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Abstract In this article we introduce a new Gaussian pro-
posal distribution to be used in conjunction with the sequen-
tial Monte Carlo (SMC) method for solving non-linear filter-
ing problems. The proposal, in line with the recent trend, in-
corporates the current observation. The introduced proposal
is characterized by the exact moments obtained from the dy-
namical system. This is in contrast with recent works where
the moments are approximated either numerically or by lin-
earizing the observation model. We show further that the
newly introduced proposal performs better than other simi-
lar proposal functions which also incorporate both state and
observations.
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1 Introduction

Consider a nonlinear dynamic system given by

xk = f (xk−1,wk), (1)

yk = h(xk, vk), k = 1,2, . . . (2)

where (xk) are the unobservable system values (the state)
with (known) initial prior density p(x0) ≡ p(x0|x−1) and
(yk) are the observed values (the measurements). The
process noises (wk) are assumed to be independent of the
measurement noises (vk). The problem is to estimate the
unobserved system value xn in some optimal manner from
all the observations y1:n ≡ (y1, y2, . . . , yn), up to time n, or
equivalently, estimate the conditional density (also known
as filtered density) p(xn|y1:n). An analytical solution can
be found only for a few special cases such as when both
the system and observation equations (1)–(2) are linear and
the noise processes are Gaussian (Kalman filter). For gen-
eral models, analytical approximations such as Extended
Kalman filter and Gaussian sum filter (Anderson and Moore
1979; Jazwinski 1970; Bagchi 1993) and other approxi-
mate methods using numerical integration (Kitagawa 1987),
the unscented Kalman filter (Julier and Uhlmann 1997;
Wan and van der Merwe 2000) and the Gaussian quadra-
ture Kalman filter (Ito and Xiong 2000) are proposed in the
literature.

Simulation based sequential Monte Carlo (SMC) meth-
ods, also known as Particle Filters (PF’s), provide the target
filter density p(xn|y1:n) in the form of a cloud of particles
(Handschin and Mayne 1969; Akashi and Kumamoto 1975;
Gordon et al. 1993; West 1993; Pitt and Shephard 1999;
Doucet et al. 2001; Arulampalam et al. 2002). The biggest
advantage of the SMC method is that it can easily adapt to
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nonlinearity in the model and/or non-Gaussian noises. The
efficiency of the PF algorithm depends on the so-called im-
portance function π(·), also often referred to as the pro-
posal distribution, used to generate the particles. It has been
shown in (Doucet et al. 2000) that the importance function
of the form π = p(xk|xk−1, yk) is optimal in a certain sense.
There are, however, two major, in practice prohibitive, draw-
backs for using this importance function. Firstly, drawing
samples according to p(xk|xk−1, yk) is, in general, difficult.
Secondly, it is also difficult to get an analytical expression
which is needed for the weight update.

In this article we propose as the importance function a
Gaussian approximation of p(xk|xk−1, yk) by matching the
exact moments up to second order of the distribution of
(xk, yk) conditional on xk−1. Recently, Doucet et al. (2000)
and Guo et al. (2005) also proposed similar importance func-
tions. However, Doucet et al. (2000) use the linearised ap-
proximation of the observation model to calculate the mo-
ments, while Guo et al. (2005) approximate the moments by
different numerical methods such as the Gaussian-Hermite
quadrature rule or the Julier-Uhlmann quadrature rule. Be-
sides the possibility that the use of exact moments may lead
to better approximation of the optimal proposal distribution,
our method has one distinct advantage over the one in Guo
et al. (2005), namely that, it is computationally less demand-
ing. We also note that, the dynamical systems considered by
Doucet et al. (2000) and Guo et al. (2005) are with additive
Gaussian noise processes, whereas our method would work
for more general models, so long as the observation model
is a polynomial. For comparison we have also considered
unscented particle filter (van der Merwe et al. 2000) which,
too, works for general dynamical systems. Our experimental
results with additive Gaussian noise processes show that the
overall performance of our proposal function is better than
that of the other proposals, considering the trade off between
the RMSE and the computational load.

The rest of the article is organized as follows. In Sect. 2
the general SMC method is reviewed very briefly and the
role of the importance function is discussed. We describe
our proposed importance function using the exact moments
in Sect. 3. Construction of other importance functions as
proposed by Doucet et al. (2000), Guo et al. (2005) and
van der Merwe et al. (2000) are briefly reviewed in Sect. 4.
Implementation issue of our proposed method is discussed
in Sect. 5. Section 6 contains the numerical comparison re-
sults of these methods based on two examples—one with
polynomial (Sect. 6.1) and the other with non-polynomial
(Sect. 6.2) observation equation. Finally, Sect. 7 concludes
the article.

2 General SMC method and importance function

Suppose that the system dynamics are given by (1)–(2).
The sequential Monte Carlo method is based on importance
sampling and allows one to estimate recursively in time
the distribution function p(xk|y1:k). The estimate is given
in the form of a weighted particle cloud {(x(i)

k , w̃
(i)
k ), i =

1, . . . ,N}. Given the observations up to the current time
k (y1:k) and the particles up to time k − 1 (x(i)

0:k−1), x
(i)
k

is drawn according to a normalized importance function
π(xk|x(i)

0:k−1, y1:k) whose support includes that of the true
posterior and subsequently the importance weights are up-
dated. For a full account we refer the readers to Arulam-
palam et al. (2002).

Usually in practice, the importance function is taken to be
the transition density, i.e., π(xk|x(i)

0:k−1, y1:k) = p(xk|x(i)
k−1)

because it is easily available from the model. It is known that
this algorithm suffers from the degeneracy problem, that is
to say, the variance of the importance weights can only in-
crease over time. It has been shown by Doucet et al. (2000)
that an importance function of the form π(xk|x(i)

0:k−1, y1:k) =
p(xk|x(i)

k−1, yk) addresses this issue by minimizing the vari-

ance of the (unnormalized) importance weight w
(i)
k condi-

tional upon x
(i)
0:k−1 and y1:k .

In general, though, this choice of the importance func-
tion is not practical as it is difficult to generate samples from
this distribution. Furthermore, one needs an analytical ex-
pression of the importance function to be used in the weight
update equation, which is also generally difficult with this
choice of the importance function.

3 Importance function based on exact moment
matching (EMM)

Suppose the system dynamics are given by (1)–(2). We fur-
ther assume the following.

Assumption A All the moments of (xk, yk) conditional on
xk−1 up to second order, i.e., E(xk|xk−1), E(xk xT

k |xk−1),
E(yk|xk−1), E(yk yT

k |xk−1), and E(xk yT
k |xk−1) are known.

To determine the importance function, to be used in con-
junction with the particle filtering algorithm, we proceed as
follows. We approximate the joint distribution of (xk, yk),
conditional on xk−1, by a Gaussian distribution with match-
ing moments up to the second order. Let the corresponding
mean μ(k) and the covariance �(k) be given by

μ(k) =
(

μ
(k)
1

μ
(k)
2

)
and �(k) =

(
�

(k)
11 �

(k)
12

(�
(k)
12 )T �

(k)
22

)
. (3)
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Note that μ(k) and �(k) can be calculated from the moments
which are assumed to be known from Assumption A. Sub-
sequently, we take the importance function to be the condi-
tional distribution of xk , given (xk−1, yk), derived from the
approximated Gaussian distribution above. Thus, we assume
π(xk|x(i)

0:k−1, y0:k) ∼ N (mk,�k), where

mk = μ
(k)
1 + �

(k)
12

[
�

(k)
22

]−1(
yk − μ

(k)
2

)
, (4)

�k = �
(k)
11 − �

(k)
12

[
�

(k)
22

]−1(
�

(k)
12

)T
. (5)

We note here that a sufficient condition for Assumption A to
hold is:

Condition 1 Both E(yk|xk) and E(yk yT
k |xk) are polyno-

mials in xk of degree at most m and all conditional moments
of xk , given xk−1, are known up to order m.

In the special case when the noise processes in (1)–(2) are
additive Gaussian, suppose the system dynamics are given
by

xk = f (xk−1) + wk, wk ∼ N (0,Q), (6)

yk = h(xk) + vk, vk ∼ N (0,R), k = 1,2, . . . (7)

then the conditional moments of all order of xk given xk−1

are known. If, in addition, h(·) in (7) is a polynomial, then
Condition 1 would be satisfied and hence Assumption A
would hold. The precise formulas for the quantities can be
found in Appendix A.

4 Other Gaussian importance functions

There are other Gaussian importance functions proposed in
the literature. We mention three of them here. The first two
are based on the Gaussian approximation of the optimal
importance function p(xk|xk−1, yk) which are ideologically
similar to EMM, but the moments are approximated in dif-
ferent ways. The third one, on the other hand, uses a bank of
unscented Kalman filters to obtain the proposal density.

4.1 Importance function by linearization (LIN)

In an earlier paper Doucet et al. (2000) consider a dynamical
system with additive Gaussian noise, given by (6)–(7). Ob-
serving that the optimal importance function p(xk|xk−1, yk)

is Gaussian when h(·) in the observation model (7) is linear,
the authors linearize the observation equation (7) to obtain

yk ≈ h(f (xk−1)) + Ck(xk − f (xk−1)) + vk (8)

where Ck = ∂h
∂xk

(f (xk−1)). Subsequently, they use the corre-
sponding Gaussian distribution as importance function. This

essentially reduces to approximating the conditional distri-
bution of (xk, yk), given xk−1, by the Gaussian distribution
with mean vector μ∗ and covariance matrix �∗ given by

μ∗ =
(

f (xk−1)

h(f (xk−1))

)
and

�∗ =
(

Q QCT
k

CkQ CkQCT
k + R

)
.

(9)

4.2 Numerically approximated moment matching

In a more recent article, Guo et al. (2005) consider the
same dynamical system given by (6)–(7). The importance
function proposed by them is also in effect derived from a
Gaussian approximation of the joint distribution of (xk, yk)

conditional on xk−1. Guo et al. (2005), however, approxi-
mate the moments in (3) by various numerical techniques,
such as the Gauss-Hermite quadrature (GHQ) rule and the
Julier-Uhlmann quadrature (JUQ) rule. We refer the reader
to the original article for the details.

4.3 Unscented particle filter (UPF)

Unscented particle filter algorithm of van der Merwe et al.
(2000) is suitable for general dynamical systems given by
(1)–(2). In this method, for each particle a separate un-
scented Kalman filter is propagated to generate the Gaussian
proposal distribution. Once again we refer to the original ar-
ticle for details.

5 Implementation of the EMM

Clearly, the EMM as described in Sect. 3 can be imple-
mented if the Assumption A holds. A proper classification
of models for which Assumption A holds is not very easy.
However, as mentioned in Sect. 3, if the dynamical system
is given by (6)–(7) with h(·) in (7) a polynomial function,
then EMM can be implemented.

When the exact values of the quantities in (3) cannot be
calculated, we propose to approximate the observation equa-
tion by one of polynomial form and implement the EMM
to derive the importance function. For instance, consider a
real-valued dynamical system given by (6)–(7). We assume
further that the function h(·) is n times differentiable. We
approximate h(·) locally by its n-th degree Taylor polyno-
mial around x∗

k = f (xk−1) to get the following observation
equation.

yk =
n∑

m=0

am(xk − x∗
k )m + vk with

am = 1

m!
(

∂mh(xk)

∂xm
k

)
xk=x∗

k

. (10)
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Then the quantities in (3) can be approximated by the cor-
responding quantities for the dynamical system governed by
(6) and (10). See Appendix B for details.

Note that the approach proposed above extends the
methodology used by Doucet et al. (2000) where the obser-
vation equation is approximated by the first degree Taylor
polynomial, whereas we consider higher degree polynomi-
als. It is also worthwhile to note the difference between the
approach followed by Guo et al. (2005) and the one pro-
posed above. Guo et al. (2005) work with the given non-
linear model and during setting up of the Gaussian impor-
tance density, they approximate the moments. We, on the
other hand, first approximate the observation equation with
a n-th degree polynomial and further derive the Gaussian
importance density using the exact moments (based on the
approximated polynomial model).

In the following section we present two illustrative nu-
merical examples. We notice that EMM performs better than
the other methods in the sense that its computational load is
considerably less, while the qualities of the filters (in terms
of RMSE) are comparable.

6 Numerical simulation results

In this section we consider two examples—one with a
polynomial observation model and the other with a non-
polynomial model—and compare the filtered estimates ob-
tained by different methods. In both examples we consider
additive Gaussian noise processes.

6.1 Polynomial observation model

As in Doucet et al. (2000) we consider the system dynamics
to be given by (6)–(7) with

f (xk−1) = xk−1

2
+ 25xk−1

1 + x2
k−1

+ 8 cos(1.2k), (11)

h(xk) = x2
k

20
. (12)

In our simulations, we set Q = 10, R = 1 and generate
a time series data of length 100 starting with x0 ∼ N (0,1).
Given only the noisy observations yk , particle filter algo-
rithm is performed with the importance functions described
in Sect. 4 (LIN, GHQ, JUQ, UPF) and the new one (EMM)
proposed in Sect. 3. We estimate the state sequence xk ,
k = 1,2, . . . ,100, with all the different methods mentioned
above.

Note that, in this case, the differences in the moments
used in EMM and LIN can be clearly seen. The moments

used in EMM, as given in (3), are

μ(k) =
(

f (xk−1)

f 2(xk−1)

20 + Q
20

)
and

�(k) =
(

Q
f (xk−1)Q

10

f (xk−1)Q

10
f 2(xk−1)Q

100 + Q2

200 + R

)
,

while the moments used in LIN, as given in (9), are

μ∗ =
(

f (xk−1)

f 2(xk−1)

20

)
and

�∗ =
(

Q
f (xk−1)Q

10

f (xk−1)Q

10
f 2(xk−1)Q

100 + R

)
.

For GHQ, we use the five point quadrature rule and for JUQ,
the three (n = 1) sigma points were calculated using κ = 2.
For UPF, the parameters are taken to be the same as that
of van der Merwe et al. (2000) with α = 1, β = 0, κ = 2
and P0 = 1. However, while resampling we use systematic
resampling scheme whereas van der Merwe et al. (2000) use
residual resampling scheme.

For all methods, the initial distribution p(x0) is taken
to be N (0,5) and resampling was done when the effective
sample size became less than one-third of the original sam-
ple size N . For each method, we first calculate the root mean
squared error (RMSE) over M = 100 runs for each time
point k and then the average (over time) RMSE, given by

1
100

∑100
k=1(

1
M

∑M
j=1(x̂

j
k − x

j
k )2)

1
2 . Here x

j
k is the true (sim-

ulated) state for time k in the j -th run and x̂
j
k is the corre-

sponding (point) estimate using a PF method.
Each of these methods is implemented with different

Monte Carlo sample sizes N = 100,250,500 and 1000. In
Table 1 the average RMSE’s are presented. Also reported
are the average (over the 100 runs) CPU time, in seconds, to
complete a run and the average number of resampling steps
(NRS) out of the 100 time steps.

First of all, we see from the table that, as expected, the
performances (as measured by RMSE) of all the methods
become similar as sample size N increases. This is in con-
formity with the fact that for any proposal distribution the
particle filter converges to the true posterior as N → ∞.
The UPF seems to have a considerably higher computational
load than the other methods. This can be explained by the
fact that one needs to run the unscented Kalman filter for
each particle (at each step) to calculate the proposal. Perfor-
mances of GHQ, JUQ and EMM are more or less similar
(which is better than LIN), but the time taken to arrive at
the estimate is less in EMM than that by GHQ and JUQ.
It appears that the numbers of resampling steps are almost
the same for GHQ, JUQ and EMM, which is slightly bet-
ter than LIN. So, the extra computational load for GHQ and
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Table 1 Comparison of the performance of different proposal distrib-
utions with a polynomial observation model

N LIN GHQ JUQ UPF EMM

RMSE 4.7356 4.5724 4.5647 4.9552 4.6179

100 CPU 0.0255 0.0677 0.0617 1.9730 0.0403

NRS 36.64 31.43 31.35 46.48 31.39

RMSE 4.6715 4.4628 4.4989 4.5430 4.4838

250 CPU 0.0394 0.1855 0.1684 5.0514 0.0770

NRS 36.26 32.05 32.29 46.38 32.18

RMSE 4.4923 4.4299 4.4567 4.4766 4.4406

500 CPU 0.0650 0.5283 0.5008 10.0609 0.1423

NRS 38.23 32.55 32.43 46.49 32.67

RMSE 4.4310 4.4211 4.4122 4.4491 4.4162

1000 CPU 0.1352 1.6559 1.6128 20.1678 0.2892

NRS 39.42 33.29 32.92 46.33 33.23

JUQ relative to our EMM method can be construed as a re-
sult of computing the moments numerically. Thus one can
conclude that the EMM method is more efficient compared
to the other methods as it is computationally less demanding
in arriving at the comparable level of efficiency.

6.2 Non-polynomial observation model

Let us consider the following model

xk = xk−1

2
+ 25xk−1

1 + x2
k−1

+ 8 cos(1.2k) + wk,

wk ∼ N (0,10), (13)

yk = tan−1(xk) + vk, vk ∼ N (0,1),

k = 1,2, . . . . (14)

Once again, a time series data of length 100 was simulated
starting with x0 ∼ N (0,1) and the different particle filters
were applied on the observation yk . Here the exact moments
given in (3) are unknown. For EMM we have considered a
2nd degree Taylor polynomial, as described in Sect. 5. The
other setup are as in the previous example in Sect. 6.1. The
performances of different methods are presented in Table 2.

Again, comparing the RMSE’s we observe that the per-
formances of GHQ, JUQ, UPF and EMM are fairly similar,
and they are all better than LIN. But when CPU times are
compared, UPF is the worst performer. A very close look re-
veals that GHQ and JUQ may produce slightly lower RMSE
compared to EMM. However, this relative gain is achieved
at the expense of high computational load. Thus, consider-
ing the trade of between the RMSE and the computational
cost, EMM appears to provide a practical and efficient pro-
posal density.

Table 2 Comparison of the performance of different proposal distrib-
utions with a nonpolynomial observation model

N LIN GHQ JUQ UPF EMM

RMSE 4.1643 4.0875 4.0977 4.1051 4.0936

100 CPU 0.0227 0.0686 0.0711 2.0225 0.0567

NRS 18.13 11.88 12.31 28.76 17.13

RMSE 4.1114 4.0592 4.0636 4.0630 4.0669

250 CPU 0.0359 0.1977 0.1963 5.1927 0.0752

NRS 20.79 12.04 12.51 28.70 18.10

RMSE 4.1027 4.0416 4.0509 4.0563 4.0524

500 CPU 0.0591 0.5930 0.5941 10.3734 0.1102

NRS 23.40 12.29 12.58 28.61 18.78

RMSE 4.0745 4.0415 4.0426 4.0483 4.0423

1000 CPU 0.1275 1.6741 1.6936 20.9481 0.2188

NRS 25.45 12.35 12.64 28.82 19.69

7 Conclusion

In this article a new importance function has been proposed
which is based on the Gaussian approximation of the condi-
tional distribution of (xk, yk), given xk−1, with the first two
moments matched exactly to those of the true conditional
distribution. To use the proposed method one needs to know
the moments of the system dynamics up to the second order.
A specific case in which this is satisfied is when the noise
processes are additive Gaussian and the observation equa-
tion is polynomial.When the exact moments are not known
but the noise processes are additive Gaussian and the obser-
vation model is smooth, we use a polynomial approximation
of the observation model to derive the importance function.
With the help of two examples it has been shown that the
proposed EMM method provides a more practical and effi-
cient proposal density considering the trade off between the
performance (RMSE) and the computational load.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A

Consider the system dynamics as given in (6)–(7). Then, the
conditional moments of xk given xk−1 can be derived as fol-
lows.

E(xm
k |xk−1) =

m∑
r=0

(
m

r

)
[f (xk−1)]rE(wm−r

k )

=
m∑

r=0

(
m

r

)
[f (xk−1)]rμm−r , (15)
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where μj is the j -th (raw) moment of the N (0,Q) distrib-
ution, given by

μ2k+1 = 0 and μ2k = (2k)!
2k k! Q

k,

for k = 0,1,2, . . . . (16)

When h(x) is a polynomial of the form, h(x) = ∑n
r=0 ar xr ,

both E(yk|xk) and E(yk yT
k |xk) are polynomials in xk , thus

satisfying Condition 1. Subsequently, we have

E(yk|xk−1) =
n∑

m=0

amE(xm
k |xk−1)

=
n∑

m=0

m∑
r=0

am

(
m

r

)
[f (xk−1)]rμm−r , (17)

E(xk yT
k |xk−1) =

n∑
m=0

am E(xm+1
k |xk−1)

=
n∑

m=0

m+1∑
r=0

am

(
m + 1

r

)

× [f (xk−1)]rμm+1−r , (18)

E(yk yT
k |xk−1) =

n∑
m=0

n∑
l=0

amalE(xm+l
k |xk−1)

=
n∑

m=0

n∑
l=0

m+l∑
r=0

amal

(
m + l

r

)

× [f (xk−1)]rμm+l−r . (19)

Then (15)–(19) ensure the validity of Assumption A.

Appendix B

Consider the dynamical system described by (6) and (10).
Observing that the conditional distribution of (xk − x∗

k )

given xk−1 is N(0,Q), the following moments can be cal-
culated as

E(yk|xk−1) =
n∑

m=0

am E[(xk − x∗
k )m|xk−1]

=
n∑

m=0

am μm, (20)

E(xk yT
k |xk−1) =

n∑
m=0

amE[xk(xk − x∗
k )m|xk−1]

=
n∑

m=0

am E[(xk − x∗
k )m+1|xk−1]

+ x∗
k

n∑
m=0

amE[(xk − x∗
k )m|xk−1]

=
n∑

m=0

am μm+1 + x∗
k

n∑
m=0

amμm, (21)

E(yk yT
k |xk−1) =

n∑
m=0

n∑
l=0

amalE[(xk − x∗
k )m+l |xk−1]

=
n∑

m=0

n∑
l=0

amalμm+l , (22)

where μj ’s are given by (16).
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