
Gaussian Quadratures for the Integrals

/    exp( — x2)f0x)dx and  /   exp( — x2)fix)dx
Jo Jo

By N. M. Steen, G. D. Byrne and E. M. Gelbard

Abstract. Gaussian quadratures are developed for the evaluation of the integrals given

in the title. The weights and abscissae for the semi-infinite integral are given for two

through fifteen points with fifteen places. For 6 = 1, the weights and abscissae are

given for two through ten points with fifteen places.

1. Introduction. In nuclear reactor design calculations, the evaluation of the

effective radiative neutron capture cross-sections from a statistical model of the

neutron-target interaction leads to integrals of the form

(1.1) /   exp ( — x2) fOx)dx ,       b < oo
•'o

and

(1.2) /    exp i-x2)fix)dx .
J o

In such problems, / is undefined for x < 0 and difficult to evaluate otherwise. For

this reason, Gaussian quadratures for the evaluation of (1.1) and (1.2) are developed

and their weights and abscissae are given in Tables II and III. It should be noted

that the classical variants of Gauss quadrature are not applicable to (1.1). The

integral of (1.2) can be transformed so that the Laguerre-Gauss quadrature is

applicable. Unfortunately, for the function considered here, the required transforma-

tion of variable, u = x2, leads to an integrand that is singular at the origin. Note

that (1.2) could, in principle, be evaluated using the Hermite-Gauss quadrature by

considering a function, g, which is an even extension of / about the origin. Often,

however, g is of low-order differentiability at the origin. When this is true, the re-

sulting approximations to (1.2) obtained by successive Hermite-Gauss quadratures

tend to oscillate, with increasing N, about the true solution. This is demonstrated

by the data in Table I. These data are Hermite-Gauss quadrature approximations

to the integral of (1.2) for/(.c) = xk, k = 1, 3 using gix) = \x[k. The exact value of

the integral for both cases is \. The examples shown are for fc odd. When k is even,

\x\k = xk and the Hermite-Gauss quadratures are exact so long as k ^ 2A7 — 1.

It should be pointed out that if / is an even function the Hermite-Gauss quadra-

tures may converge to (1.2) more rapidly than the quadratures presented in this

paper. The reason is that the abscissae of the Hermite-Gauss quadratures are

symmetrically distributed about the origin. Thus the evaluation of (1.2) with an

M-point Hermite-Gauss quadrature, where M is even, only requires the use of the

N = \M points on the positive axis. The truncation error term however is still
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of the form CMPM)iB) or CW/(4-v>(9), 9 G [0, »). The error term for an iV-point

quadrature of the type developed here is DNf{2X)i0) which involves only the 2A/th

derivative while that of the Hermite-Gauss quadrature, also using only iV-points

contains the ANth derivative of / as well as the coefficient, Cm, for the higher-order

quadrature.

Table I

N Hermite-Gauss Relative
Approximation Error, %

k = 1

2 0.6267 -25.3
3 0.3618 27.6
4 0.5565 -11.3
5 0.4176 16.5
6 0.5365 - 7.3
7 0.4412 11.8
8 0.5269 - 5.4
9 0.4543 9.1

10 0.5213 - 4.3

k = 3

2 0.3133 37.3
3 0.5427 - 8.5
4 0.4820 3.6
5 0.5112 - 2.2
6 0.4933 1.3
7 0.5051 -  1.0
8 0.4965 0.7
9 0.5030 - 0.6

10 0.4979 0.4

2. Computation of Weights and Abscissae. Since the theory of Gaussian

quadrature is well known only the special results for the cases of interest here will

be presented. The abscissae, x¡, j = 1, • ■ -, N are the zeros of the Nth degree

polynomial, p,v(x), orthogonal on the interval of integration with respect to the

weight function, w(x) = exp ( — x2). Because of the similarity of form we will discuss

in detail only the case for the finite upper limit, b. The semi-infinite case follows

directly by taking the appropriate limits as b —> * .

The weights of the quadratures are computed from the well-known expression

(2.1 ) Wj = Y.v-i/W Ox,)Vn-i Ox,) ],       j = 1, • • •, N

which follows from the Christoffel-Darboux identity. The term y.v is given by

(2.2) yN =  /   exp i-x2)pAix)dx .
J o

The orthogonality properties only define the polynomials within an arbitrary

multiplicative constant. For convenience the constant has been selected to make the

polynomials monic. Thus the first two polynomials are
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(2.3) poix) = 1 ,

(2.4) piOx) = x - [1 - exp i-b2)]/[Vir erf (6)] .

The higher-order polynomials were generated from the three term recurrence rela-

tion between successive orthogonal polynomials which is of the form

(2.5) Pk+iix) = ix + ak)pk0x) + ßkpk-iix) ,       k= 1, ■■■

in which the parameters, ak, ßk, are defined as

(2.6) ak = — yk~l /   exp (—x2)xpk0x)dx ,
J o

(2.7) ßk = -yk/yk-i.

The polynomials could be generated directly from (2.2)-(2.7), by evaluating the

integrals in (2.2) and (2.6) in a straightforward manner. However, the following

method of evaluating ak and yk was developed which requires relatively few arith-

metic operations. This method is derived below.

Observe that

(2.8) pAO) = ak-ipk-iiO) + ßk-ipk-2i0) ,

(2.9) pk0b) = ib + ak-i)pk-iib) + ßk-ipk-2ib) ,       b < =0 .

The orthogonality conditions permit yk, of (2.2), to be expressed as

(2.10) yk =  I   exp ( — x2)pAx)pk-iOx)xdx
J o

by multiplying (2.5) by exp (—x2)pk-iix) and integrating. This result may then be

integrated by parts to obtain

Jk = - -w [exp i-x*)pkix)pk-iix)]\\

(2.11)

J_/\.
2 J.

+ — I   exp ( — x2)pk ix)pk-iix)dx

The integral of (2.11) may be evaluated, using the Christoffel-Darboux identity,

as follows. Let

-. = /'. -(2.12) Zk-i= \   expi-x*)pk'Ox)pk-iOx)dx.
0

From the orthogonality of p it follows that Zk-i may also be expressed as

(2.13) Z*_! =  /   exp i-x2)[pk'ix)pk-iix) - pAx)pAi(x)]dx .

An easily derived consequence of the Christoffel-Darboux identity is the relation

(2.14) pk'ix)Pk-iix) - pAx)pAiix) = yk-, £ P20x)/yr.
r=0

Multiplication of (2.14) by exp ( — x2) and integration provides the result

(2.15) Zk-i = kyk-i .
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Thus (2.11), together with (2.15), leads to the recurrence relation

(2.16) yk = f-tvi-i — Mexp ( — x2)pkix)pk-iix)]\.

A recurrence relation may be obtained for ak upon integration of (2.6) by parts. The

result is

(2.17) ak = |7-t_1[exp i—x*)pk*ix)]l.

The recurrence relation for ßk follows directly from (2.7) using (2.16). With the aid

of the above equations, (2.5) provides a completely recursive means of generating

the higher-order polynomials.

Since the weight function, u>ix) = exp ( — x2), is nonzero on the interval of

integration the zeros of the polynomials are known to be real, distinct and to lie in

the interior of the interval. Consequently the zeros were computed numerically

using Newton-Raphson iteration, starting with the smallest zero. As each zero was

approximated the order of the polynomial was reduced and the smallest zero of the

reduced polynomial was approximated. The zeros obtained in this manner were then

tested in the original polynomial and corrected as necessary.

The error coefficients, DN, listed in the following tables are the coefficients of the

2Nth derivative of the function, /, appearing in the standard expression for the

truncation error, En, defined as

(2.18) EN = DNfm\0) ,       9 G [0, b],

where Dn is

(2.19) DN = yN/i2N)\ .

Quadratures corresponding to values of b from 0.05 through 0.95 in steps of 0.05

have also been generated and tabulated [1] but it would be impractical to attempt

to list them here.

In a paper of this sort, it is customary to assess the validity of the weights and

abscissae given in Tables II and III by using them in the quadrature analogues of

the integrals:

J n

(2.20)

lo =  /   exp i—x )dx = \A* erf Ob)
J o

Ii =  I   xexv i—x2)dx — \[1 — exp ( — b2)]

T I k , 2s   7 (fc   —    1)    T 1     7 A—1 /        ,2s
h =  /   x exp ( — x )dx =-/¡t_2-jr b     exp ( — 6 )

J o Z Z

for k = 1,2, • • •, 2N — 1 and comparing these approximate results with the exact

results. The data given in Tables II and III were checked by this process and were

found to be accurate to six units in the fifteenth place.

This check verifies the accuracy of the data in these tables for the purpose of

integration, which is the primary objective in this paper.
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TABLE - II
WEIGHTS AND ABSCISSAE OF GAUSSIAN QUADRATURES FOR THE

INTERVAL (O.INF.) WITH WEIGHT FUNCTION
2

W<X) = EXP(-X )

WEIGHTS ABSCISSAE
N =  2

6.40 529179684379D-01        3.00193931060839D-01
2.45697745768379D-01        1.25 242104533372D+00

ERROR COEF. = 22900-02

N =  3
4.46029770466658D-01        1.90554149798192D-01
3.96468266998335D-01        8.48 25186 7544577D-01
4.37288879877644D-02        1.79977657841573D+00

ERROR COEF. = 38545-04

N
3.25302999756919D-01
4.211Û7101852062D-Û1
1.33442500357520D-01
6.37432 348625728D-03

ERROR COEF.

1.3 3776446996068D-01
6.24324690187190D-01
1.34253782564499D+00
2.26266447701036D+00

46135-06

N =
2.48406152028443D-Û1
3.92 3 31066652 399D-01
2.11418193076057D-01
3.32466603513439D-02
8.24853344515628D-04

1.00242151968216D-01
4.82813966046201D-01
1.06094982152572D+00
1.77972941852026D+0Ü
2.66976035608766D+00

ERROR   COEF.   =   42863-0Í

1.96849675488598D-01
3.491542Ü1525395D-01
2.57259520584421D-01
7.60131375840057D-02
6.85191862513596D-03
9.84716452019267D-0 5

ERROR COEF. =

N =
7.86006594130979D-02
3.86739410270631D-01
8.66429471682044D-01
1.46 569804966352 D4-00
2.172 70779693900D4-00
3.03 682016932 2 87D+00

32548-10

N   =
1.60609965149261D-01
3.0631980 8158099D-01
2.75 527141784905D-01
1.20630193130784D-01
2.18922863438Û67D-02
1.23644672831056D-03
1.10 8415759 H059D-05

6.37164846067008D-02
3.18192018888619D-01
7.2419898 925 83 73D-01
1.2 38035 5 9921509D+00
1.83852822027095D+0Û
2.5 3148815132768D4-00
3.3 7345 6430124 58D+00

ERROR COEF. = 20900-12
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Table II (Continued)

N   = 8
1.341Û918845 3 360D-01
2.68330754472640D-01
2.75953397988422D-01
1.57448282618790D-01
4.48141099174625D-02
5.36793575602526D-03
2.02063649132407D-04
1.19259692659532D-06

ERROR CCEF.

1.1408
2.3594
2.6642
1.8325
7.1344
1.3981
1.1638
3.0567
1.2379

897024211
079122368
547363025
167910166
049306691
418415560
527207851
021489783
051133749

ERROR

8D-01
5D-01
3D-01
3D-01
6D-02
4D-02
90-03
1D-05
6D-07

COEF.

9..85520975191087D-02
2.08678066608185D-01
2.52051688403761D-01
1.98684340038387D-01
9.719842276Û0620D-02
2.70 244164355446D-02
3.80464962249537D-03
2.288 86243044656D-04
4.34534479844469D-06
1.247737148178250-0 8

ERROR COEF.

8.6220705535
1.8576731895
2*3582612412
2.0585032684
1.1958117061
4.3144327588
8.8676498947
9.2714187508
4.1571932166
5.8685764683
1.2271451399

ERR

5942D-02
5695D-01
9815D-01
1520D-01
5297D-01
0520D-02
4414D-03
2127D-04
7468D-05
7617D-07
4286D-09
OR COEF,

5.29786439318514D-02
2.6 739837216 7767D-01
6.16 30 2884182402D-01
1.06424631211623D+00
1.5 8885 58 6227006'D+üO
2.18 392115309586D+00
2.86 31338 8370 808D+00
3.68 600716272440D+00

= 11626-14

N =  9
4.49390308011934D-02
2.28605305560535D-01
5.3 2195844331646D-01
9.27280745338081D-01
1.39292385519588D+00
1.91884309919743D+00
2.50624783400574D+00
3.17269213348124D+00
3.97889886978978D+00

= 57051-17

N » 10
3.87385243257289D-02
1.98233304013O83D-01
4.65201111814767D-01
8.16861885592273D-01
1.23454132402818D+00
1.70679814968913D+00
2.22994008892494D+00
2.80910374689875D+00
3.46387241949586D+00
4.25536180636608D+00

= 25043-19

N » 11
3.38393212320868D-02
1.73955727711686D-01
4.10873840975301D-01
7.26271784264131D-01
1.10386324647012D+00
1.53229503458121D+00
2. 00578290247431D+00
2.52435214152551D+00
3.095 3517098 75 51D+00
3.73947860994972D+00
4.517835 9671932 7D+00
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Table

7.62461468014692D-02
1.66446068894088D-01
2.19394898138567D-01
2.07016508675540D-01
1.37264362783550D-01
6.05056743380072D-02
1.65538019519272D-02
2.58608378742107D-03
2.062 37540974292D-04
7.06650986370700D-06
7.59131546779026D-08

1.18195417081408D-10
ERROR COEF.

6.80463905352764D-02
1.50057211876373D-01
2.03606639827325D-01
2.04104355193263D-01
1.50119228114358D-01
7.74536314139415D-02
2.64891666492538D-02
.5. 62343028882 350D-03
6.83241175771430D-04
4.24853316505515D-Ö5
1.13557100512952D-06
9.46453637801777D-09
1.11810460611588D-11

ERROR COEF.

II (Continued)

N  =   12
2.98897007730461D-02
1.54204878281815D-01
3.66143963007318D-01
6.50881015894534D-01
9.94366869943082D-01
1.38589120372088D+00
1.81884860850511D+00
2.29084273875259D+0O
2.80409679347421D+00
3.36727070424289D+00
4.00168347575167D+00
4.76821628806517D+00

= 36052-24

N 13
2.66511266597122D-02
1.37891855649089D-01
3.28828675536304D-01
5.87378532052256D-01
9.01480885282686D-01
1.26129650345530D+00
1.66003713286282D+00
2.09410900519525D+00
2.56320702628643D+00
3.07091234206554D+00
3.62669201282754D+00
4.25220 740148118D+00
5.00800834420412D+00

= 12023-26

6.121
1.360
1.888
1.985
1.586
9.281
3.793
1.025
1.722
1.659
8.195
1.738
1.142
1.041

0982271
6206062
5680352
7782912
1733787
6782894
1639012
6391069
7718070
5634053
8932253
7660849
9397831
2001001

ERR

6413D-02
0609D-01
7084D-01
3488D-01
2050D-01
8399D-02
5047D-02
1812D-02
1059D-03
4487D-04
1928D-06
5078D-07
0768D-Ü9
7399D-12
OR COEF.

N = 14
2.395678
1.242403
2.973385
5.333292
8.218731
1.154067
1.523274
1.925338
2.358600
2.824093
3.326269
3.875105
4.492438
5.238431

= 37125-29

96629936D-02
46144723D-01
73288085D-01
21273305D-01
98H7369D-01
08458062D+00
80337614D+00
22320942D+00
77983781D+00
76823402D+00
37208736D+00
004204550+00
08452490D+00
37515097D+00
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Table II

N
5.54433663102343D-02
1.24027738987730D-01
1.75290943892075D-01
1.91488340747342D-01
1.6347379714407QD-01
1.05937637278492D-01
5.00270211534535D-02
1.64429690052673D-02
3.57320421428311D-03
4.82896509305201D-04
3.74908650266318D-05
1.49368411589636D-06
2.55270496934465D-0 8
1.34217679136316D-10
9.56227446736465D-14

ERROR COEF.

(Continued)

=   15

2.16869474675590D-02
1.12684220347775D-01
2. 70.492671421899D-01
4.86902370381935D-01
7.53043683072978D-01
1.06093100362236D+00
1.40425495820363D+00
1.77864637941183D+00
2.18170813144494D+00
2.61306084533352D+00
3.07461811380851D+00
3.57140815113714D+00
4.11373608977209D+00
4.72351306243148D+00
5.46048893578335D+00

10672-31

TABLE - III

WEIGHTS AND ABSCISSAE OF GAUSSIAN QUADRATURES FOR THE

INTERVAL (0,1.00) WITH WEIGHT FUNCTION
2

W(X) = EXP(-X )

WEIGHTS ABSCISSAE
N =  2

4.31325364170332D-01        1.89608043270740D-01
3.15498768642Û95D-01        7.42562394488043D-01

ERROR COEF. = 15778-03

N =
2.53700192457267D-01
3.43144645828844D-01
1.49979294526316D-01

1.04475414746960D-01
4.65591332333112D-01
8.65 383946240150D-01

ERROR COEF. = 33976-06

N =
1.63034604989450D-01
2.79934755021517D-01
2.18855584041643D-01
8.49991887598173D-02

ERROR COEF.

6.55 295245474369D-02
3.10 558620696937D-01
6.41085413223258D-01
9.19249071295932D-01

38580-09

N =
1.12646511369676D-01
2.16681115495002D-01
2.20720 515248768D-01
1.42441764830179D-01
5.43342258688018D-02

4.47677711283395D-02
2.19457476213530D-01
4.77601751524747D-01
7.4816082Ü317653D-01
9.46641977439054D-01

ERROR COEF. = 27081-12
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Table III (Continued)

8.21931584888009D-02
1.68093171657335D-01
1.97728490064862D-01
1.63278375115819D-01
9.78718350 596067D-02
3.76591024260037D-02

ERROR COEF.

N =  6
3.24661014738995D-02
1.62403791544834D-01
3.65192922556895D-01
5.99091843952587D-01
8.15631492565660D-01
9.62255559768127D-01

= 12917-15

6.25065724477524D-02
1.32553267408311D-01
1.69774770042795D-01
1.62429751086312D-01
1.21152909496289D-01
7.07790189 509976D-02
2.76278433799691D-02

ERROR COEF.

4.90882
1.06525
1.43947
1.51307
1.29555
9.18762
5.33903
2.11331

051189123D-02

203671690D-01
177209678D-01
9794Û2994D-01
768236386D-01
308512729D-02
928573824D-02
754641105D-02

ERROR COEF.

3.95488165784004D-02
8.71639032969965D-02
1.22038930369815D-01
1.36601850815752D-01
1.28434308712960D-01
1.03227785327047D-01
7.14613562927916D-02
4.16580238804577D-02
1.66891575382076D-02

ERROR COEF.

N =  7
2.45998022135265D-02
1.24654588269490D-01
2.86306147073804D-01
4.8 3616811726703D-01
6.86019406453583D-01
8.6003 0242686043D-01
9.719395 8 33275 56D-01

= 44594-19

N =  8
1.92734192234665D-02
9.8517698 7436 8 95D-02
2.2 9598292416142D-01
3.95651061416866D-01
5.762970 290 50 948D-01
7.49083984906103D-01
8.90484489455275D-01
9.78340479473957D-01

= 11660-22

N a  9

l,550303264576l3D-02
7.97311964871323D-02
1.87762530384973D-01
3.28226061703989D-01
4.87018253938628D-01
6.48410556244687D-01
7.95 7130 83865440D-01
9.12151359102553D-01
9.82784590735890D-01

= 23892-26
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Table

3.25319695101801D-02
7.24838964037449D-02

1.04004662155270D-01
1.21594475562980D-01
1.22093608318116D-01
1.07195747923389D-01
8.30779890294863D-02
5.69285988401857D-02
3.33982919934992D-02
1.35148930755755D-02

ERROR COEF.

Ill (Continued)

N   =   10
1.27378499713740D-02
6.58023279743935D-02
1.56155783059660D-01
2.75890718366863D-01
4.14966322218475D-01
5.62009142193357D-01
7.04832804690269D-01
8.30893869740303D-01
9.28057569743495D-01
9.85992766817013D-01

=   39397-30

Table IV

Approximate Error Amplification Factors of Relation (2.16)

Upper integration
limit

00

1.0

n = 5

103
107

n = 10

106
1016

n = 15

107

It should be pointed out, however, that this check does not insure the accuracy

of the individual weights and abscissae in Tables II and III to the number of places

cited. Since the abscissae in Table II are the zeros of the half-range Hermite poly-

nomials they alone may be of interest to some readers. The accuracy of the in-

dividual entries may be estimated by examining the stability of the algorithm.

The primary instability of the algorithm presented in this paper is in the re-

cursive evaluation of yn using Eq. (2.16). The significance of this instability may be

examined using the analysis developed by Gautschi [2] as follows. Suppose a relative

error, e, is introduced in the computation of 70- This may be rounding error for

example. Consider now the propagation of this error throughout the sequence

{71, 72, • • -, 7n} via the recurrence relation. For simplicity, assume that all other

computations are carried out with infinite precision. Gautschi has shown that the

relative error in yn is then p„e where the amplification factor, pn, is given by Eq.

(2.21)

(2.21) pn = yohn/yn .

In the case at hand, hn is expressed as

(2.22) hn n(&)-n\/2n

If p„ is greater than 1, the initial error is amplified throughout the sequence. Table

IV contains some approximate values of pn related to Eq. (2.16).
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All the data given here were computed in double-precision arithmetic on the

CDC-6600 computer, which provides a 21-digit mantissa plus sign and exponent.

Thus, it is to be expected that e = 10-21.

While the analysis presented here is oversimplified it suggests that only about

14-place accuracy can be expected in 715 for the semi-infinite interval and about

7 places in 710 for the finite interval. The data in Tables II and III is, in general,

no more accurate than the corresponding values of yn.

Independent verification of Table III by the referee to at least 12 places for

ra = l(l)10 indicates that the algorithm is more stable for the finite-interval case

than is to be expected from this analysis.

On the other hand, a paper by Galant, which has appeared as this article was

in preparation for printing, suggests that in the case of the semi-infinite interval

the algorithm is less stable than is indicated by the above analysis.
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