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We develop a general framework to assess capabilities and limitations of the Gaussian toolbox in continuous-
variable quantum information theory. Our framework allows us to characterize the structure and properties of
quantum resource theories specialized to Gaussian states and Gaussian operations, establishing rigorous methods
for their description and yielding a unified approach to their quantification. We show in particular that, under
a few intuitive and physically motivated assumptions on the set of free states, no Gaussian quantum resource
can be distilled with free Gaussian operations, even when an unlimited supply of the resource state is available.
This places fundamental constraints on state manipulations in all such Gaussian resource theories. We discuss in
particular the applications to quantum entanglement, where we extend previously known results by showing that
Gaussian entanglement cannot be distilled even with Gaussian operations preserving the positivity of the partial
transpose, as well as to other Gaussian resources such as steering and optical nonclassicality. A comprehensive
semidefinite programming representation of all these resources is explicitly provided.
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I. INTRODUCTION

Continuous-variable (CV) systems of quantum harmonic
oscillators play a prominent role in quantum science, due to
their ubiquitous presence, outstanding theoretical importance,
and practical relevance in many quantum technologies [1–3].
Among them, so-called Gaussian states are privileged as being
remarkably affordable to produce and control in the laboratory,
while retaining, together with Gaussian operations, a signif-
icant part of the power of quantum information processing
[3–6]. However, such a restricted set of resources is insuffi-
cient to realize fundamental tasks like fault-tolerant quantum
computation [7], entanglement distillation [8–10], error cor-
rection [11], or optimal metrology [12], and needs to be supple-
mented by nonlinear elements, e.g., photon detectors [7,13,14],
to achieve universality. A thorough investigation of properties
and limitations of the Gaussian paradigm is thus crucial to
deepen our theoretical understanding of quantum optics and
information and to set suitable experimental benchmarks in
practical tasks.

The formalism of quantum resource theories [15–23] lends
itself well to the investigation of such features and restrictions.
Different quantum phenomena have been recently recognized
and characterized as resources, including entanglement [24],
asymmetry [25,26], athermality [27], purity [28], nonlocal-
ity [29,30], coherence [25,31–33], nonclassicality [34–37],
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Einstein-Podolsky-Rosen (EPR) steering [38], contextuality
[39], magic [40,41], non-Markovianity [42], and noiseless
classical or quantum communication in quantum Shannon
theory [43]. However, since each such resource may require
a completely different approach to describe it, the alluring
task of establishing a unified framework is very challeng-
ing. Although some general statements about quantum re-
source theories can be derived from suitable assumptions
[15,17,20–22,44], most research to date focused on finite-
dimensional scenarios, and despite an increasing interest in
developing a resource-theoretic approach to quantum optics
[45–50], there are no results that apply to a large class of
resources in infinite dimensions.

In this paper we extend the general formalism of resource
theories to CV systems, by introducing a framework for the
study of resources whose free states (Sec. II) and operations
(Sec. III) are Gaussian. This allows us to exploit the general
resource-theoretic formalism to ultimately assess how power-
ful Gaussian states and operations are in CV quantum infor-
mation theory. We show that all Gaussian resource theories
which satisfy a set of physically motivated conditions share
a common structure, allowing us to simplify the description
and quantification of many fundamental resources such as
entanglement, EPR steering, and nonclassicality (squeezing).
We establish universal constraints on state transformations
under free Gaussian operations in any such resource theory,
showing in Sec. IV that the operational task of resource
distillation is impossible if one is restricted to Gaussian states
and free Gaussian operations. In particular, we generalize
the no-go theorem of Ref. [10] by showing that Gaussian
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entanglement cannot be distilled by Gaussian operations
preserving the positivity of partial transpose—a larger class
than previously considered—and we prove equivalent no-
go results for other relevant Gaussian resources. Detailed
examples and applications are illustrated in Sec. V. We discuss
our main results below, deferring technical derivations to the
appendices.

II. FREE STATES

Let us briefly recall the basics of Gaussian states [3,6,51].
Mathematically, an n-mode CV system is identified by a
collection of canonical operators x1, p1, . . . , xn, pn, which we
can arrange in a vector r := (x1, . . . , xn, p1, . . . , pn)T . The
canonical commutation relations [xj , pk] = iδjk can then be

cast as [r, rT ] = i�, where � := ( 0 1
−1 0

)
is the symplectic

form. Denoting by Gn the set of n-mode Gaussian states, any
ρ := ρG[V, s] ∈ Gn is fully specified by its (real) displacement
vector s := Tr[r ρ] and its (real, symmetric) covariance matrix
V := Tr[{r − s, rT − sT } ρ] with {·, ·} being the anticommu-
tator. Letting M2n(R) denote the set of all real 2n × 2n

matrices, we will call

QCMn := {V ∈ M2n(R) | V = V T , V � i�} (1)

the set of quantum covariance matrices, i.e., those V that satisfy
the Robertson-Schrödinger uncertainty principle [52]. Note
that any such V ∈ QCMn is strictly positive definite [51].

Resource theories are built upon two main notions [17]: (i)
the subset F of free states, i.e., those which do not possess
the given resource; and (ii) the subset O of free operations,
i.e., those quantum channels unable to generate the resource,
specified by the physical constraints of the theory. As free
states can be prepared by free operations at no cost, during
a protocol one may add ancillary systems to one’s original
system; following [17], we will refer to such systems as
spatially separated.

In any resource theory, there may be different ways to define
the set of free states (think, e.g., of entanglement theory, in
which one needs to specify a partition to identify separable
states). To address this, we assume that each of the spatially
separated subsystems j = 1, . . . , l is fully specified by a set
λj of variables, which can then be grouped in a single vector
λ := (λ1, . . . , λl ). For instance, one such variable will be the
total number of modes nj of each subsystem j . For a CV system
made of l spatially separated subsystems identified by a vector
of variables λ, we then denote byF (λ) the subset of free states,
and by F := ⋃

λ F (λ) the set of all free states over arbitrary
collections of spatially separated subsystems.

Since we care about the Gaussian restriction of any resource
theory, we will focus on the setFG := ⋃

λ FG(λ) of free Gaus-
sian states, whereFG(λ) := F (λ) ∩ GN , with N = ∑

j nj , for
a fixed λ, and the corresponding set of free covariance matrices
is

VF (λ) := {V ∈ M2N (R) | ∃ s ∈ R2N : ρG[V, s] ∈ F (λ)}.
(2)

There are some standard assumptions about the set of
free states, formalized as Postulates I–V in [17], that have a
sound theoretical basis and apply to a wide range of theories.

We will therefore regard them as a safe starting point to
establish a set of fundamental requirements for Gaussian
resource theories. Before proceeding further, let us make a first
working assumption that will simplify the following analysis
considerably:

Postulate 0. The set of free states is invariant under dis-
placement operations.

To justify this assumption, note that displacement opera-
tions can be applied to any system by adding an ancillary
system in a highly excited coherent state, and combining
the two systems at a low-transmissivity beam splitter [53].
From an experimental standpoint, coherent states and beam
splitters are relatively cheap tools. Crucially, Postulate 0
implies that the set of free Gaussian states is now fully
described by the corresponding covariance matrices, so we
can write VF (λ) = {V ∈ M2N (R) | ρG[V, 0] ∈ F (λ)} and
FG(λ) = {ρG[V, s] | V ∈ VF (λ), s ∈ R2N }. The following
assumptions define the structure of the theory for composite
systems.

Postulate I. The set of free states is closed under tensor
products of spatially separated subsystems.

Postulate II. The set of free states is closed under partial
traces over spatially separated subsystems.

Postulate III. The set of free states is closed under permu-
tations of spatially separated subsystems.

These three properties carry over to the restricted set of free
Gaussian states FG, since it is well known that Gaussian states
are also closed under the above operations. Postulate I can be
rewritten symbolically as F (λ) ⊗ F (λ′) ⊆ F (λ ⊕ λ′), where
for λ = (λ1, . . . , λl ) and λ′ = (λ1, . . . , λl′ ) one sets λ ⊕ λ′ :=
(λ1, . . . , λl, λ

′
1, . . . , λ

′
l′ ). At the level of covariance matrices,

this translates to VF (λ) ⊕ VF (λ′) ⊆ VF (λ ⊕ λ′). Similarly,
we can formulate Postulate II as �VF (λ ⊕ λ′) �T ⊆ VF (λ),
where � is the projector onto the subsystems corresponding
to λ′.

Apart from the above postulates, one of the the most basic
assumptions that we can make about the unrestricted set (i.e.,
before the intersection with GN ) of free states is undoubtedly
convexity. This is justifiable as in most physically relevant
cases we do not expect an increase in quantum resources under
classical mixing [54]. At the level of all states, we have then:

Postulate IV. For all λ, the set of free states F (λ) is convex.
Our final postulate will pertain to the closedness of the set of

free states in the Banach space T (HN ) of trace-class operators
acting on the Hilbert space HN , endowed with the trace
norm ‖ · ‖1.

Postulate V. For all λ, the set of free states F (λ) ⊆ T (HN )
is norm-closed.

Since infinite-dimensional spaces admit many legitimate
linear topologies with respect to which we can define closed-
ness, the above choice of the norm topology may seem rather
arbitrary. However, it turns out that in the present context
any other reasonable choice still yields the same result. In
fact, Mackey’s theorem [55, Thm. 8.9] ensures that all linear
topologies on T (HN ) that agree on the set of continuous
linear functionals possess the same closed convex sets. To
see why this is physically relevant, remember that the norm-
continuous linear functionals on T (HN ) can be written as
ρ 
→ Tr[ρA], where A ∈ B(HN ) is a generic bounded oper-
ator, i.e., an observable. Summarizing the above discussion:
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Postulates IV and V together imply that all sets of free states
F (λ) and FG(λ) are closed with respect to any linear topology
whose corresponding continuous linear functionals are (all) the
observables. For further details on the issue of closedness of
the relevant sets, refer to Appendix A.

Let us now discuss some consequences of the above as-
sumptions in the Gaussian setting. In order to do so, it is
important to understand the topology of the set of Gaussian
states in some detail. In Appendix A, we show that Gaussian
states form a closed set with respect to the trace norm topology
(Lemma 1), and that the map (V, s) 
→ ρG[V, s] that sends
a pair formed by a quantum covariance matrix and a real
vector to the corresponding Gaussian state is continuous with
respect to the same topology (Lemma 2). A key difference
between a Gaussian resource theory satisfying Postulates I–V
and a corresponding finite-dimensional theory is that the set of
Gaussian states is nonconvex; henceFG(λ) cannot be expected
to be convex either. We have instead a weaker property that
we dub Gaussian convexity: if a trace norm limit of convex
combinations of free Gaussian states is a Gaussian state, then it
must be free. Importantly, this implies the upward closedness
of the set of free covariance matrices VF (λ), formalized as
follows.

Proposition 1. When Postulates IV and V hold, the setVF (λ)
is topologically closed as well as upward closed, in the sense
that, if V ∈ VF (λ) and W � V , then W ∈ VF (λ).

Another desirable property of the set of free covariance
matricesVF (λ) is for itself to be convex. Interestingly, this does
not follow directly from our postulates, but is indeed implied by
an additional natural assumption, i.e., that the given set of free
Gaussian states FG(λ) is closed under mode-by-mode mixing
with 50:50 beam splitters (Proposition 3).

III. FREE OPERATIONS AND QUANTIFICATION

In any resource theory, a free operation can be any channel
which always maps free states into free states. However, the
physical setting of the given resource can further restrict the
allowed free operations: for instance, in entanglement theory,
the distant laboratories paradigm leads to the set of local
operations and classical communication (LOCC). To keep our
results as general as possible, we will consider the maximal
set of resource-nongenerating operations, and only impose the
natural restriction that free operations should also be Gaussian,
i.e., such that they always map a Gaussian state to a Gaussian
state [10,56].

Definition 1. A quantum channel � : T (HN ) → T (HM )
is called resource nongenerating if �[F (λ)] ⊆ F (μ) for
systems described by variables λ,μ. The set of all resource-
nongenerating operations is denoted by O(λ → μ), and the
restriction to Gaussian operations by OG(λ → μ). In particu-
lar, �[FG(λ)] ⊆ FG(μ) for all � ∈ OG(λ → μ).

A fundamental question in any resource theory is, given
several resourceful states, to quantify the degree of their
resourcefulness and thus compare the usefulness of the states
in operational tasks [17,21,22,57]. For this, one needs a
measure μ : T (HN ) → R+ which satisfies two basic crite-
ria: faithfulness, i.e., being minimum on all (and only on)
free states, μ(ρ) = infσ∈T (HN ) μ(σ ) ⇔ ρ ∈ F (λ), as well as
monotonicity, i.e., μ(�(ρ)) � μ(ρ) for all free operations �.

Here we stress that we can consider the maximal set of free
operations O(λ → μ) without loss of generality, since any
measure monotonic under O(λ → μ) will also be a monotone
under any smaller subset of free operations. Analogously, in the
setting of Gaussian resources, we will be interested in quan-
tifiers μG : QCMN → R+ defined at the level of covariance
matrices and monotonic under the free Gaussian operations,
so that μG(V ′) � μG(V ) where V ′ is the covariance matrix
corresponding to the state �(ρG[V, s]) with � ∈ OG(λ → μ).

A general instance of such a measure—a variant of which
has been considered in the characterization of entanglement
before [10]—can be defined for any V ∈ QCMN as

κF (V ) := min { t � 1 | tV ∈ VF (λ)}. (3)

The measure can be easily seen to be faithful in the sense
that κF (V ) � 1 and κF (V ) = 1 iff V ∈ VF (λ), and the fact
that the set on the right-hand side of Eq. (3) is nonempty is
ensured by the upward closedness of VF (λ). The properties
and monotonicity of the above quantifier can be summarized
as follows.

Proposition 2. The function κF (·) is finite and well-defined
on all covariance matrices, faithful, continuous, and monotonic
under OG(λ → μ).

We defer the proof to Appendix B (see Proposition 4).
Note that, if membership of the set VF (λ) can be decided by
semidefinite constraints at the level of covariance matrices,
the evaluation of κF (V ) reduces to a semidefinite program.
We discuss such cases in Sec. V and in Appendix C.

IV. NO-GO THEOREM FOR GAUSSIAN
RESOURCE DISTILLATION

At the heart of every resource theory lies the problem of
characterizing state transformations which are allowed by the
given set of free operations. In particular, the operational task of
resource distillation deals with using free operations to convert
multiple copies of a given quantum state into a smaller number
of target states, usually representing maximally resourceful
states. This task was first considered in the resource theory
of entanglement with LOCC [58,59], and has been later
extended to more general settings [60–64] and other quantum
resources [65–67]. Entanglement distillation has also been
considered for Gaussian states [8–10], where the task can be
expressed as using LOCC to transform multiple copies of a
bipartite state ρ⊗n

AB into a state which approaches a maximally
entangled state as n → ∞. An archetypal example of the
analysis of the limitations of the Gaussian paradigm in this
context has been carried out in [10], where it was shown that
Gaussian LOCC protocols are not sufficient to distill Gaussian
entanglement.

Since the existence of a “golden unit” or a unique maxi-
mally resourceful state is not guaranteed in arbitrary quantum
resource theories, we can consider the more general task of
approximately converting multiple copies of a quantum state
into another state which is more resourceful; that is, given
a Gaussian state with covariance matrix V , we ask about the
existence of free operations that implement the transformations
V ⊕n → Wn, for some sequence of covariance matrices Wn that
approach a fixed target W such that κF (W ) > κF (V ). A central
result of this work is a general no-go result entailing that, in any
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TABLE I. Examples of Gaussian resources whose quantification can be represented in the considered framework. The table relates the
resources with the notation of Eqs. (4), (5). For the sake of clarity of presentation, some additional constraints which one has to impose on the
matrix Q have been considered separately in the rightmost column, although they can be explicitly brought into the form of (4) by including
them in the function g.

Resource f (Q) g(Q) C D Further constraints on Q

Bipartite entanglement [70] QA ⊕ QB QA ⊕ QB i�A ⊕ i�B QA = QT
A, QB = QT

B

Bipartite entanglement (simplified) [71] QA ⊕ 0B QA 0A ⊕ i�B i�A QA = QT
A

Negative partial transpose [70] i�A ⊕ (−i�B )
Steerability (A → B) [72] 0A ⊕ i�B

Nonclassicality [52] 1

resource theory in our framework, the distillation of the given
resource with free Gaussian operations is de facto impossible.
This result is in stark contrast with the main finding of [17],
which instead implies the complete reversibility of the consid-
ered resource theory. Such a dramatic difference in the conclu-
sions is even more surprising when one considers that the start-
ing postulates are quite similar in the two cases, and illustrates
clearly the intrinsic limitations of the Gaussian framework.

Theorem 1 (Gaussbusters). Consider an arbitrary Gaussian
resource theory satisfying Postulates 0–V and two covariance
matrices V,W ∈ QCMN . If κF (W ) > κF (V ), then it is
impossible to find a sequence (Wn)n∈N ⊂ QCMN such that
limn→∞ Wn = W and the transformations V ⊕n → Wn are
possible with Gaussian resource-nongenerating operations for
all n.

The proof of the above theorem relies on a special property
of the measure κF that we could call, borrowing terminol-
ogy from classical probability theory, the tensorization prop-
erty [68]: for all resource theories in consideration, κF does not
change when multiple copies of a quantum state are considered;
more generally, we have κF (V ⊕ W ) = max{κF (V ), κF (W )}
for any two covariance matrices V,W (Lemma 7). This,
together with the monotonicity of κF , immediately implies
that distillation is impossible since we cannot increase κF with
free Gaussian operations. In the following, we present explicit
applications of our framework to a broad set of continuous-
variable resources, namely squeezing (equivalently, nonclas-
sicality), quantum entanglement manipulated via local opera-
tions and classical communication or via operations preserving
the positivity of the partial transpose, and steering.

V. EXAMPLES AND APPLICATIONS

Quite remarkably, it turns out that in many—if not
all—physically relevant resource theories, VF (λ) is not only a
convex set, but can even be described by means of semidefinite
programming (SDP) constraints. Although we leave open the
question of whether a general principle can be found from
which the existence of such a description follows naturally,
we will now characterize the quantification of all resources for
which such SDP structure is known to exist. In particular, our
results apply to any resource theory satisfying Postulates 0–V
whose set of free states can be described by constraints of the
kind

VF (λ) = {V ∈ QCMN | V � f (Q) + C, g(Q) � D}, (4)

where Q is a Hermitian matrix variable of some fixed size, f

and g are linear functions, and C and D are constant Hermitian

matrices. The main advantage of the representation in Eq. (4)
is that the associated quantifier κF in Eq. (3) can then be
evaluated via an efficiently computable semidefinite program:

κF (V ) = minimize
ξ, Q

ξ

subject to ξ V � f (Q) + C

g(Q) � D

ξ � 1. (5)

Alternatively, one can choose to introduce the quantity

υF (V ) := max
ζ,Q

{ζ | V � ζ (f (Q) + C), g(Q) � D}, (6)

in which case κF (V ) = max {1, 1/υF (V )}. The advantage of
this formulation is that the dual of the optimization problem υF
can be expressed by means of the so-called resource witnesses
based on second moments [69], that is, as an optimization over
the expectation values Tr(WV ) at the level of the covariance
matrix. Assuming that strong duality for the problem (5)
holds (which can be straightforwardly verified for all of the
considered resource theories), we then have the SDP

υF (V ) = minimize
W, Y

Tr(WV )

subject to Tr(WC) + Tr(YD) = 1

f †(W ) = g†(Y )

W,Y � 0, (7)

where f †, g† are the adjoint maps, that is, the unique linear
maps satisfying Tr[f (A)B] = Tr[Af †(B )] for any Hermitian
A,B.

Many common Gaussian resources can indeed be expressed
and quantified in this way; we will now provide some represen-
tative examples of such resources, which we have also collected
in Table I.

A. Squeezing (nonclassicality)

We start by looking at the simplest Gaussian resource
theory of all, namely that of squeezing or nonclassical-
ity [46,52,73,74]. The free states of this theory, also called
classical states from now on, are simply convex mixtures of
coherent states. Within this framework, the goal is usually that
of preparing squeezed states, which may be useful for some
practical (e.g., metrological) tasks [75]. It is not difficult to
see that the continuous-variable resource theory of squeezing
obeys all the postulates we presented. The free operations
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include in particular passive transformations, obtained by
concatenating [76]: (i) the addition of ancillae in classical
Gaussian states; (ii) passive unitaries, defined as those sym-
plectic unitaries that preserve the total photon number; and
(iii) destructive Gaussian measurements. These operations are
relatively cheap to realize experimentally, as passive unitaries
can always be implemented by combining beam splitters and
phase shifters [77].

Restricting to the Gaussian setting, free states in this
theory admit a remarkably simple description in terms of their
covariance matrices, for ρG[V, s] is a classical state if and only
if V � 1 [52]. This gives us the simple form

κC (V ) = minimize
ξ � 1

ξ

subject to ξ V � 1, (8)

which can be easily seen to be exactly computable as κC (V ) =
max {1, 1/λmin(V )}, where λmin denotes the minimal eigen-
value. Our main result in Theorem 1 then establishes a no-go
result about the convertibility of nonclassical Gaussian states
under all operations preserving the set of classical states, and
in particular passive operations.

B. Entanglement

The resource theory of quantum entanglement is another ex-
ample of a theory for which all of the postulates hold [3,17]. Fo-
cusing on bipartite entanglement between parties A and B for
simplicity, the set of free states is formed by the separable states
S (A|B ). The most operationally relevant set of free operations
includes all transformations that are implementable as local
operations assisted by classical communication (LOCC), and
is a strict subset of all the resource-nongenerating (separability-
preserving) operations.

In our Gaussian setting, the set VS can be described by
semidefinite constraints of the form

VS (A|B ) = {
V ∈ QCMNAB

| V � γA ⊕ γB, γi ∈ QCMNi

}
,

(9)

which can be easily expressed in the form of Eq. (4) (see
Table I). The associated measure κS can then be computed
as a semidefinite program [69], and corresponds to the inverse
of a quantifier studied in [10].

Notice that Theorem 1 includes as a particular case the result
of [10], showing the impossibility of entanglement distillation
with Gaussian LOCC: in fact, it readily generalizes the result by
showing that distillation with Gaussian separability-preserving
operations is also impossible.

We can strengthen the result even further by relating the
resource theory of entanglement to the one of negative partial
transpose, in which the free states P (A|B ) are those with
positive partial transpose across the cut A|B. This set can also
be obtained from Eq. (4) as

VP (A|B ) = {
V ∈ QCMNAB

| V � i�A ⊕ (−i�B )
}
. (10)

Here, the quantifier κP admits an analytical characterization
as κP (VAB ) = max{1, 1/νmin(ṼAB )} with νmin(ṼAB ) being the
smallest symplectic eigenvalue of the partially transposed
covariance matrix [71]. We then notice that, for any sequence
of states ρ(n) which approaches the maximally entangled

state in the limit n → ∞, we have limn→∞ κS (ρ(n)) = ∞ =
limn→∞ κP (ρ(n)), and therefore the distillation of entangle-
ment would necessarily involve increasing κP . By Theorem 1,
we get that Gaussian entanglement distillation is impossible
even with Gaussian operations preserving the positivity of
the partial transpose. Among those operations—which can
be strictly more powerful than LOCC alone—there are for
instance those transformations implementable by means of
Gaussian LOCC assisted by an unlimited supply of bound
entangled Gaussian states [70].

We further remark that the characterization of the set of
separable Gaussian states and their corresponding covariance
matrices can be simplified to [71]

VS (A|B ) = {
V ∈ QCMNAB

| V �γA ⊕ i�B, γA ∈ QCMNA

}
,

(11)

which in particular means that the computation of the quan-
tifier κS can be performed by optimizing only over one of
the subsystems—this has particular implications for the case
where one of the subsystems has a larger dimension than the
other, simplifying the computation of the relevant quantities.
For completeness, we give the full forms of the measures κS
and υS simplified in this way in Appendix C.

C. Steering

Another fundamental resource theory is based on the phe-
nomenon of EPR steering [78,79], in which party A can exploit
quantum correlations to influence the state of another party
B by only performing measurements on A’s subsystem. In
resource-theoretic approaches to steering [38,72,80], the free
states are referred to as A→B unsteerable, and free operations
are commonly chosen to be one-way LOCC, reflecting the
asymmetric nature of steering. Steering admits a simplified
characterization when restricted to Gaussian measurements,
allowing for a dedicated resource theory of Gaussian steering
to be established [72,81–84]. It turns out that the set of free
states TA→B that are unsteerable by Gaussian measurements
on A can be described as [72]

VT (λ) = {
V ∈ QCMNAB

| V � 0A ⊕ i�B

}
. (12)

It is then easy to verify that our postulates are satisfied, and
the no-go result of Theorem 1 holds also for the Gaussian
resource theory of steering; that is, the distillation of steering
from Gaussian states is impossible by Gaussian steering-
nongenerating operations, with the latter including all relevant
classes of free operations such as one-way Gaussian LOCC.
We remark that in this case the quantifier κT can be computed
as

κT (VAB ) = minimize
λ�1

λ

subject to λ VAB/VA � i�B, (13)

with VAB/VA denoting the Schur complement, which
admits an analytical characterization as κT (VAB ) =
max{1, 1/νmin(VAB/VA)}. In the particular case when
system B consists of only one mode, ln κT is equal to a
previously introduced quantifier of Gaussian steering [81].
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VI. CONCLUSIONS

We have introduced a framework for the characterization
of general CV Gaussian quantum resource theories satisfying
a set of intuitive constraints on their set of free states. The
approach allowed us to describe many important resources
such as entanglement, steering, and nonclassicality together in
a common formalism, obtaining results in the characterization
of the resources as well as shedding light onto their properties.
In particular, we showed that the task of resource distillation is
impossible with free Gaussian operations in the given resource
theories, by proving specifically that, by such operations, one
cannot convert (even infinitely many copies of) a Gaussian state
into another Gaussian state with a higher resource content as
quantified by the resource monotone defined in this paper. This
establishes fundamental limitations of the Gaussian paradigm
for state transformations.

An interesting open question is whether some sort of
converse of Theorem 1 holds. Namely, given any Gaussian
resource theory and two covariance matrices V,W such that
κF (V ) � κF (W ), is it always possible to convert a large
number of copies of V into a single copy of W with Gaussian-
resource-nongenerating operations? Even more ambitiously,
can the transformation V → W happen with asymptotic
nonzero rate, if one allows for vanishing errors? These ques-
tions will be explored in further work.

In summary, our results are a step forward in the characteri-
zation of general quantum resources, bridging the gap between
the different approaches to finite- and infinite-dimensional
settings, and elucidating the power of Gaussian states and
operations in quantum information processing. Our work
opens an avenue for further investigation of many aspects of
CV resources, including a complete characterization of state
transformations as well as operational tasks and protocols such
as resource distillation and dilution beyond Gaussianity.
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APPENDIX A: TOPOLOGY OF GAUSSIAN STATES

1. Notation and definitions

For completeness, we recall the relevant definitions and
concepts. Consider a continuous-variable system of n modes,
for which we adopt the so-called real notation. In what follows,
we reserve the letter r for the column vector formed by the n

pairs of canonically conjugated field operators, sorted as

r := (x1, . . . , xn, p1, . . . , pn)T . (A1)

Here, the transposition sign refers only to the phase space
degrees of freedom, and does not act on the Hilbert space. With
the help of this notation, the canonical commutation relations

[xj , pk] = iδjk can be rewritten in a compact vector form as

[r, rT ] = i� := i

(
0 1

−1 0

)
. (A2)

The displacement operator associated with ξ ∈ R2n is given
by D(ξ ) := eiξT �r and satisfies the identity

D(ξ1)D(ξ2) = e− i
2 ξT

1 �ξ2D(ξ1 + ξ2), (A3)

referred to as the Weyl form of the canonical commutation
relations. Observe that D(ξ )† = D(−ξ ) for all real vectors ξ .

The displacement operators can be used to generate the
notable set of coherent states. For u ∈ R2n, one defines

|u〉 := D(u) |0〉 , (A4)

where |0〉 is the vacuum state. Applying the Campbell-Baker-
Hausdorff formula to the exponential that defines the displace-
ment operator, it is not too difficult to show that

〈0|u〉 = 〈0|D(u)|0〉 = e− 1
4 uT u. (A5)

Coherent states are just particular examples of Gaussian
states, defined as thermal states of quadratic Hamiltonians. We
denote the set of Gaussian states of an n-mode system by Gn.
Remember that Gaussian states can be uniquely identified by
their first and second moments, respectively given by

s := Tr[ρ r], (A6)

Vjk := Tr[ρ{(r − s)j , (r − s)k}]. (A7)

Here, the anticommutator {H,K} := HK + KH is needed
in order to make the above expression real. While any vector
s ∈ R2n can represent the first moments of an n-mode Gaussian
state, it is well known that the entries of a real symmetric
matrix V are the second moments of some Gaussian state if and
only if

V � i�, (A8)

the above relation encoding the constraints coming from
Heisenberg’s uncertainty principle in this context. Real sym-
metric matrices satisfying Eq. (A8) are called quantum covari-
ance matrices in what follows. It can be shown that every such
matrix is necessarily strictly positive; i.e., Eq. (A8) implies that
V > 0.

For every trace class operator T , it is convenient to define
its characteristic function

χT (ξ ) := Tr[T D(ξ )]. (A9)

The operator can be reconstructed from its characteristic
functions by means of the following relation [85, Cor. 5.3.5]:

T =
∫

d2nξ

(2π )n
χT (ξ ) D(−ξ ), (A10)

where the integral converges in the weak topology; see for
instance [85, Cor. 5.3.5]. For more on what this means, see
below.

It can be shown that the characteristic function of a Gaussian
state ρG[V, s] takes the form [51, Eq. (4.48)]

χρG[V,s](ξ ) = Tr{ρG[V, s] D(ξ )} = e− 1
4 ξT �T V �ξ+isT �ξ. (A11)
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Up to a change of variables, Eq. (A10) can then be rewritten
as follows:

ρG[V, s] =
∫

d2nξ

(2π )n
e− 1

4 ξT V ξ−isT ξD(�ξ ), (A12)

where the integral converges weakly; see again [85, Cor. 5.3.5].
Among other things, from Eqs. (A10) and (A11) it can be ap-
preciated that Gaussian states are exactly those quantum states
whose characteristic function is a (multivariate) Gaussian.

A useful formula that we will employ in what follows gives
the action of a random displacement on a Gaussian state: for
all K > 0, one has∫

d2nξ
e−ξT K−1ξ

πn
√

det K
D(ξ ) ρG[V, s] D(ξ )† = ρG[V + K, s],

(A13)

again in the sense of weak convergence. This can be seen as
an immediate consequence of Eq. (A12).

2. Closedness and continuity results

LetHn be the Hilbert space associated with a finite numbern
of harmonic oscillators, and let T (Hn) be the set of trace class
operators over Hn. Observe that T (Hn) becomes a Banach
space once it is equipped with the trace norm ‖ · ‖1, and its
Banach dual is well known to be identifiable with the set
of bounded operators, denoted by B(Hn). Let us stress here
that this is by no means a mathematical concept only. On
the contrary, in quantum mechanics B(Hn) has a physical
interpretation as the set of all observables on the system.

In general, given a Banach space E it is always possible to
consider its (Banach) dual, i.e., the space E∗ of all continuous
linear functionals ϕ : E → C. Remember that a linear func-
tional is continuous if and only if it is bounded, i.e., if and only
if supx∈E, ‖x‖�1 |ϕ(x)| is finite. The Banach dual can be used
to induce another topology which is of interest, i.e., the weak
topology, defined as the coarsest topology that makes all the
functionals in E∗ continuous. As a matter of fact, the topologies
on E such that the corresponding continuous dual is E∗ are
exactly those that are coarser than the norm topology (induced
by the norm on E) and finer than the weak topology. This is a
special case of the Mackey-Arens theorem [55, Thm. 8.14].
For a discussion of these concepts, see [86, Sec. 2.5] or
[87, Sec. 3.11].

If E is infinite-dimensional it can be shown that the weak
topology is always different (in fact, as the name suggests,
strictly coarser) than the norm topology. Hence, when it comes
to taking closures (something we shall be concerned with) one
has to specify which topology is used, as in general the weak
closure will be larger than the norm closure. However, this is
not always the case. Indeed, there is an important class of sets
for which weak and norm closure always coincide, i.e., that of
convex sets (see [86, Thm. 2.5.16] or [87, Sec. 3.12]). By the
above discussion, it should be clear by now that all topologies
on a Banach space E such that the corresponding continuous
dual coincides with the Banach dual E∗ have in fact the same
closed convex sets.

The Banach space we care about here is T (Hn); hence the
norm topology is induced by the trace norm ‖ · ‖1, and the weak

topology is nothing but the the coarsest topology that makes
all linear functionals Tr[A(·)] : T (Hn) → C continuous, for
all A ∈ B(Hn). Inside T (Hn) lies the set of Gaussian states,
denoted by Gn, where n is the number of modes. It is not
completely trivial to show that Gn is norm-closed, and so we
first show this result below.

Lemma 1. The set of Gaussian states Gn ⊂ T (Hn) is closed
with respect to the topology induced by the trace norm.

Proof. We have to show that given a sequence ρ
(k)
G of Gaus-

sian states with the property that limk ‖ρ (k)
G − ρ‖1 for some

trace class operator ρ, we have that ρ itself is a Gaussian state.
In what follows, we denote by V (k) and s(k) the covariance
matrix and displacement vector of ρ

(k)
G , respectively, so that

ρ
(k)
G = ρG[V (k), s(k)].

The first step in the proof consists of showing that V (k)
and s(k) are bounded sequences, i.e., that there exists M ∈ R
such that ‖V (k)‖∞, |s(k)|2 � M for all k (where ‖ · ‖∞ is the
operator norm, and | · |2 the Euclidean norm for vectors). In
order to see why, write

〈u|ρG[V (k), s(k)]|u〉

=
∫

d2nξ

(2π )n
e− 1

4 ξT V (k)ξ−is(k)T ξ 〈u|D(�ξ )|u〉

(1)=
∫

d2nξ

(2π )n
e− 1

4 ξT V (k)ξ−is(k)T ξ 〈0|D(−u)D(�ξ )D(u)|0〉

(2)=
∫

d2nξ

(2π )n
e− 1

4 ξT V (k)ξ−is(k)T ξ e−iuT ξ 〈0|D(�ξ )|0〉

(3)=
∫

d2nξ

(2π )n
e− 1

4 ξT V (k)ξ−is(k)T ξ e−iuT ξ e− 1
4 ξT ξ

=
∫

d2nξ

(2π )n
e− 1

4 ξT (V (k)+1)ξ−i(s(k)+u)T ξ

(4)= 2ne−[s(k)+u]T [V (k)+1]−1[s(k)+u]

√
det [V (k) + 1]

.

The justification of the above steps is as follows: (1) we used the
definition of coherent states, Eq. (A4); (2) we applied Eq. (A3)
twice; (3) we made use of Eq. (A5); (4) we performed the
Gaussian integral. Now, we take the limit k → ∞ on both
sides of the equality

〈u|ρG[V (k), s(k)]|u〉 = 2ne−[s(k)+u]T [V (k)+1]−1[s(k)+u]

√
det [V (k) + 1]

. (A14)

On the left-hand side we get 〈u|ρ|u〉 because of the
properties of the convergence in norm. Let us now look at the
right-hand side. Observe that det [V (k) + 1] � ‖V (k)‖∞ + 1,
and that the exponential term is at most 1. If the sequence V (k)
were unbounded, then there would exist a subsequence km on
which ‖V (km)‖∞ → ∞, which implies by the above equality
that 〈u|ρ|u〉 = 0. Since this would happen for all u ∈ R2n,
we would deduce that 〈ψ |ρ|ψ〉 = 0 for all vectors |ψ〉 ∈ Hn,
because coherent states are dense, and ρ is a bounded (even
trace class) operator. It is elementary to verify that this would
imply that ρ = 0 identically, a contradiction. Hence, we are
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led to conclude that V (k) must be bounded, i.e., V (k) � M1
for some M ∈ R.

This implies immediately that [V (k) + 1]−1 �
(M + 1)−11; hence if the sequence s(k) were unbounded,
for every fixed u we could find a subsequence km on which
|s(km) + u|2 → ∞, which implies that

e−[s(km )+u]T [V (km )+1]−1[s(km )+u] � e− 1
M+1 |s(km )+u|22 −→

m→∞ 0.

Since the determinant appearing in Eq. (A14) is always at least
1, we would deduce that the whole right-hand side of Eq. (A14)
tends to 0 on that subsequence, hence that 〈u|ρ|u〉 = 0 for all
u ∈ R2n, again a contradiction.

This shows that V (k) and s(k) form bounded sequences.
Since they live in finite-dimensional spaces, they will admit
two simultaneously convergent subsequences

V (km) −→
m→∞ V,

s(km) −→
m→∞ s.

Clearly, one still has limm→∞ ‖ρG[V (km), s(km)] − ρ‖1 = 0.
Now, we use this to take the limit m → ∞ on both sides of the
equality

Tr{ρG[V (km), s(km)] D(ξ )} = e− 1
4 ξT �T V (km )�ξ+is(km )T �ξ ,

(A15)

which is just a rewriting of Eq. (A11) (here, ξ ∈ R2n is fixed).
On the left-hand side we have

lim
m→∞ Tr{ρG[V (km), s(km)] D(ξ )} = Tr[ρD(ξ )] = χρ (ξ )

because the convergence of the sequence of states is in trace
norm, and D(ξ ) is a bounded (even unitary) operator. On the
right-hand side, by our hypotheses

lim
m→∞ e− 1

4 ξT �T V (km )�ξ+is(km )T �ξ = e− 1
4 ξT �T V �ξ+isT �ξ .

The equality above then implies that

χρ (ξ ) = e− 1
4 ξT �T V �ξ+isT �ξ ,

from which we see that the limit state ρ has a Gaussian
characteristic function; hence it is Gaussian. �

There is another continuity result that we shall need in what
follows. In a way, this can be considered as a strengthening
of [56, Lemma 1].

Lemma 2. Consider a continuous variable system with n

degrees of freedom. The map

QCMn ⊕ R2n → T (Hn)

(V, s) 
→ ρG[V, s], (A16)

which sends a pair (V, s), where V is a QCM and s a real
vector, is continuous with respect to the trace norm. Here, the
topology on

QCMn ⊕ R2n ⊂ M2n(R) ⊕ R2n � R(2n)2+2n

is understood to be the standard one.
Proof. We have to show that whenever limk→∞ V (k) = V

and limk→∞ s(k) = s one has also limk→∞ ‖ρG[V (k), s(k)] −
ρG[V, s]‖1 = 0. At first glance we seem to have a problem
here, as the trace distance of two Gaussian states is not a

handy object when dealt with from the phase space per-
spective. However, we can exploit the Fuchs–van de Graaf’s
inequality ‖ρ − σ‖1 � 2

√
1 − F (ρ, σ )2 to upper-bound the

trace distance by means of a fidelity-based quantity. The
fidelity between two Gaussian states happens to have an
explicit expression in terms of their first and second moments
[88, Eqs. (9)–(14)]. One can verify by direct inspection that this
is continuous with respect to the involved covariance matrices
and displacement vectors, and of course it reduces to 1 when
the first and second moments of the first state coincide with
those of the second state. Hence,

lim
k→∞

‖ρG[V (k), s(k)] − ρG[V, s]‖1

� lim
k→∞

2
√

1 − F (ρG[V (k), s(k)], ρG[V, s])2

= 2
√

1 − {
lim

k→∞
F (ρG[V (k), s(k)], ρG[V, s])

}2

= 2
√

1 − {F (ρG[V, s], ρG[V, s])}2

= 2
√

1 − (1)2

= 0,

as claimed. �

APPENDIX B: GAUSSIAN RESOURCES

1. Free states

Lemma 3. Let τ be a linear topology on T (HN ) (the space of
trace-class operators) such that the corresponding continuous
dual is (τ, T (HN ))′ = B(HN ) (the space of bounded opera-
tors). If Postulates IV and V hold, then all sets of free states
F (λ) are closed with respect to τ .

Proof. Since the weak topology on T (HN ) is by definition
the coarsest topology that makes all functionals Tr[A(·)] :
T (HN ) → C continuous [where A ∈ B(HN ) is generic], any
topology τ that satisfies the hypothesis will be finer than the
weak topology. Thus, it suffices to show that all sets F (λ) are
weakly closed. This follows since F (λ) are norm-closed and
convex by assumption, and weak closure and norm closure
always coincide for convex sets by Mazur’s theorem (see,
e.g., [86, Thm. 2.5.16] or [87, Sec. 3.12]). �

Lemma 4. When Postulate V holds, the set of Gaussian free
states FG(λ) is norm-closed.

Proof. By definition FG(λ) = F (λ) ∩ GN . The set F (λ) is
norm-closed by Postulate V, and the set GN of all Gaussian
states is also norm-closed by Lemma 1. Since the intersection
of closed sets is closed, we conclude. �

Proposition 1. If Postulate V holds, then the set V (λ) is
topologically closed. If also Postulate IV holds, then V (λ)
becomes “upward closed,” in the sense that V ∈ V (λ) and
W � V implies W ∈ V (λ).

Proof. We first show that V (λ) is topologically closed.
By Lemma 2, we know that the map � : QCMN → T (HN )
whose action is defined by �(V ) := ρG[V, 0] is continuous
with respect to the trace norm. With this notation, the set V (λ)
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can be rewritten as

V (λ) = �−1(FG(λ)).

Since FG(λ) is norm-closed by Lemma 4, and the preimages
of closed sets via continuous maps are closed, we conclude
that V (λ) is closed as well.

We now move on to the second claim. Since we already
showed that V (λ) is topologically closed, it is enough to show
that it is strictly upward closed, i.e., that for all V ∈ V (λ) and
W > V one has also W ∈ V (λ). This is an easy consequence of
Eq. (A13). If we substitute there K = W − V , on the left-hand
side we get a state in cl [coFG(λ)], the closed convex hull of the
set of free Gaussian states. From the right-hand side we learn
that this state is actually a Gaussian state; hence by Gaussian
convexity of the set FG(λ) it must be also free. Finally, its
covariance matrix is V + K = W , which leads us to conclude
that W ∈ V (λ). �

Proposition 3. Assume that Postulates I, II, and V hold.
Moreover, let the set of Gaussian free states be invariant under
local mixing with 50:50 beam splitters; i.e., assume that for
any pair of states ρ, σ ∈ FG(λ) of a system with total number
of modes N one has⎛
⎝ N⊗

j=1

U (π/4)j,j

⎞
⎠(ρ ⊗ σ )

⎛
⎝ N⊗

j=1

U (π/4)j,j

⎞
⎠

†

∈ FG(λ),

(B1)

where U (π/4)j,j is the unitary that implements the action of a
50:50 beam splitter on the j th mode of ρ and the same mode
of σ . Then the corresponding set of free covariance matrices
V (λ) is convex.

Proof. Since V (λ) is topologically closed by Proposition 1,
it is convex if and only if it is midpoint convex, meaning
that 1

2 (V + W ) ∈ V (λ) whenever V,W ∈ V (λ). Hence, let us
show that V (λ) is midpoint convex. Picking V,W as above,
construct the state ρG[V, 0] ⊗ ρG[W, 0], which is free by
Postulate I, and whose covariance matrix is V ⊕ W = (

V

W

)
.

By hypothesis, mode-by-mode mixing with a 50:50 beam
splitter yields another free state, whose covariance matrix will
be

1

2

(
V + W V − W

V − W V + W

)
.

Tracing away one of the two spatially separated subsystems
leaves the other in a state with covariance matrix 1

2 (V + W ).
Such a state must be free by Postulate II; hence we conclude
that 1

2 (V + W ) ∈ V (λ), as claimed. �

2. Quantification and distillation

We remind the reader that in general a Gaussian completely
positive map � from A to B acts on covariance matrices as
follows [9,10]:

� : VA 
→ (�AB + �VA�)/(�A + �VA�). (B2)

Here, �AB is the quantum covariance matrix associated with
the Choi state of the map, and � is the matrix that reverses the
signs of all the momenta of the system on which it is acting,

i.e.,

� :=
(
1

−1

)
(B3)

according to the block decomposition of Eq. (A2). The Schur
complement of a 2×2 block matrix M = (

P X

Y Q

)
with respect

to one of its square invertible blocks is given by

M/P := Q − YP −1X. (B4)

It is elementary to verify that the above quantity behaves well
under scalar multiplication, in the sense that (λM )/(λP ) =
λ(M/P ) for all scalars λ �= 0. Furthermore, it is known
that the Schur complement admits the following variational
representation:

M/P = max{R : M � 0 ⊕ R}, (B5)

the ordering of the set on the right-hand side being the
positive semidefinite (also known as Löwner) ordering. From
Eq. (B5) it follows in particular that M/P is monotonically
nondecreasing in M > 0. For more details on the properties
of Schur complements we refer the reader to the excellent
monograph [89]. A straightforward consequence of the above
discussion is the following result.

Lemma 5. If �AB represents a Gaussian free operation � ∈
OG(λA → λB ), then

(�AB + �VA�)/(�A + �VA�) ∈ V (λB ) ∀ VA ∈ V (λA).

(B6)

Equivalently,

∀ VA ∈ V (λA) ∃ WB ∈ V (λB ) : �AB � (−�VA�) ⊕ WB.

(B7)

Proof. The first claim is a direct reformulation of the
definition of resource-nongenerating operations, obtained via
the explicit action of a Gaussian completely positive map as
given by Eq. (B2). As for the second, let us observe that the
inequality �AB � (−�VA�) ⊕ WB implies, by Eq. (B5), that
(�AB + �VA�)/(�A + �VA�) � WB . Since the right-hand
side is the covariance matrix of a free state by hypothesis, and
Proposition 1 holds, we deduce that the left-hand side is a free
covariance matrix as well. The converse inequality is proved
similarly, by realizing that Eq. (B5) implies that

�AB + �VA� � 0A ⊕ (�AB + �VA�)
/

(�A + �VA�)

=: 0A ⊕ WB,

which leads immediately to �AB � (−�VA�) ⊕ WB , as
claimed. �

We now come to the discussion of the properties of the κF
function defined in Eq. (3). We first state some elementary
facts.

Lemma 6. The set TF (V ) := {t � 1 | tV ∈ V (λ)} is
nonempty and topologically closed for all V ∈ QCMN as long
as V (λ) is nonempty.

Proof. We first show that TF (V ) �= ∅ for all V ∈ QCMN .
Picking W ∈ V (λ) �= ∅, it is easy to see that

‖W‖∞‖V −1‖∞ V � W, (B8)
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where ‖ · ‖∞ denotes the operator norm. Observe that quantum
covariance matrices are always strictly positive; hence V −1

exists. We then write

‖W‖∞‖V −1‖∞ V � ‖W‖∞‖V −1‖∞ λmin(V )1

= ‖W‖∞‖V −1‖∞ ‖V −1‖−1
∞ 1

= ‖W‖∞1

� W.

By the upward closedness of VF (λ) (Proposition 1), one
deduces immediately that max {1, ‖W‖∞‖V −1‖∞} ∈ TF (V ),
showing that the set is nonempty. To show that it is also
topologically closed, just observe that

TF (V ) = ([1,∞) · V ) ∩ V (λ). (B9)

The left-hand side of the above identity is the intersection
of two closed sets, thanks to Proposition 1; hence it is itself
closed. �

The following is a refinement of Proposition 2 from the
main text.

Proposition 4. The function κF (·) defined by Eq. (3) is:
(a) finite and well defined for all V ∈ QCMN ;
(b) faithful, in the sense that κF (V ) = 1 if and only if V ∈

V (λ);
(c) such that κF (sV ) � s−1κF (V ) for all s � 1;
(d) monotonically nonincreasing under OG(λ → μ); and
(e) continuous.
Proof. Claim (a) follows directly from Lemma 6, while (b) is

obvious from the definition. As for (c), one can distinguish two
cases: if sV ∈ V (λ), then on the one hand s � κF (V ), while on
the other hand κF (sV ) = 1 � s−1κF (V ); if sV /∈ V (λ), then

κF (sV ) = min{t � 1 | tsV ∈ V (λ)}
= s−1 min{t ′ � s | t ′V ∈ V (λ)}
= s−1 min{t ′ � 1 | t ′V ∈ V (λ)}
= s−1κF (V ).

We now turn to the proof of (d), i.e., the monotonicity of
κF under Gaussian free operations. Call ξ := κF (V ). Then,
by virtue of Eq. (B2), all we have to show is that κF ((�AB +
�VA�)/(�A + �VA�)) � ξ , for all free Gaussian operations
represented by covariance matrices �AB as in Lemma 5. This
amounts to proving that ξ (�AB + �VA�)/(�A + �VA�) ∈
V (λB ). We write

ξ (�AB + �VA�)/(�A + �VA�)

(1)= (ξ�AB + ξ�VA�)/(ξ�A + ξ�VA�)

(2)
� (�AB + ξ�VA�)/(�A + ξ�VA�)

(3)∈ V (λB ).

The justification of the above steps is as follows: (1) comes
from homogeneity; (2) uses the monotonicity of the Schur com-
plement, together with the observation that since ξ = κF (V ) �
1 one has ξ�AB � �AB ; (3) is an elementary consequence of
Eq. (B6) applied to the free covariance matrix ξV .

A useful observation that follows from the just established
property (d) is that κF (·) is also monotonically nonincreasing

with respect to the positive semidefinite ordering. In fact,
adding some positive semidefinite matrix to the input never
creates a resource state out of a free state; i.e., it is always a
free operation.

What is left to show is claim (e). We will break the proof
into two steps: first, we will show that lim sup�→0 κF (V +
�) � κF (V ) for all V > 0 (upper semicontinuity); sec-
ond, we will complement this bound by means of the
inequality lim inf�→0 κF (V + �) � κF (V ) (lower semicon-
tinuity). Clearly, the two statements together imply that
lim�→0 κF (V + �) = κF (V ), which is claim (e). Now, the
upper semicontinuity rests on the upward closedness of V (λ).
For a sufficiently small perturbation �, write

V + � � V − ‖�‖∞1

� V − ‖�‖∞‖V −1‖∞V

= (1 − ‖�‖∞‖V −1‖∞)V ;

we deduce that

V + �

1 − ‖�‖∞‖V −1‖∞
� V.

Using properties (c) and (d), this in turn implies that

(1 − ‖�‖∞‖V −1‖∞)κF (V + �)

� κF

(
V + �

1 − ‖�‖∞‖V −1‖∞

)
� κF (V ),

from which it follows that

κF (V + �) � κF (V )

1 − ‖�‖∞‖V −1‖∞
.

In particular,

lim sup
�→0

κF (V + �) � lim
�→0

κF (V )

1 − ‖�‖∞‖V −1‖∞
= κF (V ),

which proves upper semicontinuity. The lower semicontinuity
comes instead from the topological closedness of the set V (λ),
as established by Proposition 1. To see why, consider a V >

0 and a sequence of sufficiently small perturbation matrices
(�n)n∈N such that limn→∞ �n = 0. Since κF (V + �n) (V +
�n) ∈ V (λ) for all n, taking a subsequence (nk )k∈N such that
limk→∞ κF (V + �nk

) = lim infn→∞ κF (V + �n), we obtain
by closedness that

V (λ) � lim
k→∞

[κF (V + �nk
) (V + �nk

)]

= [
lim

k→∞
κF (V + �nk

)
]
V

= [
lim inf
n→∞ κF (V + �n)

]
V,

which implies in turn that κF (V ) � lim infn→∞ κF (V + �n),
proving lower semicontinuity and hence claim (e). �

Remark 1. In fact, we have shown that

κF (V ) � max
{
1, ‖V −1‖∞ min

W∈V (λ)
‖W‖∞

}
, (B10)

for all V ∈ QCMN .
Remark 2. An inspection of the above proof of the mono-

tonicity result [Proposition 2(d)] reveals that the only property
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of the Choi covariance matrix �AB we have made use of is
its positive semidefiniteness. This observation shows that κF
is monotonic under any operation of the form specified by
Eq. (B2) with �AB � 0.

The fundamental property of the κF measure we employ
here concerns its behavior when multiple copies of the same
state are considered.

Lemma 7. For all λ,μ, consider the κF functions identified
via Eq. (3) by the sets of free covariance matrices V (λ), V (μ),
and V (λ ⊕ μ). Then for all V ∈ QCMN and W ∈ QCMM ,
where N = ∑

j nj and M = ∑
j mj , it holds that

κF (V ⊕ W ) = max{κF (V ), κF (W )}.
Proof. Call η := max{κF (V ), κF (W )}. From Proposition 1

and from the inequalities η � κF (V ), κF (W ) we deduce im-
mediately that ηV ∈ V (λ), ηW ∈ V (μ). By Postulate I, we
deduce that

η(V ⊕ W ) = (ηV ) ⊕ (ηW ) ∈ V (λ) ⊕ V (μ) ⊆ V (λ ⊕ μ),

which implies by definition that κF (V ⊕ W ) � η =
max{κF (V )F , κF (W )}. As for the opposite inequality,
call ζ := κF (V ⊕ W ). Then ζ (V ⊕ W ) ∈ V (λ ⊕ μ), and by
Postulate II we can generate a free state of the first system by
tracing away the second. At the level of covariance matrices
this amounts to performing a local projection, for which
we adopt the same notation as in the characterization of
Postulate II in the main text. We then obtain

ζV = �(ζ (V ⊕ W ))�T ∈ �V (λ ⊕ μ) �T ⊆ V (λ).

This shows that κF (V ) � ζ = κF (V ⊕ W ). Repeating the
reasoning with W instead of V we get also κF (W ) �
κF (V ⊕ W ), and putting the two inequalities together we
have max{κF (V ), κF (W )} � κF (V ⊕ W ), which completes
the proof. �

Theorem 1. Consider an arbitrary Gaussian resource theory
satisfying Postulates 0–V and two covariance matrices V,W ∈
QCMN . If κF (W ) > κF (V ), then it is impossible to find a
sequence (Wn)n∈N ⊂ QCMN such that limn→∞ Wn = W and
the transformations V ⊕n → Wn are possible with Gaussian-
resource-nongenerating operations for all n.

Proof. If said transformation were possible, by combining
Proposition 2 and Lemma 7 one would obtain

κF (V ) = κF (V ⊕n) � κF (Wn).

Since κF is continuous, one has limn→∞ κF (Wn) = W and
hence also κF (V ) � κF (W ), which is a contradiction. �

Remark 3. The remark after Proposition 2 has an important
consequence here. Namely, we now see that the above no-go
result still holds if one allows as free operations all resource-
nongenerating maps of the form given by Eq. (B2) with
�AB � 0. Remember that a map acting on the second moments
as in Eq. (B2) is a valid physical transformation (completely
positive map) if and only if �AB is a quantum covariance
matrix, i.e., if and only if �AB � i�AB . Since this is a strictly
stronger constraint than simply requiring that �AB � 0, this
observation extends the validity of Theorem 1 even further. For
instance, its domain of applicability now includes the maps
considered in [56, Eqs. (24)–(26)], since the corresponding
Choi covariance matrices can be shown to be positive semidef-
inite provided [56, Eq. (27)] is obeyed. However, as some of

these maps will be unphysical, the extension discussed here
may be regarded mainly as a mathematical curiosity.

APPENDIX C: SEMIDEFINITE PROGRAMMING
REPRESENTATION OF GAUSSIAN RESOURCES

1. Quantum entanglement

Recall that the characterization of the set of separable states
ρG[VAB, s] ∈ SA|B can be simplified to [71]

ρG[VAB, s] ∈ SA|B ⇔ VAB � γA ⊕ i�B, (C1)

which gives the following semidefinite representation of the
quantifier κS :

κS (VAB ) = minimize
λ,γA

λ

subject to λ VAB � γA ⊕ i�B

γA = γ T
A

γA � i�A

λ � 1, (C2)

where one can equivalently consider the subsystem B instead.
The Lagrange dual of υS can be obtained as

υS (VAB ) = minimize
W,X

〈W,VAB〉

subject to 〈W22, i�B〉 + 〈X, i�A〉 = 1

Re(W11) = Re(X)

W,X � 0, (C3)

where W =
(

W11 W12

W
†
12 W22

)
and we use the Hilbert-Schmidt inner

product 〈X, Y 〉 = Tr(XY ). With respect to the dual problem
in Ref. [69] which requires an optimization over the spaces of
Hermitian matrices H2n ⊕ H2n, using the simplified condition
for separability in Eq. (C1) reduces the optimization space to
H2n ⊕ H2nA

.
To see that we were justified in claiming that the opti-

mal value of υS is equal to the optimal value of the dual,
we will show that strong duality holds. Take W� ⊕ X� =
12n+2nA

+ i
2n

� ⊕ �A, and notice that W� ⊕ X� > 0 since it
is Hermitian and all of its eigenvalues are given by 2n±1

2n
> 0,

and Tr (W�
22i�B ) + Tr (Xi�A) = 1. This means that W� and

X� form a strictly feasible solution to the dual problem, and so
Slater’s condition is satisfied and strong duality holds [90].

2. Steering

The primal problem corresponding to the quantifier of A →
B steerability κT is then given by

κT (VAB ) = minimize
λ�1

λ

subject to λ VAB � 0A ⊕ i�B. (C4)

An important property of the Schur complement is that,
given a Hermitian matrix M = ( P X

X† Q

)
such that P > 0, we

have M � 0 ⇔ M/P � 0 [89]. Now, since VA > 0, we can
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equivalently write

κT (VAB ) = minimize
λ�1

λ

subject to λ VAB/VA � i�B. (C5)

The corresponding inverse dual is given as

υT (VAB ) = minimize
W

〈W,VAB〉
subject to 〈W22, i�B〉 = 1

W � 0

= minimize
W

〈W,VAB/VA〉
subject to 〈W, i�B〉 = 1

W � 0. (C6)

Taking W� = 12n + i
2n

�, we have that W� > 0 since it is
Hermitian and its eigenvalues are given by 2n±1

2n
> 0, and

Tr (W�i�) = 1. This means that W� is a strictly feasible
solution to the latter dual problem, so Slater’s condition is
satisfied and strong duality holds.

In fact, Eq. (C5) suggests an interesting alternative char-
acterization of this quantifier in terms of a symplectic eigen-
value problem. To see this, consider first the following result
(see also [91]).

Proposition 5. The smallest symplectic eigenvalue νmin(V )
of any V > 0 can be expressed as

νmin(V ) = max {λ � 0 | V � iλ�}
= min { 〈W,V 〉 | 〈W, i�〉 = 1}. (C7)

Proof. Recall that a matrix S is called symplectic if
S�ST = �. By Williamson’s theorem [92,93], there exists
a symplectic matrix S such that SV ST = D ⊕ D with D =
diag(ν1(V ), . . . , νn(V )) > 0 being a diagonal matrix of the
symplectic eigenvalues of V . We then have

max{λ | V � iλ�} (1)= max{λ | SV ST � iλS�ST }
= max{λ | D ⊕ D � iλ�}
(2)= max{λ | D − λ2D−1 � 0}
(3)= max{λ | νj (V )2 − λ2 � 0 ∀j}
= νmin(V ), (C8)

where (1) follows since any symplectic matrix is nonsingular,
(2) follows from the Schur complement condition for positive
semidefiniteness, and (3) follows since both D and D−1 are
diagonal with νj (V ) > 0 ∀j . The second line of Eq. (C7) then
follows by strong Lagrange duality. �

This leads to the following simple representation:

υT (VAB ) = νmin(VAB/VA). (C9)

The quantifier can thus be related to a commonly used
measure, the Gaussian A → B steerability [81] NT (VAB ) :=
−∑

k ln min{1, νk (VAB/VA)}. In particular, in the case of a bi-
partite system where nB = 1, VAB/VA has only one symplec-
tic eigenvalue and therefore we have NT (VAB ) = ln κT (VAB ).
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