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GAUSSIAN PROCESSES WITH STATIONARY INCREMENTS:
LOCAL TIMES AND SAMPLE FUNCTION PROPERTIES'

By SiMmEON M. BERMAN

New York University

0. Abstract. Let X(¢r), 0 <t <1, be separable measurable Gaussian process
with mean 0, stationary increments, and ¢2(r) = E(X(r)— X(0))*. If 6*(t) ~ C|t[%,
t -0, for some o, 0 < a < 2, then the Hausdorff dimension of {s: X(¢) = X(s)} is
equal to 1 —(«/2) for almost all 7, almost surely. Under further variations and refine-
ments of this condition there is a jointly continuous local time for almost every
sample function. This extends the author’s previous results for stationary Gaussian
processes and for continuity in the space variable alone. The result on joint continuity
of the local time is used to prove that the sample function has an “approximate
derivative” of infinite magnitude at each point (and so is nowhere differentiable);
and that the set of values in the range of at most countable multiplicity is nowhere
dense in the range.

1. Introduction; properties of local times. Let x(z), 0 £ ¢ £ 1, be a real-valued
Borel function, and p the linear Borel measure. For every pair of linear Borel
sets A, I, where I is a subset of [0, 1], define

(L.1) WA, 1) = u[x~(A)nI];

for each I, v(-, I) is the “occupation time distribution” of x(¢), t€ 1. If, for fixed I,
it is absolutely continuous with respect to Borel measure, then its derivative
¢(x, 1) is called the local time of x(-) relative to /. In this case we say that the local
time exists relative to 1. Put ¢(x, 1) = ¢(x, [0, t]), 0 £ ¢ £ 1; then ¢(x, t) exists if
¢(x, 1) does, and for each s and 1, s < 1, we have @(x, s) < ¢(x, 1), for almost all x.
It follows from the definition that ¢ satisfies the equation

(1.2) WA, I) = |, ¢(x, ) dx.
_This is analogous to the equation defining conditional probability: ¢ is like the

conditional probability of sets 7 given the sigma-field of sets 4. With the assistance
of this analogy, we prove:

LemMaA 1.1. If the local time exists relative to [0, 1), then there is a version of the
local time ¢(x, 1), —o0 < x <00, 0Lt £1, such that

(i) For each x, ¢(x, I) is a measure op the Borel subsets of [0, 1];

(ii) For every subinterval J of [0, 1] with rational endpoints, we have ¢(x, J) =0
if x does not belong to the closure of the range of x(t), teJ.

This version is called regular.
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Proor. The proof of (i) is very similar to that of the existence of a regular
version of conditional probability; the equation (1.2) is repeatedly used [5]
page 26. For the proof of (ii) let ¢ be a version having the property (i). For each J
with rational endpoints, and » = 1, the set {x: ¢(x,J) = 1/n and x is outside the
closure of the range of x(¢), teJ} has Borel measure 0; indeed, if not, then x(r)
would spend positive time outside its range. The union of these sets over all n > 1
and intervals J with rational endpoints, which we denote by N, also has measure 0.
Define a new version of the local time as ¢(x, B), x¢ N, and equal to 0, xe N, for
all B. This version inherits property (i), and, in addition, has property (ii).

LEMMA 1.2. If there is a version of ¢ such that ¢(x, J) is continuous in x for each
subinterval J with rational endpoints, then there is a reqular version with the same
property.

ProoF. If s and r are rationals, s < r, then ¢(x, s) £ ¢(x, r) for almost all x;
thus, by the assumed continuity in x, the inequality holds for all x; therefore, for
each x, ¢(x, 7) is nondecreasing on the rationals ¢ in [0, 1]. Let ¢ *(x, ¢) be the exten-
sion of ¢ by right continuity to all 7, 0 < ¢ < 1. As in the proof of the existence of
a regular conditional probability, ¢*(x, ¢) is a version of the local time for each ¢;
furthermore, as a monotone function of ¢, it defines a measure ¢*(x, I) for each x.
Since ¢*(x, J) = ¢(x, J) for all J with rational endpoints, the former is also
continuous in x for each such J. In accordance with the proof of Lemma 1.1,
¢*(x,J) = 0 for almost all x outside the closure of the range of x(t), ted, for
each J. Since ¢*(x, J) is continuous it must vanish everywhere outside the closure,
for every J; therefore, ¢* is regular.

LEMMA 1.3. If a version of the local time is jointly continuous, then it is regular.
The proof is similar to the previous one.
LEMMA 1.4. If there is a version of the local time ¢(x, t) such that
[2 0 $2(x, Ddx < 0
then every version has this property; in particular, there is a regular version having it.
Proor. Two versions of ¢(x, 1) agree almost everywhere in x.

LEMMA 1.5. Let x(-) be continuous, and ¢ a regular version of the local time;
then, for each x, the measure ¢(x, -) (on [0, 1]) has support contained in {t: x(f) = x}
or else is equal to 0.

ProoF. The set {t: x(r) # x} is the union of the open sets
L= {t:|x(t)—x|>1n}, nzl.

Each of these is a countable union of open intervals J with rational endpoints. By
continuity, x(-) is bounded away from x on J; therefore, by the regularity of
#, ¢(x, J) must vanish. By countable additivity, ¢(x, I,) must also vanish, as must

o(x, {t: x(t) # x}).
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For a regular version ¢ and each x, consider the product measure ¢(x, ) x ¢(x, )
on the unit square; it is defined for rectangles I x J as ¢(x, I) ¢(x, J). If g(s, 1)
is a nonnegative Borel function on the square, then the integral

{616 g(s, 1) p(x, ds) P(x, dt)
is Borel measurable in x.

LeEMMA 1.6. Put H(s, 1) = [ ,¢(x, 5) ¢(x, 1) dx; then, for any nonnegative Borel
JSunction g(s, t), we have

{6 09(s, H(ds, dt) = [2, (5 [6 9(s, ) P(x, ds) P(x, dt) dx.

Proor. Since the equation holds for products of indicator functions of pairs of
Borel sets, it holds by approximation for all g.
For fixed 7 the Fourier-Stieltjes transform of v(-, I) is equal to

1.3 S, D)= [;d1, —0 <u < 00,
[11; we also put f(u, t) = f(u, [0, t]).

Let X(t, w), 05t < 1, weQ, be a separable measurable stochastic process on
some probability space Q. For each w, let v be the occupation time distribution of
X(+, w), defined by (1.1). Properties of v holding for almost all @ will be said to
hold almost surely; therefore, we shall suppress the argument w in v, ¢, f and X,
writing the last as X(¢).

2. Dimension of the x-values of the sample functions of a Gaussian process. We
recall that a linear set is said to have Hausdorff dimension less than or equal to y,
where y > 0, if, for every " > y and every n, there is a covering by open sets 7,
k 2 1, such that diameter (I,;) £ 1/n for all k, and lim,_, ,, ¥ 4|diameter (1,,)|" < 0.
The dimension is equal to y if it is less than or equal to y but not to 9" < y. In [2]
it was shown that if X is a Gaussian process such that

(55 (B(X(s)— X(£))®) " * dsdt < oo,

then for almost all # the set {s: X(s) = X(¢)} is infinite almost surely. Now we get
a more exact estimate of the size of this set for a class of processes with stationary
increments. Analogous theorems for the set of zeros of a stable process are well
known; for example, see [3] or [9].

THEOREM 2.1. Let X(¢), 0 £t £ 1, be a separable measurable Gaussian process
with stationary increments such that EX()=0 and o*(t) = E(X(t)—X(0))* is
continuous and positive on (0, 1], and
@.D o?(1) ~ C|tf%, t—0,
for some constant C, and some o, 0 < o < 2. Then, for almost every t, the dimension
of the set
2.2) {s: X(s) = X(0)}

is equal to 1—(a/2), almost surely.
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ProOF. The proof consists of two parts: First it is shown that 1—«/2 is an
upper bound on the dimension; then, it is shown that it is also a lower bound.

Upper bound. Let I, be the interval (k—1)27", k27"), k=1, -+, 2". For each
x, the probability that X(k27") = x for some 1 £k £2", n>1, is equal to O;
therefore, the open intervals I, for which X(z) = x for some te1,, form a covering
of the set of x-values almost surely.

Under the hypothesis (2.1), for any B < «/2, X(¢) satisfies a uniform Hélder
condition of order ff almost surely: there exists a constant D—independent of the
sample function—and a positive random variable § such that

| X@)—X(@)| £ Dli—r')f,  |t=t'|<8, t,r'e0,1].

[7] page 519. For y > 0, the sum of the yth powers of the lengths of the covering
sets in the nth coveris ) 27, (|u(Z,,)|": X(f) = x for some rel,) = 27" - # (intervals
Ix: X(1) = x for some t€1,,). Under the stated H6lder condition if # is large enough,
then X(z) assumes the value x in I,, only if X(k2~") falls within D2~" units of x:
therefore, the sum above is, for large n, at most 277 - # (indices k: |X(k2™")— x| <
D27, 1 £ k £2". By Fatou’s theorem, the lim inf of this expression is finite
almost surely if the lim inf of the expected value is: it will be shown that

liminf, 27" Y22, P[|X (k2™ —x| £ D27"] < oo, y>1-4.

We may assume X(0) = O because there is no loss in replacing X(¢) by X(¢)— X(0).
By the elementary estimate

P[’X(k2_")—x| Sul= P[lX(k2_")| Su] £ QIm)ruje(k2™"), u>0,
we find that the lim inf above is not more than
liminf,_, 27"V E=DN2" (2/n)t/a(k2™™)2"
= D-liminf,, , 27""*P= D2 m)t [§ dsja(s).

This is equal to 0 for y > 1 —f§ because the integral is finite under the hypothesis
(2.1); thus, the dimension of {r: X(r) = x} is not more than 1-a/2, almost surely.
Since the process is measurable, Fubini’s theorem implies that the dimension of
{t: X(t) = x} is not more than 1—a/2 for almost all x, almost surely.

Under the hypothesis on 2(¢), we have

LIt dsdt
2.3 — ;
32 Jo by sesy<=

therefore, the local time exists almost surely, as proved in [1]. It follows from the
definition of the local time that the pre-image of a set of linear measure 0 in the
range is a set of similar measure in the domain; therefore, from the above result
about the dimension of {r: X(r) = x} for almost all x we infer a similar statement
about the set (2.2) for almost every .

Lower bound. Under (2.3) it is shown in [1] that there is a version of the local
time such that [, ¢?(x, 1)dx < o0, almost surely; therefore, by Lemma 1.4, it
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may be assumed that ¢ is also regular. For each sample function let H(s, ¢) be
defined as in Lemma 1.6; then, by the formula (1.3), we have

(24)  H(s,0) =2 f(u,8)f(u,t)du = [© [ [ X=X gs" dt' du,
If g(s, t) is a nonnegative Borel function, then
(2.5) E{fsfog(s,nH(ds,dt)} = 2n)* f§ o g(s, Yo~ (1 —s) ds dt;

this follows from (2.4) by a standard approximation, Fubini’s theorem, and the
inversion formula for the transform of the Gaussian density. From (2.5) and (2.1)
it follows that E{f [§ |s—|~# H(ds, dt)} < o0, B < 1 —(«/2); therefore, by Fubini’s
theorem, [§f4|s—1|7# H(ds, dt) < o0, almost surely, and, by Lemma 1.6,
§656]s—1|7% (x, ds) ¢(x, di) < oo, for almost all x, almost surely. This implies
that

(2.6) [ 541" =] $(X(). ds ) $(X (D), d') < oo
Sor almost all t[0, 1], almost surely;

indeed, by the remarks following (2.3), a property holding almost everywhere in
the range holds in the same manner in the domain.

Under the condition that (2.3) is finite, ¢(X(¢), 1) is positive for almost all ¢ in
[0, 1], almost surely [2]; therefore, by the regularity of ¢, the measure ¢(X(r), ds)
is positive on [0, 1]. By Lemma 1.5, the support of ¢(X(¢), ds) is contained in the
set (2.2). We have shown that for almost all 7, there is a positive Borel measure ¢
on (2.2) for which the “energy integral” (2.6) is finite. Under (2.1) the set (2.2) is
closed because X(¢) is continuous almost surely. Frostman’s theorem [6] implies
that the dimension of the set is at least . Since f is an arbitrary number smaller
than 1—(a/2), it follows that the dimension is at least 1—(a/2).

3. Some properties of functions with jointly continuous local times. The first
result is that a Borel function with a jointly continuous local time ¢(x, ),
—o0 <x <, 0=1=<1is not only non-differentiable at every point, but also the
magnitude of the difference quotient is arbitrarily large on a set of density 1 near
each point. (This result applies to a large class of stochastic processes previously
considered by Trotter [12], Boylan [4], Ray [10], and others.)

LemMa 3.1. If ¢(x, t) is jointly continuous for —oo <x < o0, 0 <t =1, then
for every t in [0, 1] and every M > 0,
lim uls:|s—1j < 8LI§(I)—X(S)' <M|t—s,]
e=0 uls:|s—t <e]

= 0.
ProoF. The above ratio is at most equal to (1/2¢)u[s: |s— 1| < e |x(0)- x(s)| £ Me],
which, by the definition of ¢, is
(1/2e) JRB I [p(x, t+€)— p(x, t—e)] dx.

This converges to 0 with ¢ because ¢(x, t) is jointly continuous and monotonic in .
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LemMmA 3.2, If x(t), 0 < t = 1, is continuous, and its local time exists and is jointly
continuous, then the set {x: The pre-image of {x} is countable} is nowhere dense in
the range of x(t).

Proor. It suffices to show that ¢(x, 1) = 0 if the pre-image of {x} is countable;
indeed, the set of zeros of ¢(x, 1) is nowhere dense in the range of x(¢) [1]. By
Lemma 1.3, ¢ is regular. Let x be a point such that {r: x(+) = x} is countable;
then, by Lemma 1.5, the measure ¢(x, dt) has support contained in this countable
set or else has none. Since ¢(x, t) is continuous in ¢, the support is empty; thus

é(x, 1) =0.

4. Gaussian processes with jointly continuous local times: the first class. Put
Gu(x) = P(x, Iy) and f,(u) = f(u, I,;), where I,, is the dyadic interval ((k—1)27",
k27", k=1,---,2", n=1. Under the following conditions there is a jointly
continuous local time:

Lemma 4.1. If, for some ¢ > 0,

4.1 j“_"wlu[‘”]f(u,J)lzdu< 0,
for every subinterval J of [0, 1] with rational endpoints;
4.2) liminf,, , 32 §2, (L+|u|* 9| fuw)|? du = 0,

then ¢(x, t) is jointly continuous.

PRrOOF. Under the hypothesis (4.1) | f(u, J)| is integrable, and so ¢(x,J) exists
and is continuous, for all J with rational endpoints [1]; thus, by Lemma 1.2, there
is a regular version with the same property; therefore, this regular version of
¢(x, t) is continuous in x for each rational ¢, and nondecreasing in ¢ for each x.
In order to prove joint continuity it suffices to prove continuity in ¢ for each
x: ¢(x, t) must have no jumps in ¢ for each x.

Since f,, is absolutely integrable, ¢,, may be represented by the inversion
integral :

Gu(x) = |[(1/2m) 2, €™ f(u) du?
S (120 §2 5 duf(U+|u| 5 [, (L4 u]' )| fuw)|? du
(Cauchy-Schwarz inequality). Sum over k:
Dies1 $m(x) < constant - Y21 2 (1+]u|! )| fru(w)|? du.

Under the hypothesis (4.2) it follows that lim inf, ., Y 72, $2(x) = 0, for all x;
therefore, ¢(x, 1) has no jumps for each x, and so it is jointly continuous.

THEOREM 4.1. Let X(r), 0 = ¢t £ 1, be a separable, measurable Gaussian process
with mean 0, stationary increments, and o*(t) = E|X(t)— X(0)|? continuous and
satisfying
(4.3 fofolo(s—=0] 2" “dsdt < o0

Jor some ¢ > 0; then the local time exists and is jointly continuous, almost surely.
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Proor. Under the hypothesis (4.3), the conditions (4.1) and (4.2) are fulfilled ;
this is proved in [2], Lemmas 2.1 and 5.2.

In [1] it was shown that under the condition (4.3) the local time is continuous in
x for each ¢; thus, if the sample functions are continuous, the values in the range
of X of finite multiplicity form a set of Category I. We now get a stronger result
from Theorem 4.1 and Lemma 3.2. Theorem 3.1 and Lemma 3.1 also provide a
more general version of the result in [2] on nondifferentiability.

5. Joint continuity of a stochastic process of two parameters. We prove a general
result giving conditions in terms of moments that a stochastic process X(s, ¢) have
jointly continuous sample functions. We make the usual assumption that the process
is separable and stochastically continuous, so that the pairs of dyadic fractions
form a separability sequence. The following is a generalization of Kolmogoroft’s
continuity condition to processes of two variables.

THEOREM 5.1. If there are positive constants r, C and ¢ such that
5.0 E[X(s+h,1)=X(s,7)|]" S C|n]"**, s,s+he[0,1], and t = 0,1;
(5.2) E[X(o,t+h)—X(o,0)|" £ C|n|'**, t,t+hel0,1], and 0 =0,1;
(5.3) E[X(s+ht+h)=X(s+h,0)—X(s, 1+ 1)+ X(s,0)|" < C|hh'|'**,
s,s+h,t,t+h'e[0,1],
then X(s, 1), 0 < s, t £ 1, is almost surely continuous.

Proor. We expand X in a double Schauder series and show that it converges
uniformly on the unit square almost surely. Since the series converges to X at all
dyadic pairs, and since the latter form a separability sequence, it follows that the
series coincides with X throughout the unit square; therefore, X is continuous
almost surely.

Recall the Schauder functions [11]:

@ =1 0121,
2k—2 2k—1
Aone () = 22, te[?IT ’ Envrl-> )
) 2k—1 2k
= "2/2s te[zTH_’EnTl>
=0, elsewhere, k=1,"-+,2", n20;

and ¢,(1) = [ xu(s)ds, n= 1. ¢pay (1) increases linearly from 0 to (4)27"/2 on
[(Qk—2)27¢*D 2k —1)2""*D]; and decreases linearly from (1)27"2 to 0 on
[Qk—1)27C*D 2k -2+ D). and is equal to 0 elsewhere. It follows that for every
nand ¢,

(5.4) 2 o () S (272
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Under the conditions (5.1) and (5.2) the processes X(s,0), 0 <s=< 1, and
X(0,1), 0=t =1, are almost surely continuous [7] page 519. Put &(s, ¢) =
X(s, )= X(s, 0)— X(0, 1)+ X(0, 0); then £ is jointly continuous if and only if X is.
Since &(s, 0) = 0 we may, for fixed s, expand &(s, 1) in a formal Schauder series in ¢:

&Gs, 1) = ‘151([)_(3) WG, du)+)y 7, Zf: 1 ¢2~+k(t)f(1) K2n 4 (WE(s, du).

Here we have used the differential notation jg E(s, du) = &(s, b)— (s, a). Since
£0, 1)=0, it follows that £(0, du) =0, and so &(s, du) has a formal Schauder
expansion in 5. The double expansion for (s, ) is the sum of four terms:

(5.5 $:()(D 6o x1(Wx ()E(du, dv)
+¢1(9) Xno 281 Danaic (D6 §o 11()x2n+ l(0)E(du, dv)
+¢1(I)Zf=0213;1 2"+k(5)jtl)f(l)X2n+k(u)X1(U)f(du,dU)
+Zf;°,n=toi'1 f:1¢2m+j(s)¢zn+k(t)
“Jo Jo xam+ j(W)xan 1 (v)E(du, dv).

The first term is sz- &(1, 1), which is continuous. The proofs of the uniform con-
vergence of the sums in the last three terms are similar, so that we record only that
for the last term, which involves the doubly infinite series.

Note that &(ds, dr) = X(ds, dt), so that the double integral in a typical term of
the double series is a sum of four second order differences of the general form

mtn 2j—1 2k—1 2j—1 2k-2 (2j-2 2k—-1
20 )/2[X<2“m*+—1,2..+7 >—X<2m’—2n+1 >—)‘<2—m+1 ETES
2j—2 2k—=2 .
X(W”i]-?1 >}= 2 2 e an ks

with the variations that j and k may be replaced by j+1 and k+ 1, respectively.
We shall show that the tail of the double series

(5.6) Yomn 20m +")/2[Zk,j Goms () 2n sk (DEpma j nsr]

is almost surely majorized by a series of positive constants independent of s and .
Pick 0 > 0. By the Chebychev inequality and by (5.3), we have

Pr [léZ'"+j, 2"+kl 2 (mn)~!' 7% £ (mn)y " *OE I‘fzmﬂ, 2"+k|r

< C(mn)r(l +6)2—[(m+ D+(n+ 1)1 +£);
therefore, the series
Zm,n Zj,k Pr [|€2"'+j, 2"+k’ > (mn)~! _6]
converges; hence, by the Borel-Cantelli lemma, only finitely many of the events

|£2"‘+j,2"+k’>(mn)—l_§’ j=1;“',2m’ =1’,”,2n 'ngl’ ngl,
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occur, almost surely. From this and (5.4) we conclude that the (m, n)th term of the
series (5.6) is asymptotically, uniformly (in s, ) dominated by (mn)~!7°.

6. Several more classes of Gaussian processes with jointly continuous local times.
Let X(#), 0<r =1, be a separable measurable Gaussian process. In [1] it was
shown that for a certain class of such processes which are stationary, and whose
correlation function satisfies 1—r(t) ~C Itl“, t—0, for some o, 1 £a <2, and
several other conditions, there is a version of the local time continuous in x almost
surely, for each ¢. This was done in the following way. Under the given conditions,
the integral '

Y(x, ) = (1/2m) 2, e” " ([ ¥ ds) du
exists as a quadratic mean limit for every (x, ¢); furthermore, for each ¢, a separable
version of Y(x, t), —o0 < x < 0o, has continuous sample functions; finally, it is
shown that this version of i is also a version of the local time.

We shall extend this result in two directions: stationarity will be replaced by the

more general assumption of stationary increments, and the continuity of the local
time in x by the conclusion that it is jointly continuous in (x, ).

LemMa 6.1. Let X(¥), 0 £t £ 1, be a Gaussian process with mean 0 and stationary
increments, and with ¢*(t) = E(X(t)—X(0))%. If there exist numbers & >0, ¢ >0
and an integer N > 1 such that for all even n = N:

The determinant of the covariance matrix of

X(t)=X(t;-)

(6.1) ot ) ji=1,n,
is bounded away from O on the subset of the unit cube

{t, ) 0=tst; S-S, S 1}
and
(6.2) {0=ro§t‘1.§.-.-j‘-§t,.§r} [MTi=10(;—t;- )17 "2 =1 dt; = 0", 10,
then

(a) Y(x, t) exists as a quadratic mean limit for each (x, t); and

(b) Every separable version of Y(x,t), —w0o<x< o, 0=2t=Z1, is jointly
continuous almost surely.

Proor. There is no loss in assuming that X(0) = 0 (cf. proof of Theorem 2.1).
By the argument in [1] page 286, the existence of the quadratic mean limit follows
from the finiteness of

I(I)I(l)jo_owjowaeiuX(s)Hvxa)du dvds dt,
which follows from the calculations below.

In order to prove (b), we apply Theorem 5.1 to ¥(x, ), —0o <x < 00, 0=t < 1.
(The restriction of the first parameter to [0, 1] in the statement of that theorem is
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removable.) The features of the confirmation of the conditions (5.1) and (5.2) are
contained in that of (5.3) so that we present only the latter. By a slight modification
inthe calculationin [1], the nth moment of Y(x+h, t+ 1) —Y(x+h t)— Y (e, t+ A"+
Y(x, t) is dominated by
(63)  Wom e 2 e T
“E[exp(i3j= 1 u; XU [}=1 du; [ T5-1 dty;
furthermore, under the first condition of the lemma, this expression is at most a
constant multiple of
hof---f [[T5=1 o(t;=t;- D1 "> [T}-1 dt;.
{0=to<t X L1,5h'}
Under the second condition of the lemma, this is at most a constant multiple of
(hh)1*¢ for some &¢> 0 is n is large enough; therefore, the condition (5.3) is
satisfied.

LEMMA 6.2. Under the conclusion of Lemma 6.1, there is a version of the local
time which is jointly continuous, almost surely.

PRrROOF. By a slight extension of the reasoning in [1] it can be shown that if a
separable version of (x, r) has jointly continuous sample functions, then it serves
as the local time for X(¢) almost surely.

In the following theorems we describe classes of Gaussian processes with
stationary increments which satisfy the conditions of Lemma 6.1.

THEOREM 6.1. If 62(t) is continuous and concave for 0 <t < 1, then the local
time exists and is jointly continuous almost surely.

Proor. By an adaptation of a result of Marcus [8] to the case of stationary

increments, we get
Pri|X(t)—X(t;_ )| Sx,j=1,-+,n]
< [T @ 3500 6= ay, x>0,
Divide both sides of this inequality by x", and let x — 0: then the limit of the left-
hand side is (27) ™2 multiplied by the reciprocal of the square root of the deter-
minant of the covariance matrix of X(r;)—X(t;_,), j=1,---, n. The limit of the
right-hand side is (2/n*)"/[ |-, o(t;—t;_,); thus,
det [E(X(t)— Xt DX (t)—X(t;-))] = 273 ITi=1 Uz(tj_ ti-1);

finally, from this we obtain

et [E(X(m—X(ti_ D) (X(t) = Xt 1))] -
o(ti—t;— 1) o(t;—1t;-1) N
therefore, the first condition of Lemma 6.1 is satisfied.
Since ¢%(¢) is concave, ¢%(z)/t decreases; therefore, o2(z) = ta*(1), and so
o(t) = t¥o(1); thus the second condition of the lemma is satisfied for all n sufficiently
large,e.g. n = 4.
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THEOREM 6.2. If 6(?) satisfies:

(a) The form o*(t)+0*(t)—a*(t;—1), i, j=1,---,n, is strictly positive for
1, ", t,€[0, 1] and every n, that is, the process has no singularities.

(b) 6?(1) is twice continuously differentiable on (0, t).
(c) There exists a constant C > O such that
(6.4) o?(t) ~ Ct, t0.

) Fors<t<s' <t',0<s<t' <1, and for either or botht—s— 0,1 —s"— 0,
we have

fef5(6d (u—v)dudv 0
(==

then the local time is jointly continuous.

(6.5)

Proor. The condition (6.4) is certainly sufficient for the second condition of
Lemma 6.1, e.g. for n = 4.
Under the differentiability assumptions on ¢?(¢) we have

E(X(t) =X (- )X )= X(t;-0) _ 1[5, Ji_ (6) " (u—v)dudv
o(ti—t;_y) o(t;i—t;_1) 2 o(t;i—t;—)o(t;—t;_ )

Put M={(t;," ", t): 0=1,St; < <t,£1}, and M’ its closure; then a
point (¢,,- -, t,) belongs to M’— M if there is strict equality among at least two
t’s, 1 £i < n. Since the process has no singularities, the determinant of the
covariance matrix (6.6) is positive on M; we shall show that it is bounded away
from 0 on M so that it is strictly positive on M’.

Under the conditions (6.4) and (6.5), the correlation (6.6) converges to O if
either t;,—¢,_, -0 or t;—¢t;_; =0 or both; therefore, the distribution of the
standardized differences (6.1) converges to a nonsingular limiting Gaussian
distribution because the ith random variable is asymptotically independent of all
others as f;—r;,_, » 0; hence, the corresponding determinant converges to a
positive limit and so is bounded away from 0.

(6.6) , i<

THEOREM 6.3. Suppose that a*(t) satisfies conditions (a) and (b) above, and for
some o, 1 < o < 2, and some C > 0,

6.7) a0 ~ Ct, t10,
(6.8) (62)"(t) ~ afa— 1)C1*~2, t}0;
then the local time is jointly continuous.

PrOOF. The condition (6.7) is sufficient for the second condition of Lemma 6.1;
indeed, if < (1/&)—(3), then (6.2) holds for all » sufficiently large.

In order to prove the nonsingularity of the limiting distribution of the random
variables (6.1) as a point (¢,,- -, #,) moves toward the boundary of the set M
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defined in the previous proof, it is sufficient, by the reasoning in [1], to consider
three different cases:

(i) t; and ¢,_, are bounded away from ¢; and ¢;_, and either t;—¢,_, -0 or
t;—t;_, =0 or both; in this case the integrand on the right-hand side of (6.6) is
bounded, and the right-hand side converges to 0 because a(f) ~ Ct*/%.

(ii) t;—#;-1 >0, t;—;—1;,— 0, but ¢;—¢;_, is bounded away from 0. Under
(6.8), and by virtue of (6.6), the correlation of the increments is not more than a
constant multiple of

b (u—0) 2dudo (t,—t_ )"

ti-gJtj-1

=@=D" 1 [—to ) = —1)* T du-(t,—1,_;) "

tj-1

Lt T2
é(t‘—a(t;::%i——”(tj_ti—l)a—(tj_ ti)al + I(tj—l =t ) =ty _ti)al]’

which converges to 0 because « > 1, and (¢/2) < 1.

(iii) tl'—ti—l ’_)0, t~—tj_1 —)0, tj_l—t,-—>0. By (6.6), (6.7) and (6.8), the

J
correlation is asymptotic to

[t =tim ) = (o g — i ) = (= 1)+ (- — )] )
20t5— 1y [P [ti— by [

This is representable in the spectral form

j'ffoo(ei).tj_ei}.tj-x)(e—i}.tg_e—i).t;_l)ll|_a_1d,{
[ |1 — 4=t |27 T dA- = |1 — 0 t=02 A7 LdAE

The same argument used in [1] shows that the limiting correlation matrix is non-
singular. This completes the proof.

An example of a Gaussian process with stationary increments satisfying the
conditions of these theorems is the one with E(X(z)— X(0))> = |¢|*, with a = 1 for
Theorems 6.1 and 6.2 (Brownian motion), and with 1 <« < 2 for Theorem 6.3.
The case’0 < a < 1 is covered by Theorem 4.1. By Lemma 2.1 the sample functions
are nowhere differentiable; the result is new for 1 < o < 2 because a was restricted
to (0, 1) in [2].

7. Correction of a previous result. Theorem 2.1 of [1] is incorrect as stated. Its
conclusion holds if the hypothesis is strengthened to include continuity in x of
the local time relative to every subinterval of [0, 1] with rational endpoints.
Lemma 1.2 above is used in the proof. The hypothesis of Theorem 7.1 must be
strengthened in the same way. The main results of [1] on Gaussian processes
are valid as given because the continuity condition holds for every interval (with
rational endpoints).
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