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Gaussian quantum operator representation for bosons
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We introduce a Gaussian quantum operator representation, using the most general possible multimode

Gaussian operator basis. The representation unifies and substantially extends existing phase-space representa-

tions of density matrices for Bose systems and also includes generalized squeezed-state and thermal bases. It

enables first-principles dynamical or equilibrium calculations in quantum many-body systems, with quantum

uncertainties appearing as dynamical objects. Any quadratic Liouville equation for the density operator results

in a purely deterministic time evolution. Any cubic or quartic master equation can be treated using stochastic

methods.

DOI: 10.1103/PhysRevA.68.063822 PACS number~s!: 42.50.Lc, 03.65.2w, 05.30.Jp, 02.70.Tt

I. INTRODUCTION

In this paper we develop a general multimode Gaussian

representation for a density matrix of bosons. As well as

classical phase-space variables like (x,p), the representation

utilizes a dynamical space of quantum uncertainties or cova-

riances. The extended phase space accommodates more effi-

ciently the content of a quantum state and allows the physics

of many kinds of problems to be incorporated into the basis

itself. The Gaussian expansion technique unifies and greatly

extends all the previous Gaussian-like phase-space represen-

tations used for bosons, including the Wigner, Q, P, positive-

P , and squeezed-state expansions. The operator basis also

includes non-Hermitian Gaussian operators, which are not

density matrices themselves, but can form part of a probabi-

listic expansion of a physical density matrix. Unlike previous

approaches, any initial state is found to evolve with a deter-

ministic time evolution under any quadratic Hamiltonian or

master equation.

The complexity of many-body quantum physics is mani-

fest in the enormity of the Hilbert space of systems with even

modest numbers of particles. This complexity makes it pro-

hibitively difficult to simulate quantum dynamics with or-
thogonal states: no digital computer is large enough to store
the dynamically evolving state. However, quantum dynami-
cal calculations are possible, with finite precision, through
what are known as phase-space methods. These methods rep-
resent the evolving quantum state as probability distributions
on some suitable phase space, which can be sampled via
stochastic techniques. The mapping to phase space can be
made to be exact. Thus the precision of the final result is
limited only by sampling error, which can usually be reliably
estimated and which can be reduced by an increased number
of stochastic paths.

Arbitrary quantum mechanical evolution cannot be repre-
sented probabilistically on a phase space as is usually de-
fined. Thus the extended phase space employed here is a
generalization of conventional phase space in several ways.
First, it is a quantum phase space, in which points can cor-
respond to states with intrinsic uncertainty. Heisenberg’s un-
certainty relations can thus be satisfied in this way or, more
generally, by considering genuine probability distributions
over phase space, to be sampled stochastically. Second, the

phase space is of double dimension, where classically real
variables, such as x and p, now range over the complex
plane. This allows arbitrary quantum evolution to be sampled
stochastically. Third, stochastic gauge functions are in-
cluded. These arbitrary quantities do not affect the physical
results, but they can be used to overcome problems in the
stochastic sampling. Fourth, the phase space includes the set
of second-order moments or covariances. A phase space that
is enlarged in this way is able to accommodate more infor-
mation about a general quantum state in a single point. In
particular, any state ~pure or mixed! with Gaussian statistics
can be represented as a single point in this phase space.

The Gaussian representation provides a link between
phase-space methods and approximate methods used in
many-body theory, which frequently treat normal and
anomalous correlations or Green’s functions as dynamical
objects @1#. As well as being applicable to quantum optics
and quantum information, a strong motivation for this repre-
sentation is the striking experimental observation of BEC
~Bose-Einstein condensation! in ultracold atomic systems
@2#. Already the term ‘‘atom laser’’ is widely used, and ex-
perimental observation of quantum statistics in these systems
is underway. Yet there is a problem in using previous quan-
tum optics formalisms to calculate coherence properties in
atom optics: interactions are generally much stronger with
atoms than they are with photons, relative to the damping
rate. The consequence of this is that one must anticipate
larger departures from ‘‘semiclassical,’’ coherent-state be-
havior in atomic systems.

The present paper includes these nonclassical and inco-
herent effects at the level of the basis for the operator repre-
sentation itself. The purpose of employing a Gaussian basis
set is not only to enlarge the parameter set ~to hold more
information about the quantum state!, but also to include
basis states that are a close match to the actual states that are
likely to occur in interesting systems, such as dilute gases.
The payoff for increasing the parameter set is more efficient
sampling of the dynamically evolving or equilibrium states
of many-body systems.

The idea of coherent states as a quasiclassical basis for
quantum mechanics originated with Schrödinger @3#. Subse-
quently, Wigner @4# introduced a distribution for quantum
density matrices. This method was a phase-space mapping
with classical dimensions and employed a symmetrically or-
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dered operator correspondence principle. Later developments

included the antinormally ordered Q distribution @5#, a nor-

mally ordered expansion called the diagonal P distribution

@6#, methods that interpolate between these classical phase-

space distributions @7,8#, and diagonal squeezed-state repre-

sentations @9#. Each of these expansions either employs an

explicit Gaussian density matrix basis or is related to one

that does by convolution. They are suitable for phase-space
representations of quantum states because of the overcom-
pleteness of the set of coherent states on which they are
based.

Arbitrary pure states of bosons with a Gaussian wave-
function or Wigner representation are often called the
squeezed states @10#. These are a superset of the coherent
states and were investigated by Bogoliubov @11# to approxi-
mately represent the ground state of an interacting Bose-
Einstein condensate—as well as in much recent work in
quantum optics @12#. Diagonal expansions analogous to the
diagonal P representation have been introduced using a basis
of squeezed-state projectors, typically with a fixed squeezing
parameter @9#. However, these have not generally resulted in
useful dynamical applications, as they do not overcome the
problems inherent in using a diagonal basis, as we discuss
below.

In operator representations, one must utilize a complete
basis in the Hilbert space of density operators, rather than in
the Hilbert space of pure states. Thermal density matrices,
for example, are not pure states, but do have a Gaussian P

representation and Wigner function. To include all three
types of commonly used Gaussian states—the coherent,
squeezed, and thermal states—one can define a Gaussian
state as a density matrix having a Gaussian positive-P or
Wigner representation @13#. This definition also includes dis-
placed and squeezed thermal states. Gaussian states have
been investigated extensively in quantum information and
quantum entanglement @14#. It has been shown that an initial
Gaussian state will remain Gaussian under linear evolution
@15#.

However, the Gaussian density matrices that correspond
to physical states do not by themselves form a complete
basis for the time evolution of all quantum density matrices.
This problem, inherent in all diagonal expansions, is related
to known issues in constructing quantum-classical corre-
spondences @16# and is caused by the non-positive-definite
nature of the local propagator in a classical phase space. It is
manifest in the fact that there is generally no equivalent
Fokker-Planck equation ~with a positive-definite diffusion
matrix! that generates the quantum time evolution and,
hence, no corresponding stochastic differential equation that
can be efficiently simulated numerically. This difficulty oc-
curs in nearly all cases except free fields and represents a
substantial limitation in the use of these diagonal expansion
methods for exact simulation of the quantum dynamics of
interacting systems.

These problems can be solved by use of nonclassical
phase spaces, which correspond to expansions in non-
Hermitian bases of operators ~rather than just physical den-
sity matrices!. One established example is the nondiagonal
positive-P @17# representation. The non-Hermitian basis in

this case generates a representation with a positive propaga-
tor, which allows the use of stochastic methods to sample the
quantum dynamics. By extending the expansion to include a
stochastic gauge freedom in these evolution equations, one
can select the most compact possible time-evolution equation
@18–20#. With an appropriate gauge choice, this method is
exact for a large class of nonlinear Hamiltonians, since it
eliminates boundary terms that can otherwise arise @21#. The
general Gaussian representation used here also includes these
features and extends them to allow treatment of any Hamil-
tonian or master equation with up to fourth-order polynomial
terms.

Other methods of theoretical physics that have compa-
rable goals are the path-integral techniques of quantum field
theory @22,23# and density functional methods @24#, which
are widely used to treat atomic and molecular systems. The
first of these is exact in principle, but is almost exclusively
used in imaginary-time calculations of canonical ensembles
or ground states due to the notorious phase problem. The
second method has similarities with our approach in that it
also utilizes a density as we do. However, density functionals
are normally combined with approximations like the local
density approximation. Gaussian representation methods
have the advantage that they can treat both real- and
imaginary-time evolution. In addition, the technique is exact
in principle, provided boundary terms vanish on partial inte-
gration.

In Sec. II, we define general Gaussian operators for a
density operator expansion and introduce a compact notation
for these operators, either in terms of mode operators or
quantum fields. In Sec. III, we calculate the moments of the
general Gaussian representation, relating them to physical
quantities as well as to the moments of previous representa-
tions. Section IV gives the necessary identities that enable
first-principles quantum calculations with these representa-
tions. Equation ~4.15! summarizes the relevant operator map-
pings and constitutes a key result of the paper.

We give a number of examples in Sec. V of specific pure
and mixed states ~and their non-Hermitian generalizations!
that are included in the basis, and we give simplified versions
of important identities for these cases. Section VI describes
how the Gaussian representation can be used to deal with
evolution in either real or imaginary time. In particular, we
show how it can be used to solve exactly any master equa-
tion that is quadratic in annihilation and creation operators.
Some useful normalization integrals and reordering identities
for the Gaussian operators are proved in the Appendixes.

In a subsequent paper, we will apply these methods to
systems with nonlinear evolution.

II. GAUSSIAN REPRESENTATION

The representations that give exact mappings between op-
erator equations and stochastic equations—an essential step
toward representing operator dynamics in large Hilbert
spaces—are stochastic gauge expansions @18–20# on a non-
classical phase space. Here, the generic expansion is written
down in terms of a complete set of operators that are typi-
cally non-Hermitian. This leads to the typical form
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r̂~ t !5E P~lW ,t !L̂~lW !dlW , ~2.1!

where P(lW ,t) is a probability distribution, L̂ is a suitable
basis for the class of density matrices being considered, and

dlW is the integration measure for the corresponding general-

ized phase-space coordinate lW . See Fig. 1 for a conceptual
illustration of this expansion.

In phase-space methods, it is the distribution P that is
sampled stochastically. Therefore if the basis resembles the
typical physical states of a system, the sampling error will be
minimized, and if the state coincides exactly with an element
of the basis, then the distribution will be a d function, with
consequently no sampling error. A Wigner or Q-function ba-
sis, for example, generates a broad distribution even for
minimum uncertainty states. A general Gaussian basis, on the
other hand, can generate a d-function distribution not only
for any minimum uncertainty state, but also for the ground
states of noninteracting finite-temperature systems.

A. Gaussian operator basis

In this paper, we define the operator basis L̂ to be the
most general Gaussian operator basis. The motivation for
using the most general possible basis set is that when the
basis set members nearly match the states of interest, the
resulting distributions are more compact and have lower
sampling errors in a Monte Carlo or stochastic calculation. In
addition, a larger basis allows more choice of mappings, so
that lower-order differential correspondences can be utilized.
In some cases, a large basis set can increase computational
memory requirements, as more parameters are needed. This
disadvantage is outweighed when there is a substantial de-
crease in the sampling error, due to the use of a more physi-
cally appropriate basis. By choosing a general Gaussian op-
erator basis, rather than just a basis of Gaussian density
matrices, one has the additional advantage of a complete
representation for all non-Gaussian density matrices as well.

If â is a column vector of M bosonic annihilation opera-

tors and â† the corresponding row vector of creation opera-
tors, their commutation relations are

@ âk , â j
†#5dk j . ~2.2!

Coherent displacements are introduced as column vectors a
and row vectors a1. We define a Gaussian operator as an
exponential of an arbitrary quadratic form in annihilation and
creation operators ~or, equivalently, a quadratic form in po-
sition and momentum operators!.

The simplest way to achieve this is to introduce extended
2M -vectors of c numbers and operators: a5„a,(a1)T… and

â5„â,( â†)T…, with adjoints defined as a1
5(a1,aT) and

â†
5( â†, âT), together with a relative operator displacement

of

d â5 â2a5S â1

A

âM

â1
†

A

âM
†

D 2S a1

A

aM

a1
1

A

aM
1

D . ~2.3!

These extended vectors are indexed where necessary with
Greek indices m51, . . . ,2M .

A general Gaussian operator is now an exponential of a

general quadratic form in the 2M -vector mode operator d â .
For algebraic reasons, it is useful to employ normal ordering,
and to introduce a compact notation using a generalized co-
variance s:

L̂~lW !5

V

Ausu
:exp@2d â†s21d â/2#: . ~2.4!

Here the normalization factor involving Ausu is intro-

duced to simplify identities that occur later and plays a very
similar role to the exactly analogous normalization factor
that occurs in the classical Gaussian distribution of probabil-
ity theory. The 2M32M covariance matrix is conveniently
parametrized in terms of M3M submatrices as

s5F I1n m

m1 I1nTG , ~2.5!

where n is a complex M3M matrix and m,m1 are two
independent symmetric complex M3M matrices.

With this choice, the covariance has a type of generalized
Hermitian symmetry in which smn5sn1M ,m1M , provided
we interpret the matrix indices as cyclic in the sense that n
;n12M . This can also be written as s5s1, with the defi-
nition that

Fa b

c d
G1

[Fd c

b a
GT

. ~2.6!

This definition implies that we intend the ‘‘1’’ superscript to
define an operation on the covariance matrix which is
equivalent to Hermitian conjugation of the underlying opera-
tors. If the Gaussian operator is in fact an Hermitian opera-
tor, then so is the corresponding covariance matrix. In this
case, the ‘‘1’’ superscript is identical to ordinary Hermitian

FIG. 1. The density-operator expansion in Eq. ~2.1! can be in-

terpreted as a convolution of the probability distribution P with the

underlying distribution of the basis. The uncertainty or spread of the

physical state, indicated by the variance sr , is shared between the

distribution variance sP and the basis variance sL .
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conjugation. The generalized Hermitian symmetry of the co-
variance means that all elements of the number correlation n

appear twice, as do all except the diagonal elements of the
squeezing correlations m,m1.

The use of normal ordering allows simple operator iden-
tities to be obtained, but can easily be related to more com-
monly used unordered parametrizations. The Gaussian op-
erators include as special cases the density matrices of many
useful and well-known physical states. For example, they
include the thermal states of a Bose-Einstein distribution, the
coherent states, and the squeezed states. They also include
many more states than these, like the off-diagonal coherent
state projectors used in the positive-P expansion, which are
not density operators themselves, but can be used to expand
density operators. The details are given in Sec. V.

B. Extended phase space

The representation phase space is thus extended to

lW 5~V ,a,a1,n,m,m1!. ~2.7!

The complex amplitude V , which appears in the normaliza-
tion, acts as a dynamical weight on different stochastic tra-
jectories. It is useful in calculations in which the normaliza-
tion of the density matrix is not intrinsically preserved, such
as canonical ensemble calculations, and also enables stochas-
tic gauges to be included.

The complex vectors a and a1 give the generalized co-
herent amplitudes for each mode: a defines the amplitudes of

annihilation operators â, while its ‘‘conjugate’’ a1 defines

the amplitudes of the creation operators â†. The matrix n

gives the number, or normal, correlations between each pair
of modes. The squeezing, or anomalous, correlations be-
tween each pair of modes are given by m and m1: the matrix
m defines the correlations of annihilation operators, while its
‘‘conjugate’’ m1 defines the correlations of the creation op-
erators. These physical interpretations of the phase-space
variables are supported by the results of Sec. III, where we
rigorously establish the connection of the phase-space vari-
ables to physical quantities.

In general, apart from the complex amplitude V , the total
number of complex parameters needed to specify the nor-
malized M-mode Gaussian operator is

p5M ~213M !. ~2.8!

Hence the phase-space variables can be written as lW

5(l0 ,l1 , . . . ,lp), with the corresponding integration mea-

sure as dlW 5d2(p11)lW .

C. Gaussian field operators

The above results define a completely general Gaussian
operator in terms of arbitrary bosonic annihilation and cre-
ation operators, without reference to the field involved. It is
sometimes useful to compare this to a field-theoretic nota-
tion, in which we explicitly use a coordinate-space integral
to define the correlations. This provides a means to extend

operator representation theory for fields @25–28# to more
general basis sets. In a quantization volume V, one can ex-
pand

Ĉj~x!5

1

AV
(

k
âk, je

ik•x,

Ĉj
†~x!5

1

AV
(

k
âk, j

† e2ik•x, ~2.9!

where the field commutators are

@Ĉj~x!,Ĉ
j8

†
~x8!#5d j j8

d~x2x8!. ~2.10!

With this notation, the quadratic term in the Gaussian ex-
ponent becomes

d â†s21d â5E E dĈ†~x!s21~x,y!dĈ~y!d3xd3y,

~2.11!

where we have introduced the extended vector Ĉ(x)

5„Ĉ,(Ĉ†)T… and dĈ(x)5Ĉ(x)2C(x), which is the op-
erator fluctuation relative to the coherent displacement or
classical mean field. If we index the extended vector as C js ,
where s521(1) for the first and second parts, respectively,
this Fourier transform can be written compactly as

C js~x!5

1

AV
(

k
akjse

2isk•x. ~2.12!

The notation s21(x,y) indicates a functional matrix inverse
where

E s21~x,y!s~y,x8!d3y5Id~x2x8!, ~2.13!

and the relationship to the previous cross-variance matrix is
that

s js , j8s8
~x,y!5

1

V (
k

(
k8

skjs ,k8 j8s8
e2i(sk•x2s8k8•x8).

~2.14!

In the standard terminology of many-body theory and
field theory @1#, these field variances are generalized equal-
time Green’s functions and can be written as

s~x,x8!5F Id~x,x8!1n~x,x8! m~x,x8!

m~x,x8!1 Id~x,x8!1nT~x8,x!
G .

~2.15!

We shall show in the next section that these indeed cor-
respond to field correlation functions in the case that the field
state is able to be represented as a single Gaussian. More
generally, one must consider a probability distribution over
different coherent fields and Green’s functions or variances,
in order to construct the overall density matrix.
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III. GAUSSIAN EXPECTATION VALUES

In order to use the Gaussian operator basis, a number of
basic identities are needed. In this section, we derive rela-
tions between operator expectation values and moments of
the distribution. Such moments also show how the general
Gaussian representation incorporates the previously used
methods.

A. Gaussian trace

The trace of a generalized Gaussian is needed to normal-
ize the density matrix. The trace is most readily calculated by
using a well-known coherent-state identity @6#

Tr@L̂#5E ^zuL̂uz&
d2Mz

pM
. ~3.1!

Here we define z5(z1 , . . . ,zM). Next, introducing extended
vectors z5(z,z*)T, z1

5(z*,z), dz5z2a , and using the

eigenvalue property of coherent states, âuz&5zuz&, we find
that

Tr@L̂#5

VE d2Mz exp@2dz1s21dz/2#

pMAusu
. ~3.2!

The normalizing factor can now be recognized as the deter-
minant expression arising in a classical Gaussian. For ex-
ample, in the single-mode case, one obtains for the normal-
izing determinant that

1

Ausu
5

1

A~11n !2
2mm1

. ~3.3!

We can thus calculate the value of the normalization from
standard Gaussian integrals, as detailed in Appendix B, pro-
vided s has eigenvalues with a positive real part. The result
is

Tr@L̂#5V . ~3.4!

Thus for L̂ itself to correspond to a normalized density
matrix, we must have V51. In a general expansion of a
density matrix, there may be terms which do not have this
normalization, with the proviso the average weight still be

^V&51. This freedom of having different weights on differ-
ent members of the ensemble provides a way of introducing
gauge variables, which can be used to improve the efficiency
of the stochastic sampling but which do not affect the aver-
age result. The weight also allows calculations to be per-
formed in which the trace of the density matrix is not pre-
served, as in canonical-ensemble calculations.

B. Expectation values

Given a density matrix expanded in Gaussian operators, it
is essential to be able to calculate operator expectation val-

ues. This can be achieved most readily if the operator Ô is
written in antinormally ordered form, as

Ô5(
i

û i~ â!v̂ i~ â†!5o~ â !. ~3.5!

Since the density matrix expansion is normally ordered by
definition, the cyclic properties of a trace allows the expec-
tation value of any antinormally ordered operator to be rear-
ranged as a completely normally ordered form. Hence, fol-
lowing a similar coherent-state expansion procedure to that
the previous subsection, we arrive at an expression analo-
gous to the kernel trace, Eq. ~3.2!:

^Ô&5

TrF(
i

v̂ i~ â†!r̂ û i~ â!G
Tr@ r̂#

5

E P~lW !O~lW !VdlW

E P~lW !VdlW

5^O~lW !&P . ~3.6!

Here we have introduced an equivalence between the quan-

tum expectation value ^Ô& and the weighted probabilistic

average ^O(lW )&P . This is an antinormally ordered c-number

operator equivalence in phase space of O(lW );Ô , where the
eigenvalue relations of coherent states are utilized to obtain

O~lW !5

E d2Mzo~z !exp@2dz1s21dz/2#

pMAusu
5^o~z !&lW .

~3.7!

Here ^o(z)&lW represents the classical Gaussian average of
the c-number function o(z). In other words, all quantum
averages are now obtained by a convolution of a classical
Gaussian average with a width sL that depends on the kernel

parameter lW , together with a probabilistic average over lW ,
with a width sP that depends on the phase-space distribution

P(lW ). The situation is depicted schematically in Fig. 1.

Consider the first-order moment where Ô5 âm . This is
straightforward, as o(z)5zm , and the Gaussian average of
o(z) is simply the Gaussian mean am :

^ âm&5 ām5^am&P . ~3.8!

More generally, to calculate the antinormally ordered mo-

ment o( â)5$âm1
âm2

••• âmn
%, one must calculate the corre-

sponding Gaussian moment o(z)5zm1
zm2

•••zmn
. This is

most easily achieved by use of the moment-generating func-
tion for the Gaussian distribution in Eq. ~3.7!, which is

xA~ t ,lW !5e t*a1t* s t/2, ~3.9!

where t5(t1 , . . . ,tM ,t1
* , . . . ,tM

* )5(t,t*T). General mo-

ments of the Gaussian distribution are then given by

^o~z !&lW 5

]n

]tm1
* ]tm2

* •••]tmn
*

xA~ t ,lW !U
t50

, ~3.10!

where it must be remembered that the adjoint vector t* is not
independent of t . We note that averaging the moment-
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generating function over the distribution P(lW ) gives the an-
tinormal quantum characteristic function of the density op-
erator:

xA~t,t*![Tr$r̂e t* âe â† t%5E P~lW !Ve t*a1t* s t/2dlW .

~3.11!

This equation is an alternative way of ~implicitly! defining
the Gaussian P distribution as a function whose generalized
Fourier transform is equal to the quantum characteristic
function.

As an example of a moment calculation, one obtains the
c-number operator equivalence for general normally ordered

quadratic term as

^: âmân
† :&5^aman

1
1smn

N &P , ~3.12!

where we have introduced the normally ordered covariance

sN
5s2I . ~3.13!

Writing these out in more detail, we obtain the following
central results for calculating normally ordered observables
up to quadratic order:

^â i&5^a i&P

^â i
†&5^a i

1&P

^ â iâ j&5^a ia j1m i j&P

^: â iâ j
† :&5^a ia j

1
1n i j&P

^â i
†â j

†&5^a i
1a j

1
1m i j

1&P .
~3.14!

Comparing these equations with the schematic diagram in
Fig. 1, we see that, as expected from a convolution, the over-
all variance of any quantity is the sum of the variances of the
two convolved distributions: that is, s5sL1sP . The re-
sults also support our interpretation given in Sec. II B that n

and m are, respectively, the normal and anomalous correla-
tions that appear in many-body theory—except for the addi-
tional feature that we can now allow for distributions over
these correlations. The expressions in the P averages on the
right-hand side are not complex conjugate for Hermitian-

conjugate operators, because the kernel L̂(lW ) is generically
not Hermitian. Of course, after averaging over the entire dis-
tribution, one must recover a Hermitian density matrix, and
hence the final expectation values of annihilation and cre-
ation operators will be complex conjugate. Using the charac-
teristic function, one can extend these to higher-order mo-
ments via the standard Gaussian factorizations in which odd
moments of fluctuations vanish, and even moments of fluc-
tuations are expressed as the sum over all possible distinct
pairwise correlations.

C. Quantum field expectation values

The results obtained above can be applied directly to ob-
taining the corresponding expectation values of normally or-
dered field operators:

^Ĉi~x!&5^C i~x!&P ,

^Ĉi
†~x!&5^C i

1~x!&P ,

^Ĉi~x!Ĉj~y!&5^C i~x!C j~y!1m i j~x,y!&P ,

^:Ĉi~x!Ĉj
†~y!:&5^C i~x!C j

1~y!1n i j~x,y!&P ,

^Ĉi
†~x!Ĉj

†~y!&5^C i
1~x!C j

1~y!1m i j
1~x,y!&P .

~3.15!

These results show that in the field formulation of the Gauss-
ian representation, the phase-space quantities n i j(x,y) and
m i j(x,y) correspond to single-time Greens functions, analo-
gous to those found in the propagator theory of quantum
fields.

D. Comparisons with other methods

It is useful at this stage to compare these operator corre-
spondences with the most commonly used previously known
representations, as shown in Table I. For simplicity, this table
only gives a single-mode comparison.

In greater detail, we notice the following.
~i! If smn5dmn , these results correspond to the standard

ones for the normally ordered positive-P representation.
~ii! If we consider the Hermitian case of a*5a1 as well,

but with smn5(n21)dmn , where n5(s21)/2, we obtain
the ‘‘s-ordered’’ representation correspondences of Cahill
and Glauber.

~iii! These include, as special cases, the normally ordered
Glauber-Sudarshan P representation (n50), and the sym-
metrically ordered representation of Wigner (n521/2).

~iv! The antinormally ordered Husimi Q function is recov-
ered as the singular limit n→21.

~v! In the squeezed-state basis, the parameters n, m are not
independent, as indicated in the table. The particle number n

is a function n(umu) of the squeezing m. The exact relation-
ship is given later.

The Gaussian family of representations is much larger
than the traditional phase-space variety, because we can al-
low other values of the smn variance—for example,
squeezed or thermal state bases. For thermal states, the vari-
ance corresponds to a Hermitian, positive-definite density
matrix if n i j is Hermitian and positive definite, in which case

TABLE I. Classification of commonly used single-mode opera-

tor representations in terms of parameters of the general Gaussian

basis.

Representation V a a1 n m m1

Wigner ~W! @4# 1 a a* 2
1
2 0 0

Husimi ~Q! @5# 1 a a* 21 0 0

Glauber-Sudarshan ~P! @6# 1 a a* 0 0 0

s-ordered @7,8# 1 a a* (s21)/2 0 0

Squeezed @7,9# 1 a a* n(umu) m m*

Drummond-Gardiner (1P) @7# 1 a a1 0 0 0

Stochastic gauge @18,19# V a a1 0 0 0

J. F. CORNEY AND P. D. DRUMMOND PHYSICAL REVIEW A 68, 063822 ~2003!

063822-6



n i j behaves analogously to the Green’s function in a bosonic
field theory. In this case, a unitary transformation of the op-
erators can always be used to diagonalize n i j , so that n i j

5n id i j .
~vi! For a general Gaussian basis, Gaussian operators that

do not themselves satisfy density matrix requirements are
permitted as part of the basis—provided the distribution has
a finite width to compensate for this. This is precisely what
happens, for example, with the well-known Q function,
which always has a positive variance to compensate for the
lack of fluctuations in the corresponding basis, which is Her-
mitian but not positive definite.

Distributions over the variance are also possible. It is the
introduction of distributions over the variance that represents
the most drastic change from the older distribution methods.
It means that there many new operator correspondences to
use. Thus, the covariance itself can be introduced as a dy-
namical variable in phase space, which can change and fluc-
tuate with time. In this respect, the present methods have a
similarity with the Kohn variational technique, which uses a
density in coordinate space, and has been suggested in the
context of BEC @24#. Related variational methods using
squeezed states have also been utilized for BEC problems
@29#. By comparison, the present methods do not require
either the local density approximation or variational approxi-
mations.

IV. GAUSSIAN DIFFERENTIAL IDENTITIES

An important application of phase-space representations
is to simulate canonical ensembles and quantum dynamics in
a phase space. An essential step in this process is to map the
master equation of a quantum density operator onto a Liou-
ville equation for the probability distribution P. The real or
imaginary time evolution of a quantum system depends on
the action of Hamiltonian operators on the density matrix.
Thus it is useful to have identities that describe the action of
any quadratic bosonic form as derivatives on elements of the
Gaussian basis. These derivatives can, by integration by
parts, be applied to the distribution P, provided boundary
terms vanish. The resultant Liouville equation for P is
equivalent to the original master equation, given certain re-
strictions on the radial growth of the distribution. When the
Liouville equation has derivatives of only second order or
less ~and thus is in the form of a Fokker-Planck equation!, it
is possible to obtain an equivalent stochastic differential
equation which can be efficiently simulated.

In general, there are many ways to obtain these identities,
but we are interested in identities which result in first-order
derivatives, where possible. Just as for expectation values,

this can be achieved most readily if the operator Ô is written
in factorized form, as in Eq. ~3.5!.

In this notation, normal ordering means

:ÔL̂ :5(
i

v̂ i~ â†!L̂û i~ â!. ~4.1!

We also need a notation for partial antinormal ordering:

$Ô:L̂:%5(
i

û i~ â!:L̂: v̂ i~ â†!, ~4.2!

which indicates an operator product which antinormally or-

ders all terms except the normal term :L̂: . The Gaussian

kernel L̂ is always normally ordered, and hence we can omit
the explicit normal-ordering notation, without ambiguity, for
the kernel itself.

In this section, for brevity, we use ]/]lW

5(]/]V ,]/]a,]/]a1,]/]n,]/]m,]/]m1) to symbolize ei-
ther ]/]x i or 2i]/]y i for each of the i50, . . . ,p complex

variables lW . This is possible since L̂(lW ) is an analytic func-

tion of lW , and an explicit choice of derivative can be made
later. We first note a trivial identity, which is nevertheless
useful in obtaining stochastic gauge equivalences between
the different possible forms of time-evolution equations:

V
]

]V
L̂5L̂. ~4.3!

A. Normally ordered identities

The normally ordered operator product identities can be
calculated simply by taking a derivative of the Gaussian op-
erator with respect to the amplitude and variance parameters.

1. Linear products

The result for linear operator products follows directly
from differentiation with respect to the coherent amplitude,
noting that each amplitude appears twice in the exponent:

]

]am
1

L̂5

]

]am
1

V

Ausu
:exp@2d â†s21d â/2#:

5@s21#mn :d ânL̂: . ~4.4!

It follows that

: âmL̂ :5Fam1smn

]

]an
1G L̂. ~4.5!

2. Quadratic products

Differentiating a determinant results in a transposed in-
verse, a result that follows from the standard cofactor expan-
sion of determinants:

]usu

]snm
5smn

21usu. ~4.6!

Similarly, for the normalization factor that occurs in Gauss-
ian operators,

]usu21/2

]snm
21

5

1

2
smnusu21/2. ~4.7!
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Hence, on differentiating with respect to the inverse covari-
ance, we can obtain the following identity for any normal-
ized Gaussian operator:

]

]snm
21

L̂5

]

]snm
21

V

Ausu
:exp@2d â†•s21•d â/2#:

5

1

2
:@smn2d âmd ân

†#L̂: . ~4.8!

Using the chain rule to transform the derivative, it follows
that a normally ordered quadratic product has the following
identity:

:d âmd ân
†L̂ :5Fsmn22

]

]snm
21G L̂5Fsmn12smasbn

]

]sba
GL̂.

~4.9!

B. Antinormally ordered identities

The antinormally ordered operator product identities are
all obtained from the above results, on making use of the
algebraic reordering results in Appendix A.

1. Antinormal linear products

Antinormally ordered linear products can be transformed
directly to normally ordered products. Hence, from Appendix
A and Eq. ~4.5!, we obtain

$âm :L̂:%5:@ âm2smn
21d ân#L̂:5Fam1~smn2dmn!

]

]an
1G L̂

5Fam1smn
N

]

]an
1G L̂, ~4.10!

where we recall from Eq. ~3.13! that the normally ordered
covariance is defined by: sN

5s2I .

2. Quadratic products with one antinormal operator

This calculation follows a similar pattern to the previous
one:

$d âm :d ân
†L̂:%5:F d âm1

]

] âm
† Gd ân

†L̂:

5:@dmn1~dmr2smr
21!d ân

†d âr#L̂:

5Fsmn12sma
N sbn

]

]sba
GL̂. ~4.11!

3. Quadratic products with two antinormal operators

We first expand this as the iterated result of two reorder-
ings, then apply the result for a linear antinormal product to
the innermost set of brackets:

$d âmd ân
† :L̂:%5$d âm$d ân

†:L̂:%%

5$d âm@dnr2srn
21#:d âr

†L̂:%. ~4.12!

Next, the result above for one antinormal operator is used:

$d âmd ân
† :L̂:%5@dnr2srn

21#Fsmr12~sma2dma!

3sbr

]

]sba
GL̂

5Fsmn
N

12sma
N sbn

N
]

]sba
GL̂. ~4.13!

C. Identities in matrix form

The different possible quadratic orderings can be written
in matrix form as

: â â†L̂ :5F : ââ†L̂: L̂ââT

â†Tâ†L̂ â†TL̂âTG ,

$â â†L̂%5F âL̂â† ââTL̂

L̂â†Tâ† $â†TL̂âT%
G ,

$â: â†L̂:%5F ââ†L̂ âL̂âT

â†TL̂â† $â†T: âTL̂:%
G . ~4.14!

With this notation, all of the operator identities can be
written in a compact matrix form. The resulting set of differ-
ential identities can be used to map any possible linear or

quadratic operator acting on the kernel L̂ into a first-order
differential operator acting on the kernel.

For this reason, the following identities are the central
result of this paper:

L̂5V
]

]V
L̂

: âL̂ :5aL̂1s
]L̂

]a1
,

$âL̂%5aL̂1sN
]L̂

]a1
,

:d âd â†L̂ :5sL̂12s
]L̂

]s
s ,

$d â:d â†L̂:%5sL̂12sN
]L̂

]s
s ,

$d âd â†L̂%5sNL̂12sN
]L̂

]s
sN. ~4.15!
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Here the derivatives are defined as

]

]a
5X ]

]a
,S ]

]a1
D TC,

]

]a1
5S ]/]a1

~]/]a!TD ,

S ]

]s D
m ,n

5

]

]snm
. ~4.16!

It should be noted that the matrix and vector derivatives
involve taking the transpose. We note here that for notational
convenience, the derivatives with respect to the sm ,n are for-
mal derivatives, calculated as if each of the sn ,m were inde-
pendent of the others. With a symmetry constraint, the actual

derivatives of L̂ with respect to any elements of n or any
off-diagonal elements of m will differ from the formal de-
rivatives by a factor of two. Fortunately, because of the sum-
mation over all derivatives in the final Fokker-Planck equa-
tion, the final results are the same, regardless of whether or
not the symmetry of sm ,n is explicitly taken into account at
this stage.

The quadratic terms can also be written in a form without
the coherent offset terms in the operator products. This is
often useful, since while the original Hamiltonian or master
equation may not have an explicit coherent term, terms like
this can arise dynamically. The following result is obtained:

: â â†L̂ :5a
]L̂

]a
s1s

]L̂

]a1
a1

1~ â â1
1s !L̂12s

]L̂

]s
s ,

$â: â†L̂:%5a
]L̂

]a
s1sN

]L̂

]a1
a1

1~ â â1
1s !L̂

12sN
]L̂

]s
s ,

$â â†L̂%5a
]L̂

]a
sN

1sN
]L̂

]a1
a1

1~ â â1
1sN!L̂

12sN
]L̂

]s
sN. ~4.17!

One consequence of these identities is that the time evo-
lution resulting from a quadratic Hamiltonian can always be
expressed as a simple first-order differential equation, which
therefore corresponds to a deterministic trajectory. This rela-
tionship will be explored in later sections: it is quite different
to the result of a path integral, which gives a sum over many
fluctuating paths for a quadratic Hamiltonian. Similarly, the
time evolution for cubic and quartic Hamiltonians can al-
ways be expressed as a second-order differential equation,
which corresponds to a stochastic trajectory.

D. Identities for quantum field operators

The operator mappings can also be succinctly written in
the field-theoretic notation as

:Ĉ~x!L̂ :5C~x!L̂1E d3x8s~x,x8!
]L̂

]C1~x8!
,

$Ĉ~x!L̂%5C~x!L̂1E d3x8sN~x,x8!
]L̂

]C1~x8!
,

:dĈ~x!dĈ~x8!†L̂ :5s~x,x8!L̂12E E d3x9d3x-s~x,x9!

3

]L̂

]s~x9,x-!
s~x-,x8!,

$dĈ~x!:dĈ~x8!†L̂:%5s~x,x8!L̂

12E E d3x9d3x-sN~x,x9!

3

]L̂

]s~x9,x-!
s~x-,x8!,

$dĈ~x!dĈ~x8!†L̂%5sN~x,x8!L̂

12E E d3x9d3x-sN~x,x9!

3

]L̂

]s~x9,x-!
sN~x-,x8!, ~4.18!

where the vector quantum fields and covariances are as de-
fined in Sec. II C. The normal field correlation matrix is
sN(x,x8)5s(x,x8)2Id(x,x8) and the functional derivatives
have been defined as

]

]C js~x!
5

1

AV
(

k
e2isk.x

]

]akjs

,

]

]C js
1~x!

5

1

AV
(

k
e isk.x

]

]akjs
1

,

]

]s js , j8s8
~x,x8!

5

1

V (
k

(
k8

e2i(s8k•x2sk8•x8)
]

]sk8 js ,kj8s8

.

Again we have the convention for matrix derivatives that

S ]

]s~x,x8!
D

js , j8s8

5

]

]s j8s8, js~x,x8!
.

V. EXAMPLES OF GAUSSIAN OPERATORS

This section focuses on specific examples of Gaussian
operators and relates them to physically useful pure states or
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density matrices. We begin by defining the class of Gaussian
operators that correspond to physical density matrices, be-
fore looking at examples of specific types of states that can
be represented, such as coherent, squeezed, and thermal. In
each of these specific cases, the conventional parametrization
can be analytically continued to describe a non-Hermitian
basis for a positive representation. We show how these bases
include and extend those of previously defined representa-
tions and calculate the normalization rules and identities that
apply in the simpler cases.

A. Gaussian density matrices

A Gaussian operator can itself correspond to a physical
density matrix, in which case the corresponding distribution
is a d function. This is the simplest possible representation of
a physical state. Gaussian states or physical density matrices
are required to satisfy the usual constraints necessary for any
density matrix: they must be Hermitian and positive definite.
From the moment results of Eq. ~3.14!, the requirement of
Hermiticity generates the following immediate restrictions
on the displacement and covariance parameters:

a†
5a1,

n†
5n,

m†
5m1. ~5.1!

In addition, there are requirements due to positive defi-
niteness. To understand these, we first note that when n is
Hermitian, as it must be for a density matrix, it is diagonal-
izable via a unitary transformation on the mode operators.
Therefore, with no loss of generality, we can consider the
case of diagonal n—i.e., nk j5nkdk j . The positive definite-
ness of the number operator then means that the number
eigenvalues are real and non-negative:

nk>0. ~5.2!

In the diagonal thermal density matrix case, but with
squeezed correlations as well, satisfying the density matrix
requirements means that there are additional restrictions

@30#. Consideration of the positivity of products like X̂k jX̂k j
†

where X̂k j5m âk1n â j
† means that one must also satisfy the

inequalities nk(11n j)>umk ju
2. This implies a necessary

lower bound on the photon number in each mode:

nk>n~ umkku!5Aumkku
2
11/421/2. ~5.3!

Examples of Gaussians of this type are readily obtained
by first generating a thermal density matrix, then applying
unitary squeezing and/or coherent displacement operations,
which preserve the positive definite nature of the original
thermal state. This produces a pure state if and only if the
starting point is a zero-temperature thermal state or vacuum
state. Hence, the general physical density matrix can be writ-
ten in factorized form as

L̂r5D̂~a!Ŝ~j!L̂th~ n̄!Ŝ~2j!D̂~2a!. ~5.4!

Here

L̂th~ n̄!5

1

u11n̄u
:exp~2 â†@11n̄#21â!: ~5.5!

is a thermal density matrix completely characterized by its

number expectation: n̄[Tr@ : ââ†:L̂th(n̄)# , where n̄ must be
Hermitian for the operator to correspond to a physical den-
sity matrix. We show the equivalence of this expression to
the more standard canonical Bose-Einstein form in the next
section.

The unitary displacement and squeezing operators are as
usually defined in the literature:

D̂~a!5eaâ†
2 âa* ~5.6!

and

Ŝ~j!5e2 â†jâ†/21 âj*â/2, ~5.7!

where the vector a is, as before, the coherent displacements
for each mode. The symmetric matrix j gives the angle and
degree of squeezing for each mode, as well as the squeezing
correlations between each pair of modes.

In Table II, we give a comparison of the Gaussian param-
eters found in the usual classifications of physical density
matrices of bosons, for a single-mode case.

B. Thermal operators

1. Physical states

It is conventional to write the bosonic thermal density
operator for a noninteracting Bose gas in grand canonical
form as @31#

r̂ th~f!5)
k

@12e2fk#exp@2fkâk
†âk# , ~5.8!

where fk5ek /kT . Here the modes are chosen, with no loss
of generality, to diagonalize the free Hamiltonian with mode
energies ek , and for the case of massive bosons we have
included the chemical potential in the definition of the en-
ergy origin. To show how this form is related to the normally

ordered thermal Gaussian L̂th(n̄) of Eq. ~5.5!, we simply

note that since n̄ is Hermitian, it can be diagonalized by a
unitary transformation. The resulting diagonal form in either

TABLE II. Parameters of single-mode Gaussian density matri-

ces of bosons.

Physical state V a a1 n m m1

Vacuum state 1 0 0 0 0 0

Coherent state 1 a a* 0 0 0

Thermal 1 0 0 n>0 0 0

Squeezed vacuum 1 0 0 n(umu) m m*

Squeezed coherent 1 a a* n(umu) m m*

Squeezed thermal 1 a a* n>n(umu) m m*
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expression is therefore diagonal in a number state basis and
is uniquely defined by its number state expectation value.

Clearly, one has for the usual canonical density matrix
that

^nur̂ thun&5)
k

@12e2fk#exp@2fknk# , ~5.9!

while it is straightforward to show that the corresponding
normally ordered expression is a binomial:

^nuL̂th~ n̄!un&5)
k

@11 n̄k#
21F12

1

11 n̄k

G nk

. ~5.10!

As one would expect, these expressions are identical pro-
vided one chooses the standard Bose-Einstein result for the
thermal occupation as

n̄k5

1

efk21
. ~5.11!

These results also show that when n̄50 one has a vacuum
state, corresponding to a bosonic ground state at zero tem-
perature. In summary, the normally ordered thermal Gauss-
ian state is completely equivalent to the usual canonical
form.

2. Generalized thermal operators

A simple non-Hermitian extension of the thermal states
can be defined as an analytic continuation of the usual Bose-
Einstein density matrix for bosons in thermal equilibrium.
We define a normally ordered thermal Gaussian operator as
having zero mean displacement and zero second- or fourth-
quadrant variance:

L̂~V ,0,0,n,0,0!5

V

uI1nu
:exp@~I1n! i j

21â i
†â j#: .

~5.12!

Such operators are an analytic continuation of previously
defined thermal bases and are related to thermofield methods
@32#.

As well as the usual Bose-Einstein thermal distribution,
the extended thermal basis can represent a variety of other
physical states. As an example, consider the general matrix
elements of an analytically continued single-mode thermal

Gaussian operator in a number-state basis, with 111/n̄
5exp@f#5exp@(r1ic)#. These are

^nuL̂th~ n̄ !un8&5^nu@12e2f#exp@2f n̂#un8&

5dnn8
@12e2f#exp@2n~r1ic !# .

~5.13!

Now consider the following single-mode density matrix:

r̂5

1

2p
E

0

2p

@12e2f#21exp@n0~r1ic !#L̂th~ n̄ !dc .

~5.14!

Taking matrix elements in a number-state basis gives

^nur̂un8&5

dnn8

2p
E

0

2p

e2(r1ic)(n2n0)dc5dnn8
dnn0

.

~5.15!

This effectively Fourier transforms the thermal operator
on a circle of radius un0u around the origin, thereby generat-
ing a pure number state with boson number equal to n0.
Thus, extended thermal bases of this type are certainly able
to represent non-Gaussian states like pure number states.
Nevertheless, they cannot represent coherences between
states of different total boson number.

3. Thermal operator identities

The operator identities for the thermal operators are a sub-
set of the ones obtained previously. There are no useful iden-
tities that map single operators into a differential form; nor

are there any for products like â iâ j . However, all quadratic
products that involve both annihilation and creation opera-
tors have operator identities.

With this notation, and taking into account the fact that
differentiation with respect to n now explicitly preserves the
skew symmetry of the generalized variance, the operator
identities can be written

L̂5V
]

]V
L̂

: ââ†L̂:5~11n!L̂1~11n!
]L̂

]n
~11n!,

$â: â†L̂:%5~11n!L̂1n
]L̂

]n
~11n!,

$: âL̂: â†%5~11n!L̂1~11n!
]L̂

]n
n,

$ââ†L̂%5nL̂1n
]L̂

]n
n. ~5.16!

C. Coherent projectors

1. Physical states

Next, we can include coherent displacements of a thermal
Gaussian in the operator basis. This allows us to compare the
Gaussian representation with earlier methods using the sim-
plest type of pure-state basis, which is the set of coherent
states. These have the property that the variance in position
and momentum is fixed and always set to the minimal un-
certainty values that occur in the ground state of a harmonic
oscillator.
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In general, we consider an M-mode bosonic field. In an
M-mode bosonic Hilbert space, the normalized coherent

states ua& are the eigenstates of annihilation operators â with
eigenvalues a. The corresponding Gaussian density matrices
are the coherent pure-state projectors:

L̂c~a!5ua&^au, ~5.17!

which are the basis of the Glauber-Sudarshan P representa-
tion. To compare this with the Gaussian notation, we rewrite
the projector using displacement operators as

L̂c~a!5e â†•au0&^0uea*• â2uau2. ~5.18!

Since the vacuum state is an example of a thermal Gaussian
and the other terms are all normally ordered by construction,
this is exactly the same as the Gaussian operator

L̂(1,a,a*,0,0,0). In other words, if we restrict the Gaussian
representation to this particular subspace, it is identical to the
Glauber-Sudarshan P representation @6#. This pioneering
technique was very useful in laser physics, as it directly cor-
responds to easily measured normally ordered products. It
has the drawback that it is not a complete basis, unless the
set of distributions is allowed to include generalized func-
tions that are not positive definite.

Other examples of physical states of this type are the dis-
placed thermal density operators. These physically corre-
spond to an ideal coherently generated bosonic mode from a
laser or atom laser source, together with a thermal back-
ground. They can be written as

L̂c~a,n̄!5L̂~1,a,a*,n̄,0,0!5e â†•a2 âa*L̂th~ n̄!ea*• â2 â†•a.
~5.19!

2. Generalized coherent projectors

There are two ways to generalize the coherent projectors
into operators that are not density matrices: either by altering

the thermal boson number n̄ so it does not correspond to a
physical state or by changing the displacements so they are
not complex conjugate to each other.

The first procedure is the most time-honored one, since it
is the route by which one can generate the classical phase-
space representations that correspond to different operator
orderings. The Wigner @4#, Q-function @5#, and s-ordered @7#
bases are very similar to Gaussian density matrices, except
with negative mean boson numbers:

L̂W~a!5L̂~1,a,a*,2I/2,0,0!,

L̂Q~a!5L̂~1,a,a*,2I,0,0!,

L̂s~a!5L̂~1,a,a*,I~s21 !/2,0,0!. ~5.20!

As pointed out in the previous subsection, it is also possible

to choose n̄ to be non-Hermitian, which would allow one to
obtain representations of coherently displaced number states.
However, there is a problem with this class of non-normally
ordered representations. Generically, they have a restricted

set of operator identities available and typically lead to
Fokker-Planck equations of higher than second order—with
no stochastic equivalents—when employed to treat nonlinear
Liouville equations.

Another widely used complete basis is the scaled
coherent-state projection operator used in the positive-P rep-
resentation @17# and its stochastic gauge extensions @18#:

L̂P~V ,a,b!5V
ua&^b*u

^b*ua&
. ~5.21!

Here we have introduced b* as a vector amplitude for the
coherent state ub*&, in a similar notation to that used previ-
ously.

This expansion has a complex amplitude V and a dynami-
cal phase space which is of twice the usual classical dimen-
sion. The extra dimensions are necessary if we wish to in-
clude superpositions of coherent states, which give rise to
off-diagonal matrix elements in a coherent state expansion.
To compare this with the Gaussian notation, the projector is
rewritten using displacement operators as

L̂P~V ,a,b!5Ve â†•au0&^0ueb• â2b•a
5L̂~V ,a,b,0,0,0!.

~5.22!

This follows since the vacuum state is an example of a
thermal Gaussian, and the other terms are all normally or-
dered by construction. From earlier work @17#, it is known

that any Hermitian density matrix r̂ can be expanded with

positive probability in the overcomplete basis L̂P , and it

follows that the same is true for L̂(lW ).
The effects of the annihilation and creation operators on

the projectors are obtained using the results for the actions of
operators on the coherent states, giving

L̂5V
]

]V
L̂

âL̂5aL̂

â†L̂5Fb1

]

]a
GL̂

L̂â5Fa1

]

]b
GL̂

L̂â†
5bL̂. ~5.23!

Note that here one has sN
50, and thus all the antinor-

mally ordered identities have just coherent amplitudes with-
out derivatives, in agreement with the general identities ob-
tained in the previous section. In treating nonlinear time
evolution, this has the advantage that some fourth-order non-
linear Hamiltonian evolution can be treated with only
second-order derivatives, which means that stochastic equa-
tions can be used. In a similar way, one can treat some ~but
not all! quadratic Hamiltonians using deterministic evolution
only. The fact that all derivatives are analytic—which is pos-
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sible since bÞa*—is an essential feature in obtaining sto-
chastic equations for these general cases @17#.

D. Squeezing projectors

1. Physical states

The zero-temperature subset of the Gaussian density op-
erators describe the set of minimum uncertainty states, which
in quantum optics are the familiar squeezed states @33,34#.
These are most commonly defined as the result of a squeez-
ing operator on a vacuum state, followed by a coherent dis-
placement:

L̂sq~a,j,0!5D̂~a!Ŝ~j!u0&^0uŜ~2j!D̂~2a!. ~5.24!

The action of the multimode squeezing operator on annihila-
tion and creation operators is to produce ‘‘antisqueezed’’ op-
erators

b̂5 Ŝ~j!âŜ†~j!5mâ1nâ†T,

b̂†T
5 Ŝ~j!â†TŜ†~j!5m*â†T

1n*â, ~5.25!

where the Hermitian matrix m(j) and the symmetric matrix
n(j) are defined as multimode generalizations of hyperbolic
functions @35,36#:

m[I1

1

2!
jj*1

1

4!
~jj*!2

1•••[cosh~ uju!,

n[j1

1

3!
jj*j1

1

5!
~jj*!2j1•••[

sinh~ uju!

uju
j.

~5.26!

Note that m and n obey the hyperbolic relation mm2nn*
5I and have the symmetry property m21n5(m21n)T

5n*m21. In the physics of Bose-Einstein condensates, b̂

and b̂† are just the Bogoliubov annihilation and creation op-
erators for quasiparticle excitations.

The Bogoliubov parameters provide a convenient way of
characterizing the minimum-uncertainty Gaussian operators.
We therefore need to relate them to the parameters in the
Gaussian covariance matrix. First consider the antinormal
density moment for a squeezed state:

^ââ†&5Tr$ââ†L̂sq~a,j,0!%

5^0uŜ~2j!D̂~2a!ââ†D̂†~2a!Ŝ†~2j!u0&

5^0u~mâ2nâ†
1a!~ â†m2 ân*1a*!u0&

5aa*1mm. ~5.27!

Similarly, the anomalous moments are

^ââT&5aaT
2mn,

^â†Tâ†&5a*Ta*2n*m. ~5.28!

Comparing these moments to those of the general Gaussian
state @Eq. ~3.14!#, we see that

n5nn*,

m52mn,

m*52n*m. ~5.29!

The relationship between the different parametrizations can
be written in a compact form if we make the definitions

m5S m 2n

2n* mT D ,

j5S 0 j

j* 0
D , ~5.30!

in terms of which the relations are

s5

1

2
m2

1

1

2
I ,

m5exp~2j !. ~5.31!

One implication of this relation is that, just as m is not inde-
pendent of n, so too n is not independent of m for the
squeezed state. From the hyperbolic relation, we see that
nT

5m*(11n)21m. The determinant of the covariance ma-
trix, required for correct normalization, reduces to the sim-
pler form

usu5uI1nu5umu2. ~5.32!

This set of diagonal squeezing projectors forms the basis
that has previously been used to define squeezed-state based
representations @9#. Because the basis elements in such bases
are not analytic and the resultant distribution not always
positive, these previous representations suffer from the same
deficiency as the Glauber-Sudarshan P representation ~as op-
posed to the positive-P representation!; i.e., the evolving
quantum state cannot always be sampled by stochastic meth-
ods.

2. Generalized squeezing operators

A non-Hermitian extension of the squeezed-state basis
@Eq. ~5.24!# can be formed by analytic continuation of its
parameters—i.e., by a replacement of the complex conju-
gates of a and j by independent matrices: a*→a1 and j*
→j1. In the Bogoliubov parametrization, this is equivalent
to the replacement n*→n1 and to m being no longer Her-
mitian. These non-Hermitian operators are in the form of
off-diagonal squeezing projectors and constitute the basis of
a positive-definite squeezed-state representation. They in-
clude as a special case (n5n1

50, m5I) the kernel of the
coherent-state positive-P expansion. Thus the completeness
of the more general representation is guaranteed by the com-
pleteness of the coherent-state subset, and we can always
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find a positive-P function for any density operator by using
the coherent-state-based representation.

E. Thermal squeezing operators

Mixed ~or classical! squeezed states are generated by ap-
plying the squeezing operators to the thermal kernel, rather
than to the vacuum projector:

L̂sq~0,j,n̄!5 Ŝ~j!L̂th~ n̄!Ŝ~2j!. ~5.33!

In this way, a pure or mixed Gaussian state of arbitrary
spread can be generated.

Once again, we can relate the covariance parameters char-
acterizing the final state to the thermal and squeezing param-
eters by comparing the moments:

^ââ†&5Tr$ââ†L̂sq~0,j,n̄!%

5Tr$~mâ2nâ†!~ â†m2 ân*!L̂th~ n̄!%

5m~ n̄1I!m1nn̄Tn*, ~5.34!

since there are no anomalous fluctuations in a thermal state.
Similarly, the squeezing moments are

^ ââT&52m~ n̄1I!n2nn̄Tm*,

^â†Tâ†&52m*n̄Tn*2n*~ n̄1I!m. ~5.35!

Thus the two parametrizations are related by

n5mn̄m1n~ n̄T
1I!n*,

m52m~ n̄1I!n2nn̄Tm*,

m*52m*n̄Tn*2n*~ n̄1I!m, ~5.36!

which can be written in a compact form as

s5mS n̄1

1

2
I Dm1

1

2
I , ~5.37!

where the thermal matrix is defined as

n̄5S n̄ 0

0 n̄TD . ~5.38!

As in the cases for the other bases, these squeezed thermal
states can be analytically continued to form a non-Hermitian
basis for a positive-definite representation. Such a represen-
tation would be suited to Bose-condensed systems, which
have a finite-temperature ~thermal! character as well as a
quantum ~squeezed, or Bogoliubov! character. Furthermore,
the lack of a coherent displacement is natural in atomic sys-
tems, where superpositions of total number are unphysical.

F. Displaced thermal squeezing operators

Finally, the most general Gaussian density matrix is ob-
tained as stated earlier, by coherent displacement of a
squeezed thermal state:

L̂sq~a,j,n̄!5D̂~a!Ŝ~j!L̂th~ n̄!Ŝ~2j!D̂~2a!. ~5.39!

In this way, a pure or mixed Gaussian state of arbitrary lo-
cation as well as spread can be generated. In terms of the
normally ordered Gaussian notation, the displacement and
covariance of this case are given by

s5mS n̄1

1

2
I Dm1

1

2
I ,

a5S a

a*
D . ~5.40!

VI. TIME EVOLUTION

The utility of the Gaussian representation arises when it is
used to calculate real or imaginary time evolution of the
density matrix. To understand why it is useful to treat both
types of evolution with the same representation, we recall
that the quantum theory of experimental observations gener-
ally requires three phases: state preparation, dynamical evo-
lution, and measurement. It is clearly advantageous to carry
out all three parts of the calculation in the same representa-
tion, in order that the computed trajectories and probabilities
are compatible throughout. Many-body state preparation is
nontrivial and often involves coupling to a reservoir, which
may result in a canonical ensemble. This can be computed
using imaginary time evolution, as explained below. Dy-
namical evolution typically requires a real-time master equa-
tion, while the results of a measurement process are operator
expectation values, which were treated in Sec. III.

A. Operator Liouville equations

Either real or imaginary time evolution occurs via a Liou-
ville equation of generic form:

]

]t
r̂~ t !5L̂„r̂~ t !…, ~6.1!

where the Liouville superoperator typically involves pre- and

post-multiplication of r̂ by annihilation and creation opera-
tors. There are many examples of this type of equation in
physics ~and, indeed, elsewhere!. We will consider three ge-
neric types of equation here: imaginary-time equations used
to construct canonical ensembles, unitary evolution equa-
tions in real time, and general nonunitary equations used to
evolve open systems that are coupled to reservoirs.

We often assume that, initially, the steady-state density
matrix is in a canonical or grand canonical ensemble of the
form

r̂u~t !5e2tĤ/\, ~6.2!
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where r̂u(t) is unnormalized, t5\/kT , and we can include
any chemical potential in the Hamiltonian without loss of
generality. If this is not known exactly, the ensemble can
always be calculated through an evolution equation in t ,
whose initial condition is a known high-temperature en-
semble. This equation can also be expressed as a master
equation, though not in Lindblad form. The resulting equa-
tion in ‘‘imaginary time,’’ or t , can be written using an an-
ticommutator:

\
]

]t
r̂u52

1

2
@Ĥ , r̂u#1 . ~6.3!

Here the initial condition is just the unit operator.
By comparison, the equation for purely unitary-time evo-

lution under a Hamiltonian Ĥ is

i\
]

]t
r̂5@Ĥ , r̂# . ~6.4!

More generally, one can describe either the equilibration
of an ensemble or nonequilibrium behavior via a master
equation representing the real-time dynamics of a physical
system. Equations for damping via coupling of a system to

its environment must satisfy restrictions to ensure that r̂ re-
mains positive definite. In the Markovian limit, the resulting
form is known as the Lindblad form @37#

]r̂

]t
52

i

\
@Ĥ , r̂#1(

K
~2ÔKr̂ÔK

†
2@ r̂ ,ÔK

† ÔK#1!,

~6.5!

which consists of a commutator term involving the Hermit-

ian Hamiltonian operator Ĥ , as well as damping terms in-

volving an anticommutator of the arbitrary operators ÔK .

B. Phase-space mappings

While the general operator equations become exponen-
tially complex for large numbers of particles and modes, the
use of phase-space mappings provides a useful tool for map-
ping these quantum equations of motion into a form that can
be treated numerically, via random sampling techniques.

Using the operator identities in Eq. ~4.15!, one can trans-
form the operator equations in any of these three cases into
an integro-differential equation

]r̂~ t !

]t
5E P~lW ,t !@LAL̂~lW !#dplW , ~6.6!

where the differential operator LA is of the general form

LA5U1A j] j1

1

2
D i j] i] j , ~6.7!

with derivative operators to the right, and i , j50, . . . ,p for
the case of a p-parameter Gaussian. We only consider cases

where terms with derivatives of order higher than 2 do not
appear, which implies a restriction on the nonlinear Hamil-
tonian structure.

We next apply partial integration to Eq. ~6.6!, which, pro-
vided boundary terms vanish, leads to a Fokker-Planck equa-
tion for the distribution,

]

]t
P~lW ,t !5LNP~lW ,t !, ~6.8!

where the differential operator LN has derivatives to the left:

LN5U2] jA j1

1

2
] i] jD i j . ~6.9!

Such Fokker-Planck equations have equivalent path-integral
and stochastic forms, which can be treated with random sam-
pling methods.

For example, in the Hamiltonian case, if the original

Hamiltonian ĤN( â, â†) is normally ordered ~annihilation op-
erators to the right!, then for a positive-P representation one
can immediately obtain

LN5

1

i\
@HN~a,b2a!2HN~b,a2b!# . ~6.10!

With the use of additional identities in V to eliminate the
potential term U, the Fokker-Planck equation can be sampled
by stochastic Langevin equations for the phase-space vari-
ables. Note that this potential term only arises with
imaginary-time evolution. The first-order derivative ~drift!
terms in the Fokker-Planck equation map to deterministic
terms in the Langevin equations, and the second-order de-
rivative ~diffusion! terms map to stochastic terms. To obtain
stochastic equations, we follow the general stochastic gauge
technique @18#, which in turn is based on the positive-P
method.

To simplify notation, we have left the precise form of the
derivatives in the Fokker-Planck equation as yet unspecified.
Different choices are possible because the Gaussian operator
kernel is an analytic function of its parameters. The standard
choice in the positive-P method, obtained through the
dimension-doubling technique @17#, is such that when the
equation is written in terms of real and imaginary deriva-
tives, all the coefficients are real and the diffusion is positive
definite. This ensures that stochastic sampling is always pos-
sible. Other choices are also possible and useful if analytic
solutions are desired.

The structure of the noise terms in the stochastic equa-
tions is given by the noise matrix B, which is defined as a
p3p8 complex matrix square root:

D5BBT. ~6.11!

Since this is nonunique, one can introduce diffusion gauges

from a set of matrix transformations U@f(lW )# with UUT
5I.

It is also possible to introduce arbitrary drift gauge terms g

which are used to stabilize the resulting stochastic equations
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dV

dt
5V@U1g•z~ t !# ,

dl i

dt
5A i1B i j@z j~ t !2g j# ~ i , j.0 !. ~6.12!

These are Ito stochastic equations with noise terms defined
by the correlations

^z i~ t !z j~ t8!&5d~ t2t8!d i j . ~6.13!

We note here that the use of stochastic equation sampling
as described here represents only one possible way to sample
the underlying Fokker-Planck equation. Other ways are pos-
sible, including the usual Metropolis and diffusion Monte
Carlo methods found in imaginary-time many-body theory.

In the remainder of this section, we consider quadratic
Hamiltonians or master equations. We show that under the
Gaussian representation, these give rise to purely determin-
istic or ‘‘drift’’ evolution. We first treat the thermal case, then
derive an analytic solution to the dynamics governed by a
general master equation that is quadratic in annihilation and
creation operators. Following this are several examples
which show how the analytic solution can be applied to
physical problems. While these examples can all be treated
in other ways, they demonstrate the technique, which will be
extended to higher-order problems subsequently.

C. General quadratic master equations

Any quadratic master equation can be treated exactly with
the Gaussian distribution. To demonstrate this, we can cast
any quadratic master equation into the form

]

]t
r̂5A (0)r̂1Am

(1) : âmr̂:1Bm
(1)$âm : r̂:%1Anm : âmân

†r̂:

1Bnm$âmân
† : r̂:%1Cnm$âm : ân

†r̂:%,

5A (0)r̂1Tr@A (1)T: â r̂:1B (1)T$â: r̂:%#

1Tr@A: â â†r̂:1B$â â†: r̂:%1C$â: â†r̂:%# ,

~6.14!

where the trace is a matrix structural operation ~indicated by
the double underline!, not a trace over the operators. Here
A (0) is a real number, while A (1), and B (1) are complex col-
umn vectors with the generalized Hermitian property of
A (1)*T

5A (1)1, B (1)*T
5B (1)1.

The quadratic terms A , B , and C are complex-number
matrices that have the implicit superscript (2) dropped for
notational simplicity. By construction, A and B possess all
the skew symmetries of s: A5A1 and B5B1; i.e., they are
Hermitian in the generalized sense defined earlier. The ma-
trix C possesses only some of these skew symmetries—
namely, that the upper right and lower left blocks are each
symmetric. Furthermore, the Hermiticity of the density op-

erator requires that the matrix Hermitian conjugate be equal
to the generalized Hermitian conjugate: A*T

5A1, B*T

5B1, and C*T
5C1.

By expanding r̂ in the general Gaussian basis and apply-
ing the operator identities in Eq. ~4.15!, we obtain a Liouville
equation for the phase-space distribution P that contains only
zeroth- and first-order derivatives. Since this can be treated
by the method of characteristics, the time evolution is deter-
ministic: every initial value corresponds uniquely to a final
value, without diffusion or stochastic behavior. This can also
be solved analytically, since the time evolution resulting
from a quadratic master equation is linear in the Gaussian

parameters lW .

1. Imaginary-time evolution

We consider this case in detail, even though it is relatively
straightforward, because it gives an example of phase-space
evolution which would require diffusive or stochastic equa-
tions using previous methods. The equation in ‘‘imaginary
time,’’ or t , can be written using an anticommutator. Since
we are only considering linear evolution here, the relevant
Hamiltonian is always diagonalizable and can be written as

Ĥ5\: â†vâ: . ~6.15!

Next, we need to cast the unnormalized density operator
equation

\
]

]t
r̂u52

1

2
@Ĥ , r̂u#1 ~6.16!

into differential form. All the terms are of mixed form, in-
cluding both normal- and anti-normal-ordered parts, so the
master equation can be written as

]

]t
r̂u5Tr@C$â: â†r̂u :%#1A (0)r̂u , ~6.17!

where

C52

1

2
Fv 0

0 vTG ,

A (0)
52Tr v. ~6.18!

Using the identities in Eq. ~4.15!, one finds the corre-
sponding differential operator to be

LAL̂5FA (0)L̂1Tr CS 11sN
]

]s D L̂sG . ~6.19!

This leads to the following equation for the distribution, after
integration by parts ~which requires mild restrictions on the
initial distribution!:

]P

]t
5(

k
vkF ]

]V
V1

]

]nk

~11nk!GnkP . ~6.20!
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Solving first-order Fokker-Planck-like equations in this form
leads to the deterministic characteristic equations

V̇52(
k

vkVnk,

ṅk52vknk~11nk!. ~6.21!

Integrating the deterministic equation for the mode occu-
pation nk leads to the Bose-Einstein distribution also encoun-
tered in Eq. ~5.11!:

nk5

1

evkt
21

. ~6.22!

The weighting term occurs because this method of obtaining
a thermal density matrix results in an unnormalized density
matrix with trace equal to V(t). From integration of the
above equation one finds, as expected from Eq. ~5.8!, that

Tr@ r̂u#5V~t !5V0Pk@12e2vkt#21. ~6.23!

2. Real-time evolution

In the Lindblad form of a master equation which is rel-
evant to real-time evolution, further restrictions apply to its
structure than just the symmetries given above.

The preservation of the trace of r̂ in real-time master
equations requires that A (1)

52B (1). In addition, we require
that Tr B52Tr(A1C)5A (0) and that the matrix sum D

5A1B1C is anti skew symmetric: D1
52D . The result-

ant differential equation for P is simplified by the fact that
most of the symmetric terms from the identities are multi-
plied by the antisymmetric D and thus give a trace of zero. In
particular, the zeroth-order terms will sum to zero, leaving

]P

]t
52F ]

]a
~E a1A (1)!1Tr

]

]s
~2B1E s1s E1!GP ,

~6.24!

where E52A1C522B2C1.
A Fokker-Planck equation such as this that contains only

first-order derivatives describes a drift of the distribution and
can be converted into equivalent deterministic equations for
the phase-space variables:

ȧ5A (1)
1E a ,

ṡ52B1E s1s E1. ~6.25!

This system of linear ordinary differential equations has
the general solution

a~ t !5eEt~a~0 !2a0!1a0,

s~ t !5eEt~s~0 !2s0!eE1t
1s0, ~6.26!

where a0 satisfies E a0
52A (1), and the skew-symmetric

matrix s0 satisfies E s0
1s0 E1

522B . Note that if E is

Hermitian and negative definite, then the dynamics will con-
sist of some initial transients with a decay to the steady state:
a(`)5a0, s(`)5s0.

The first- and second-order physical moments also have a
simple analytic form

^â&~ t !5eEt~^â&~0 !2a0!1a0,

^: â â†:&~ t !5eEt~^: â â†:&~0 !2F~0 !!eE1t
1F~ t !,

~6.27!

where the steady state with coherent transients is given by

F~ t !5s0
1^â&~ t !^â†&~ t !2I . ~6.28!

For a quadratic master equation in Lindblad form, the
Hamiltonian and damping operators can be expressed as

Ĥ5Tr~H: â â†: !,

ÔK5OK
* â ,

ÔK
†

5 â† OK , ~6.29!

where, in block form,

H5S H(1) H(2)

H(2)* H(1)TD ,

OK5S OK
(1)

OK
(2)D ,

OK
*5~OK

(1)*,OK
(2)*! . ~6.30!

Thus the coefficients of density terms : ââ†: appear in H(1)

and the coefficients of squeezing terms ââT appear in H(2).
The commutator term and each of the damping terms will
provide a contribution to the matrices A , B , and C , which
we can label respectively as AH , AK , etc. The contributions
from the Hamiltonian term are thus

AH5S 0 iH(2)

2iH(2)* 0
D ,

CH5S 22iH(1) 0

0 2iH(1)TD , ~6.31!

and BH52AH . With only the Hamiltonian ~unitary! contri-
butions, the matrix E appearing in the general solution is
anti-Hermitian.

In contrast, the contributions from the damping terms are

AK5S ~OK
(2)OK

(2)*!T
2OK

(1)OK
(2)*

2OK
(2)OK

(1)* OK
(2)OK

(2)* D ,

BK5S OK
(1)OK

(1)* 2OK
(1)OK

(2)*

2OK
(2)OK

(1)* ~OK
(1)OK

(1)*!TD , ~6.32!
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and CK52AK2BK . With only these damping contribu-
tions, the matrix E is Hermitian.

D. Bogoliubov dynamics

As an example of how the dynamics of a linear problem
can be solved exactly with these methods, consider the qua-
dratic Hamiltonian

Ĥs5\ (
i , j51

m
i

2
@x i jâ i

†â j
†
2x i j

*â iâ j# , ~6.33!

where x is a complex symmetric matrix. In the single-mode
case, this Hamiltonian describes two-photon down-
conversion from an undepleted ~classical! pump @38#. The
full multimode model describes quasiparticle excitation in a
BEC within the Bogoliubov approximation @39#. Alterna-
tively, it may be used to describe the dissociation of a large
molecular condensate into its constituent atoms @40#. Recast-
ing this system into the general master-equation form @Eq.
~6.14!#, we find that the constant and linear terms vanish,
C50, and

E522B52A5F 0 x*

x 0
G . ~6.34!

The general solution @Eq. ~6.26!# can then be written

a~ t !5F cosh*~ uxut ! x*
sinh~ uxut !

uxu

sinh~ uxut !

uxu
x cosh~ uxut !

G a~0 !,

s~ t !5F cosh*~ uxut ! x*
sinh~ uxut !

uxu

sinh~ uxut !

uxu
x cosh~ uxut !

G S s~0 !2

1

2
I D

3F cosh*~ uxut ! x*
sinh~ uxut !

uxu

sinh~ uxut !

uxu
x cosh~ uxut !

G1

1

2
I , ~6.35!

where the matrix cosh and sinh functions are as defined in
Eq. ~5.26!. If the system starts in the vacuum, for example,
then the first-order moments will remain zero, whereas the
second-order moments will grow as

^: ââ†:&5

1

2
cosh*~2uxut !2

1

2
I,

^ââT&5

1

2
x*

sinh~2uxut !

uxu
. ~6.36!

E. Dynamics of a Bose gas in a lossy trap

As a second example, we consider a trapped, noninteract-
ing Bose gas with loss modeled by an inhomogeneous cou-
pling to a zero-temperature reservoir @37#:

]

]t
r̂52i@v i jâ i

†â j , r̂#1

1

2
g i j~2 â ir̂ â j

†
2 â j

†â ir̂2 r̂ â j
†â i!,

~6.37!

where v is an Hermitian matrix that describes the mode
couplings and frequencies of the isolated system, and g is an
Hermitian matrix that describes the inhomogeneous atom
loss. Recasting this in the general form, we find that A (0)

5Tr g, A50, and

B5

1

2
FgT 0

0 g
G , C52iF ṽ 0

0 2ṽ*
G , ~6.38!

where ṽ5v2igT/2. The block-diagonal form of these ma-
trices allows us to write the solution to the phase-space equa-
tions as

a~ t !5e2iṽta~0 !,

a1~ t !5a1~0 !e iṽ†t,

n~ t !5e2iṽtn~0 !e iṽ†t,

m~ t !5e2iṽtm~0 !e2iṽTt,

m1~ t !5e iṽ†Ttm1~0 !e iṽ†t. ~6.39!

If g is positive definite and commutes with v, then the dy-
namics will be transient, and all these moments will decay to
zero.

F. Parametric amplifier

A single-mode example that includes features of the pre-
vious two systems is a parametric amplifier consisting of a
single cavity mode parametrically pumped ~at rate x) via
down-conversion of a classical input field and subject to one-
photon loss ~at rate g) @41#:

]

]t
r̂5

1

2
@x â†â†

2x*â â ,r#1

1

2
g~2 â r̂ â†

2 â†â r̂2 r̂ â†â !.

~6.40!

This corresponds to phase-space equations with

A5

1

2
F 0 x*

x 0
G , B5

1

2
F g 2x*

2x g
G , C52

g

2
F1 0

0 1
G ,

~6.41!

giving the solutions, for real x ,
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a~ t !5e2gt/2F cosh xt sinh xt

sinh xt cosh xt
Ga~0 !,

s~ t !5e2gt/2F cosh xt sinh xt

sinh xt cosh xt
G~s~0 !2s0!

3F cosh xt sinh xt

sinh xt cosh xt
Ge2gt/2

1s0,

s0
5

1

g2
24x2 Fg2

22x2 xg

xg g2
22x2G , ~6.42!

which are valid for gÞ2x . For g.2x , the system reaches

the steady state a50, s5s0—i.e., ^â†â&0
5n0

52x2/(g2

24x2) and ^â â&0
5m0

5xg/(g2
24x2).

While this result is well known and can be obtained in
other ways @41,42#, it is important to understand the signifi-
cance of the result in terms of phase-space distributions. In
all previous approaches to this problem using phase-space
techniques, the dynamically changing variances meant that
all distributions would necessarily have a finite width and
thus a finite sampling error. However, the Gaussian phase-
space representation is able to handle all the linear terms in
the master equation simply by adjusting the variance of the
basis set. This implies that there is no sampling error in a
numerical simulation of this problem. Sampling error can
only occur if there are nonlinear terms in the master equa-
tion. These issues relating to nonlinear evolution will be
treated in a subsequent publication.

VII. CONCLUSION

The operator representations introduced here represent the
largest class of bosonic representations that can be con-
structed using an operator basis that is Gaussian in the el-
ementary annihilation and creation operators. In this sense,
they give an appropriate generalization to the phase-space
methods that started with the Wigner representation. There
are a number of advantages inherent in this enlarged class.

Since the basis set is now very adaptable, it allows a
closer match between the physical density matrix and appro-
priately chosen members of the basis. This implies that it
should generally be feasible to have a relatively much nar-
rower distribution over the basis set for any given density
matrix. Thus, there can be great practical advantages in using
this type of basis for computer simulations. Sampling errors

typically scale as 1/AT for an ensemble of T trajectories, so
reducing the sampling error gives potentially a quadratic im-
provement in the simulation time through reduction in the
ensemble size. As many-body simulations are extremely
computer intensive, both in real and imaginary time, this
could provide substantial improvements. Given the currently
projected limitations on computer hardware performance,
improvement through basis refinement may prove essential
in practical simulations.

We have derived the identities which are essential for

first-principles calculations of the time evolution of quantum

systems, both dynamical ~real time! and canonical ~imagi-

nary time!. Any quadratic master equation has an exact so-

lution than can be written down immediately from the gen-

eral form that we have derived. Higher-order problems with

nonlinear time evolution can be solved by use of stochastic

sampling methods, since we have shown that all Hamilto-

nians up to quartic order can be transformed into a second-

order Fokker-Planck equation, provided a suitable gauge is

chosen that eliminates all boundary terms. Because the

Gaussian basis is analytic, methods previously used for the

stochastic gauge positive-P representation are therefore ap-
plicable for the development of a positive semidefinite diffu-
sion and corresponding stochastic equations @17,18# here.
The ability to potentially transform all possible Hamiltonians
of quartic order into stochastic equations did not exist in
previous representations.

However, we can point already to a clear advantage to the
present method in terms of deterministic evolution. For ex-
ample, the initial condition and complete time evolution of
either a squeezed state ~linear evolution in real time! or a
thermal state ~linear evolution in imaginary time!, with a
quadratic master equation, are totally deterministic with the
present method. By comparison, any previously used tech-
nique would result in stochastic equations or stochastic ini-
tial conditions, with a finite sampling error, in either case.
While this is not an issue when treating problems with a
known analytic solution, it means that in more demanding
problems it is possible to develop simulation techniques in
which the quadratic terms only give rise to deterministic
rather than random contributions to the simulation, thus re-
moving the corresponding sampling errors.

Finally, we note that the generality of the Gaussian for-
malism opens up the possibility of extending these represen-
tations to fermionic systems.
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APPENDIX A: BOSONIC IDENTITIES

To obtain the operator identities required to treat the time
evolution of a general Gaussian operator, we need a set of
theorems and results about operator commutators. These can
then be used to obtain the result of the action of any given
quadratic operator on any Gaussian operator, as described in
the main text. We use the following bosonic identities which
are known in the literature, but reproduced here for ease of
reference

Commutation. Theorem ~I!: Given an analytic function

p( â) with a power series expansion valid everywhere, the
following commutation rules hold:
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@p~ â!, â i
†#5

]p~ â!

] â i

,

@ â i ,p~ â†!#5

]p~ â†!

] â i
†

. ~A1!

Proof. Using a Taylor series expansion of p( â) around the

origin in â i , one can evaluate the commutator of each term
in the power series. Hence,

@p~ â!, â i
†#5(

n
F p̂n

n!
â i

n , â i
†G5 (

n.0

p̂n

~n21 !!
â i

n21
5

]p~ â!

] â i

.

~A2!

The second result follows by taking the Hermitian conju-
gate.

Ordering. Theorem ~II!: Given any analytic normally or-

dered operator function p( â†, â) with a power series expan-
sion, the following ordering rules hold:

p~ â†, â!~ â i
†!n

5F â i
†
1

]

] â i

G n

p~ â†, â!,

~ â i!
np~ â†, â!5p~ â†, â!F â i1

]Q

] â i
†G n

. ~A3!

Here the left arrow of the differential operator indicates the
direction of differentiation. We can write these two identities
in a unified form by introducing an antinormal ordering

bracket, denoted $: p̂: â%, which places all operators in anti-

normal order relative to the normal term : p̂: . With this no-
tation, we can write a single ordering rule for all cases:

$:p~ â !: âm%5:F âm1

]

] âm
† Gp~ â !: . ~A4!

Proof. Since â i commutes with all other annihilation op-

erators and â i
† commutes with creation operators, theorem ~I!

also holds for any normally ordered operator p( â†, â), with a
power series expansion, provided derivatives are interpreted
as normally ordered also. The first case above then follows
directly from theorem ~I!:

p~ â†, â!â i
†
5F â i

†
1

]

] â i

Gp~ â†, â!. ~A5!

The required result then follows by using the equation above
n times, recursively. The second result is the Hermitian con-
jugate of the first. The last result, Eq. ~A4!, is simply a uni-
fied form that recreates the previous two equations. This can
be applied recursively, since the right-hand side of this equa-
tion is always normally ordered by construction.

Corollary. The antinormal combination of a Gaussian op-

erator L̂g( â) and any single creation or annihilation operator
is given by a direct application of the ordering theorem, Eq.
~A3!:

$:L̂g~ â !: âm%5:@ âm2smn
21d ân#L̂g~ â !: . ~A6!

It should be noticed here that the above expression as-
sumes the covariance has the usual symmetry: then every
operator occurs twice in the Gaussian quadratic term, which
cancels the factor of two in the exponent.

In the main text, these results are used directly to obtain
all the required operator identities on the Gaussian operators.

APPENDIX B: GAUSSIAN INTEGRALS

In deriving the normalization, moments, and operator
identities of the Gaussian representations, we have had to
calculate nonstandard integrals of complex, multidimen-
sional Gaussian functions. The basic Gaussian integral that
must be evaluated is of the form

I5E d2Mze2dz1s21dz/2, ~B1!

where, as in Eq. ~3.2!, the covariance s is a 2M32M non-
Hermitian matrix, and dz and dz1 are complex vectors of
length 2M . There are two major differences between this
expression and the better known form of the Gaussian inte-
gral. First, the vectors dz5z2a and dz1

5z*2a1 contain
offsets which are not complex conjugate: a*Þa1. Second,
the vector z does not consist of 2M independent complex
numbers. Rather, it contains M independent complex num-
bers z and their conjugates z*.

To evaluate such an integral, we first write it explicitly in
terms of real variables as

I5E d2Mze2dz1s21dz/2
5E d2Mxe2(xT

2x0
T

)t21(x2x0)/2,

~B2!

where x5L z5(Re z,Im z), x05L a5((a1a1)/2,(a
2a1)/2i), and t5L s L†, with the transformation matrix

L5

1

2
S I I

2iI iI
D . ~B3!

Note that the offset vector x0 will be complex, unless a*
5a1. We may remove it by changing variables u5x2x0

and using contour integration methods to convert the integral
back into an integral on a real manifold.

With the offset removed, the square of the integral can be
written in the form of a standard multidimensional Gaussian:

I2
5E d2Mxd2Mye2xT t21 x/2e2yT t21 y /2

5E d4Mue2u* t21 u/2, ~B4!
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where u5x1iy . Assuming that the matrix t21 can be di-
agonalized, l5U t21 U†, we can factor the integral into a
product of 2M integrals over the complex plane:

I2
5 )

m51

2M

E d2wme2wm
*lmmwm/2, ~B5!

where w5U u . These integrals can be evaluated by a trans-
formation to radial coordinates, giving

I2
5 )

m51

2M
2p

lmm
5~2p !2Mutu, ~B6!

which holds provided that all the Re lmm>0—i.e., that all
eigenvalues of t have a positive real part. Finally, noting that
utu5uL21uusuuL21†u5222Musu, we find that

I5pMAusu, ~B7!

with the condition that the eigenvalues of usu have a positive
real part.
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