; Maatouk and Bay, 2017; López-Lopera et al., 2018). We
refer to Section 4 for further discussion on these alternatives. In the case where L = ∂/∂xi,
our approach is most similar to that of Wang and Berger (2016), where the authors make use
of a similar sampling scheme for noiseless GP regression applied to computer code emulation.
Many of the approaches to constrained GPs, including ours, rely on the constraint to be
satisfied at a specified set of virtual locations. The use of virtual constraint observations
may seem ad hoc at first, as the set of virtual observation locations has to be dense enough
to ensure that the constraint holds globally with sufficiently high probability. Inversion
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of the covariance matrix of the joint GP may therefore be of concern, both because this
scales with the number of observations cubed and because there is typically high serial
correlation if there are many virtual observations close together. The general solution is
then to restrict the virtual observation set to regions where the probability of occurrence
of the constraint is low (Riihimki and Vehtari, 2010; Wang and Berger, 2016). According
to Wang and Berger (2016), when they followed this approach in their experiments, they
found that only a modest number of virtual observations were typically needed, that these
points were usually rather disperse, and the resulting serial correlation was not severe. We
draw the same conclusion in our experiments. There is also one benefit with the virtual
observation approach, which is that implementation of constraints that only hold on subsets
of the domain is straightforward.

For practical use of the model presented in this paper, we also pay special attention
to numerical implementation. The computations involving only real observations or only
virtual observations are separated, which is convenient when only changes to the constraints
are made such as in algorithms for finding a sparse set of virtual observation locations or
for testing/validation of constraints. We also provide the algorithms based on Cholesky
factorization for stable numerical implementation, and an efficient sampling scheme for
estimating the posterior process. These algorithms are based on derivation of the exact
posterior of the constrained Gaussian process using a general linear operator, and constitutes
the main contribution of this paper.

The paper is structured as follows: In Section 2 we state the results needed on GP
regression and GPs under linear transformations. Our main results are given in Section 3,
where we introduce the constrained GP (CGP) and present the model for GP regression
under linear inequality constraints. In particular, given some training data, we derive the
posterior predictive distribution of the CGP evaluated at a finite set of inputs, which is a
compound Gaussian with a truncated Gaussian mean (Section 3.1). Section 3.2 presents an
algorithm for sampling from the posterior, and parameter estimation is addressed in Section
3.3. Section 3.4 and Section 3.5 are dedicated to optimization of the set of virtual observation
locations needed to ensure that the constraint holds with sufficiently high probability. Some
relevant alternative approaches from the literature on GP’s under linear constraints are
discussed in Section 4, followed up by numerical examples considering monotonicity and
boundedness constraints. A Python implementation is available at https://github.com/

cagrell/gp_constr, together with the code used for the examples. We end with some
concluding remarks in Section 5.
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2. Gaussian Processes and Linear Operators

We are interested in GP regression on functions f : Rnx → R under the additional inequality
constraint a(x) ≤ Lf(x) ≤ b(x) for some specified functions a(x) and b(x), and the class
of linear operators {L|Lf : R

nx → R
nc}. Here nx and nc are positive integers, and the

subscripts are just used to indicate the relevant underlying space over R. We will make use
of the properties of GPs under linear transformations given below.

2.1. Gaussian Process Regression

We consider a Gaussian process f ∼ GP(µ(x),K(x,x′)) given as a prior over functions
f : Rnx → R, which is specified by its mean and covariance function

µ(x) = E[f(x)] : Rnx → R,

K(x,x′) = E[(f(x) − µ(x))(f(x′) − µ(x′))] : Rnx×nx → R.
(1)

Let x denote a vector in R
nx and X the N × nx matrix of N such input vectors. The

distribution over the vector f of N latent values corresponding to X is then multivariate
Gaussian with

f|X ∼ N (µ(X),K(X,X)),

where K(X,X ′) denotes the Gram matrix K(X,X ′)i,j = K(xi,x
′
j) for two matrices of

input vectors X and X ′. Given a set of observations Y = [y1, . . . , yN ]T , and under the
assumption that the relationship between the latent function values and observed output
is Gaussian, Y |f ∼ N (f, σ2IN ), the predictive distribution for new observations X∗ is still
Gaussian with mean and covariance

E[f∗|X∗, X, Y ] = µ(X∗) + K(X∗, X)[K(X,X) + σ2IN ]−1(Y − µ(X)),

cov(f∗|X∗, X, Y ) = K(X∗, X∗) −K(X∗, X)[K(X,X) + σ2IN ]−1K(X,X∗).
(2)

Here f∗|X∗ is the predictive distribution of f(X∗) and f∗|X∗, X, Y is the predictive
posterior given the data X,Y . For further details see e.g. Rasmussen and Williams (2005).

2.2. Linear Operations on Gaussian Processes

Let L be a linear operator on realizations of f ∼ GP(µ(x),K(x,x′)). As GPs are closed
under linear operators (Rasmussen and Williams, 2005; Papoulis and Pillai, 2002), Lf is
still a GP 1. We will assume that the operator produces functions with range in R

nc , but
where the input domain R

nx is unchanged. That is, the operator produces functions from
R
nx to R

nc . This type of operators on GPs has also been considered by Särkkä (2011) with
applications to stochastic partial differential equations. The mean and covariance of Lf are
given by applying L to the mean and covariance of the argument:

E[Lf(x)] = Lµ(x) : Rnx → R
nc ,

cov(Lf(x),Lf(x′)) = LK(x,x′)LT : Rnx×nx → R
nc×nc ,

(3)

1. We assume here that Lf exists. For instance, if L involves differentiation then the process f must be
differentiable. See e.g. (Adler, 1981) for details on proving existence.
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and the cross-covariance is given as

cov(Lf(x), f(x′)) = LK(x,x′) : Rnx×nx → R
nc ,

cov(f(x),Lf(x′)) = K(x,x′)LT : Rnx×nx → R
nc .

(4)

The notation LK(x,x′) and K(x,x′)LT is used to indicate when the operator acts on
K(x,x′) as a function of x and x′ respectively. That is, LK(x,x′) = LK(x, ·) and
K(x,x′)L = LK(·,x′). With the transpose operator the latter becomes K(x,x′)LT =
(LK(·,x′))T . In the following sections we make use of the predictive distribution (2), where
observations correspond to the transformed GP under L.

3. Gaussian Processes with Linear Inequality Constraints

Following Section 2.1 and Section 2.2, we let f ∼ GP(µ(x),K(x,x′)) be a GP over real
valued functions on R

nx , and L a linear operator producing functions from R
nx to R

nc . The
matrix X and the vector Y will represent N noise perturbed observations: yi = f(xi) + εi
with εi i.i.d. N (0, σ2) for i = 1, . . . , N .

We would like to model the posterior GP conditioned on the observations X,Y , and on
the event that a(x) ≤ Lf(x) ≤ b(x) for two functions a(x), b(x) : Rnx → (R∪{−∞,∞})nc ,
where ai(x) < bi(x) for all x ∈ R

nx and i = 1, . . . , nc. To achieve this approximately, we
start by assuming that the constraint a(x) ≤ Lf(x) ≤ b(x) only holds at a finite set of inputs
xv
1, . . . ,x

v
S that we refer to as virtual observation locations. Later, we will consider how to

specify the set of virtual observation locations such that the constraint holds for any x with
sufficiently high probability. Furthermore, we will also assume that virtual observations of
the transformed process, Lf(xv

i ), comes with additive white noise with variance σ2
v . We

can write this as a(Xv) ≤ Lf(Xv) + εv ≤ b(Xv), where Xv = [xv
1, . . . ,x

v
S ]T is the matrix

containing the virtual observation locations and εv is a multivariate Gaussian with diagonal
covariance of elements σ2

v .
We will make use of the following notation: Let C̃(Xv) ∈ R

S×nc be the matrix with
rows (C̃(Xv))i = Lf(xv

i ) + εvi for i.i.d. εvi ∼ N (0, σ2
vInc), and let C(Xv) denote the event

C(Xv) := ∩S
i=1{a(xv

i ) ≤ (C̃(Xv))i ≤ b(xv
i )}. C(Xv) thus represents the event that the

constraint a(x) ≤ Lf(x) + εv ≤ b(x) is satisfied for all points in Xv, and it is defined
through the latent variable C̃(Xv).

In summary, the process we will consider is stated as

f |X,Y,Xv, C(Xv) := f |f(X) + ε = Y, a(Xv) ≤ Lf(Xv) + εv ≤ b(Xv),

where f is a Gaussian process, X,Y is the training data and Xv are the locations where
the transformed process Lf + εv is bounded. The additive noise ε and εv are multivariate
Gaussian with diagonal covariance matrices of elements σ2 and σ2

v respectively.
Here we assume that observations of all parts of Lf comes with i.i.d. white noise with

variance σ2
v . The reason for this is mainly for numerical stability, where we in computations

will choose a tiny variance to approximate noiseless observations. Similarly, σ2 may be
chosen as a fixed small number for interpolation in the standard GP regression setting. In
the following derivations, the results for exact noiseless observations can be obtained by
setting the relevant variance to zero.
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We also assume that any sub-operator of L is constrained at the same set of virtual
locations Xv. This is mainly for notational convenience, and this assumption will be relaxed
in Section 3.5. In the following, we let Nv denote the total number of virtual observation
locations. Here Nv = S · nc for now, whereas we will later consider Nv =

∑nc

i=1 Si where
the i-th sub-operator is associated with Si virtual observation locations.

3.1. Posterior Predictive Distribution

Our goal is to obtain the posterior predictive distribution f∗|X∗, X, Y,Xv, C(Xv). That is:
the distribution of f∗ = f(X∗) for some new inputs X∗, conditioned on the observed data
Y = f(X) + ε and the constraint a(Xv) ≤ Lf(Xv) + εv ≤ b(Xv).

To simplify the notation we write f∗|Y,C, excluding the dependency on inputs X,X∗

and Xv (as well as any hyperparameter of the mean and covariance function). The posterior
predictive distribution is given by marginalizing over the latent variable C̃:

p(f∗, C|Y ) = p(f∗|C, Y )p(C|Y ),

p(f∗|C, Y ) =

∫ b(Xv)

a(Xv)
p(f∗|C̃, Y )p(C̃|Y )dC̃,

p(C|Y ) =

∫ b(Xv)

a(Xv)
p(C̃|Y )dC̃,

where the limits correspond to the hyper-rectangle in R
Nv given by the functions a(·) and

b(·) evaluated at each xv ∈ Xv. The predictive distribution and the probability p(C|Y ) are
given in Lemma 1. p(C|Y ) is of interest, as it is the probability that the constraint holds
at Xv given the data Y .

In the remainder of the paper we will use the shortened notation µ∗ = µ(X∗), µ = µ(X),
µv = µ(Xv) and KX,X′ = K(X,X ′). For vectors with elements in R

nc , such as Lµv, we
interpret this elementwise. E.g. Lµv(Xv) is given by the column vector [Lµ(xv

1)1, . . . ,
Lµ(xv

1)nc , . . . ,Lµ(xv
S)1, . . . ,Lµ(xv

S)nc ].
We start by deriving the posterior predictive distribution f∗ at some new locations

X∗. The predictive distribution is represented by a Gaussian, f∗|Y,C ∼ N (µ(C),Σ), for
some fixed covariance matrix Σ and a mean µ(C) that depends on the random variable
C = C̃|Y,C. The variable C̃ = Lf(Xv) + εv remains Gaussian after conditioning on the
observations Y , i.e. C̃|Y ∼ N (νc,Σc) with some expectation νc and covariance matrix Σc

that can be computed using (3, 4). Applying the constraints represented by the event C on
the random variable C̃|Y just means restricting C̃|Y to lie in the hyper-rectangle defined
by the bounds a(Xv) and b(Xv). This means that C = C̃|Y,C is a truncated multivariate
Gaussian, C ∼ T N (νc,Σc, a(Xv), b(Xv)). The full derivation of the distribution parameters
of C and f∗|Y,C are given in Lemma 1 below, whereas Lemma 2 provides an alternative
algorithmic representation suitable for numerical implementation.

Lemma 1 The predictive distribution f∗|Y,C is a compound Gaussian with truncated Gaus-
sian mean:

f∗|Y,C ∼ N (µ∗ + A(C− Lµv) + B(Y − µ),Σ), (5)
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C = C̃|Y,C ∼ T N (Lµv + A1(Y − µ), B1, a(Xv), b(Xv)), (6)

where T N (·, ·, a, b) is the Gaussian N (·, ·) conditioned on the hyper-rectangle [a1, b1]×· · ·×
[ak, bk], and

A1 = (LKXv ,X)(KX,X + σ2IN )−1, B1 = LKXv ,XvLT + σ2
vINv −A1KX,XvLT ,

A2 = KX∗,X(KX,X + σ2IN )−1, B2 = KX∗,X∗ −A2KX,X∗ ,
B3 = KX∗,XvLT −A2KX,XvLT ,

A = B3B
−1
1 , B = A2 −AA1, Σ = B2 −ABT

3 .

Moreover, the probability that the unconstrained version of C falls within the constraint
region, p(C|Y ), is given by

p(C|Y ) = p (a(Xv) ≤ N (Lµv + A1(Y − µ), B1) ≤ b(Xv)) , (7)

and the unconstrained predictive distribution is

f∗|Y ∼ N (µ∗ + A2(Y − µ), B2).

The derivation in Lemma 1 is based on conditioning the multivariate Gaussian (f∗, Y, C̃),
and the proof is given in Appendix A. For practical implementation the matrix inversions
involved in Lemma 1 may be prone to numerical instability. A numerically stable alternative
is given in Lemma 2 below.

In the following lemma, Chol(K) is the lower triangular Cholesky factor of a matrix K.
We also let R = (P \ Q) denote the solution to the linear system PR = Q for matrices P
and Q, which may be efficiently computed when P is triangular using forward or backward
substitution.

Lemma 2 Let L = Chol(KX,X + σ2IN ), v1 = L \KX,XvLT and v2 = L \KX,X∗.

Then the matrices in Lemma 1 can be computed as

A1 = (LT \ v1)T , B1 = LKXv ,XvLT + σ2
vINv − vT1 v1,

A2 = (LT \ v2)T , B2 = KX∗,X∗ − vT2 v2,
B3 = KX∗,XvLT − vT2 v1.

Moreover, B1 is symmetric and positive definite. By letting L1 = Chol(B1) and v3 = L1\BT
3

we also have
A = (LT

1 \ v3)T , B = A2 −AA1, Σ = B2 − vT3 v3.

The proof is given in Appendix B. The numerical complexity of the procedures in Lemma
2 is n3/6 for Cholesky factorization of n × n matrices and mn2/2 for solving triangular
systems where the unknown matrix is n×m. In the derivation of Lemma 1 and Lemma 2, the
order of operations was chosen such that the first Cholesky factor L = Chol(KX,X + σ2IN )
only depends on X. This is convenient in the case where the posterior f∗|Y,C is calculated
multiple times for different constraints C or virtual observations Xv, but where the data
X,Y remain unchanged.
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3.2. Sampling from the Posterior Distribution

In order to sample from the posterior we can first sample from the constraint distribution
(6), and then use these samples in the mean of (5) to create the final samples of f∗|Y,C.

To generate k samples of the posterior at M new input locations, [x∗
1, . . . ,x

∗
M ]T = X∗,

we use the following procedure

Algorithm 3 Sampling from the posterior distribution

1. Find a matrix Q s.t. QTQ = Σ ∈ R
M×M , e.g. by Cholesky or a spectral decomposition.

2. Generate C̃k, a Nv × k matrix where each column is a sample of C̃|Y,C from the
distribution in (6).

3. Generate Uk, a M × k matrix with k samples from the standard normal N (0, IM ).

4. The M × k matrix where each column in a sample from f∗|Y,C is then obtained by

[µ∗ + B(Y − µ)] ⊕col [A(−Lµv ⊕col C̃k) + QUk],

where ⊕col means that the M × 1 vector on the left hand side is added to each column
of the M × k matrix on the right hand side.

This procedure is based on the well-known method for sampling from multivariate Gaus-
sian distributions, where we have used the property that in the distribution of f∗|Y,C, only
the mean depends on samples from the constraint distribution.

The challenging part of this procedure is the second step where samples have to be drawn
from a truncated multivariate Gaussian. The simplest approach is by rejection sampling,
i.e. generating samples from the normal distribution and rejection those that fall outside
the bounds. In order to generate m samples with rejection sampling, the expected number
of samples needed is m/p(C|Y ), where the acceptance rate is the probability p(C|Y ) given
in (7). If the acceptance rate is low, then rejection sampling becomes inefficient, and an
alternative approach such as Gibbs sampling (Kotecha and Djuric, 1999) is typically used.
In our numerical experiments (presented in Section 4.2) we made use of a new method
based on simulation via minimax tilting by Botev (2017), developed for high-dimensional
exact sampling. Botev (2017) prove strong efficiency properties and demonstrate accurate
simulation in dimensions d ∼ 100 with small acceptance probabilities (∼ 10−100), that take
about the same time as one cycle of Gibbs sampling. For higher dimensions in the thousands,
the method is used to accelerate existing Gibbs samplers by sampling jointly hundreds of
highly correlated variables. In our experiments, we experienced that this method worked
well in cases where Gibbs sampling was challenging. A detailed comparison with other
sampling alternatives for an application similar to ours is also given in (López-Lopera et al.,
2018). An important observation in Algorithm 3 is that for inference at a new set of input
locations X∗, when the data X,Y and virtual observation locations Xv are unchanged, the
samples generated in step 2 can be reused.
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3.3. Parameter Estimation

To estimate the parameters of the CGP we make use of the marginal maximum likelihood
approach (MLE). We define the marginal likelihood function of the CGP as

L(θ) = p(Y,C|θ) = p(Y |θ)p(C|Y, θ), (8)

i.e. as the probability of the data Y and constraint C combined, given the set of parameters
represented by θ. We assume that both the mean and covariance function of the GP prior (1)
µ(x|θ) and K(x,x′|θ) may depend on θ. The log-likelihood, l(θ) = ln p(Y |θ) + ln p(C|Y, θ),
is thus given as the sum of the unconstrained log-likelihood, ln p(Y |θ), which is optimized
in unconstrained MLE, and ln p(C|Y, θ), which is the probability that the constraint holds
at Xv given in (7).

In (Bachoc et al., 2018) the authors study the asymptotic distribution of the MLE for
shape-constrained GPs, and show that for large sample sizes the effect of including the
constraint in the MLE is negligible. But for small or moderate sample sizes the constrained
MLE is generally more accurate, so taking the constraint into account is beneficial. However,
due to the added numerical complexity in optimizing a function that includes the term
ln p(C|Y, θ), it might not be worthwhile. Efficient parameter estimation using the full
likelihood (8) is a topic of future research. In the numerical experiments presented in this
paper, we therefore make use of the unconstrained MLE. This also makes it possible to
compare models with and without constraints in a more straightforward manner.

3.4. Finding the Virtual Observation Locations

For the constraint to be satisfied locally at any input location in some bounded set Ω ⊂ R
nx

with sufficiently high probability, the set of virtual observation locations Xv has to be
sufficiently dense. We will specify a target probability ptarget ∈ [0, 1) and find a set Xv,
such that when the constraint is satisfied at all virtual locations in Xv, the probability that
the constraint is satisfied for any x in Ω is at least ptarget. The number of virtual observation
locations needed depends on the smoothness properties of the kernel, and for a given kernel
it is of interest to find a set Xv that is effective in terms of numerical computation. As we
need to sample from a truncated Gaussian involving cross-covariances between all elements
in Xv, we would like the set Xv to be small, and also to avoid points in Xv close together
that could lead to high serial correlation.

Seeking an optimal set of virtual observation locations has also been discussed in (Wang
and Berger, 2016; Golchi et al., 2015; Riihimki and Vehtari, 2010; Da Veiga and Marrel,
2012, 2015), and the intuitive idea is to iteratively place virtual observation locations where
the probability that the constraint holds is low. The general approach presented in this
section is most similar to that of Wang and Berger (2016). In Section 3.5 we extend this to
derive a more efficient method for multiple constraints.

In order to estimate the probability that the constraint holds at some new location
x∗ ∈ Ω, we first derive the posterior distribution of the constraint process.

Lemma 4 The predictive distribution of the constraint Lf(x∗) for some new input x∗ ∈
R
nx , condition on the data Y is given by

Lf(x∗)|Y ∼ N (Lµ∗ + Ã2(Y − µ), B̃2), (9)
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and when Lf(x∗) is conditioned on both the data and virtual constraint observations, X,Y
and Xv, C(Xv), the posterior becomes

Lf(x∗)|Y,C ∼ N (Lµ∗ + Ã(C− Lµv) + B̃(Y − µ), Σ̃). (10)

Here L, v1, A1, B1 and L1 are defined as in Lemma 2 , C is the distribution in (6) and

ṽ2 = L \KX,x∗LT , B̃2 = LKx∗,x∗LT − ṽT2 ṽ2,

Ã2 = (LT \ ṽ2)T , B̃3 = LKx∗,XvLT − ṽT2 v1,

ṽ3 = L1 \ B̃T
3 ,

Ã = (LT
1 \ ṽ3)T , B̃ = Ã2 − ÃA1, Σ̃ = B̃2 − ṽT3 ṽ3.

The proof is given in Appendix D. The predictive distribution in Lemma 4 was defined
for a single input x∗ ∈ R

nx , and we will make use of the result in this context. But we could
just as well consider an input matrix X∗ with rows x∗

1,x
∗
2, . . . , where the only change in

Lemma 4 is to replace x∗ with X∗. In this case we also note that the variances, diag(Σ̃), is
more efficiently computed as diag(Σ̃) = diag(LKX∗,X∗LT )−diag(ṽT2 ṽ2)−diag(ṽT3 ṽ3) where
we recall that diag(vT v)i =

∑
j v

2
i,j for vT = [vi,j ].

Using the posterior distribution of Lf in Lemma 4 we define the constraint probability
pc : Rnx → [0, 1] as

pc(x) = P (a(x) − ν < ξ(x, Xv) < b(x) + ν) , (11)

where ξ(x, Xv) = Lf(x∗)|Y for Xv = ∅ and ξ(x, Xv) = Lf(x∗)|Y,C otherwise. The
quantity ν is a non-negative fixed number that is included to ensure that it will be possible to
increase pc using observations with additive noise. When we use virtual observations C̃(x) =
Lf(x∗) + εv that come with noise εv ∼ N (0, σ2

v), we can use ν = max{σvΦ−1(ptarget), 0}
where Φ(·) is the normal cumulative distribution function. Note that σv, and in this case ν,
will be small numbers included mainly for numerical stability. In the numerical examples
presented in this paper this noise variance was set to 10−6.

In the case where Xv = ∅, computation of (11) is straightforward as ξ(x, Xv) is Gaussian.
Otherwise, we will rely on the following estimate of pc(x):

p̂c(x) =
1

m

m∑

j=1

P (a(x) − ν < (Lf(x)|Y,Cj) < b(x) + ν) , (12)

where C1, . . . , Cm are m samples of C given in (6).
We outline an algorithm for finding a set of virtual observation locations Xv, such that

the probability that the constraint holds locally at any x ∈ Ω is at least ptarget for some
specified set Ω ⊂ R

nx and ptarget ∈ [0, 1). That is, minx∈Ω pc(x) ≥ ptarget. The algorithm
can be used starting with no initial virtual observation locations, Xv = ∅, or using some
pre-defined set Xv 6= ∅. The latter may be useful e.g. if the data X,Y is updated, in which
case only a few additions to the previous set Xv might be needed.

Algorithm 5 Finding locations of virtual observations Xv s.t. p̂c(x) ≥ ptarget for all x ∈ Ω.

1. Compute L = Chol(KX,X + σ2IN ).

10
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2. Until convergence do:

(a) If Xv 6= ∅ compute A1 and B1 as defined in Lemma 2, and generate m samples
C1, . . . , Cm of C given in (6).

(b) If Xv = ∅ compute (x∗, p∗) = (arg min pc(x), pc(x
∗)). Otherwise compute (x∗, p∗) =

(arg min p̂c(x), p̂c(x
∗)) with p̂c defined as in (12), using the samples generated in

step (a).

(c) Terminate if p∗ ≥ ptarget, otherwise update Xv → Xv ∪ {x∗}.

The rate of convergence of Algorithm 5 relies on the probability that the constraint
holds initially, P (a(x) < (Lf(x)|Y ) < b(x)), and for practical application one may monitor
p∗ as a function of the number of virtual observation locations, |Xv|, to find an appropriate
stopping criterion.

With the exception of low dimensional input x, the optimization step x∗ = arg min p̂c(x)
is in general a hard non-convex optimization problem. But with respect to how x∗ and p∗

are used in the algorithm, some simplifications can be justified. First, we note that when
computing p̂c(x) with (12) for multiple x = x1,x2, . . . , the samples C1, . . . , Cm are reused.
It is also not necessary to find the the absolute minimum, as long as a small enough value is
found in each iteration. Within the global optimization one might therefore decide to stop
after the first occurrence of p̂c(x) less than some threshold value. With this idea one could
also search over finite candidate sets Ω ⊂ R

nx , using a fixed number of random points in
R
nx . This approach might produce a larger set Xv, but where the selection of x∗ is faster in

each iteration. Some of the alternative strategies for locating x∗ in Algorithm 5 are studied
further in our numerical experiments in Section 4.2.

With the above algorithm we aim to impose constraints on some bounded set Ω ⊂ R
nx .

Here Ω has to be chosen with respect to both training and test data. For a single bounded-
ness constraint, it might be sufficient that the constraint only holds at the points x ∈ R

nx

that will be used for prediction. But if we consider constraints related to monotonicity
(see Example 1, Section 4.2), dependency with respect to the latent function’s properties
at the training locations is lost with this strategy. In the examples we give in this paper
we consider a convex set Ω, in particular Ω = [0, 1]nx , and assume that training data, test
data and any input relevant for prediction lies within Ω.

3.5. Separating Virtual Observation Locations for Sub-operators

Let L be a linear operator defined by the column vector [F1, . . . ,Fk], where each Fi is
a linear operator leaving both the domain and range of its argument unchanged, i.e. Fi

produces functions from R
nx to R, subjected to an interval constraint [ai(x), bi(x)]. Until

now we have assumed that the constrain holds at a set of virtual observation locations Xv,
which means that ai(X

v) ≤ Fif(Xv) ≤ bi(X
v) for all i = 1, . . . , k.

However, it might not be necessary to constrain each of the sub-operators Fi at the same
points xv ∈ Xv. Intuitively, constraints with respect to Fi need only be imposed at locations
where p(Fif(x) /∈ [ai(x), bi(x)]) is large. To accommodate this we let Xv be the concate-
nation of the matrices Xv,1, . . . , Xv,k and define LT f(Xv) = [FT

1 f(Xv,1), . . . ,FT
k f(Xv,1)]T .

This is equivalent to removing some of the rows in L(·)(Xv), and all of the results in this
paper still apply. In this setting we can improve the algorithm in Section 3.4 for finding the
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set of virtual observation locations by considering each sub-operator individually. This is
achieved using the estimated partial constraint probabilities, pc,i(x), that we defined as in
(11) by considering only the i-th sub-operator. We may then use the estimate

p̂c,i(x) =
1

m

m∑

j=1

P (ai(x) − ν < (Lf(x)|Y,Cj)i < bi(x) + ν) , (13)

where (Lf(x)|Y,Cj)i is the univariate Normal distribution given by the i-th row of (Lf(x)|Y,Cj),
and C1, . . . , Cm are m samples of C given in (6) as before. Algorithm 5 can then be im-
proved by minimizing (13) with respect to both x and i = 1, . . . k. The details are presented
in Appendix C, Algorithm 7.

3.6. Prediction using the Posterior Distribution

For the unconstrained GP in this paper where the likelihood is given by Gaussian white
noise, the posterior mean and covariance is sufficient to describe predictions as the posterior
remains Gaussian. It is also known that in this case there is a correspondence between the
posterior mean of the GP and the optimal estimator in the Reproducing Kernel Hilbert
Space (RKHS) associated with the GP (Kimeldorf and Wahba, 1970). This is a Hilbert
space of functions defined by the positive semidefinite kernel of the GP. Interestingly, a
similar correspondence holds for the constrained case. Maatouk et al. (2016) show that for
constrained interpolation, the Maximum A Posteriori (MAP) or mode of the posterior is the
optimal constrained interpolation function in the RKHS, and also illustrate in simulations
that the unconstrained mean and constrained MAP coincide only when the unconstrained
mean satisfies the constraint. This holds when the GP is constrained to a convex set of
functions, which is the case in this paper where we condition on linear transformations of a
function restricted to a convex set.

3.7. An Alternative Approach based on Conditional Expectations

Da Veiga and Marrel (2012, 2015) propose an approach for approximating the first two mo-
ments of the constrained posterior, f∗|Y,C, using conditional expectations of the truncated
multivariate Gaussian. This means, in the context of this paper, that the first two moments
of f∗|Y,C are computed using the first two moments of the latent variable C. To apply this
idea using the formulation of this paper, we can make use of the following result.

Corollary 6 Let the matrices A, B, Σ and the truncated Gaussian random variable C

be as defined in Lemma 1, and let ν,Γ be the expectation and covariance of C. Then the
expectation and covariance of the predictive distribution f∗|Y,C are given as

E(f∗|Y,C) = µ∗ + A(ν − Lµv) + B(Y − µ),

cov(f∗|Y,C) = Σ + AΓAT .
(14)

Moreover, if Ã, B̃ and Σ̃ are the matrices defined in Lemma 4, then the expectation and
variance of the predictive distribution of the constraint Lf(x∗)|Y,C are given as

E(Lf(x∗)|Y,C) = Lµ∗ + Ã(ν − Lµv) + B̃(Y − µ),

var(Lf(x∗)|Y,C) = Σ̃ + ÃΓÃT .
(15)
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The results follows directly from the distributions derived in Lemmas 1 and 4, and
moments of compound distributions. A proof is included in Appendix E for completeness.

Da Veiga and Marrel (2012, 2015) make use of a Genz approximation (Genz, 1992, 1997)
to compute ν,Γ for inference using (14). They also introduce a crude but faster correlation-
free approximation that can be used in the search for virtual observation locations. With
this approach, (15) is used where ν,Γ are computed under the assumption that cov(C̃|Y )
is diagonal. We can state this approximation as follows:

νi ≈ mi + si
φ(ãi) − φ(b̃i)

Φ(b̃i) − Φ(ãi)
, Γi,i ≈ s2i


1 +

ãiφ(ãi) − b̃iφ(b̃i)

Φ(b̃i) − Φ(ãi)
−
(

φ(ãi) − φ(b̃i)

Φ(b̃i) − Φ(ãi)

)2

 ,

where mi is the i-th component of E(C̃|Y ) = Lµv + A1(Y − µ), si =
√

cov(C̃|Y )i,i =
√

(B1)i,i, ãi = (a(Xv)i − mi)/si, b̃i = (b(Xv)i − mi)/si, φ and Φ are the pdf and cdf of
the standard normal distribution and Γ is diagonal with elements Γi,i. We will make use of
these approximations in some of the examples in Section 4.2 for comparison.

3.8. Numerical Considerations

For numerical implementation, we discuss some key considerations with the proposed model.
One of the main issues with implementation of GP models in terms of numerical stability
is related to covariance matrix inversion, which is why alternatives such as Cholesky factor-
ization are recommended in practice. This does however not alleviate problems related to
ill-conditioned covariance matrices. This is a common problem in computer code emulation
(zero observational noise) in particular, where training points might be ’too close to each
other’ in terms of the covariance function, leaving the covariance matrix close to degenerate
as some of the observations become redundant. A common remedy is to introduce a ’nugget’
term on the diagonal entries of the covariance matrix, in the form of additional white noise
on the observations. This means using a small σ > 0 instead of σ = 0 in Equation (2),
even when the observations are noiseless. In terms of matrix regularization this is equiv-
alent to Tikhonov regularization. See for instance Ranjan et al. (2010) and Andrianakis
and Challenor (2012) which give a detailed discussion and recommendations for how to
choose appropriate value for σ. In practice, a fixed small value is often used without further
analysis, as long as the resulting condition number is not too high. This approach can be
justified since the use of a nugget term has a straightforward interpretation, as opposed to
other alternatives such as pseudoinversion. In our experiments on noiseless regression we
fix σ2 = 10−6, as the error introduced by adding a variance of 10−6 to the observations is
negligible.

Similarly, for the virtual observations used in this paper we make use of the noise
parameter σv to avoid ill-conditioning of the matrix B1 defined in Lemma 1. B1 is the
covariance matrix of the transformed GP, C̃|Y , and B−1

1 together with (KX,X + σ2IN )−1

are needed for all the posterior computations that involve constraints. The virtual noise
parameter σv has a similar interpretation as σ, but where the artificial added noise acts
on observations of the transformed process. Here σv = 0 means that the constraints are
enforced with probability 1, σv > 0 implies that the constraints are enforced in a soft way,
and σv → ∞ provides no constraint at all. In the numerical examples presented in this

13



Agrell

paper, a fixed value σ2
v = 10−6 has been used to approximate hard constraints with an error

we find negligible.
As for computational complexity, we may start by first looking at the operations involved

in computing the posterior predictive distribution at M inputs x∗
1, . . . ,x

∗
M (including covari-

ances), using Lemma 2. We first make note of the operations needed in the unconstrained
case, i.e. standard GP regression with Gaussian noise, for comparison. If there are N ≥ M
observations in the training set, then the complexity is dominated by the Cholesky fac-
torization L = Chol(KX,X + σ2IN ), which require an order of N3 operations and N2 in
memory. The Cholesky factor may be stored for subsequent predictions. Then, to compute
the posterior predictive distribution at M new inputs, the number of operations needed
is dominated by matrix multiplication and solving triangular systems, of orders NM2 and
N2M . When a number Nv of virtual observation locations are included, we are essentially
dealing with the same computations as the standard GP regression, but with N +Nv num-
ber of observations. I.e. the computations involved are of order (N + Nv)3 in time and
(N + Nv)2 in memory. The order of operations in Lemma 2 was chosen such that the
Cholesky factor L that only depends on the training data can be reused. For a new set Xv

of size Nv, the computations needed for prediction at M new locations X∗ will only require
the Cholesky factorization L1 = Chol(B1) of order N3

v . When both L and L1 are stored,
the remaining number of operations will be of order N2M or N2

vM for solving triangular
systems, and NM2, NvM

2 or NMNv for matrix multiplications.
In order to sample from the posterior using Algorithm 3, some additional steps are re-

quired. After the computations of Lemma 2 we continue to factorize the M ×M covariance
matrix Σ and generate samples from the truncated Gaussian C̃|Y,C. The complexity in-
volved in sampling from this Nv-dimensional truncated Gaussian depends on the sampling
method of choice, see Section 3.2. We can combine k of these samples with k samples
from a standard normal N (0, IM ) to obtain samples of the final posterior, using an order of
MNvk+M2k operations. The total procedure of generating k samples at M ≤ N new inputs
is therefore dominated by matrix operations of order (N +Nv)3, MNvk and M2k, together
with the complexity involved with sampling from a Nv-dimensional truncated Gaussian.
For subsequent prediction it is convenient to here also reuse the samples generated from
the truncated Gaussian, together with results that only involve X and Xv. This means
storing matrices of size Nv × k, N × N and Nv × Nv. The remaining computations are
then dominated by operations of order N2M , N2

vM , NM2, NvM
2, NMNv, MNvk, and

M2k. In the algorithms used to find virtual observation locations, Algorithm 5 and 7, we
make sure to reuse computations that only involve the training data in each iteration of
Nv = 1, 2, . . . . This means that in addition to the previously stated operations, we need to
perform Cholesky factorization of order N3

v and generate samples from a Nv-dimensional
truncated Gaussian. This is initially very cheap, but becomes the main numerical challenge
when Nv grows large. As the purpose of these algorithms is to find a small set Xv, that also
avoids sampling issues due to serial correlation, we found it useful to output the minimal
constraint probability p∗ found in each iteration to reveal if the stopping criterion used (in
terms of ptarget or a maximum number of iterations) was unrealistic in practice.
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4. Gaussian Process Modelling with Boundedness and Monotonicity

Constraints

In this section we present some examples related to function estimation where we assume
that the function and some of its partial derivatives are bounded. This is the scenario con-
sidered in the literature on shape-constrained GPs, and alternative approaches to GPs under
linear constraints are usually presented in this setting. We start by a brief discussion on
related work, followed by some numerical experiments using boundedness and monotonicity
constraints. The numerical experiments were performed using the Python implementation
available at https://github.com/cagrell/gp_constr.

4.1. Related Work

We give a brief overview of some alternative and related approaches to constrained GPs.
For the approaches that rely on imposing constraints at a finite set of virtual observation
locations, we recall that the constraint probability can be used in the search for a suitable
set of virtual observation locations. The constraint probability is the probability that the
constraint holds at an arbitrary input x, pc(x) given in (11). Some key characteristics of
the approaches that make use of virtual observations are summarized in Table 1.

The related work most similar to the approach presented in this paper is that of Wang
and Berger (2016) and Da Veiga and Marrel (2012, 2015). Wang and Berger (2016) make use
of a similar sampling scheme for noiseless GP regression applied to computer code emulation.
A Gibbs sampling procedure is used for inference and to estimate the constraint probability
pc(x) in the search for virtual observation locations. The approach of Da Veiga and Marrel
(2012, 2015) is based on computation of the posterior mean and covariance of the constrained
GP, using the equations that are also restated in this paper in Corollary 6. They make use
of a Genz approximation for inference (Genz, 1992, 1997), and also introduce a crude but
faster correlation-free approximation that can be used in the search for virtual observation
locations. The approach of Da Veiga and Marrel (2012, 2015) is discussed further in the
numerical experiments below, where we illustrate the idea in Example 1 and in Example 2
study an approximation of the posterior constrained GP using the constrained moments with
a Gaussian distribution assumption. A major component in (Da Veiga and Marrel, 2012,
2015), (Wang and Berger, 2016) and this paper is thus computation involving the truncated
multivariate Gaussian. Besides the choice of method for sampling from this distribution,
the main difference with our approach is that we leverage Cholesky factorizations and noisy
virtual observations for numerical stability.

A different approach that also make use of virtual observations is that of Riihimki
and Vehtari (2010), where a probit likelihood is used to represent interval observations
of the derivative process to impose monotonicity. They then make use of Expectation
Propagation (EP) to approximate the posterior with a multivariate Gaussian. As pointed
out by Golchi et al. (2015), the Gaussian assumption is questionable if the constraint (in
this case monotonicity) does not hold with high probability a priori. Golchi et al. (2015)
proceeds to develop a fully Bayesian procedure for application to computer experiments by
the use of Sequentially Constrained Monte Carlo Sampling (SCMC). A challenge with this
approach however is that finding a suitable set of virtual observation locations is difficult.
Our experience, in agreement with (Wang and Berger, 2016; Da Veiga and Marrel, 2012,
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Virtual obs.

likelihood

Inference strategy Strategy for finding Xv

Agrell (2019) Indicator Sampling Based on estimating pc(x)
+ noise (Minimax tilting) from samples

Wang and Berger (2016) Indicator Sampling (Gibbs) Based on estimating pc(x)
from samples

Da Veiga and Marrel Indicator Moment approxima- Based on approximating pc(x)
(2012, 2015) tion (Genz) assuming Gaussian posterior

distribution

Riihimki and Vehtari Probit Expectaion Propaga- Based on approximating pc(x)
(2010) tion assuming Gaussian posterior

distribution

Golchi et al. (2015) Probit SCMC NA

Table 1: Summary of alternative approaches that make use of virtual observations. The
table compares the likelihood used for virtual observations, the method used for
inference and to determine the set of virtual observation locations Xv.

2015; Riihimki and Vehtari, 2010), is that for practical applications in more than a few
dimensions, such a strategy is essential to avoid numerical issues related to high serial
correlation, and also to reduce the number of virtual observation locations needed. It
is also worth noting that a strategy that decouples computation involving training data
and virtual observation locations from inference at new locations is beneficial. For the
approaches discussed herein that rely on sampling/approximation related to the truncated
multivariate Gaussian, the samples/approximations can be stored and reused as discussed
in Section 3.8.

There are also some approaches to constrained GPs that are not based on the idea of
using virtual observations. An interesting approach by Maatouk and Bay (2017), that is also
followed up by López-Lopera et al. (2018), is based on modelling a conditional process where
the constraints hold in the entire domain. They achieve this through finite-dimensional
approximations of the GP that converge uniformly pathwise. With this approach, sampling
from a truncated multivariate Gaussian is also needed for inference, in order to estimate
the coefficients of the finite-dimensional approximation that arise from discretization of the
input space. The authors give examples in 1D and 2D, but note that due to the structure
of the approximation, the approach will be time consuming for practical applications in
higher dimensions. There are also other approaches that consider special types of shape
constraints, but where generalization seems difficult. See for instance (Abrahamsen and
Benth, 2001; Yoo and Kyriakidis, 2006; Michalak, 2008; Kleijnen and Beers, 2013; Lin and
Dunson, 2014; Lenk and Choi, 2017).

4.2. Numerical Experiments

In this section we will make us of the following constraints:
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• a0(x) ≤ f(x) ≤ b0(x)

• ai(x) ≤ ∂f/∂xi(x) ≤ bi(x)

for all x in some bounded subset of R
nx , and i ∈ I ⊂ {1, . . . , nx}. Without loss of gen-

erality we assume that the constrains on partial derivatives are with respect to the first k
components of x, i.e. I = {1, . . . , k} for some k ≤ nx.

As the prior GP we will assume a constant mean µ = 0 and make use of either the RBF
or Matérn 5/2 covariance function. These are stationary kernels of the form

K(x,x′) = σ2
Kk(r), r =

√√√√
nx∑

i=1

(
xi − x′i

li

)2

, (16)

with variance parameter σ2
K and length scale parameters li for i = 1, . . . , nx. The radial

basis function (RBF), also called squared exponential kernel, and the Matérn 5/2 kernel
are defined through the function k(r) as

kRBF(r) = e−
1
2
r2 and kMatérn 5/2(r) = (1 +

√
5r +

5

3
r2)e−

√
5r.

In general, the kernel hyperparameters σ2
K and li are optimized together with the noise

variance σ through MLE. In the examples that consider noiseless observations, the noise
variance is not estimated, but set to a small fixed value as discussed in Section 3.8. With the
above choice of covariance function, existence of the transformed GP is ensured. In fact, the
resulting process is infinitely differentiable using the RBF kernel (see Adler, 1981, Theorem
2.2.2) and twice differentiable with the Matérn 5/2. These prior GP alternatives were chosen
as they are the most commonly used in the literature, and thus a good starting point for
illustrating the effect of including linear constraints. We note that although it is not in
general possible to design mean and covariance functions that produce GPs that satisfy the
constraints considered in this paper, one could certainly ease numerical computations by
selecting a GP prior based on the constraint probability p(C|Y, θ) in (7), and for instance
make us of a mean function that is known to satisfy the constraint.

If we let F0f = f , F if = ∂f/∂xi, and Xv,i be the set of Si virtual observations
corresponding to the i-th operator F i, then we can make use of the formulation in Section
3.5 and equations from Appendix C to obtain

Lµv = [µ1S0 ,0S[1,k]
]T ,

where 1S1 is the vector [1, . . . , 1]T of length S1 and 0S[1,k]
is the vector [0, . . . , 0]T of length

S[1,k] = −S0 +
∑

Si. Furthermore,

KX,XvLT =
[
KX,Xv,0 , (K

1,0
Xv,1,X

)T , . . . , (Kk,0
Xv,k,X

)T
]

,

KX∗,XvLT =
[
KX∗,Xv,0 , (K

1,0
Xv,1,X∗

)T , . . . , (Kk,0
Xv,k,X∗

)T
]

,

LKXv ,XvLT =




KXv,0,Xv,0 (K1,0
Xv,1,Xv,0)T . . . (Kk,0

Xv,k,Xv,0)T

K1,0
Xv,1,Xv,0 K1,1

Xv,1,Xv,1 . . . K1,k
Xv,1,Xv,k

...
...

. . .
...

Kk,0
Xv,k,Xv,0 Kk,1

Xv,k,Xv,1 . . . Kk,k
Xv,k,Xv,k



,

17



Agrell

where we have used the notation

Ki,0(x,x′) =
∂

∂xi
K(x,x′) and Ki,j(x,x′) =

∂2

∂xi∂x′i
K(x,x′).

The use of constraints related to boundedness and monotonicity is illustrated using three
examples of GP regression. Example 1 considers a function f : R → R subjected to bound-
edness and monotonicity constraints. In Example 2 a function f : R

4 → R is estimated
under the assumption that information on whether the function is monotone increasing or
decreasing as a function of the first two inputs is known, i.e. sgn(∂f/∂x1) and sgn(∂f/∂x2)
are known. In Example 3 we illustrate how monotonicity constraints in multiple dimensions
can be used in prediction of pressure capacity of pipelines.

4.2.1. Example 1: Illustration of Boundedness and Monotonicity in 1D

As a simple illustration of imposing constraints in GP regression, we first consider the
function f : R → R given by f(x) = 1

3 [tan−1(20x− 10) − tan−1(−10)]. We assume that the
function value is known at 7 input locations given by xi = 0.1 + 1/(i + 1) for i = 1, . . . , 7.
First, we assume that the observations are noiseless, i.e. f(xi) is observed for each xi.
Estimating the function that interpolates at these observations is commonly referred to
as emulation, which is relevant when dealing with data from computer experiments. Our
function f(x) is both bounded and increasing on all of R. In this example we will constrain
the GP to satisfy the conditions that for x ∈ [0, 1], we have that df/dx ≥ 0 and a(x) ≤
f(x) ≤ b(x) for a(x) = 0 and b(x) = 1

3 ln(30x + 1) + 0.1. The function is shown in Figure 1
together with the bounds and the 7 observations.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5
f(x)
Data
Bounds

x

y

Figure 1: Function to emulate in Example 1

We select an RBF kernel (16) with parameters σK = 0.5 (variance) and l = 0.1 (length
scale). To represent noiseless observations we set σ2 = 10−6, where σ2 is the noise variance
in the Gaussian likelihood. The assumed noise on virtual observations will also be set to
10−6. To illustrate the effect of adding constraints we show the constrained GP using only
boundedness constraint, only monotonicity constraint and finally when both constraints
are imposed simultaneously. Figure 2 shows the resulting GPs. Algorithm 7 was used with
a target probability ptarget = 0.99 to determine the virtual observation locations that are
indicated in the figures, and the posterior mode was computed by maximizing a Gaussian
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kernel density estimator over the samples generated in Algorithm 3. For both constraints,
17 locations was needed for monotonicity and only 3 locations was needed to impose bound-
edness when the virtual locations for both constraints where optimized simultaneously. This
is reasonable, as requiring f(0) > 0 is sufficient to ensure f(x) > 0 for x ≥ 0 when f is
increasing, and similarly requiring f(xv) < b(xv) for some few points xv ∈ [0.6, 1] should
suffice. But note that Algorithm 7 finds the virtual observation locations for both con-
straints simultaneously. Here xv = 0 for boundedness was first identified, followed by some
few points for monotonicity, followed by a new point xv for boundedness etcetera.

For illustration purposes none of the hyperparameters of the GP were optimized. More-
over, for data sets such as the one in this example using plug-in estimates obtained from
MLE generally not appropriate due to overfitting. Maximizing the marginal likelihood for
the unconstrained GP gives a very poor model upon visual inspection (σK = 0.86, l = 0.26).
However, it was observed that the estimated parameters for the constrained model (us-
ing Eq. (8)) gives estimates closer to the selected prior which seems more reasonable
(σK = 0.42, l = 0.17), and hence the inclusion of the constraint probability, p(C|Y, θ), in
the likelihood seems to improve the estimates also for the unconstrained GP.

We may also assume that the observations come with Gaussian white noise, which in
terms of numerical stability is much less challenging than interpolation. Figure 3 shows the
resulting GPs fitted to 50 observations. The observations were generated by sampling xi ∈
[0.1, 0.8] uniformly, and yi from f(xi)+εi where εi are i.i.d. zero mean Gaussian with variance
σ2 = 0.04. Both GPs were optimized using plug-in estimates of hyperparameters (σK , l, σ2)
given by maximizing the marginal likelihood. These are (σK = 0.34, l = 0.32, σ2 = 0.053)
for the constrained case and (σK = 0.34, l = 0.23, σ2 = 0.040) for the unconstrained case.
We observe that the estimated noise variance is larger in the constrained model than the
unconstrained where this estimate is exact.
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Figure 2: The GP with parameters σK = 0.5 (variance) and l = 0.1 (length scale) used in
Example 1. The virtual observation locations are indicated by markers on the
x-axis.
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Figure 3: Unconstrained (a) and constrained (b) GPs fitted to 50 observations with Gaus-
sian noise. The predictive distributions are shown, i.e. the distribution of f(x)
where y = f(x) + ε.

Da Veiga and Marrel (2015) propose to use estimates of the posterior mean and variance
of Lf(x)|Y,C to estimate the constraint probability pc(x) assuming a Gaussian distribution.
They also introduce the faster correlation-free approximation, where the parameters are
estimated under the assumption that observations of Lf(x)|Y at different input locations
x are independent (see Section 3.7). In Figure 4 we plot estimates of pc,i(x), for the
boundedness and monotonicity constraint individually, using the approach in this paper
(13) and the two moment based approximations. The plots were generated first after a
total of 5 and then 10 virtual observations locations had been included in the model with
both constraints. As we are mainly interested in finding x∗ = arg min pc,i(x), Figure 4
indicates that the moment based approximations are appropriate initially. However, as
more virtual observation locations are included, the correlation-free assumption becomes
questionable. But it could still serve as a useful starting point, and in a strategy based
on checking the approximation error from time to time, it should still be possible to take
advantage of the computational savings offered by the correlation-free approximation.
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Figure 4: Constraint probability pc(x) computed using the estimate (13) together with the
moment based approximations from Da Veiga and Marrel (2015). The constraint
probability is shown for monotonicity and boundedness, where Nv is the total
number of virtual observation locations used in the model.

4.2.2. Example 2: 4D Robot Arm Function

In this example we consider emulation of a function f : R
4 → R, where we assume that

the sign of the first two partial derivatives, sgn(∂f/∂x1) and sgn(∂f/∂x2), are known. The
function to emulate is

f(x) =
m∑

i=1

Li cos




i∑

j=1

τj


 ,

for m = 2, and x = [L1, L2, τ1, τ2]. The function is inspired by the robot arm function often
used to test function estimation (An and Owen, 2001). Here f(x) is the y-coordinate of a
two dimensional robot arm with m line segments of length Li ∈ [0, 1], positioned at angle
τi ∈ [0, 2π] with respect to the horizontal axis. The constraints on the first two partial
derivatives thus implies that it is known whether or not the arm will move further away
from the x-axis, as a function of the arm lengths, L1 and L2, for any combination of τ1 and
τ2.

In this experiment we first fit an unconstrained GP using 40 observations taken from
a Latin hypercube sample over the input space [0, 1]2 × [0, 2π]2. A Matérn 5/2 covariance
function is used with plug-in MLE hyperparameters. Then, a total of 80 virtual observation
locations are found using the procedure in Algorithm 7, where we search over a finite candi-
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date set of 1000 locations in the minimization of the constraint probability. We repeat this
procedure 100 times and report performance using the predictivity coefficient Q2, predictive
variance adequation (PVA) and the average width of 95% confidence intervals (AWoCI).

Given a set of tests y1, . . . , yntest and predictions ŷ1, . . . , ŷntest , Q
2 is defined as

Q2 = 1 −
ntest∑

i=1

(ŷi − yi)
2/

ntest∑

i=1

(ȳ − yi)
2,

where ȳ is the mean of y1, . . . , yntest . In our experiments the predictions ŷi are given by the
posterior mean of the GP. The PVA criterion is defined as

PVA =

∣∣∣∣∣log

(
1

ntest

ntest∑

i=1

(ŷi − yi)
2

σ̂2
i

)∣∣∣∣∣ ,

where σ̂2
i is the predictive variance. This criterion evaluates the quality of the predictive

variances and to what extent confidence intervals are reliable. The smaller the PVA is, the
better (Bachoc, 2013). In addition to this criterion, it is also useful to evaluate the size of
confidence intervals. For this we compute the average width of 95% confidence intervals

AWoCI =
1

ntest

ntest∑

i=1

(p
(i)
0.975 − p

(i)
0.025),

where p
(i)
0.975 and p

(i)
0.025 are the predicted 97.5% and 2.5% percentiles.

The result of 100 predictions for one single experiment is shown in Figure 5. As ex-
pected, the estimated prediction uncertainty is reduced significantly using the constrained
model, and single predictions given by the posterior mean are also improved. In Table 2
we summarize the results from running 100 of these experiments. In each experiment, Q2,
PVA and AWoCI was computed from prediction at 1000 locations sampled uniformly in
the domain. We also report the probability that the constraint holds in the unconstrained
GP, p(C|Y ) given in (7), and the CPU time in seconds used to generate 104 samples from
the posterior on an Intel R© CoreTM i5-7300U 2.6GHz CPU. For comparison, we also include
predictions from moment-based approximations using the approach of Da Veiga and Marrel
(2012, 2015). We study in particular their approach for finding the set of virtual observation
locations, as discussed in Section 3.7 and illustrated in the previous example. In total, the
following alternatives are considered:

1. Unconstrained: The initial GP without constraints.

2. Constrained: The constrained GP using the approach presented in this paper.

3. Moment approx. 1: Using the sampling scheme of this paper for inference, but
where the moment based approximation is used in the search for virtual observation
locations.

4. Moment approx. 2: Using moment approximation for both inference and searching
for virtual observation locations. This is one of the procedures from Da Veiga and
Marrel (2012, 2015).
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5. Correlation-free approx.: Same as Moment approx. 1 but where the correlation-
free approximation is used in the search for virtual observation locations.
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Figure 5: Figure a shows a qq-plot with 95% confidence band of 100 normalized residuals
(yi − µi)/(σi), where µi and σ2

i are the mean and variance of the predictive
distribution of the unconstrained GP. In Figure b, predictions vs the true function
value is shown together with a [0.025, 0.975] (95%) percentile interval for the
unconstrained GP. The same type of figure is shown in c for the constrained GP.

In Table 2 we see that the use of constraints is beneficial in terms of both a higher Q2

(better predictive performance) and a smaller PVA (higher quality of predictive variances).
With the exception of ’Moment approx. 2’, the inclusion of constraints provides significant
uncertainty reduction as the width of 95% confidence intervals (AWoCI) are reduce by
almost a factor of 2 on average. A box plot showing AWoCI from the 100 experiments is
also shown in Figure 6. We see that the different approaches for estimating the constraint
probability, pc(x), in the search for virtual observation locations work equally well. The
Gaussian assumption on the posterior f∗|Y,C on the other hand is not optimal, as it tends
to overestimate the uncertainty in this example.
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p(C|Y ) Ts PVA Q2 AWoCI

Unconstrained 3.03 0.7558 0.99
Constrained 4.1E-34 24.8 2.85 0.8842 0.54
Moment approx. 1 2.4E-36 25.2 2.84 0.8844 0.54
Moment approx. 2 2.4E-36 25.2 2.84 0.8844 0.83
correlation-free approx. 8.6E-37 21.1 2.91 0.8775 0.55

Table 2: Average values from 100 experiments of the robot arm function. Ts is the CPU
time in seconds used to generate 104 samples.
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Figure 6: Average width of confidence intervals (AWoCI) from 100 experiments of the robot
arm function.

4.2.3. Example 3: Pipeline Pressure Capacity

In this example we consider a model for predicting the pressure capacity of a steel pipeline
with defects due to corrosion. As corrosion is one of the major threats to the integrity
of offshore pipelines, experiments are carried out to understand how metal loss due to
corrosion affects a pipeline’s capacity with respect to internal pressure (Sigurdsson et al.,
1999; Amaya et al., 2019). These include full scale burst tests and numerical simulation
through Finite Element Analysis (FEA). Results from this type of experiments serve as
the basis for current methodologies used in the industry for practical assessment of failure
probabilities related to pipeline corrosion, such as ASME B31G or DNVGL-RP-F101. We
consider experiments related to a single rectangular shaped defect, which is essential to
these methodologies.

To simulate synthetic experiments of the burst capacity of a pipeline with a rectangular
defect, we will use the simplified capacity equation given in in (RP-F101 DNV GL, 2017).
The maximum differential pressure (capacity in MPa) the pipeline can withstand without
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bursting is in the simplified equation given as

Pcap(σu, D, t, d, l) = 1.05
2tσu
D − t

1 − d/t

1 − d/t
Q

, Q =

√
1 + 0.31

l2

Dt
,

where σu ∈ [450, 550] (MPa) is the ultimate tensile strength of the material, D ∈ [10t, 50t]
(mm) and t ∈ [5, 30] (mm) are the outer diameter and wall thickness of the pipeline, and
d ∈ [0, t] (mm) and l ∈ [0, 1000] (mm) are the depth and length of the rectangular defect.

From the physical phenomenon under consideration, we know that the capacity of the
pipeline will decrease if the size of the defect were to increase. Similarly, we know that the
pipeline capacity increases with a higher material strength or wall thickness, and decreases
as a function of the diameter, all else kept equal. In the form of partial derivatives we can
express this information as:

∂Pcap

∂d < 0,
∂Pcap

∂l < 0,
∂Pcap

∂σu
> 0,

∂Pcap

∂t > 0 and
∂Pcap

∂D < 0.
For convenience we will transform the input variables to the unit hypercube. Let x

denote the transformed input vector x = [x1, . . . , x5], where x1 = (σu − 450)/(550 − 450),
x2 = (D/t− 10)/(50 − 10), x3 = (t− 5)/(30 − 5), x4 = d/t and x5 = l/1000. We will make
use of the function

f(x) = Pcap(x) for x ∈ [0, 1]5,

and assume that the burst capacity observed in an experiment is f(x) + ε, where ε is a
zero mean Normal random variable with variance σ2 = 4. The constraints on the partial
derivatives after the transformation becomes: ∂f

∂x1
> 0, ∂f

∂x2
< 0, ∂f

∂x3
> 0, ∂f

∂x4
< 0 and

∂f
∂x5

< 0 for x ∈ [0, 1]5.
In this example we thus have five constraints available, represented by bounds on the

partial derivative of f(x) w.r.t. xi for i = 1, . . . , 5. Besides studying the effect of including
all five constraints, we will test some different alternatives using a smaller number of con-
straints, and also lower input dimensions. To simulate a lower dimensional version of the
capacity equation, we can consider only the fist nx input variables and keep the remaining
variables fixed. We consider nx = 3, 4 and 5 where we fix xi = 0.5 for all i > nx. For each
of these scenarios we will consider nx and nx − 1 number of constraints. We let nc denote
the number of constraints, where using nc constraints means that the bound on ∂f/∂xi is
included for i = 1, . . . , nc.

In each experiment we start by generating a training set of N = 5nx or N = 10nx

LHS samples from [0, 1]nx . As in the previous example in Section 4.2.2, we fit a zero
mean GP using a Matérn 5/2 covariance function and plug-in hyperparameters by MLE.
We search over a candidate set consisting of 2500 uniform samples from [0, 1]nx iteratively
to update the set of virtual observation locations, until the constraint probability at all
locations in the candidate set, and for each constraint, is at least 0.7. To check whether
this is a reasonable stopping criterion we finish by minimizing the constraint probability for
each constraint, using the differential evolution (Storn and Price, 1997) global optimization
algorithm available in (SciPy Jones et al., 2001–).

Table 3 shows the results for different combinations of input dimensionality nx, number
of constraints nc and number of training samples N , where the results in each row is
computed from 100 experiments. As in the previous example we report p(C|Y ), PVA, Q2

and AWoCI, and the CPU time spent generating samples for prediction (Ts). We also
report the average CPU time used in the search for a new virtual observation location and
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nx nc N Nv Tv p(C|Y ) pc,min Ts PVA Q2 AWoCI

3 2 15 3.6 0.6 2.6E-01 0.79 0.05 0.94 (0.89) 0.95 (0.95) 3.9 (6.2)
3 2 30 3.5 0.6 2.5E-01 0.78 0.04 0.89 (0.87) 0.97 (0.97) 3.0 (4.8)
3 3 15 5.8 0.9 1.2E-01 0.74 0.09 1.47 (1.23) 0.95 (0.95) 3.7 (6.1)
3 3 30 3.9 0.9 2.2E-01 0.76 0.04 0.79 (0.79) 0.97 (0.97) 3.1 (5.0)
4 3 20 11.8 0.9 1.5E-02 0.67 0.19 1.40 (1.29) 0.87 (0.92) 5.5 (9.4)
4 3 40 11.7 0.9 6.6E-03 0.71 0.18 0.51 (0.52) 0.97 (0.97) 4.1 (6.9)
4 4 20 13.6 1.2 6.9E-03 0.65 0.49 1.56 (1.31) 0.91 (0.91) 5.5 (9.6)
4 4 40 12.8 1.2 2.7E-03 0.69 0.19 0.50 (0.48) 0.97 (0.97) 4.0 (6.7)
5 4 25 14.8 1.2 6.3E-03 0.66 0.22 1.03 (1.08) 0.85 (0.83) 8.3 (14.3)
5 4 50 17.4 1.2 1.2E-03 0.66 0.26 0.73 (0.78) 0.90 (0.90) 6.8 (11.5)
5 5 25 15.5 1.5 3.1E-03 0.65 0.24 1.12 (1.10) 0.82 (0.81) 8.4 (14.4)
5 5 50 20.2 1.6 1.1E-03 0.61 0.35 0.67 (0.77) 0.90 (0.90) 6.5 (11.3)

Table 3: Average values from 100 experiments with input dimensionality nx, number of
constraints nc and number of training samples N . Values in parenthesis corre-
spond to the unconstrained model. Here pc,min is the minimum of the constraint
probability for any constraint over the entire domain after a total of Nv virtual
observation locations have been included. Tv is the average CPU time in seconds
used to find each of the Nv points using 103 samples, and Ts is the CPU time in
seconds used to generate 104 samples of the final model for prediction.

the minimum constraint probability, pc,min = mini=1,...nc minx∈[0,1]nx p̂c,i(x) (13), computed
with differential evolution. Here we make use of 103 samples to compute the estimate p̂c,i(x),
whereas 104 samples are used for the final prediction.

From Table 3 we first notice that the number of virtual observation locations (Nv) de-
termined by the searching algorithm is fairly low. One might interpret this as an indication
that the unconstrained GP produces samples that are likely to agree with the monotonicity
constraints, except for at a few locations. As a result, computation that involve sampling
from the truncated multivariate Gaussian is efficient. Still, we see that inclusion of the con-
straints has an effect on uncertainty estimates as the AWoCI is reduced by a factor of around
1.6 in each experiment, whereas PVA and Q2 are fairly similar for the unconstrained and
constrained model overall. We also notice that the smallest constraint probability found in
the domain using a global optimization technique is reduced when the number of constraints
or dimensionality is increased. This is expected, as we only considered a finite candidate
set and not the entire domain when searching for the location minimizing the constraint
probability. Hence, if we really want to achieve a minimal constraint probability larger than
0.7 in 5 dimensions, more than 2500 samples in the candidate set would be needed with this
strategy, or a global optimizer could be used to identify the remaining virtual observation
locations needed.

For the application considered in this example, where uncertainty in the prediction is key
to risk assessment, we argue that the effect the constraints have on uncertainty estimates
makes the inclusion of constraints worthwhile. Modern engineering methodologies that
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make use of capacity predictions as the one illustrated in this example are usually derived
in the context of Structural Reliability Analysis (SRA), where the capacity is combined
with a probabilistic representation of load (in this case differential pressure) to estimate the
probability of failure (Madsen et al., 2006).

Alternative methods based on conservative estimates to ensure sufficient safety margin
between load and capacity are also common. For the application considered herein, this
would typically mean using a lower percentile instead of the posterior mean in order to
represent a conservative capacity. The inclusion of constraints can therefore help to avoid
unnecessary conservatism due to unphysical scenarios, that are not realistic but have positive
probability in the unconstrained model.

Finally, we note that the constraints used in this example are not from differentiating
the equation used as stand-in for experiments, but from knowledge related to the underlying
physical phenomenon. The constraints therefore remain applicable, were the experiments
to come from physical full-scale tests. This naturally also holds in applications to computer
code emulation, where we would set the noise term ε to zero in this example if we were
to assume that the capacity experiments came from a numerical (FEA) simulation. With
results from this type of numerical simulation, a noise parameter is usually added to the
simulation output as well, to represent model uncertainty as the numerical simulation is not
a perfect representation of the real physical phenomenon. Very often the model uncertainty
is represented by a univariate Gaussian. An interesting alternative here is to instead account
for the model uncertainty as observational noise in the GP, where the use of constraints
may help to obtain a more realistic model uncertainty as well.

5. Discussion

The model presented in this paper provides a consistent approach to GP regression under
multiple linear constraints. The computational framework used is based on a sampling
scheme which is exact in the limit. However, sampling strategies like the one in this paper
can be too numerically demanding as opposed to approximation methods such as Laplace ap-
proximations, variational Bayesian inference, expectation propagation etcetera. The choice
of using a sampling-based approach came from the author’s intended use, which relates
to machine learning for high-risk and safety-critical engineering applications (Agrell et al.,
2018). For these applications, a proper treatment of uncertainty with respect to risks and
the overall reliability of the system under consideration is essential. Making predictions
based on past observations in this setting is challenging, as the consequence of wrong pre-
dictions may be catastrophic. In addition, critical consequences often relate to infrequent
or low probability events, where relevant data is naturally scarce. However, there is usually
additional knowledge available, and todays methods for assessing risk tend to rely heavily
on understanding the underlying physical phenomenon. We gave an example in Section
4.2.3 considering prediction of the burst capacity of a pipeline, that may serve as a compo-
nent in a larger model of system reliability. Such models are often graphical, e.g. Bayesian
networks, that are derived from known causal dependencies. In this scenario it is essential
that the accuracy of numerical estimation- or approximation methods can be assessed. In
the case where simulation-based methods cannot be used due to computational limitations,
they still serve as a useful benchmark that can help in the development and assessment of
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suitable approximation-based algorithms. As for the simulation scheme in this paper, the
only computational burden lies in sampling from a truncated multivariate Gaussian. As
this is a fairly general problem, multiple good samplers exist for this purpose. We found the
method of Botev (2017) to work particularly well for our applications, as it provides exact
sampling in a relevant range of dimensions where many alternative sampling schemes fail.
Based on a comparison made by López-Lopera et al. (2018), we see that the method based
on Hamiltonian Monte Carlo by Pakman and Paninski (2012) may also be appropriate.

As we discuss briefly in Section 3.3, estimation of hyperparameters becomes challenging
when the term p(C|Y, θ) enters the likelihood. Moreover, as our approach is based on the
use of virtual observation locations, we are aware that the task of estimating or optimiz-
ing model hyperparameters in general is not well defined. This is because the likelihood
depends both on the hyperparameters and the set of virtual observation locations (Eq. 8).
This problem is neglected in the literature on shape-constrained GPs, where it is either
assumed that the virtual observation locations are known a priori (for low input dimension
selecting a space filling sufficiently dense design is unproblematic), or the hyperparameters
are addressed independently of these. To our knowledge the problem of simultaneously
estimating hyperparameters and virtual observation locations has not yet been addressed.
A rather simplistic approach is to iterate between estimating hyperparameter and the set
of virtual observation locations. However, for higher input dimensions this might be prob-
lematic altogether, in which case sparse approximations may be needed to deal with a large
set of virtual observation locations. In this setting, it might be more fruitful to view the
virtual observation locations as additional hyperparameters, in a model approximating the
posterior corresponding to an sufficiently dense set of virtual observation locations, e.g. as
in the inducing points framework for scaling GPs to large data sets (de G. Matthews et al.,
2016). This is a topic of further research.

With the approach in this paper, we make use of the probability p(C|Y ), which is
interesting in its own for investigating whether constraints such as e.g. monotonicity are
likely to hold given a set of observations. Alternatively, inference on the constraint noise
parameter σv can provide similar type of information. Ideally, we choose a small fixed value
for σv to avoid numerical instability, as discussed in Section 3.8. But in extreme cases, with
conflicting constraints or observations that contradict constraints with high probability, the
model may still experience numerical issues. We argue that models that ’break’ under these
circumstances are preferred as it reveals that either 1) there is something wrong with the
observations, or 2) there is something wrong with the constraints and hence our knowledge
of the underlying phenomenon (Agrell et al., 2018). It would nevertheless be better if
more principled ways of investigating such issues were available. In our experiments we
observed that the conditional likelihood, p(Y |C), in general is decreasing as a function of
σv, whereas this was not the case for an invalid constraint assuming a monotonic decreasing
function in Example 1. Hence, σv might provide useful information in this manner. The
estimated partial constraint probabilities p̂c,i(x) can also be useful for revealing such issues,
for instance by monitoring the intermediate minimum values p∗i computed in Algorithm 7
as new virtual observation locations are added.

Finally, we note that as the model presented in this paper relies on conditioning on a
transformed GP with values in R

nc , it could be extended to multi-output GPs over functions
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f : Rnx → R
ny in a natural way. But for non-Gaussian likelihoods, or applications with large

or high-dimensional data, other approximation based alternatives are needed.
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Appendix A. Proof of Lemma 1

Proof. We start by observing that (f∗, C̃, Y ) is jointly Gaussian with mean and covariance

E([f∗, C̃, Y ]T ) = [µ∗,Lµv, µ]T , (17)

cov([f∗, C̃, Y ]T ) =




KX∗,X∗ KX∗,XvLT KX∗,X

LKXv ,X∗ LKXv ,XvLT + σ2
vINv LKXv ,X

KX,X∗ KX,XvLT KX,X + σ2IN


 . (18)

By first conditioning on Y we obtain

f∗

C̃

∣∣∣∣Y ∼ N
([

µ∗ + A2(Y − µ)
Lµv + A1(Y − µ)

]
,

[
B2 B3

BT
3 B1

])
, (19)

for A1 = (LKXv ,X)(KX,X + σ2IN )−1, A2 = KX∗,X(KX,X + σ2IN )−1, B1 = LKXv ,XvLT +
σ2
vINv −A1KX,XvLT , B2 = KX∗,X∗ −A2KX,X∗ , and B3 = KX∗,XvLT −A2KX,XvLT .

Conditioning on C̃ then gives

f∗|Y, C̃ ∼ N
(
µ∗ + A(C̃ − Lµv) + B(Y − µ),Σ

)
, (20)

for A = B3B
−1
1 , B = A2 −AA1 and Σ = B2 −ABT

3 .

Similarly, we may derive C̃|Y by observing that the joint distribution of C̃, Y is given
by removing the first row in (17) and the first row and column in (18). Hence,

C̃|Y ∼ N (Lµv + A1(Y − µ), B1) . (21)

The constrained posterior of C̃ is obtained by applying the constraint C to the posterior, and
hence C̃|Y,C becomes a truncated Gaussian with the same mean and variance as in (21),
and the bounds a(Xv) and b(Xv) given by C. Similarly, f∗|Y,C is obtained by replacing C̃
in (20) with C̃|Y,C. Finally, the probability p(C|Y ) is just the probability that C̃|Y given
in (21) falls within the bounds given by C, and the unconstrained distribution remains the
same as (2).
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Appendix B. Proof of Lemma 2

Proof. The equations in Lemma 2 can be verified by simply inserting L, v1 and v2 and
check against the expressions in Lemma 1. We show this for A1 and B1, and the results for
the remaining matrices are proved by applying the same procedures. In order to factorize
B1, we use that B1 is the covariance matrix of a Gaussian random variable (see Equation
21 in Appendix A), and must therefore be symmetric and positive definite.

To show that A1 = (LT \ v1)
T we use that v1 = L \ KX,XvLT ⇒ Lv1 = KX,XvLT .

Hence,

A1 = (LT \ v1)T

⇒ LTAT
1 = v1 = L \KX,XvLT

⇒ LLTAT
1 = KX,XvLT

⇒ A1 = ((LLT )−1KX,XvLT )T = (LKXv ,X)(KX,X + σ2IN )−1,

where we have used that (KX,XvLT )T = LKXv ,X and LLT = KX,X + σ2IN .

To show that B1 = LKXv ,XvLT+σ2
vINv−vT1 v1 we need to show that vT1 v1 = A1KX,XvLT ,

which is trivial

vT1 v1 = (L−1KX,XvLT )T (L−1KX,XvLT )

= LKXv ,X(LLT )−1KX,XvLT

= A1KX,XvLT .

Appendix C. Algorithm for Finding Virtual Observation Locations based

on Individual Sub-operators

We present the details of the algorithm for finding virtual observation locations introduced
in Section 3.5. Here we let L be a linear operator defined by the column vector [F1, . . . ,Fk],
where Fi produces functions from R

nx to R, subjected to an interval constraint [ai(x), bi(x)].
We would like to impose constraints related to the i-th sub-operator only at locations where
p(Fif(x) /∈ [ai(x), bi(x)]) is not sufficiently small. For this we let Xv be the concatenation
of the matrices Xv,1, . . . , Xv,k and define LT f(Xv) = [FT

1 f(Xv,1), . . . ,FT
k f(Xv,1)]T . The

matrices needed to make use of Lemma 1 and Lemma 2 are Lµv, KX,XvLT , KX∗,XvLT ,
and LKXv ,XvLT . Using that Fif(Xv) = Fif(Xv,i), these are given by

Lµv =



F1µ(Xv,1)

...
Fkµ(Xv,k)


 , KX,XvLT =



KX,Xv,1FT

1
...

KX,Xv,kFT
k


 ,

where KX∗,XvLT also is given by the above equation for X = X∗. Finally, LKXv ,XvLT is
the block matrix with blocks

(LKXv ,XvLT )i,j = FiKXv,i,Xv,jFT
j .
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We want to improve the algorithm in Section 3.4 for finding the set of virtual observation
locations by considering each sub-operator individually. To do this we make use estimated
partial constraint probabilities (given in (13) and restated below).

p̂c,i(x) =
1

m

m∑

j=1

P (ai(x) − ν < (Lf(x)|Y,Cj)i < bi(x) + ν) ,

where (Lf(x)|Y,Cj)i is the univariate Normal distribution given by the i-th row of (Lf(x)|Y,Cj)
and C1, . . . , Cm are m samples of C given in (6) as before. For the individual sub-operators
Fi, the set of virtual observations Xv

i needed to ensure that p̂c,i(x) ≥ ptarget can then be
found using the following algorithm.

Algorithm 7 Finding locations of virtual observations Xv
i s.t. p̂c,i(x) ≥ ptarget for all

x ∈ Ω and all sub-operators F1, . . . ,Fk.

1. Compute L = Chol(KX,X + σ2IN ).

2. Until convergence do:

(a) If Xv 6= ∅ compute A1 and B1 as defined in Lemma 2, and generate m samples
C1, . . . , Cm of C given in (6).

(b) If Xv = ∅ compute (x∗i , p
∗
i ) = (arg min pc,i(x), pc,i(x

∗)). Otherwise compute
(x∗i , p

∗
i ) = (arg min p̂c,i(x), p̂c,i(x

∗)), for all i = 1, . . . , k with p̂c,i defined as in
(13) using the samples generated in step (a).

(c) Let (x∗, p∗, j) correspond to the smallest probability: p∗ = p∗j = mini p
∗
i .

(d) Terminate if p∗ ≥ ptarget, otherwise update Xv
j → Xv

j ∪ {x∗}.

Appendix D. Proof of Lemma 4

Proof. This follows exactly from the proofs of Lemma 1 and Lemma 2 by replacing
f∗ → Lf(x∗), which implies µ∗ → Lµ∗, KX∗,X → LKx∗,X , KX∗,X∗ → LKx∗,x∗LT and
KX∗,XvLT → LKx∗,XvLT .

Appendix E. Proof of Corollary 6

Proof. We show the derivation of the expectation and covariance of f∗|Y,C as the deriva-
tions for Lf(x∗)|Y,C are equivalent. From Lemma 1 we have that

f∗|Y,C ∼ N (µ∗ + A(C− Lµv) + B(Y − µ),Σ).

If we let ν,Γ be the expectation and covariance of C, then

E[f∗|Y,C] = EC [E[f∗|Y,C]] = EC [µ∗ + A(C− Lµv) + B(Y − µ)]

= µ∗ + A(ν − Lµv) + B(Y − µ),
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and

cov[f∗|Y,C] = EC [cov[f∗|Y,C]] + covC[E[f∗|Y,C]]

= EC[Σ] + covC[µ∗ + A(C− Lµv) + B(Y − µ)]

= Σ + covC[AC] = Σ + AΓAT .
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