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Gaussian pure states of systems with n degrees of freedom and their evolution under quadratic 
Hamiltonians are studied. The Wigner-Moyal technique together with the symplectic group 
Sp(2n,R) is shown to give a convenient framework for handling these problems. By mapping these 

states to the set of n X n  complex symmetric matrices with a positive-definite real part, it  is shown 
that their evolution under quadratic Hamiltonians is compactly described by a matrix generaliza- 
tion of the Mobius transformation; the connection between this result and the “obcd law” of Kogel- 
nik in the context of laser beams is brought out. An equivalent Poisson-bracket description over a 

special orbit in the Lie algebra of Sp(2n,R) is derived. Transformation properties of a special class 
of partially coherent anisotropic Gaussian Schell-model optical fields under the action of Sp(4, R) 

first-order systems are worked out as an example, and a generalization of the “abcd law” to the par- 
tially coherent case is derived. The relevance of these results to the problem of squeezing in mul- 
timode systems is noted. 

I. INTRODUCTION 

It is a well-known fact in both classical and quantum 
mechanics that the dynamics of a system with a Hamil- 
tonian quadratic in coordinates and momenta is closely 
related to a real symplectic group. Thus for such a sys- 
tem with 2n phase-space variables, both the numerical 
Hamilton and the operator Heisenberg equations of 
motion are linear ordinary differential equations, whose 
solution involves a one-parameter group of matrices be- 
longing to the defining representation of the group 
Sp( 2 n ,  W 1. This solution represents a canonical transfor- 
mation in the classical case, and a unitary transformation 
in quantum mechanics. 

The simple dynamics of such systems leads, in quan- 
tum mechanics, to the study of a special class of wave 
functions which maintain their general form as they 
evolve in time in accordance with the Schrodinger equa- 
tion. These wave functions are normalizable complex 
Gaussians, which are therefore completely determined by 
the means and variances of the coordinate and momen- 
tum operators. If one regards these means and variances 
as time-dependent parameters characterizing the wave 
function, then the Schrodinger equation for the latter 
leads in a direct way to an in general nonlinear system of 
evolution equations for the former. Such quantum- 
mechanical state functions have recently been given the 
distinctive name “Gaussons;” ’ and for a particular 
choice of quadratic Hamiltonian their evolution in time 
has been studied in detail.2 Both ordinary and squeezed3 

coherent states are examples of “Gaussons.” 
It is clear that a corresponding treatment of classical 

systems of this type can be given at  the level of the 
Hamilton-Jacobi equation. 

We are interested in this paper in quantum-mechanical 
pure states with Gaussian wave functions [see Eq. (2 .20 )  
below for a precise definition], and the evolution of these 
states under the action of Hamiltonians quadratic in the 
canonical variables. Such states have been called, in a 
descriptive manner, “Gaussian pure states (GPS)”4 (or 
“Gaussons”’). 

The fundamental significance of the real symplectic 
group Sp( 2 n ,  R )  in this context arises from the fact that it 
is the group of linear automorphisms of the canonical 
commutation relations among n pairs of coordinate- 
momentum operators. It follows that the Hilbert space 
on which these operators act irreducibly carries a unitary 
representation of Sp( 2 n ,  W 1. The infinitesimal generators 
for this representation are quadratic Hermitian expres- 
sions in the canonical variables, and these are possible 
Hamiltonians for the class of systems under considera- 
tion. 

While elements of Sp(2n ,R)  act on vectors by their 
representative unitary transformations, the action on 
operators is by conjugation. It has been shown else- 
where’ that this action finds its most natural and direct 
expression when operators are described by their 
Wigner-Moyal representatives. I t  follows that this 
description is suited also for a discussion of the behavior 
of GPS’s under Sp( 2 n ,  R 1, since one can set up the pure 
state density operator for such a wave function and then 
pass to its Wigner-Moyal representativee6 

The purpose of this paper is to provide a complete 
analysis of GPS’s along these lines.’ In particular the un- 



itary action of the most general symplectic transforma- 
tion on a GPS density matrix can be displayed explicitly. 
We will see that Gausson states correspond one to one to 
points on a special orbit in the Lie algebra sp(2n ,R)  of 
Sp(2n,R) under the adjoint action. And the effect of an 
element of Sp(2n,R)  on a GPS is exactly representable as 
a motion on this orbit. This motion in turn can be inter- 
preted as a canonical transformation with respect to a 
classical phase-space structure that intrinsically belongs 
to the orbit. Thus the quantum-mechanical evolution of 
GPS's according to the Schrodinger equation is exactly 
equivalent to a classical canonical evolution of the pa- 
rameters along this special orbit in sp(2n,R).  This state- 
ment is true for any choice of Hamiltonian provided only 
that it is quadratic. 

The material of this paper is organized as follows. In 
Sec. I1 we introduce the symplectic group Sp(2n,R) and 
its action on canonical coordinate and momentum opera- 
tors, and its associated unitary representation. The 
Wigner-Moyal description of operators is then recalled, 
and its special features with respect to Sp(2n,R) 
displayed. With this preparation, the family of GPS's is 
defined as a special subset of a more general family of 
operators with Gaussian configuration-space kernels. 
The problem of the unitary action of Sp(Zn,R) transfor- 
mations on GPS's is posed. In Sec. I11 this problem is 
converted, with the use of Wigner-Moyal representatives, 
into a matrix-theoretical problem. It is shown that the 
problem can be solved by exploiting the properties of the 
very special orbit in the Lie algebra sp(2n,R) of 
Sp(2n,R).  The result is that any element of Sp(2n,Rj, 
via its associated unitary transformation, maps each GPS 
into another such state. The changes produced in the pa- 
rameters of the state can be displayed in a rather elegant 
form. Section IV sets up the classical phase-space struc- 
ture on the Lie algebra sp(2n,R) orbit mentioned above, 
and shows that quantum-mechanical evolution of a GPS 
with a quadratic Hamiltonian operator is mirrored in a 
classical canonical evolution of the parameters along this 
orbit. A coordinate system for this orbit, which is both 
global and canonical, is displayed. Section V describes an 
application of the results of Secs. I11 and IV to a special 
class of partially coherent optical fields, and Sec. VI con- 
tains some concluding remarks. 

11. SYMPLECTIC GROUP, WIGNER-MOYAL 
REPRESENTATIVES, AND GPS's 

We consider a quantum-mechanical system based on 
2n Hermitian coordinate and momentum operators 
qr,hr,r = 1,2, . . . , n. It is convenient to set up a column 
vector 0 with 2n Hermitian operator entries as 

(2.1) 

Then the canonical commutation relations can be com- 
pactly written as 

- 
T h 

- Q = ( Q 1 , .  . . ,ghn,81,. . . , a , )  . 

[ 8, ,o,] =ifin,, a ,  b = 1,2, . . . ,2n 
i? ?i 
L.Lt 

[ 8, ,o,] =ifin,, a ,  b = 1,2, . . . ,2n 
(2.2) 

Q n x n  L x n  

Eigenvalues of the q s  and j3's will be denoted by q's and 
K s ,  respectively. AAreal linear transformation taking the 
Q, into Hermitian Q 1 according to 

Q =Sa, Q, (2.3) 

will preserve the commutation relations (2.2) if and only 
if the real 2n-dimensional matrix S =(So, ) obeys 

sgs'=p ' (2.4) 

This is the defining representation of the group Sp( 2 n ,  W 1. 
We note that along with S, both S- '  and S T  belong to 
Sp(2n ,W). We shall b̂e dealing with an irreducible repre- 
sentation of the Q,, which, for instance, in the 
Schrodinger representation using eigenvectors of the Q 
appears as 

( 4  ; q r  I tL )=q , (q  , $ ) = q r t L ( q )  3 

( 4  18, I $ ) =  
(2.5) 

( q  ~ q ' ) = 6 ' " ' ( q - q ' )  . 

The linear transformation (2.3) is then unitarily imple- 
mentable, that is, there is a unitary operator U ( S )  for 
each S E S p ( 2 n , R )  such that 

12.6) 

An element of Sp(2n,R) close to the identity has the 

S--Bf€J, j € l  < < 1 .  (2.7) 

form 

The symplectic condition (2.4) then leads to 

( B J ) T = P J  . (2.8) 

Thus the infinitesimal generators of the defining represen- 
tation of Sp(2n ,R) are in one-to-one correspondence with 
real symmetric 2n x 2 n  matrices: One passes from the 
latter to the former by left multiplication by f i .  - For an S 
of the form (2.71, U ( S )  has the expression 

(2.9) 

The basic properties of the Hermitian generators X ( J )  of 
the unitary representation ?I(S 1 of Sp(2n , R )  are 

(2.10) 

As J goes over the Lie algebra sp(2n,W) of Sp(2n,R),  
X ( J  goes over all Hermitian quadratic expressions in 6, 
and P,. 

We see from Eq. (2.6) that the action of Sp(2n,!R) on 
the Q and jj is by conjugation. This equation is analogous 
to the solution of the Heisenberg equations of motion in 
quantum mechanics. In contrast, keeping in mind the 
Schrodinger picture evolution of a density operator, we 



define the action on such operators f by 

f,=ucs,fu-'(s, . (2.11) 

It is natural to try to express this operator action in a 
classical numerical form.* This is achieved by going to 
the Wigner-Moyal representative of f, which is a func- 
tion of 2n classical real v$ables q r , p , ,  r =  1,2, . . . , n. 
Similar to the definition of Q in Eq. (2.11, we define a nu- 
merical column vector - Q as- 

(2.12) 

The Wigner-Moyal representative WCQ of the operator 
f is defined as the partial Fourier transform of the 
coordinate-space kernel l Y q ; q ' )  of f:6 

W(Q)=(2a ) - "  I dnq' r ( q - - q ' ; q + t q ' ) e x p ( i p T q ' )  , 

T - Q = ( q 1 ,  * .  . , q n , p l , .  . . , P n )  . 

(2.13) 

Then we find5 

f '=U(S) fU- ' (S ) -  W ' ( Q ) = W ( s - ' Q )  . (2.14) 

In add$ion to the linear homogeneous transformations 
(2.3) of Q, we also need to deal with translations in Q by 
c-numbers. These are generated by the displacement 

J 

operators familiar from the theory of coherent  state^.^ 
For any numerical Q, with entries qor,pOr we define the 
unitary displacement operator 

(2.15) 

The properties with respect to 0 and 24s) relevant to 
this discussion 

D (  Q, ) =exp(i@ - -  '@Q0 )=exp(iplg - iglp . 

D - ~ ( Q , @ D ( Q , ) = Q + Q ,  , 

u - ~ ( s ) D ( Q , ) ~ ( ~ ) = D ~ ~ - ' Q , )  . 
(2.16) 

These relations correspond to a unitary representation of 
the semidirect product

g 
of Sp( 2n, R with the group of 

translations T2,, .  Conjugation of a general f by D ( Q o )  
alters r( q ; q ' )  and WCQ ) in the following ways: 

f ' = D ( Q ,  )fD -'(Q, )- r'(q;q') 

= T ( q  - qo ;q ' - qo  )exp[@ T((q --fl')]== W'CQ ) 

= W ( Q - Q o ) .  (2.17) 

We shall be interested later in certain Hermitian opera- 
tors f which have unit trace and whose kernels r(q;q') 
are Gaussian. The most general f of this type can be 
parametrized by three real n x n matrices L, M, and K, of 
which the first two are symmetric 

We have restricted the expression in the exponent to be 
homogeneous quadratic in q and q ' .  We further require 
both L and L+M to be positive definite, ensuring, re- 
spectively, that the trace is finite and that the integral 
occurring in Eq. (2.13) can be carried out. The normali- 
zation constants in the definition (2.18) have in fact been 
chosen to ensure unit trace. The Wigner-Moyal represen- 
tative of f , , , ,  is 

WL,M,K ( Q  ) =a-n[ detk /det(L_ +M )]'/2exp( - - -  Q TGQ ) , 

G= I" C T  B , 

- A =2L_+iK T(L_+M)- 'K  , (2.19) 

B =gL_ +MI- '  , 

- C=+& T ( L + M ) - '  . 

We see that it is completely characterized by a real sym- 
metric (positive-definite) 2n x 2n matrix p formed out of 
L, M ,  and K. 

With these preliminaries and notations established, we 
can define a general GPS. It is parametrized by a column 
vector Qo,  and two real symmetric n xn matrices _U,_Vof 

which Ge former is positive definite. We combine Y and 
- Y into a complex symmetric matrix Z=_V-iY, and 
denote the GPS by I $z,Qo ). Its wave function is 

This wave function is normalized to unity, and what ap- 
pears in the exponent is the most general at most quadra- 
tic complex expression in q. It is normalizability that re- 
quires that g be positive definite. 

From the point of view of classical beam optics, it is 
useful to note that Eq. (2.20) is a multidimensional gen- 
eralization of coherent Gaussian (laser) beams. We are 
speaking here of coherent beams as opposed to partially 
coherent beams in classical optics, and this should not be 
confused with the quantum-mechanical coherent states 
wherein would be the identity matrix and _V the null 
matrix. In the beam case with the beam assumed to be 
propagating in the x 3  direction, q = ( x I , x 2 )  is a two- 
dimensional vector in the transverse plane with +(q ) and 

1 $'(q 1 1 ' giving, respectively, the complex field amplitude 
distribution and the intensity distribution in that plane. 
If we consider Gaussian beams with general astigmatism, 
then _U and _V are real symmetrix 2 X 2 matrices wirh _V 
positive definite to ensure finiteness of the integrated in- 
tensity (normalizability) over the transverse plane. In the 
isotropic or rotationally invariant case (absence of astig- 



matism) _V is any positive constant times the unit matrix 
and _V an arbitrary real constant times the unit matrix. 
In either case the paraxial propagation equation of ciassi- 
cal wave optics gives the evolution of the beam from one 
transverse plane to another transverse plane. It turns out 
that the Gaussian form of $44) is preserved under this 
paraxial propagation, and hence the effect of propagation 
about the x 3  axis is simply to make the 2 x  2 matrices _V 

and _V evolve as functions of x 3 .  l o  

Our aim now is to show that these states (2.20) trans- 
form in a simple way amongst themselves under action by 
24s) for any SESp(2n,W). To this end we first calcu- 
late the kernel of the pure-state density operator 

determined by 1 $z,Qo ). After some simple algebraic 

manipulations, it is shown that this kernel is expressible 
in terms of rL,M,K(q;q') for special choices of parameters 
and arguments 

pZ,Qo= I $ Z , Q ,  ) ( $ Z , Q o  1 9 

PZ,Qo( 4 ;  4 ' ) = U / 2 , 0 ,  - V (  4 - qO;q'-qO (2.21) 

x e x P [ q  orC9-g')l . 

Comparing this with Eq. (2.17) it is clear that the Qo 
dependence separates completely from the 2 dependence 

(2.22) 

At the state-vector level this separation brings in an extra 
phase factor 

(2.23) 

qZ ( q  1 = ~ - " / ~ ( d e t _ U  )1/4exp[ - +Q '(_V +i_V)q - ] . 

This separation of Z and Qo is maintained under action 
by 24s) for any S E Sp(2n, R 1. In fact, on account of Eq. 
(2.16) we can see quite generally that if two operators f, 
and f are related by a displacement operator D ( Qo ), 

P = D ( Q ,  )f@ - ? Q , )  , (2.24) 

then their transforms by U ( S  ) are similarly related: 

fb=U(S)f,U-'(S) , 

f '="U(S ) fU- ' (S  ) = D ( Q b ) f p  -l(Qb ) , 

Qb=SQo 

(2.25) 

In terms of Wigner-Moyal representatives this means 
that if W ,  and W, corresponding to f,  and b, respective- 
ly, are related by an initial phase-space displacement Qo,  
then S E Sp( 2n, R maps them into Wb and W' which are 
related by a transformed displacement Qb: 

(2.26) 

The change of Q,  to Qb is completely independent of 
Wo( Q ) and its changes. In dealing with GPS's we can 
therefore restrict ourselves to 13,) and study their 
Sp(2n1 R 1 transformation properties. 

The key point now is to see that for any S E Sp( 2n, W 1, 
U ( S )  maps 1 qZ } into 1 q Z . )  for a suitable Z ' ,  and to 
display the transformation law taking Z to Z ' .  Of 
course, one must make sure that 2' is a member of the 
same family of matrices to which Z belongs. For these 
purposes it is most convenient to work with the Wigner- 
Moyal representative of Pz, which is, using Eqs. (2.19) 

I nn,, 0,xn 

_v n,,, 

(2.27) 

According to Eq. (2.14), if ? 4 S )  maps PZ to P ' ,  the 

Wigner-Moyal representative W'( Q ) of 8' is obtained 
from W,(Q) by a linear transformation on the argu- 
ments: 

(One may be tempted5 to avoid the excessive appearance 
of S- '  in the above expressions and hereafter, by altering 
the conventions so far adopted. However, we choose not 
to do so, in order to be consistent with established usage 
in optics especially in relation to the "abcd law" which 
we generalize in Sec. V.) Our task is to show that there 
are real symmetric n ~n matrices a' and _V', the former 
being positive definite, such that 

- G'=G(_U',_V') , (2.29) 

and to exhibit _U' and _V' in terms of 2, _V, and y. We 
take up these questions in Sec. 111. 

To conclude this section we return briefly to the com- 
plete GPS I $z ,Q,> .  By Eqs. (2.17), (2.221, and (2.27), the 

Wigner-Moyal representative of the density operator 

h,Q0 is 

=.rr-"exp[-(e-eo)%(_V,_V)(Q-_eo)] - . 

(2.30) 

Therefore using the Weyl rule for associating a :-number 
function of Q with each operator function of Q, we get 
the following values for the means and variances of the 
rs and ps in a general GPS: 



 

that is, 

= i i P a b  ++[G(U-' , -_V)]ab * 

Naturally, these means and variances determine pz, e, 
completely. 

We conclude this section with the following observa- 
tions. GPS's in the context of systems with one and two 
degrees of freedom have been studied in great detail in 
Ref. 4. But our analysis in the present paper is for a sys- 
tem with an arbitrary number of degrees of freedom, n. 
Thus, our results in this preparatory section when spe- 
cialized to n = 1,2 should be expected to give results con- 
sistent with the results of Ref. 4. In particular, compare 
our Eq. (2.20) and Eq. (2.311, respectively, with Eq. (3.2.1) 
and Eq. (3.3.19b) of Ref. 4. It should be added, however, 
that the principal results of this paper are the matrix gen- 
eralized "abcd law" [Eq. (3.27) below] and the quantum 
description through classical Hamiltonian dynamics on a 
special orbit in the Lie algebra sp( 2n, R 1 of Sp( 2n, R ) 
presented in Sec. IV, both of which are new and go well 
beyond the results in Ref. 4 even for n = 1,2. 

111. ACTION OF SYMPLECTIC 

TRANSFORMATIONS ON GPS's 

Each GPS density operator (with Q, =O which is here- 
after assumed) has been seen to be uniquely characterized 
by a real symmetric positive-definite 2n X 2 n  matrix 
E(_V,V) .  We examine the properties of the family of ma- 
trices arising in this way. On account of the symmetry, 
Eq. (2.8) shows that each such matrix is uniquely associ- 
ated with an sp(2n,R) matrix J ( _ U , _ V ) :  

(3.1) 

Thus we have a property at the Lie-algebra level. What 
is perhaps surprising and somewhat unusual is that the 
matrices G(Q,y )  are also elements of Sp(2n,R),  i.e., they 
belong to the defining representation of this group. This 
can be seen directly by checking that, since _V and _V are 
symmetric, Eq. (2.4) is satisfied by G(_U,_V). A more use- 
ful way of expressing this property is to write 

I( _v, _V 1 =BG - (Y, _V ) E sp( 2 n ,  R 1 . 

G(_U,_V)= [ S  -'c_U,_V,]*s -'(_U,_V)E Sp(2n , R )  , 

(3.2) 

[Here we recall that if S belongs to Sp(2n,W), so does 

s T.l 
From the identification (3.1) in terms of Lie-algebra 

elements, we see that as S ranges all over Sp(2n,R) the 
passage from G(Q,_V) to G' given in Eq. (2.28) corre- 
sponds to conjugation of J ( _ V , _ V )  and so to passing from 
J ( Q , _ V )  to all other elements J' on the orbit of J ( _ V , _ V )  
defined by the adjoint action 

- G'=(S-')*G(_U,_V)S - '  , 
(3.3) 

At the same time Eq. (3.2) shows that G(_U,_V) is the 
symmetric transform (or better symplectic transform), via 
S(_U,_V), of the unit matrix 

J'=pG'-J'=sJ(_v,_V)S - '  . - 

G (_U, _v ) = [ S - I (  _U, _v ) ] 'G '0's - '( Y, _V 

G ' O ' = S ( B n  X n  ,On X n  )=12n X2n * 

, 
(3.4) 

Equivalently, J ( Q , _ V )  arises from J'o'=J(P,xn,Onxn ) 

=p by adjoint action with S(_V,_V). Let 0 be the orbit of 
B i: s p ( 2 n , ~ ) ,  

O = { S P S - ' ~ S E S p ( 2 n , R ) J  - . (3.5) 

Then each J ( _ U , _ V )  belongs to 0, and so does J '  obtained 
from J(_U,_V) by Eq. (3.3). What must be shown, in order 
to clinch the issue, is that each point on 0 is uniquely 
characterized by a pair of real symmetric n X n  matrices 
(_U,_V) with _U positive definite; or in other words, that 
such (_V,_V) give a global coordinate system for 0. If this 
is so, then Eq. (2.29) and the corresponding J equation 
would follow 

13.6) 

Before doing this, however, we note two interesting 
consequences of the already established Eq. (3.4). The 
first is that we have here an explicit and simple instance 
of a fundamental theorem of Williamson'' which states 
that any real symmetric positive-definite 2n x 2n matrix 
- G can be brought to diagonal form, with positive diago- 
nal entries, by a symmetric transformation with a sym- 
plectic matrix S E Sp( 2n, R 1. The diagonal matrix con- 
cerned is called the normal form of G. In this sense, the 
normal form of each G(_U,_V) is the unit matrix. Inciden- 
tally this means that any two such matrices, G(_U,_V) and 
- G(Q',_V' 1 are related by a suitable symplectic transforma- 
tion. The second point is that any GPS I qZ ) can be uni- 
tarily related via U S  ) for a suitable S E Sp( 2n, R) to the 
standard GPS 1 ~ z c o l > ,  where _ U ' O i = l n x n  and _ V ' O '  

- -0, X n ,  up to a phase factor, 

(3.7) 

We now prove our main result concerning the possibili- 
t y  of using (_U,_V) as a global coordinate system for 0. 
We want to show that for any J E O ,  G = -@J is G(_V,_V) 
for a unique pair (_V,_V). Starting with the Williamson 
normal form G ( 0 ) = & 2 n X Z n ,  we consider the family of _G 

matrices 



a = ( @  - ' Y S  - I  J S E S p ( 2 n , R ) j  . (3.8) 

This set of matrices is just -p times the set of generator 
matrices 6: We have passed Eom the J to the G descrip- 
tion. Every G E 6 has the following three properties: 

(3.9a) 

(3.9b) 

- G is real symmetric , 

p is positive definite , 

G E S p ( 2 n , R ) .  (3.9c) 

Conversely one can easily check using Williamson's 
theorem that any _G having these properties belongs to  d. 
So we have 

(3.10) 

In this form we can easily show that any G E 6  is 
G(_U,_V) as given in Eq. (2.271, for a unique pair (_V,_V). 

Properties (3.9a) and (3.9b) imply that if _G is written as in 
Eq. (2.19) with n X n  real submatrices A, B,  and _C, then 
- A and @ are symmetric positive definite: 

8 = { G  I G obeys Eqs. (3.911 . 

(The positive definiteness of G implies more than this.) 
We now impose the symplectic condition (2.4) on G to get 
three independent matrix relations: 

- C T B = B C ,  (3.12a) 

(3.12b) 2 - AB=Bnxn+G' 3 

- A C T = u .  ( 3 . 1 2 ~ )  

Keeping in view the form of G(_U,_V) in Eq. (2.271, we 
write 

B=_U - I ,  _C=m - - I  , (3.13) 

thereby defining uniquely a real symmetric positive 
definite _U and a real _V. Then Eqs. (3.12) are, in the same 
sequence, 

We get from Eq. (3.14a) the symmetry of 1; then (3.14b) 
gives A explicitly in terms of the pair CQ,_V) while ( 3 . 1 4 ~ )  
is identically satisfied. Thus the G of Eq. (3.1 1) has been 
shown to be G(_U,_V) for the unique pair C_U,_V) identified 
by Eq. (3.13). At the same time, the positive definiteness 
of G(_U,_V) is obvious from its factored form-in Eq. (2.27). 

It is thus established that each G E O  (LEO) is 
- G(_V,_V) [ J ( _ V , _ V ) ]  for a unique Cy,_V) and vice versa; 
therefore Eqs. (3.6) do hold with (_U',_V') being deter- 
mined as functions of (_U,_V) and s. We conclude this 
section by developing an explicit solution for (_U',_V' 1. 

We use the factorization of G(_U,_V) in terms of 
SC_V,_V) given in Eq. (3.2) [similarly for G ( _ V ' , / ' ) ]  and 
exploit the symplectic property (2.4) of these matrices 
and of S,  to express Eq. (3.6) in this way: 

(3.15) 

This motivates the definition 

(3.16) 

where z=_V-i_V as before. Therefore Eq. (3.13, which 
must yield Z '  in terms of Z and S ,  is 

- [(_U',_V')g- - +(_U),_V) ) = ( S  - 1  Fg_V,_V)g t(_U,/)S - I  . 

(3.17) 

The strategy is to extract [(_U',_V') in terms of f (_U,_V)  
and S. For ease in the ensurng manipulations, let us write 
the 2n x n matrices 

x=cs -1)7f(y,_V) - , 

and 

- Y=[(_U',Z') - , (3.18) 

so Eq. (3.171 is 

= + = a t .  (3.19) 

Now 

- Y +_y=g - f(_U#,_Vf)g(_Uf,_v? - 

= ( _U' 1 - 1 '2[nn + ( z )+Z ]( _U' 1 - 1'2 (3.20) 

is evidently Hermitian, positive definite, and nonsingular. 
From Eq. (3.19) we get 

t t t  (3.21) 

proving that X $1 is nonsingular. We also get from Eq. 
(3.19) 

- YY t_y=xx t Y ,  (3.22) 

t 
(1 1 I 2 = ( X  1) (X 11, 

which allows us to "solve" for 1 in terms of X: 



(3.23) 

The important property of the n X n matrix _W is that it is 
unitary, as shown by Eq. (3.21): 

(3.24) 

If we write the symplectic matrix S and its inverse in 
block form as 

then Eq. (3.23) gives the n X n matrix equations 

z'(_u')-'/2=(&-c)_V - l/2w - , 

(_u')- ' '2=((z-f?Z)u - ' /*_W . 

(3.25) 

(3.26) 

The existence of an inverse to ((z-u) is assured since 
we know that _V, u', and _W are all nonsingular. There- 
fore, even though _W containing the "unknown" _U ap- 
pears on the right-hand sides of these two equations, we 
can combine them to give us the solution for z' in terms 
of z and S that we are looking for, 

Z'=(&-c)(g -Lg ) - I  . (3.27) 

This is the transformation law for Z under Sp(2n,R)  
promised earlier. _V' and _V' can be obtained by separat- 
ing z' into its imaginary and real parts, remembering 
that (z, b, and d are all real. Thus Eq. (3.27) expresses 
the (nonlinear) adjoint action of Sp( 2n, R) on the orbit 0 
(equally well d 1, telling us how an element S E Sp(2n, R) 
maps a point CY,_V) on 0 to (u',_V'). For future refer- 
ence, we rewrite Eq. (3.27) in terms of Ar -z -' (the 
positive definiteness of _U guarantees that z is nonsingu- 
lar): 

A ' = ( g A + b  ) (cA+d 1 - l  . (3.27') 

Going back to the GPS's (with Q,=O), we can com- 
plete Eqs. (2.28) to the statements 

(3.28) 

which establishes and shows exactly how each such state 
is taken into another such state by any element of 
Sp( 2n, R ). Reinstating the displacement Q ,  in the GPS's 
is a trivial matter because of the semidirect product 
structure noted earlier, and need not be spelled out in de- 
tail. 

IV. SCHRODINGER EQUATION FOR GPS'S 

AS AN EQUIVALENT CLASSICAL SYSTEM 

We have seen how a GPS j $z ) changes under action 
by 24s) into another GPS 1 $z,), with S being any ele- 
ment of Sp( 2n, R 1. We now specialize to the solution of 
the Schrodinger equation for a given quadratic Hamil- 
tonian. 

Let the Hamiltonian operator fi be determined by a 
real symmetric 2n X2n matrix h, and let us use Eq. (2.9) 
to write it as one of the generators of U ( S  1, 

(4.1) 

The unitary time-evolution operator for a finite time t is 

-,&- - l tX(JgJ 
-e  = U ( S ( t  ) )  , 

(4.2) 
rJ 

S ( t ) = e  ' ~ S p ( 2 n , i R ) .  

c ( y ( e ' J ) = e  - 1 d f J i  

Here we used the general connection 

(4.3) 

implied by Eqs. (2.7) and (2.9). Therefore if at time t =O 

we have a GPS 1 $z(oJ)  which evolves to I $ Z c t , )  at time 

t ,  

=U(S( t  ) )  j $ Z ( O , )  , (4.4) 

then the matrix G(O) for the initial Wigner-Moyal distri- 
bution evolves to G ( t  ) by 

G ( t  ) = [ s  - Y r  )] 'GCOS - ' ( t )  . (4.5) 

This is obviously the solution to the linear differential 
equation 

=@do@ - 'G ( t  ) -G( t  )Lo (4.6) 

with prescribed initial conditions. In fact, of course, 
- G ( t )  isdetermined byZ(t)=_V(r)-i i_U(t)  as 

- G ( t  )=G(_U(t ),_V(t ) )  (4.7) 

in the notation of Eq. (2.27); and the primitive evolution 
equations, of which (4.6) must be viewed as a conse- 
quence, are nonlinear ordinary differential equations for 
- U ( r ) ,  _V(t).  The essential point is that the quantum- 

mechanical Schrodinger equation for the GPS I ~ z , , i  ) 
reduces to these evolution equations for Z ( t  or G ( t  1. It 
now turns out that these latter equations can be put into 
a classical canonical form in an intrinsic and natural way, 
on account of the geometrical properties of the orbit 
OCsp(2n ,R) .  We show this by first exposing the nature 
of 0 as a coset space, and then appealing to general 
theorems which allow the setting up of a classical phase- 
space structure on 0. 

From the definition of 0 in Eq. (3.3,  it is clear that the 
action of Sp(2n,W) on 0 is transitive. This means that 0 
is essentially the coset space Sp(2n ,R)/H, where H is the 
subgroup of Sp( 2n, R )  which leaves the representative 

point J' ' '=f? on 0 fixed. Since the dimensions of 
Sp(2n,R)  and 0 are n ( 2 n + 1 )  and n ( n + l ) ,  respectively 
[the latter follows from the fact that (_V,_V) is a coordi- 
nate system for 01, H must be an n2-dimensional sub- 
group. The elements S in H must obey the two condi- 
tions 



srps=p, 

s- ’ps=p ,  
(4.8) 

which means S T=S - ’  or S E S O ( 2 n  ). Therefore H is 
the intersection 

H = S p ( 2 n , R ) f l S O ( 2 n )  . (4.9) 

By examining the infinitesimal generators of H ,  we shall 
show that H = U ( n  ). For J E Y f ,  the Lie algebra of H, 
the two conditions (4.8) lead to 

(4.10) 

Every J € %  is thus a real 2n ~ 2 n  matrix whose block 
form is 

(4.11) 

Here A and p are real n xn matrices. The infinitesimal 
transformation (2.7) acting on a column vector Q pro- 
duces the changes 

(4.12) 
p ’ s p  + d h p  +yq 1 . 

These real equations are identical to the single complex 
matrix transformation equation 

- q ’ + @ ‘ d B n x n  + E ( h + i @ I ( g + @ )  . (4.13) 

Since &+iy is the most general anti-Hermitian n ~n ma- 
trix, we have here a general infinitesimal transformation 
of the unitary group U( n 1. This establishes that 

H = S p ( 2 n , R ) n S O ( 2 n  ) = U ( n )  , 
(4.14) 

O=Sp(2n,R)/U(n 1 . 

We now want to give the evolution equations (4.6) a 
classical canonical meaning. These equations describe a 
particular one-parameter group of motions along the or- 
bit 0. According to a general theorem due to Kostant, 
Kirillov, and Souriau,’’ for any Lie group G the coset 
spaces G / H  which permit the definition of a G-invariant 
symplectic structure are either orbits in the coadjoint 
representation of G acting on 9* (the dual to the Lie alge- 
bra 9 of GI,  or covering spaces of such orbits. For a 
semisimple G, such as Sp(2n , R ) ,  we can deal with orbits 
in 9 rather than in 9*; and every orbit in 9 does carry a 
G-invariant symplectic structure. This is in particular 
true for G=Sp(2n,W) and the orbit OCsp(2n ,R) .  In 
principle the symplectic structure can be defined directly 
and intrinsically on 0. However, both for calculational 
ease and physical understanding it is better to define a 
singular system of generalized Poisson brackets on the 
full Lie algebra sp(2n,R),  and then restrict them to the 
orbit 0. The Sp(2n ,R) invariance (better, covariance) of 
the procedure will be obvious throughout. 

We need to set up the commutation relations for 

sp( 2n, W ) in a convenient way. In the defining represen- 
tation, a basis xab for sp(2n,!R) is obtained by taking a 
basis Yab for real symmetric 2n X2n matrices, and multi- 
plying them on the left by 0. [This is the convention used 
in Eqs. (3 ,  l ) ,  (3.3), and (4. fl.] We make the choice 

(4.15) 

so that a general real symmetric 2n x 2n matrix G =(Gab ) 
has the expansion 

G =+Gab Yab . (4.16) 

A basis for sp( 2n, R is then 

(4.17) 
(xab )cd =Pca6bd +Pcb60d . 

The commutation relations among the xab are calculated 
to be 

[Xab,Xcd l=PacXbd  +PbcXad +BudXcb +PbdXca * (4*18) 

These are the basic Lie bracket relations for sp(2n,R).  
The generator matrix J =pG has the expansion 

J = $ G  ab X ah (4.19) 

to accompany (4.16), so the symmetric coefficients Gab 
are to be treated as the independent components of 
J € sp( 2n, R 1. That is, the n ( 2n + 1 ) independent real 
variables Gab = Gb, are (linear) coordinates for sp( 2n, R 1. 
Among them we define a system of singular generalized 
Poisson brackets patterned after Eq. (4.18), 

I Gab, Gcd 1 =Bat Gbd + p b c  Gad +Pad  Gcb +Phd Gca ‘ (4.20) 

These are manifestly covariant under the action of 
Sp( 2n, R on Gab, which is given by 

- 

Gab -+ Gdb = (8  ~ ’ Ica (8 - ’ )db Gc, . (4.21) 

The Poisson bracket between any two functions f ( G  1, 
g (  G ) is calculated from the basic brackets (4.20) by using 
the derivation property. 

At this stage, one can easily see that the (linear) evolu- 
tion equations (4.6) can be put into the classical canonical 
form, in the sense of the Poisson bracket (4.20), with the 
use of a Hamiltonian function linear in the G’s, 

(4.22) 

However, as already remarked, the primitive evolution 
equations, corresponding to the quantum-mechanical 
equation of motion for a GPS, are not really Eq. (4.6) but 
the nonlinear evolution equations for U ( t  ) and V ( t  ) im- 
plied by Eq. (4.6). This aspect is closely related to the 
question of restricting the Poisson bracket (4.20) to (the 
orbit) 0, a procedure which can be consistently carried 
out because (4.20) is Sp(2n ,R)  covariant. Namely, if 
C3 G ) is any (polynomial) Casimir invariant of sp( 2n,  It3 1, 
the singularity of the brackets (4.20) shows up in the fact 
that 



[ G , , , ( ? ( G ) ] = O  (4.23) 

identically. Therefore we are permitted to assign each 
@ ( G )  some numerical value, without in any way 
conflicting with the Poisson-bracket definition (4.20). 
The independent e( G 1 are the traces of even powers of 
EG, and the restriction of G to d is achieved by specify- 
ing 

T r [ (PG)2 ' ]= ( -1 ) ' ~2n ,  - 1=1,2,.  . . , n  . (4.24) 

Once we know that G E 6 ,  we can use the variables 
( _V ,_V i  as independent coordinates on d; the brackets 
(4.20) then imply definite values for the brackets among 
the elements of LL and _V. In this way we find that (4.20) 
leads to the canonical Poisson brackets2 

Thus the r s  and _V -"s can be thought of as q ' s  and p's 
intrinsically and globally defined on 6 (or 0).  And the 
primitive equations of motion for U ( t  and V ( t  1, describ- 
ing the unitary time development of GPS's under the 
Hamiltonian operator & of Eq. (4.1 ), are 

-- dy - I L L ,  -ypbp),&"_V)I,, 1 t 

d t  

(4.26) 

The nonlinear nature of these equations is evident when 
one sees how G(_U,_V) is built up from (_V,_V) in Eq. 
(2.27). However, the solution is already known to us [a 
particular case of Eq. (3.27)], and is a canonical transfor- 
mation on 6. We conclude this section by noting that 
the particular Hamiltonian studied by Birula' corre- 
sponds to 

h =  1 Q n x n ]  , 
- (4.27) 

Q n x n  P n x n  

and in that case Eq. (4.26) above gives his Eq. (2.19). 

V. APPLICATION TO GAUSSIAN SCHELL-MODEL 

FIELDS IN OPTICS 

The results on the action of Sp( 2n, R ) on GPS's find an 
interesting application, in the case n = 2, to a special class 
of partially coherent optical fields contained among the 
so-called anisotropic Gaussian Schell-model (AGSM) 
fields. l 3  Both isotropic Gaussian Schell-model fields'43 l 5  

and AGSM fieldsi6 have played a key role in recent stud- 
ies in radiometry of partially coherent sources. Like oth- 
er paraxial optical fields, the two-point correlation func- 
tion" of such a field can be specified on a two- 
dimensional plane transverse to the beam axis, and it 
then evolves along the axis. A general AGSM field has a 
two-point function (cross-spectral density) rL,M,K ( q ; q '  ) 

of the form given in Eq. (2.18), except for an overall real 
multiplicative constant. (A dependence on the frequency 

w has for brevity been omitted.) It is characterized by the 
three real 2 X 2 matrices L, M ,  and &. Apart from the re- 
quirements that L and L_+M be positive definite, there 
are two additional conditions (involving L.,M, and the an- 
tisymmetric part of K ) 5  which must be satisfied if f 'L ,M,K  

is to be a positive-semidefinite operator, which is neces- 
sary for rL,M,K(q;q') to be an acceptable optical two- 
point function. 

First-order optical systems (FOS's),'' of which free 
paraxial propagation is an example, act in an especially 
simple way on paraxial fields. Each such system can be 
represented as an element S of Sp(4,R). Elsewhere we 
have shown that every S ESp(4,R), including inverse free 
propagation, can be synthesized using thin lenses." Its 
action on the so-called Wolf function2' W (  Q ) [related to 
the optical two-point function r(q;q') by Eq. (2.1311 is 
given by Eq. (2.14). It follows that if we have an AGSM 
field rL,M,K(q;q'), its Wolf function is Gaussian and is 
characterized by a 4 x 4  matrix 4. built up from L , M , K  
as in Eq. (2.19); and when this field passes through an 
FOS corresponding to S E Sp( 4, R ), we get an altered 
AGSM field whose matrix G' is 

- G'=(S -l)Ta . (5.1) 

Let us now consider all those AGSM fields whose L_,  

M, and & are such that the Williamson normal form of G 
is a multiple of the 4 x 4  unit matrix 

- G ( " = K L ~ ~ ,  O < K < ~ .  (5.2) 

The limits on K arise from the extra conditions mentioned 
above that ensure that pL,M,K is positive semidefinite. 
Then G must be of the form 

- G =K(S -')'s - I ,  SESp(4 ,R)  . (5.3) 

It follows that each such 4: is K times some element of the 
set of matrices d defined in Eqs. (3.8) and (3.10) (for 
n =2), so there must be a unique pair ( _ V , _ V i  such that 

- G=KG(_U,_V) .  (5.4) 

This collection of matrices can be denoted 6,: The previ- 
ous 6 is 6, and corresponds, in the present optical con- 
text, to coherent anisotropic Gaussian beams.21 Then, 
for each K ,  (y,_V) forms a global coordinate system for 
6,; and 6, is a realization of the coset space 

Sp(4,R)/U(2). We can invert Eqs. (2.19) to get L,, M ,  
and & for an AGSM field whose G matrix is KG (a, _V 1, 

L 

& = - - _ V .  

As a subset of the set of all AGSM fields, what we have 
here is what was called Type I in Ref. 13. An Sp(4,W)- 
invariant characterization of the G matrices of such fields 
is 

( 5 . 6 )  



We see from Eqs. (3.6) and (5.4) that under action by the 
FOS S ESp(4,R), the G matrix changes thus: 

- G=KG(Y,_V)-+G’=(S -‘=KG(_U‘,_V’) . (5.7) 

The rule for calculating (_U‘,_V’) from (_V,_V) and S is the 
same as with GPS’s, i.e., the “abcd law” remains valid, 

K ’ = K ,  

z’ =_v’ - i_V‘ = (a -c )(a -& 

L?’=(ah+b ) (ch+d  1- , 

, (5.8) 

1 

where a, b, G and are 2 x 2  blocks making up S.  We 
also see from Eq. (5.8) that the matrix &, determining the 
phase of the two-point function, is symmetric for Type I 
AGSM fields, and this symmetry is preserved upon action 
by any FOS. It should however be noted that K _  is not re- 
quired to be symmetric for a general AGSM 

While this application of the geometrical results of 
Secs. I11 and IV to optics involves n =2, we can easily see 

that G matrices of the form KS(_V,_V~ for general n are 
what occur in the Wigner-Moyal descriptions of the 
thermal states of an n-dimensional isotropic oscillator, 
and all Sp( 2n, R ) transforms of such states. 

VI. CONCLUDING REMARKS 

We have presented a complete analysis of the action of 
symplectic transformations on Gaussian pure states in 
quantum mechanics. By connecting up this problem to 
properties of and motions on a special orbit in the Lie 
algebra of Sp(2n,R), it has been possible to present this 
action in an elegant geometrical form and also in a classi- 
cal phase-space framework. It is worth remarking that 
the mapping (_V,_V)-+(_U’,_V’), induced by SESp(2n ,R)  
and given by Eq. (3.271, is, for any S ,  a canonical trans- 
formation with respect to the Poisson brackets (4.20) 
which, on 6, have the usual canonical form (4.25). In 
this context we may point out the special significance of 
this “abcd law” which has been established here in ma- 
trix form. The original “abcd law” due to Kogelnik” re- 
ferred to the action of axially symmetric first-order opti- 
cal systems, which correspond to elements of SL( 2, R 1, on 
axially symmetric coherent Gaussian beams Len,  to the 
n = 1, K =  1 case). 

For a coherent Gaussian beam of wave number k prop- 
agating along the z direction, the field distribution in any 
transverse plane is of the form 

3 ( x  ,y ;q ) = ( 2/77 )”’a-’exp[ ik ( x  * f y  * )/2q ] , 

q - ‘ = R  - ‘+2 i /ka  . 
(6.1) 

Clearly R is the radius of curvature (of the phase front) 
and a is the spot size (beam width) in that plane. The pa- 
rameter q is known as the complex radius of curva- 
ture.’0’22 Kogelnik’s original “abcd law” showed that un- 
der the action of a FOS 

(6.2) 

the Gaussian nature itself is preserved and only the com- 

plex radius of curvature changes in the following simple 
way: 

(6.3) 

We have elsewhere generalized this to cover the action 
of such optical systems on partially coherent Gaussian 
Schell-model fields of both isotropicI5 and anisotropic13 
types. The results (3.27) and (3.27‘) can be viewed as a 
grand generalization of the “abcd law” (6.3) to n dimen- 
sions and in matrix form. [In fact, we have a further gen- 
eralization to mixed states (for any n in Eq. (5.81, since 
6, corresponds to pure states if and only if K =  1. ] A 

particular case of this, corresponding to solving the 
Schrodinger equation for GPS’s with a specific Hamil- 
tonian operator, has been presented earlier by Birula.* 
For his Hamiltonian, 

g ( t )  b ( t )  
S ( t ) =  c ( t )  d ( t )  I- 1 

1 5  
= jQsin( Rt ) cos(Qt (6.4) 

and by noting that Q is symmetric and that his i& is the 
negative of our z=_V-i_V, it is readily seen that our 
“abcd law” (3.27) indeed gives his Eq. (2.27). 

For n =2, the matrix “abcd law” applies to the action 
of a general anisotropic FOS on an AGSM field. It is 
quite remarkable that the “abcd law” holds for any 
S E Sp(2n, R) .  

From the mathematical point of view, the law (3.27) is 
quite significant. It is well known that the group SL( 2, R 
acts as a group of point transformations-the Mobius 
transformations-on a complex half-plane, for instance 
the lower half-plane. This action is closely connected 
with the existence of the discrete series of unitary irre- 
ducible representations of SL( 2, R ). 23 In contrast, the 
group SL(2,Q:) neither possesses such an action nor such 
unitary representations. Since SL(2,R) =Sp(2,R) 
=SU(1,1), it is a priori not clear in which direction a 
generalization might exist. Our result gives a matrix gen- 
eralization of the Mobius transformations for the sym- 
plectic group Sp(2n,R). The lower half of the complex 
plane for one complex variable is replaced here by the 
family of complex symmetric matrices z =_V- i_V with _V 
being positive definite. And the easiest way to see that z’ 
obtained from z by Eq. (3.27) is of the same nature seems 
to be via our analysis of the special orbit 0 in sp(2n,R) 
given in Sec. IV. Further implications of the existence of 
such an action will be studied elsewhere. 

Finally we note that G - ‘ (u ,y )eG(g  -’ ,--y) is the 
matrix of second moments (fluctuations) in the canonical 
variables, as can be seen from Eq. (2.31), and from Eq. 
(2.28) it follows that the evolution of these fluctuations 
under the action of any quadratic Hamiltonian is 
governed by 

c o s ( ~ t )  -Q - ‘ s i n ( ~ t )  

- G -‘(g(l  ) ,_V( t  ))=s ‘ ( t  )G -‘(u(O),y(O))$(t) . (6.5) 

i n  fact, this evolution equation is valid for the second 



 

moments in any state, provided that 4. -‘(&!,y) is re- 

placed by the matrix of second moments in that state. 

Since it is the dynamics of these fluctuations which is of 
concern in the study of squeezed states, it follows that 

our results are of relevance to squeezing in multimode 

systems.24 

As noted earlier, GPS’s for n = 1,2 and in particular 

squeezed coherent states for single-mode and two-mode 

systems have been studied from a different point of view 

in Ref. 4. We further note that the squeeze operators are 

a subset of the elements we have studied. Since our 

“abcd law” in Eq. (3.27) and the equivalent formulation 

in Sec. IV of the quantum evolution of GPS’s as classical 

Hamiltonian evolution on the special orbit in the Lie 

algebra of Sp(2n ,W) as phase space are valid for arbitrary 

n, it will be desirable to have a detailed analysis of 

squeezing and the evolution of squeezed states in n-mode 

systems from the point of view of these formalisms; we 
shall return to it elsewhere. 
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