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Abstract. Generalizing the definition of the memory parameter d in terms of the
differentiated series, we showed in Velasco (Non-stationary log-periodogram regression,
Forthcoming J. Economet., 1997) that it is possible to estimate consistently the memory
of non-stationary processes using methods designed for stationary long-range-dependent
time series. In this paper we consider the Gaussian semiparametric estimate analysed
by Robinson (Gaussian semiparametric estimation of long range dependence. Ann. Stat.
23 (1995), 1630 61) for stationary processes. Without a priori knowledge about the

possible non-stationarity of the observed process, we obtain that this estimate is

consistent for d € ( %, 1) and asymptotically normal for d € ( %, %) under a similar set

of assumptions to those in Robinson’s paper. Tapering the observations, we can
estimate any degree of non-stationarity, even in the presence of deterministic
polynomial trends of time. The semiparametric efficiency of this estimate for stationary
sequences also extends to the non-stationary framework.

Keywords. Non-stationary time series; semiparametric inference; tapering.

1. INTRODUCTION

Statistical inference for stationary long range dependent time series is often
based on semiparametric estimates that avoid parameterization of the short run
behaviour. Frequently, it is assumed that the spectral density /(1) of the observed
stationary sequence satisfies, for 0 < G < oo,

fA)~GAL 2  asi—0t (1)

where d € (f%, %) is the parameter that governs the degree of memory of the
series. This is the interval of values of d for which the process is stationary and
invertible. If d € (0, %) then we say that the series exhibits long memory or long
range dependence. When d <0 the spectral density satisfies f(0) =0 and if
d< —% the process is not invertible. Many non stationary time series are
transformed into stationary time series after taking a sufficient number of
differences. In this case it is straightforward to generalize the definition of the
memory parameter d in terms of the properties of the spectral density of the
stationary increments of the observed process and the unit root filter(s).
Robinson (1995a) recommended an initial, possibly repeated, differentiation
(integration) of the observed time series when non stationarity (non invertibility)
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is suspected, to obtain a value of d in the stationary and invertible interval
( %, %), and then apply stationary procedures on the transformed series, adjusting
the estimate with the number of differences (integrations) taken.

However, in many empirical applications values of d outside the stationary
range are found when the estimates are not constrained to the stationary range
d<%, as is the case of explicit form estimates like the log periodogram
regression (e.g. Bloomfield, 1991; Agiakloglou et al., 1993). In Velasco (1997a)
we considered the application of the log periodogram regression estimate (see
Geweke and Porter Hudak, 1983; Robinson, 1995a) to raw non stationary
processes, following some previous ideas in Hassler (1992) and Hurvich and
Ray (1995). The last authors considered the expectation of the periodogram at
low Fourier frequencies for non stationary and non invertible fractionally
integrated processes. They showed that the normalized periodogram has
bounded expectation for d € [4, 3) but it is biased (for a function f satisfying
(1)) in this case.

Robinson (1995b) found that in the stationary and invertible case an estimate
of d minimizing an approximation to a Gaussian likelihood for frequencies
close to the origin has better efficiency properties than rival semiparametric
estimates, in the sense of having smaller asymptotic variance after proper
normalization when using the same amount of sample information. Using
Velasco’s (1997a) results for the periodogram of non stationary time series, we
address in this paper whether it is possible to extend the range of allowed
values of d in this implicitly defined estimate to cover some non stationary
situations and what the properties of the estimates are when the series is non
stationary, including some possible efficiency gains.

Under similar conditions to those assumed by Robinson we find that the
Gaussian semiparametric estimate is consistent for d € ( %, 1) and asympto
tically normal for d <3, with the same variance as in the stationary situation,
being more efficient than the log periodogram regression estimator. If we taper
the observations adequately we can estimate higher degrees of non stationarity,
as was found for the log periodogram estimate in Velasco (1997a). Finally, we
perform a limited numerical study of these theoretical results with simulated
and real data. We give all the proofs together with some technical lemmas at
the end of the paper in two appendices.

We do not discuss the non invertible case d < % here, but this could be
done using similar methods to those of Velasco (1997a) for the log
periodogram estimate (see Theorems 9 and 10 in that paper).

2. ASSUMPTIONS AND DEFINITIONS

In Sections 2 and 3 we consider the original estimate analysed by Robinson
(1995b) and concentrate on the interval %<d <%. When the observed time
series is stationary with spectral density fy(A) satisfying (1), d <1, we say that
the process has memory d and we define the function f as



f) = fx().
When {X,} is a non stationary process, we say that it has memory parameter
d (% =d< %) if the zero mean stationary process U; = AX, has spectral density

Fu) =11 exp(id)| 2“4~V f*A)

where f*(1) is a spectral density on [ s, 1] which is bounded above and away
from zero and is continuous at A =0. Thus fy(4) satisfies (1) with some

%$ dy <%, but we do not restrict its form for frequencies away from the
origin. Then we assume, following Hurvich and Ray (1995), that for any ¢ = 1

11
X, =Y Ui+ Xo
k1

where X, is a random variable not depending on time ¢ Next, define the
function f(4) for d = 1:

SR =11 exp(id)| > fu@) =1 exp(id)| ") = [2sin(A/2)| ' f*(2).

Note that f satisfies (1), but when 2d = 1 it is not integrable in [ s, 7] and is
not a spectral density. We do not assume that f™ is the spectral density of a
stationary and invertible autoregressive moving average (ARMA) process as
would be the case if U, followed a fractional autoregressive integrated moving
average (ARIMA) model. Here f* may have (integrable) poles or zeros at
frequencies beyond the origin.

We want to give a unified theory for semiparametric estimates of d & ( %, 1),
including stationary (with fx(0) equal to zero, a constant or infinity) and non
stationary processes. We introduce now the following assumptions about the
behaviour of the spectral densities fx(1) (d <}) and fy(4) (d = 1) (and thus of
the functions f(1) and f*(A)) at the origin.

ASSUMPTION 1. When d € ( %, %) the spectral density fy(1) satisfies, for
0<G <0,

fx(A) ~GA2  asd— 0t
and when d € [%, %) the spectral density fy(A) satisfies
fu) ~ GAT2A=D a5 ) — 07,

A slightly stronger version of this assumption, and the one we shall use to
obtain the asymptotic normality of our estimates, is the following.

AssUMPTION 2. When d € ( 1,1) the spectral density fx(A) satisfies, for
0<B <2 0<G<oo,
fx(A) = GA2 + O 2Py as i —0F
and when d € [}, 3) the spectral density fu(4) satisfies



fu(d) = GA2@"D L oA2@=D+Fy a5 ) — 0*.

Under Assumption 2 we write, defining the function g(A) = GA29, 0<fB <2,

) =14 0@ as A — 0T, )

g
This is equivalent to Assumption 1 in Robinson (1995a) when f is the spectral
density of X, (stationary) and d € (3, 1). See also Remark 3.1 in Giraitis ef al.
(1995).
Also, Assumption 2 implies that (1) is bounded above and away from zero
and is continuous in an interval (0, &), €>0.

AssUMPTION 3. In a neighbourhood (0, ¢) of the origin, if d € ( 1, 1), fx(4)
is differentiable and

’%fm)’ =0 asi—0F
and if d = %, fu(A) is differentiable and

’%fl/(l) =012y a5 1 — 07,

Then f(4) has first derivative satisfying (cf. Assumption 2 of Robinson
(1995a) in the stationary case d <%)

=072 as i — o0t (3)

d
I

These assumption could have been formulated in terms of the functions f™
and/or f, since we are interested in the implications they have on the function
£, (2) and (3). However, we did not find it appropriate to make assumptions
directly on f or f*, since these functions do not have an immediate and clear
statistical interpretation as fy or fx have.

Now we make the following assumption about the series U, when d = %, or
for X; when d <%, paralleling Robinson (1995b).

AsSUMPTION 4. We have, for 1<d <l y,=X, or, fori<d<l, y,=U,
with

yt:Za,e,,l Za%<oo
70 70
where
E(¢|Fi-1)=0 E(sﬂFH) = 1 almost surely (a.s.) t=0,=+£1, ...

in which F; is the o field of events generated by ¢, s < ¢, and there exists a



random variable ¢ such that Ec¢®> <oo and, for all #>0 and some C>0,
P(le)| >n) < CP(le[>n).

Then we obtain that, for d =1,

- a())?
FO= 11 exp) 2oy = |1 explin) A
where
a(d) = Z a; exp(ild)
70
and |a(A)?/27 = fu(A), the spectral density of U,.
Define the discrete Fourier transform of X,, t=1,...,n, A;=27j/n, j

integer,

1 n
w(d)) = Qan 2 tzl: X, exp(id;t)

and when d =1 we obtain

1 n t )
w(d)) = Qa2 121 ; Uy exp(id ;1)

so w(4;) is a complex linear combination of the (non observable stationary
variables Uy. The Fourier transform at any frequency 4;, 0<j<n, of a non
stationary sequence X, allows the elimination of the random variable X, so
w(4;) does not depend on the values of Uy for & < 1. Define the periodogram of
X, as

1(2)) = |[w ).

Because the estimate is not defined in closed form, we denote by Gy and d
the true parameter values, and by G and d any admissible values. Consider the
objective function (see Kiinsch, 1987; Robinson, 1995b)

m

oG, d)ﬁZ{ 0g(GA,*) + ’“f')}

Jj 1

and define the closed interval of admissible estimates of dy, © = [Vy, V,],
where V; and V, are numbers such that %< Vi <V, <1. Note that we cover
part of the range of values of d for which X, is non stationary As in Robinson
(1995b) V; and V, can be chosen arbitrarily close to 2 and 1 (2 in h1s case)
respectively, or reflecting some prior knowledge on dy. When dy € (1 2 2) the
asymptotics for /(4;) are exactly the same as in Robinson’s discussion, but when
dy =1 we have to resort to the results of Velasco (1997a), weaker in general.

2
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more natural to use the number of differences parameter d in a possibly non
stationary context. We define the estimates

(G, d) = arg0< Grglorcl,dE@ (G, d)

which always exist and also

d= in R(d
argmin R(d)

where
R(d) = log G(d) 241 § logh;  G(d)= L § AI@)).
m < m
J1 1

Using the discussion in Velasco (1997a), the main way of showing that
Robinson’s (1995b) results go through in the non stationary case (dy = %) is to
analyse the asymptotic behaviour of the discrete Fourier transform of X, for
frequencies A;, 1< j<m, with 1/m+ m/n— 0 as n— oco. Therefore,
assuming the same conditions for the ¢;, we could repeat the steps in Robinson
(1995b) to obtain the consistency and asymptotic distribution of the estimate of
the parameter d for non stationary processes. However, because of a bias
problem, the same results as in Robinson (1995b) can only be obtained for
do <3, consistency holding for do < 1.

We stress the point that the discrete sum in the previous definitions cannot
be substituted by an integral form as is considered for related estimates in a
full parametric context (see Fox and Taqqu, 1986; Giraitis and Surgailis, 1990),
since the properties of the periodogram for non stationary processes are only
equivalent to the stationary case when evaluated at frequencies 4;, 1<
js=n L

3. CONSISTENCY

In this section we obtain the consistency of d as defined previously for values
dy € ( %, 1). Under Assumptions 2 and 3, the conditions on the behaviour of the
function f(4) at the origin according to Theorem 1 in Robinson (1995b) hold
now also for dy € [4,3) (we do not need the integrability of f).

For the stationary case, the analysis of the asymptotic properties of w(4;) has
been done by Robinson (1995a). For the non stationary situation, d = %,
following some ideas of Hurvich and Ray (1995) we obtain that

JT
E(G)) = | kG 2
-
where K(4) = (2zzn)~!|>"} exp(id#)|? is the Fejér kernel. From this expression it
is possible to see that, when X, is non stationary, /(1) plays exactly the same
role as a spectral density in the asymptotics for the discrete Fourier transform at



frequencies 4;, j # 0 mod n, and Velasco (1997a) showed that the periodogram
is (asymptotically) unbiased for fif j is growing slowly with » and d <1. This
is stated the next theorem, which is Theorem 1 in Velasco (1997a). Definining
v(d) = wd)/f/2(A), we have the following.

THEOREM 1. Under Assumptions 1 and 3, d € [%, 1), for any sequences of
positive integers j = j(n) and k = k(n) such that 1 < k<j and j/n— 0 as
n — oo, defining

Or,; = (k)" og(j + 1)

(@) E{v(A))v(1))} =1+ 0(9;,);

(b) E[v()v(A;)} = 0(9,,);

(c) E{U(/lj)ﬁ(lk)} = O(k*1 logj + 6k,j);
@d) E{v()v(he)} = O(k~"logj + Ox,)).

The next two results hold in a similar way for the log periodogram estimate
of d for non stationary Gaussian time series. Here we do not need to assume
Gaussianity in any form. First we show that consistency of d when d <1.

THEOREM 2. Under Assumptions 1 (dy € ( % 1)), 3, 4 and

1 m
—+——0 as n — oo
m n

we obtain d — pd.

4. ASYMPTOTIC NORMALITY

For values of dy = 1 the periodogram at frequencies 4; is not unbiased for the
function f and j increases, and therefore & cannot be consistent. Unlike for
stationary processes, we can only obtain the asymptotic distribution for d in the
non stationary case for a smaller range of values of dy (do <%) than the interval
where the estimate is consistent, do<<1. This is due to the fact that the
properties of the periodogram depend on convolutions of the function f(4),
which deteriorate rapidly as f becomes more ‘non integrable’, i.e. as dj
increases (see Theorem 1 above and Theorem 1 in Velasco (1997a), and the
subsequent discussion).
We introduce two new assumptions that will be needed in the proofs.

ASSUMPTION 5. In a neighbourhood (0, €) of the origin, a(A) is differentiable

and
d - |a(/l)|} +



Clearly Assumption 5 implies Assumption 3, since f(1) = |a(4)|*/27 when
I1<dy<} and f(4) = {2sin(1/2)} *|a(d)* /27 when dy = 1.

ASSUMPTION 6. Assumption 4 holds and also
E(e§|F,_1):,u3 a.s. E(eﬂF,_l):pu t=0,=+£1,...

for finite constants w3 and puy.

THEOREM 3. Under Assumptions 2, 5 and 6, with dy € ( %, %), and

1 1428, 2
—+w—>0 as n — 00 “
m n?h

we obtain

m'*d  do) — pN(0, b

This theorem coincides, not surprisingly, with the results of Velasco (1997a)
for the log periodogram regression estimate of non stationary time series with
Gaussian increments. Beyond these values of d, the slow convergence of the
expectation of the periodogram to the function f leads to a slower convergence
of the estimates of d. In Velasco (1997a) this problem was overcome for the
log periodogram estimate using the bias reduction technique of tapering, as
suggested by Hurvich and Ray (1995). We do not pursue this approach here,
but the corresponding theory is similar to that obtained in the next section for
general non stationary processes and tapering schemes.

Another important point is that the efficiency property of this Gaussian
estimate with respect to other comparable semiparametric estimates observed by
Robinson (1995b) for stationary processes holds as well for non stationary
processes when the same number of periodogram ordinates, m, is used. Further,
the asymptotic distribution of d does not depend on any unknown constants,
not even dj, beyond the definition of the suitable range of valid values for the
theorem, which is only limited by d <%.

5. GENERAL NON-STATIONARY TIME SERIES

In this section we consider the estimation of the memory parameter for general
non stationary time series which after a finite number of differentiations are
stationary. In general, a (possibly non stationary) process {X,} has memory
parameter d > 1 if the process A*X, = U\, s = |d +1], is stationary with
mean u, possibly different from zero, and spectral density '« (4) behaving as
GA24=9 1<qd s<l around the origin for some positive constant G.
Robinson (1995b) considered the case s = 0 and in Section 2 we considered the
case s=1,d<1, u=0.
Define the function



SR =11 exp(id)| > fye @) = [2sin(A/2)] 7 f*(2)

in terms of the spectral density of the stationary sequence U(f) or the function
f*(A). Following the discussion in Velasco (1997a), we can write for random
variables R"), » =1, ..., s, which do not depend on time ¢

— RM + Z U(l)
(1) i (2) i (2)
=RV Y RO+ YU
Ji J2 ’

— RO 4 ’R(Z)JFZZ R<3)+ZU<3>

o2

= R 4 R® 4 = (z + )R + Z Z Z vy

J1 2 )3

_ Z RO pI() + upu() + i Z Z Ui

i )2

where p(")(f) are polynomials in ¢ of order r 1, pu(?) is a polynomial of order
s and Uj ) = U(Y) u has zero mean and the same spectral density as U“)
These two polynomlals can be regarded as the initial conditions of the Observed
non stationary sequence and as a deterministic trend, respectively. In Velasco
(1997a) we proposed using, instead of the original series, a tapered version with
a weight sequence {4}, |, symmetric around |n/2], such that max, s, = 1.
Hurvich and Ray (1995) used the cosine bell to analyse the expectation of the
periodogram when d <1.5. Other authors also (Zhurbenko, 1979; Robinson,
1986; Dahlhaus, 1988) have shown that tapering allows inference in the presence
of non stationary distortions in the observed stationary time series.

We consider now the discrete Fourier transform of the tapered series h,X:

wi(d)) = Z heX rexp(id;1)

@ th)l/z

(2;12;,2)1/22}1 {ZR“) ’)(t)+ﬂpu(t)}e><p(l/1 no©

WZ ZZ in”eXp(t/l ). ©)

J1 2



The term (6) reflects the accumulation of information in the non stationary time
series X, starting from ¢ = 1, but the term (5) is a nuisance component of the
discrete Fourier transform which comprises the information in {X,}{ from the
past. To make inferences about d we make this expression (5) equal to zero for
certain frequencies 4;, using specific orthogonality properties of the weights 4,,
ie.

D 14t 24 - )exp(id;f) = 0. (7
t 1

Observe that in the case s = 1 we have only required that >, |k, exp(il;t) = 0,
because we were assuming u = 0 to eliminate the influence of the polynomial
pY(#) =1 of order 0 (a constant with respect to #). The raw Fourier transform
satisfies condition (7) with s = 0 (but not any of higher order). In other words,
without tapering we can consider d <1 but always without drift.

Defining the equivalent to the Dirichlet kernel in the tapered case

DE(/I) = Z h, exp(ith)
£ 1
we say that a sequence of data tapers {A,}] is of order p=1,2, ... if the

following two conditions are satisfied.

(a) For N = n/p (which we assume integer),
a(d) (sin(nd/2p)\?
nP=1 | sin(1/2)
where a() is a complex function, whose modulus is bounded and bounded away
from zero, with p 1 derivatives, all bounded in modulus as # increases for
Ael m, .
(b) For one function b = b(n), 0<b<oo, Vn>0,

ihi:bn.
t 1

D4 =

Then, it is immediate that
\DI,(/l)| < constant X min(n, n'~?|A|7?)
and, with the equivalent to the Fejér kernel, KE(/I) = (2nZh§)’1|D£(ﬂ.)\2,
|KE(/'L)| < constant X min(n, n'~27|A|72P).

Also we have that D;(/l) has zeros of order p at A = 4, and that thanks to

d? .
(d/l)qu,(/l)l . =0 0</j<N

g <p 1, condition (7) is satisfied for s <p 1.
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If condition (7) holds, deterministic time trends up to order s can be removed
in the calculation of wT(l ;) without the need to estimate them by any means.
The cosine bell taper is of order 1, so its utilization is only justified in the case
d<1.5 with u =0, as was shown by Velasco (1997a) for the log periodogram
semiparametric estimate. Here we do not consider this tapering scheme
explicitly but, given the asymptotic behaviour of tails of the kernel KT in this
case, the conclusions are equivalent to those with p =3 and for d <1.5.

Two examples of data tapers satisfying the above conditions are the Parzen
and Zhurbenko Kolmogorov proposals (see also Alekseev (1996) for further
examples and discussion). For sample size » =4N, N integer, the weights
given by the Parzen window

LI B TR (0 n)/n¥? |2t n)/n’] I<t<Nor3N<{(<4N
tT 21 @t my/n|P N<t<3N

satisfy (7) for j=4, 8, ..., n 4 and s = 3. We can obtain (see for example
Percival and Walden, 1993)

32 (A [sin(nd/8))* (in/l)
=24 281“2(5)}{“11(1/2)} o\

and Y7 | (h)? ~ constant X n. Zhurbenko (1979) used the data weights {/4%}
suggested by Kolmogorov,

2
= pip. W 2D 1)} NP

where the coefficients ¢, y(f) are given by

PN=1)

1 2V
ZZthvN(t-Fl):(l—f—ZJ'-...+ZN_1)I7:( ) .
t 0

1 =z

Then, it follows that

(N2 1)}1/4{1 eXp(iN/l)]p
2

(2ﬂ2h§)1/2DZ(’1):p{ 127 N{l exp(id)}

and hence

K7 = 2{P(N2 1)}” [ sinn/2p)|”
Pl 12n N2sin2(1/2)
where p is defined adequately to make KZ integrate to 1 and it can be seen to be
very close to 1 for p and N big enough (see Zhurbenko, 1979). Therefore, this

class of taper weights for p =1, 2, ..., fixed in the asymptotics, and n = pN
satisfies condition (7) with s < p 1 at frequencies 4,,, 0 <j<N.

1"



6. TAPERED ESTIMATES

In this section we obtain the consistency and asymptotic distribution of a
modified version of d when we use the previous data tapers for values dy > %
We introduce now the following assumptions about the behaviour of the spectral
density fys(4) (and thus of the functions f(1) and f™(1)) at the origin.

AssuMPTION 7. The spectral density fy(4), s = |d +%j, satisfies, for some
constant 0 < G < 00,

fu@A) ~ GA=H4=9 as A — 0t. )

A slightly stronger version of Assumption 2 is the following condition, where
we give more information about the behaviour of the spectral density fy(s)(4)
at the origin. This extra information will be used to reduce the bias of the
tapered periodogram for f as was done in Velasco (1997b) in a related context
(see also Assumption 3 in Robinson (1994b)).

AssSUMPTION 8. When d € ( %, %), the spectral density fys)(4) satisfies, for
numbers 0<f =<2, 0<G, Eg<oo.
FuA) = GL2A™) 4 Egpm2 =948 4 o729y a5 ) — 07,
As before, Assumption 8 implies that /™(1) is bounded above and away from

zero and is continuous in an interval (0, €), €>0.
We will need also the equivalent to Assumption 3.

ASSUMPTION 9. In a neighbourhood (0, &) of the origin, if d€( 1,3,
Sfus(4) is differentiable and

C%fl/(s)(l) = O(A172d=9) as A — 0T,

Then f(4) has first derivative satisfying (cf. Assumption 2 of Robinson
(1995a) in the stationary case d<%),

%f(l) =072 asi— o0t

Now we make the following assumption about the series U(,S), equivalent to
Assumption 6.

AssuMPTION 10. We have

o0 o0

() 2

U; :E a | g aj; <oo
10 10

where the ¢, satisfy the conditions of Assumptions 4 and 6.

12



Then we obtain for any d> 1 that

2s ‘a(l)‘z )

SO =1 explh)[ 7 fue(h) =1 exp(id)| =~

Defining the (tapered) periodogram of X, as
1) = w2
we consider now the objective function

m

0,(G, d)—%Z{lo (G272 + ‘;1 ’)}

J J

where all the summations run for j= p, 2p, ..., m, assuming m/p integer,
unless otherwise stated. Define the closed interval of admissible estimates of d,
[Vl, V], where V, and V, are numbers such that 1 3<Vi < vV, <d¥, and
p=|d* 1J + 1. This last condition is equivalent to (f‘< <p+1 2 where d
the maximum value of d we can estimate with tapers of order p. Note that we
can cover part of the range of values of d for which X, is non stationary. As in
Robinson (1995b), V; and V, can be chosen arbitrarily close to % and to a
maximum value of d, d*, restricted only by the order p of the taper weights
used, or reflecting some prior knowledge on dy. When u = 0 it is enough with
d* <p.
We define the estimates

G ’s d,) = g min 0,(G,d
(Gp, dp) =ar 0<G<loc,d6® o )
which always exist and also
d,= inR,(d
p =arg rdneln p(d)

where
_ ; P Zm ¢ _p Zm 2d T

The discrete sums in the previous definitions include only frequencies 4;,
j=p,2p, ..., m, since the properties of the periodogram for non stationary
processes are only equivalent to the stationary case when evaluated at these
frequencies.

When X, is non stationary, f(A) plays exactly the same role as a spectral
density in the asymptotics for the discrete Fourier transform at frequencies 4;,
j # 0mod n, and Velasco (1997a) showed that the periodogram is (asympto
tically) unbiased for f if j is growing slowly with n and p is chosen
adequately. This is stated in the next theorem, which is essentially Theorem 6
in Velasco (1997a). Note that the non tapered periodogram is an estimate with

13



p = 1. Defining now v}(2) = w'(4)/(G'/24~%), for a taper of order p, we have
the following.

THEOREM 4 (p = 2). Under Assumptions 8 and 9 (d > %, 0<p<2) for
fue, a data taper of order p=2,3,..., with p=s+1 (or just p>d if
u =0), for any sequences of positive integers k = k(n) and j = j(n), 1 < k<j
and W =j k, such that j/n — 0, defining

vk =GR Plog(j + 1)

we get

(@) E{ (4T} =1+0{min(j7*, ;=) + (j/n) + v}

(b) E[V,(Ap)v,(2p)} = OG ™7 +v;,);

© E{u,ApvtAg)}t = O™ n' =7 + k™' Plogn+ 177 + yi,);

(@) E{oy(dp)0(Aip)} = OG0 =7 + k= Plogn 9177 + i),

Then we obtain the consistency of d p in the following theorem. Note that we
only require Assumption 7 for this result, not Assumption 8, which will be
used to derive the asymptotic distribution of d in the next section and was used

in the previous theorem because we normalized the discrete Fourier transform
by (GA=2)!/2 and not by {f(1)}'/2.

THEOREM 5. Under Assumptions 7, 9 and 10, with V> 5 and p =
|V2+ 1] + 1 such that dy € [V1, V2], p=2,3,..., and

1 m
—4+——0 as n — oo
m n

we obtain (;’p — pd).

If we assume u# =0 then we only need in fact p>V, if there are only
deterministic trends in X, up to order p 1. We do not consider here the case
p = 1 because this is equivalent to the non tapered situation, with V, <1 (and
u = 0 necessarily). With respect to Theorem 2, the only extra condition we
have used is the fourth moment of the innovations ¢, in Assumption 10.

Then we obtain the asymptotic normality of d .

THEOREM 6. Under Assumptions 5, 8 (3>1, V1> Land p= |V, +1| +1
such that dy € [V, V3], p=2,3,...), 10 and
1428 2
l n m' TP (log m) .

p oY 0 as n — 0o )

we obtain
m'*(d  do) —p N0, 1p®)

where
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n -2 n—p n 2
® = lim <Z hf) > {Z h%cos(m)} . (10)
R T k 0,p2p,.. |1

This theorem is equivalent to the results of Velasco (1997a) for the log
periodogram regression estimate of non stationary time series with Gaussian
increments. There, we changed the definition of the estimate to adapt the proofs
of Robinson (1995a), but here, even with the correlation between the tapered
periodogram ordinates, we do not need to modify the definition of the estimate.
However, the variance of the estimate is increased slightly by a factor of ®
(generally bigger than 1) because of this correlation of the tapered
periodogram, owing to the lack of orthogonality of the taper weights. This ®
takes the values 1.05000, 1.00354 and 1.00086 for the Zhurbenko kernels with
p =2, 3, 4 respectively, implying increments of the variance of 5%, 0.35% and
0.09% for each of the data tapers (apart from the factor p in the variance of
the estimate). When u =0, the theorem is valid with just p>V,. If we
consider the full cosine window taper h, =3{1 cos(27wt/n)}, then if we
regard this taper as of order p = 3, with the same definitions as before, u = 0
and d<%, Theorem 6 holds with ® =1, but if we use all the Fourier
frequencies from A, to 4, (i.e. without spacing), then ® =35/18 (see the
discussion in Velasco (1997a, 1997b)). Note also that if we take in (10) the

sum across all frequencies, we obtain with Parseval’s identity

n -2 n— n 2 n -2 n
<Z h%) {Z h%cos(t/lk)} = n(Z h§> > nf
1 k012, 1 1 ‘1
where the right hand side is the usual tapering variance adjustment (cf. for
example Dahlhaus, 1985, expression (3)).

The increased smoothness of the function f(4), f>1, is used in conjunction
with the tapering to approximate the periodogram of the observed time series
by that of the innovations (see the proof of Theorem 6 in Velasco (1997a) and
Theorem 2 in Velasco (1997b)). Here we cannot resort to the second moments
of the tapered periodogram as was done in the non tapered case, since the
correlation problem just pointed out impedes further improvement of the
approximations.

7. EMPIRICAL WORK

The aim of the first simulation exercise was to address the previous properties of
d, especially in comparison with the log periodogram regression estimate

1) log IG){logj  (1/m)]  log 1}
2 Y logj{logj  (1/m)3 )" logl}
To this end we stimulated 1000 Gaussian fractional ARIMA(O, d, 0) for each

d=
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value of d in 0.45(0.1)1.25, n = 256, and we chose a relatively small value for
m, 32. We did not perform any trimming in the definition of d. The series were
simulated with the S Plus function arima.frac.diff and the minimum of the
objective function was found with the nlmin command. In the search for the
minimum we used as initial values for d and G those obtained with the log
periodogram regression, and we did not restrict the range of possible values for
d. This procedure gave no problems for any value of d, indicating a relatively
well behaved objective function, even for values of d > 1.

The box plots for the estimates are given in Figure 1, only up to d = 1.05.
The main features of the plots are the invariance of the distributions of d and d
to the actual value of dy and the efficiency and smaller bias of the Gaussian
estimate with respect to the log periodogram across all dy. For dy = 1.05
(do = 1) neither of the two estimates is consistent and this fact is reflected by
the negative bias for both, in the opposite direction of the biases when dy <1.

The basic statistics summary is contained in Table I, including the bias of the
estimates, the standard deviation, the expected standard deviation from the
corresponding central limit theorems and the mean square error across
replications. Note that for dy = %, Theorem 3 does not hold.

In the second simulation we considered the estimation of values d = 1. The
only modification with respect to the previous exercise was that now the series
were of length n =512 and m = 100. The values of d, considered were 0.95
and 1.8, one close to the borderline of the asymptotics presented in this paper
for this estimate and the other well outside. The results for d and d are given
in Figure 2. In the top row of graphics we give the box plots and in the bottom
row non parametric smoothed estimates of the simulated probability density of
the estimates of d. The two leftmost columns of plots, for d =0.95, 1.9,
indicate that the two semiparametric estimates considered work relatively well
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FIGURE 1. Gaussian semiparametric and log-periodogram estimates, Gaussian ARFIMA(0, d, 0),
n =250, m =32, 1000 replications.
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TABLE I

Gaussian estimate Log-periodogram estimate

do Bias S.d. Th. s.d. MSE Bias S.d. Th. s.d. MSE
0.45 0.0041  0.1151  0.0884 0.0132 0.0179  0.1383  0.1134 0.0194
0.55 0.0050 0.1115  0.0884 0.0124 0.0186 0.1330 0.1134 0.0180
0.65 0.0089  0.1155 0.0884 0.0134 0.0259  0.1446 0.1134 0.0215
0.75 0.0164 0.1168 0.0139 0.0324  0.1439 0.0217
0.85 0.0213  0.1116 0.0129 0.0398  0.1399 0.0211
0.95 0.0026  0.1108 0.0123 0.0160  0.1342 0.0182
1.05 0.0309  0.1004 0.0110 0.0286  0.1240 0.0161
1.15 0.0837  0.0969 0.0164 0.0867  0.1207 0.0221
1.25 0.1638  0.1043 0.0377 0.1776  0.1251 0.0472

Notes: S.d., standard deviation; Th. s.d., theoretical standard deviation; MSE, mean square error.
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FIGURE 2. Gaussian semiparametric and log-periodogram estimates, n = 512, m = 100, Gaussian

ARFIMA(O, d, 0), 1000 replications.
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for values close to 1, but not for more non stationary time series, for which the
estimates converge extremely quickly to values close to 1, except for a long tail
towards the right value. The plots on the right are for the same estimates but
we used a tapered periodogram with the triangular Barlett window taper
(equivalent to Zhurbenko tapers with p = 2) and we defined our estimates for
frequencies A, A4, ..., A,, assuming m is even. In this case also it seems that
the Gaussian estimate is more efficient than the log periodogram regression.

Now we consider a simple application with real data. Different parameter
izations have been proposed in the literature to explain the persistence in the
volatility of the returns found in many financial data sets. Robinson (1991)
introduced a long memory generalized autoregressive conditional heteroscedas
ticity (ARCH) model which was used by Baillie et al. (1996) and Bollerslev
and Mikkelsen (1996) to define the fractionally integrated generalized ARCH
class

H(L)(1  L)'x3 =+ b(L),

where all the roots of the polynomials ¢ and b in the lag operator L lie outside
the unit circle and v, :x% rf are martingale differences, E(v,|.7 ,_;) =0,
72 = var(x,|7 ,-1) as. and .7, is the o field of events generated by {x: s < t}.
These models allow persistence or long memory in the squares x% of
martingale difference levels x, when d >0 and are basically equivalent to the
fractional ARIMA models for means, but in the variance, generalizing for any
0 <d =<1 the fully integrated GARCH model, equivalent to a unit root in the
mean. Although our asymptotic theory for semiparametric estimation is not
readily applicable for this situation (because of the linear process assumption)
we investigate the possible utility of the tapered estimates proposed in
exploratory analysis to detect the persistence in some crude approximations to
the volatility (like the squares and absolute value of the levels) without the
need to model the short run dependence. The above models are strictly
stationary for any 0 < d < 1, but a further difficulty is that when w >0 the
squared process has a drift term and so it is non covariance stationary. We hope
that with enough tapering (large p) we can alleviate the effect of this possible
drift, which is a smooth function of time ¢ and could be well approximated by
polynomials of ¢.

We do this for two data sets corresponding to the returns (defined as the
increment of the logarithm) of the exchange rates of the French franc and the
deusch mark against the US dollar, using 2000 daily observations running from
November 1972 to January 1981. The plots of the relevant series are given in
Figure 3 and the results are given in Figure 4. We employ bandwidth numbers
m =15, 18, ..., 100 and tapers with p =1, 2, 3. We plot all the estimates
obtained in this way, using the squares and the absolute value of the returns
series.

The main conclusions we can draw are as follows. Estimates with p =1
usually give a lower range of values than those with higher values of p. In all
cases, when we take m too big, the estimates produce much lower values of d
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FIGURE 3. Exchange rates, returns and absolute returns for the deutschmark and French franc
against the US dollar, November 1973 to January 1981.

as a consequence of moving away from the origin, where we would not expect
model (1) to hold. For the significant range of values of m the estimates with
p =2 and 3 are almost always very close, indicating perhaps that with p =1
we cannot estimate high values of d appropriately. For the Frech franc the
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FIGURE 4. Gaussian semiparametric estimates of the persistence for the French franc and the
deutschmark.

persistence in volatility is in general higher than for the mark, with values of d
up to 0.9 with the absolute value for the franc and only 0.7 for the mark. This
agrees with the findings of the previous authors, who reported values for the
deutschmark between 0.6 and 0.8 depending on the parametric model assumed
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for the short run dynamics of the volatility.

In this paper and in Velasco (1997a) we have shown that the semiparametric
model (1) is valid for estimating the memory d of possibly non stationary time
series. If the observed process is non stationary f(4) is no longer a spectral

8. DISCUSSION
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density but is the limit of the expectation of the (tapered) periodogram and
therefore can be estimated non parametrically. Both the log periodogram and the
Gaussian semiparametric estimates compare the non parametric estimate of f(4)
given by the periodogram at the relevant frequencies with model (1) and obtain
the best estimate of d under different criteria. For this, the integrability or not of
the function f around the origin does not matter, but only the accuracy with
which we can estimate it by means of the periodogram ordinates. Of course, the
steeper and more non integrable f is, the more complicated this approximation
will be, but the error can be controlled if enough tapering is applied.

The same principle will undoubtedly work for full parametric models of
functions f corresponding to non stationary observations if tapered observations
are used. Then, simultaneous estimation of d and the other short run memory
parameters is possible without a priori assumptions about the degree of
(possible) non stationarity of the observed sequence.

Nevertheless this approach will surely break down if we try to estimate the
integral below f(4), [(;l f(A)dA for any a >0, instead of the function f itself,
since this integral diverges for ¢ = 1. This problem arises for the semipara
metric estimate of d considered by Robinson (1994a) and Lobato and Robinson
(1996), based precisely on the estimation of the cumulative spectral distribution
function. Simulations with this estimator d always result in estimates of d
constrained to d <1, for any d =1 and any order of data tapering.

A further approach to deal with long memory, non stationarity and
polynomial trends could be the use of wavelets and there are several recent
references which deal with the estimation of d and related topics for fractional
white noise inference using wavelets (e.g. Jensen, 1995; McCoy and Walden,
1996; and the references therein). Based on the wavelet decomposition of the
variance at different scales, a variety of estimates of d are proposed, some close
to the log periodogram estimate and others related to Gaussian maximum
likelihood, always using the information at all possible scales, being mainly
then of full parametric nature. The lack of rigorous asymptotic theory for such
estimates in a general case is related to some possible bias problems if the
spectral density is not proportional to A=2¢ for all frequencies. Furthermore, the
assumption of covariance stationarity of the filtered series makes it difficult to
predict how these procedures will deal with non stationary observations.

APPENDIX A: PROOFS

PROOF OF THEOREM 2. We repeat the steps of the proof of Theorem 1 in Robinson
(1995b), with the same definitions and with the notation in terms of d H %,
readjusting accordingly the set of admissible values [V, V,]. More details can be found
in that reference or in the proof of Theorem 5. We will concentrate mainly on the
asymptotics when d, = %, since the case dj € ( %, %) is covered in Robinson’s paper.

As in Robinson’s proof we define V.V, when dy<1+V, and dy 1<V =<d,
otherwise. Then define ©; {d:V<d=<V,} and O, {d:V,<d< Vf, possibly
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empty. We take up the proof after expression (3.12) in that reference. Given that now we
can consider values of d arbitrarily close to 1, we obtain that for » 1,2, ..., m

1 2(d—dy) 12
14— <=
r r

so the bound is of the same order of magnitude as in the (exclusively) stationary case.
When the observed time series is stationary dy < ‘ , all Robinson’s results apply, even
if V, = 1 The dlfferences arise when we have to con51der the periodogram 7;  I(4;)
and d > 1 When dy <1 3> We can use expression (3.14) in Robinson’s paper,
L g\ 1
2 1 &)X +—(1 loj)*1,) + @l 1)
g < f,> il e 9
. . . —2d
where I;  I.(4)) is the periodogram of {¢,}{, f; f(4,), ¢; «a(4;) and g; G/ljz ’
However, when 5 < do <1 we have to consider the additional transfer function of the
linear filter of first differences before writing down the previous decomposition in terms of
the sequence ¢,:

sup
0,

I; N\ i _
o <1 f,’) Lyl Ay e la )+ Gty .
J J

Now, from Theorem 1 (see also Theorem 1 in Hurvich and Ray, 1995), dy = %, for n

sufficiently large,

E‘—j
8j

for a generic positive finite constant C, in a similar way to when d <%.
Next, paralleling expression (3.17) in Robinson (1995b) for the stationary situation,

E|I; |1 exp(id))| e, 1]

<C j 1,..,m (AD)

< Ellw; {1 exp(id)} 'aywelw; + {1 exp(id))} " omwel]
<[El; {1 exp(il))} 'a;Ew,w; {1 exp(id))} 'a;EWw,

+ {1 exp(id))} oy EL,)

X [EL 4+ {1 exp(id))} 'a;Ew w; + {1 exp(id;))} 1o EWw;

+ {1 exp(id)} 'aPEL]? (A2)

denoting by wjc  w(4;) the Fourier transform of ¢,. Then, from the proof of part (a) of
Theorem 1 (see Velasco 1997a) we can obtain, for <d,<l,

El;  f{1+ O(ﬁ‘d@*” log )}

_ {1 exp(iA))} la;

EwW o +0(A 4125 log /)

1
Elj 5+ 0" log )

uniformly in j 1,..., m. Thus (A2) is O{;%'(log;)"/?}, and following with

Robinson’s proof, when d 2%
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1
27_[1_/ {1 expliZp} 'y’ 1)]
1 J

(mzl< >2<V do)+1
1 r2

)

_ m ’ 2(V—d0)+]1 r o 12
<scy (= ﬁg{/ (log )'/*}

1 m
m
< Cp2ldo—v)-1 Z PAT—do)=Ledo (g0 )12
1

O{mz(d(,—V)—l+md‘,—l(10gm)3/2} o(1)

where the last line follows from separate consideration of the cases 2(V  dy)
14+do< 1 and 2(V dyp) 1+4+dy= 1. Also we can check, using the same
techniques, that, as n — oo, for arbitrarily small #, % =d,<l,

‘%Z(L 1)‘ Op{nﬁZﬂ"1<logm)l/2}+0p(1> or(1).
1 1

&j

Using Robinson’s definitions the next point that deserves attention when d, = % +V,is

1m K . m
P30 ot P op{%Z(ml)} Or()
1 J J 1

with (Al).

Observe that after Equation (3.22) in Robinson (1995b) we need to choose in fact
V<dy 3 1+ 1/(4e) without loss of generality. Because of this modification, we have to
proceed in a different way to bound the next expression, for 1 ssdo<l:

m a; 1 ) B
'72 —1; K1 exp(id)} a1, (A3)
me f/
1L do—1 1/2
op{a 2 (@ + D" (tog m)
1L -dy—1 1/2 1 do—1 1/2
op{azlja,y (log m) JWZJ (log m)'/? \. (A4)

Next, since p  exp(m™'> {"logj) ~ m/e,

J2 b
Zajjdrl p2(dU—V)Zj2(V—do)+do—l o(m™)
if 2V dy>0, and O(m*%~Vlogm) if 2V dy < 0. Then, using > ya;  O(m) and
sup;=, jo71 O(pP~ly  O(m®~'), we obtain that (A4) is
Op{m™" (m® + m*“~)(log my*}  op(1)
with dy <1 and d, %< V, and the proof is completed.
PrOOF OF THEOREM 3. Again we retrace the steps in the proof of Theorem 2 in

Robinson (1995b). The main step here is to obtain the equivalent to expression (4.7) in
that proof bounding in probability the quantity
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r I
Z(f’ 2;:1(‘,-)
T \&j

for the general case dj € ( %, %). We shall see that the bounds for the case d, 2% are
weaker in general than for the stationary case, so these will be the leading terms in the
bounds.

First, we need the quantity (cf. Equation (4.7) in Robinson (1995b)), for 0 <o <1,

m r>17261 r <[] >‘ 1 m sy,
— = o) += <—’ 1)‘ (AS)
20 A el
to be op{(log m)~°}. From Lemma 1, the second term in (AS5) is, for dy = 1,

Op { m*o=D/5~440) (1o p?/(5=4d0) | b F

+ 2@ Dlog m 4 12 @-D2(10g )54 4 p VA md=(log m)l/Z}

op{(log m)~}
if dy <1, with (4), and the first term is in order of probability

m
m2(§—] Z r—]—Zé{rl/(5—4d0)(10g r)2/(574d0) + rﬁ+l n—[f
rl

+ 20 og r + n’l/zr(HdO)/z(log n)5/4 + n’1/4rd0(log r)l/z}
O(mzé"[l + ml—25{m4(d0—1)/(574d0)(10g m)2/(5*4d0) +mPn?
+ m2(d(,—1)10gm + n—l/zm(dn—l)/z(log n)5/4 + n’1/4md°’](log m)l/2}])

op{(log m)~°}.

From Lemma 1, we can see also with F(d) m’lzr(logj)"/lﬁd[,-,

- 1 & K
Fatdo) - Gos, > (tog))

OP[{m4(d0—1)/(5—4d0) + m2((10—1) + n—l/Zm(do—l)/Z(log n)5/4 + n—1/4md0—1}(10g m)Z]

op(1)

if % < dy < 1. Next, the error in probability after expression (4.11) in Robinson’s proof is
now with Lemma 1

OP[{m(4du—3)/(10—8du)(10g m)/2 4 mP2 B
+ mz‘l"‘}/zlog m—+ n"l/zmd”/z(log n)S/4 + n"1/4md°"'/2(log m)l/z}log m)

op(1)

if % <d <%, using (4). This completes the proof using the same central limit theorem.

PrROOF OF THEOREM 5. We repeat the steps of the proof of Theorem 1 in Robinson
(1995b), with the same definitions and with the notation in terms of d H %,
readjusting accordingly the set of admissible values [V;, V;].

For 1>6>0 let Ny {d:|d do|<d} and Ny ( o00,00) Ny. Then, for
Sp(d)  Ry(d)  Ry(do),
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P(d do|=0) PdecNsnO)
P{inf R,(d)< inf R,(d
{ﬁl,?m@ »(d) Jnf p(d)}
< P{inf S,(d) <0}
NsNO

because dy € Ns N ©®. As in Robinson’s proof, we define V.V, when dy <1 5+ V; and
dy 1<V <d, otherwise. Then ©; {d:V<d=<V,} and O, {d:V, < d<V},
p0351b1y empty. It follows that

P(d do| = 0) < P{ inf S,(d)<0}+ P{inf S,(d) < 0}. (A6)
NyNO, 2

The sets ©; and @2 are treated separately because of the non uniform behaviour of R,(d)
around d do 5. The first probability on the right of (A6) is bounded by

P{sup|Tp(d)| = _inf U,(d)} (A7)
0, NsNO,

where

G G(d 2d do)+1
I R I e )
P> .
+2(d dO){m;bgj (log m 1)}
Up(d) 2(d do) log{2(d do)+1}
G,(d) Goﬁili(a’—do)
J
so that S,(d) Uy(d) T,(d). As in Robinson (1995b),

_inf U,(d)>16? (A8)
NyNO,

and supy, g, [Tp(d)| — 0 if

Gp(d) ,,(d)‘
WG it
is op(1), while
p[ 2o+ 1} < )2“’ "°> 1’ ALO
sup Z (A10)
and
'%Z’::logm (log m 1)’ (A11)

are both o(1).
From Lemmas 4 and 5 below, (A10) and (All) are O(m2¥-9)-1) o(1) and
O(logm/m) o(1) as m — oo, respectively. We write
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Gy(d) Gpd) A,d)
G(d) B,(d)

2d  do)+1 Ad=do)
Ay P mo)+ }Z<m> (EI 1)
J J

p{2d__do)+1} Z(_)“ v
m

m

where

Bp(d)

J
for g; GO/I;M”. Now

d—do)
. p{2d  do)+1} A 1
inf B,(d) =1 s up ‘72 - 1= (A12)

m -
J

|4 ,(d)|

for all sufﬁciently large m, by Lemma 4. By summation by parts
J ;1

_3p mzﬂ{ <L>2(d—do) <r+ p)Z(ddo)} Z,({/ )\
r m m gj
(A13)

Because |(1 + 1/r)%4=4) 1| < Cy, ,/r on ©; when r>0 where Cy, , is a constant
depending on V, and p such that

1\ 2%
Cy.p < (2V2+1)(p; )

the first term on the right of (A13) has supremum on ©; bounded by

—p 2Ad—do)+1 I.
o S HEG )
T N&
2AV—do)t1 I.
\3CVprZ< ) = Z(E/j 1)' (Al14)
J

where the inequality is due to 0<2(V do)+1=<2(d dy)+1 on Oy.
Now we have to consider the periodogram IjT I p(/lj) in the decomposition

It
;f 1 (1 f’) +— {IT [T exp(idp)| |, P11} + @I, 1), (Al5)
J i) 8j ’

For any # >0, Assumptions 7 and 8 imply that n can be chosen such that

'1 L T (A16)
Ji
Now, from the proof of Theorem 4 in Velasco (1997a), for n sufficiently large,
It
E|lL|<cC j L..,m (A17)
&

for a generic positive finite constant C, in a similar way to when dj € ( %, %). Thus
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m—p r 2(V*du)+11
2y(5) =

r

r IT
(e } T T
Next, generalizing expression (A2),
ElI} |1 exp(id))] = [ay* 1]
=< E[w} {1 exp(i/lj)}""ajw3j||w} +{1 exp(i/l,-)}""ajwzj

$[E1]T. {1 exp(id;)}~ aEwETjI {1 exp(il‘,)}*sa/EWIfw}

+ {1 exp(id)} o, PEIT]?
X [EI} +{1  exp(id)} “a;Ew,w] + {1 exp(id,)} o, EWw}

+ K1 exp(idp} a;|*EI])] 172 (A18)

denoting by wt e T(/l ;) the (tapered) Fourier transform of ¢,. Then, from the proof of
part (a) in Theorem 4 (see Velasco, 1997a) we obtain that, as n — oo,

El} {1 +0G " + /% Plog j)}

1 7)) Sa
EWJT-W;[]- { expz(;[ /)} a; + O(]-—l;t;do _,’_jZ(dn*P)}L;dn logj)
1

T 1, 2do—p) .
ElG 5 +0G™ + 7% P log j)

uniformly in j  p, 2p, ..., m. Thus (A18) is O(f;[j /% + j%~#{log(j + 1)}'/*]), and
following Robinson’s proof

Ci AVdo+ 1 Z{ —1/2+ ~do— r(1 1/2
32 JPP(log )'?}
1

m—p 2(V—dp)+1 1
E
Z <m> 2

Zf 1 eXp(lﬂj)}ilva‘flzltj]

m
< sz(d()*v)*l Z{rz(vfdo)*l/Z + r2(V—dQ)7p+du(logj)l/2}
1

Of{m¥ =91 & =12 log m 4+ m®=P(log my**}  o(1)

with dy < p, where the last line follows from separate consideration of the cases
2V dp) 3< land 2(V dy) 1= 1, and 2(V dy) p+do< 1 and 2(V
dy) p+do= 1.

To deal with the final contribution to (A15) we need to consider the variance of
Z (2Jt1 1), since it has zero mean. The variance and covariances of I have two
components The first is due to the fourth cumulant

n -2
<Z h%) j D@1+ 4Dy (@2 Dy 1D, (Ak Za»-)
1 [—7, 7] 1,2,3

X fD (w1, 2, w3)dw

!, given the boundedness of f and the properties of Dg,

which is of order n~
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I \DT(A)\(M O(1) and sup,l\DT(l)\ O(n), all n and p>1. The second component is
due to the second moments. The variance of 1T is then O(1) and for the covariance
between IT and I(Tk, k / j, in addition to the O(n 1) fourth cumulant term, we have to
consider the convolutions

; 2
(Z hi) J T+ 4D Ak)dlj DYG A)DY(A+ Ax)dA
1
and
n -2 T T
<Z h§> J D{,(AH,-)D},@HM)dAJ DYG A)DYA Agdi
1 - -

since f((4) is constant. These terms, from Lemmas 1 and 2 of Velasco (1997a), are
O(]j  k|727) and O(|j + k|~2P), respectively, for j, k> 0. Thus

Var{i(ZnI(Tj 1)} Z Var(2nl )+ Z Z COV(Z]I[LJ, 27[[
J k

o(r) + o{z S M+ n')} o).
i’k
We have obtained that Z_;(Z”I(T/ 1)  Op(r'/?) and so

i<r>2(V*du)+ll r i , 2(V—dy)+1 32
r ~ IS @ar, 1)’ Op (7) -
5 J
T m r T T m
Op [ m2@-—D-1 2AV—do)=1/2
( 1

Op(m™/% 4 pdo=9)~1 logm) op(1)

as n — oo because 2(dy V) <I.
Also we can check, using the same techniques, that, as n — oo, for arbitrarily small
7, since dy < p,

‘lz<i 1)‘ op{n+izﬂw(log m)l/z} +op(1)  op(1).
me=\ g; m4
Thus, as n — oo, supe, |[4,(d)] —p 0 and, with (A9) and (Al12), sup@l\ép(d)/
Gpd) 1| P 0. In view of (A8) it follows that (A7) — 0 as n — oc.

When d, = + Vi we have to consider the second probability on the right of (A6).
Set ¢ qm exp(pm’lz logj) and S,(d) log{D,(d)/Dy(dp)}, where

p 2(d—do)
Dy(d) Z( ) FOL

Because ?\ and infe,(j/q)*“ " = (j/q?V- for 1<j<gq, while
infe,(j/ )%= = (j/q)*¥1=%) for g <j < m, it follows that

m
o P 2dy 7T
1({)12po(d)2; gf a;j lI;

where
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-\ 2(V—do)
<i> ' l<sj=sgq

a; q
’ j 2(Vy—dy)
= g<js=m
0
Thus
P{mep(d) { Z(aj D0, < o}.
As m — oo, g ~exp(logm 1) m/e and
" 1 2do— 2AV-do) 4 q/p - (m/e)/p AlL9
];q“ P Jox T2V dy+ 172V dy 1 (A19)

It follows that

PN H=P S e L
mzj:(a, l)/mZa_, 1 2V d 1] 1 as m — 0.

1=j=q

Choose V<dy %+ 1/(4e), which we may do with no loss of generality. Then for all
sufficiently large m (p/ m)z "(a; 1) =1 and thus (A6) is bounded by

P I -
P{ ;Zj:(aj 1)(g—; 1)‘/1}‘

Now apply (A15) again and first note from (A16) and (A17) that

PN g\ L Ay
’%2(@ 1><1 7;); op{m;(a,-ﬂ)} Or(1)

S gy~ plgi WJ 2O gy O(m)

q<j<m q

and

and

m

Z a? O(m* =Y 4 mlog m).
J

Observe that after Equation (2.9) in Robinson (1995b) we need to choose in fact
V<dy %+1/(4e)and not V<d, %+ e/4, without loss of generality. Because of this
modification, we have to proceed in a different way to bound the expression

P m a; 1 ) .
’;Z ij [7; |1 exp(ii))} a‘,-\zltj]

(A20)

Op

1 m
= (@j+ D{j "+ j% P (log m)‘/z}}
m

1

me

1 & 1 &
OP{Z a1+ j0 ) logm)' 2 w1 4 P (log m)l/z}. (A21)
1
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Next, since g ~ m/(ep),

i ajjdofp qz(dnfv) ijz(vfdo)ero*P O(md(hl”r])
1 1
if 2V do)+dy p>0,and Om*dVlogm) if 2V do)+dy p<0. Also

q q
Zafjfl/z qZ(dO—V) ij(V—dg)—l/Z O(ml/z)

if 2V d) 1/2>o and O(m* @~V log m) if 2(V do) 1/2 <
Then, using E a; O(m) and supj>qj‘10 P O(qh7) O(m"’“ P), we obtain that
(A21) is

Op{m™ "2+ m ™ (m® P+ 4 m' 2 4 M=V (log m)*}  op(1)

with dy < p and d, %<V.
Finally, using Theorem 4 and proceeding as before,

Var{f:l;(aj neall, 1)}

%Z 1 var(2al}) + ZZZ(a, D(ar  Deoval}, 2},
J

O{mZZ(af DY k|2”+|j+k|2”>}
J

k/j

O{m2 (m + Za?) }
J
O{m™2(mlog m + m* =9y}

O(m™ " log m + m*2 =711 o(1)

and the proof is completed.

PROOF OF THEOREM 6. We can adapt all the steps in the proof of Theorem 2 in
Robinson (1995b) to the situation for p > 1 as we have done in the proof of Theorem 5.
This amounts basically to redefinition of the sums to frequencies A,, A5, ..., 4, only.

The main step here is to bound in probability the quantity (cf. Robinson, 1995b,

Equation (4.7)), for 0 <6 <1,
m 1-20 r m
r 1 I; 1 I;
A — — — 1)‘+B— <—f 1)‘ (A22)
20 a2 el
to be op{(log m)~°}, where 4 and B are two finite constants depending on p and V, (see
Equation (A14) above).
Now, using the same procedure as in the proof of Theorem 5 (cf. Robinson’s Equation
(3.17) and the following text), using f>1 with r < m,

r 1
Z(J 2n16,-> Op(r' P2 £ log r + rPo= P+ (log r)'/? + P+ ) (A23)
&j
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where the term log » shows up when 2 (or when dy p 1), and the term P+ n—F
is exactly the same as in Robinson’s expression (4.8) (see also the equation after (4.25)).
Note that in this case we have followed a much more direct approach than Robinson’s
(1995b) proof, using a stronger assumption on the smoothness of the function f, namely
pB > 1. This is in part for convenience and in part because the correlation between adjacent
tapered periodogram ordinates invalidates the approach using second moments of the
periodogram as in Robinson (1995b, p. 1648) and used above when p 1 and d <%. A
similar approach was used in Velasco (1997a) to analyse the log periodogram ordinate for
non Gaussian stationary observations. Note that this procedure is only valid if we use a
tapered periodogram with p = 2 but not otherwise: we use the lower bias of tapering,
avoiding the increment of correlation.

The bound in probability at the end of page 1643 in Robinson (1995b) is now, using
(A22) and (A23) as n — o0,

Op[{m™"? log m + m® P(log m)*’> + m’n P}(log m)*]  op(1).

From here we can reach the same limit as in expression (4.10), and the equivalent to
expression (4.11) in Robinson’s paper is now

—1/2_m
(2 <ﬁ> S v, 1
p 7 X

+ Op[{m P (log m)> + m%=P+12(log m)* + mP*12n~"}1og m]) {1+ op(1)}

where v; logj (p/m)}]} logj satisfies >)'v; 0, which, from the assumptions of
the theorem, is

m\ —1/2
{2<;> > vl 1)+op(1)}{1+op(1)}‘
P

Using Lemma 6 we can obtain the asymptotic distribution of (m/p)~"/ 22:1/ iQal,; 1)
and the theorem is proved.

APPENDIX B: TECHNICAL LEMMAS
LEMMA 1. Under the Assumptions of Theorem 3, dy € [%, 1),

Z <§ 27[1{j> Op{rl/(5—4d0)(log r)2/(5—4d0) + rﬁ+1n—ﬂ
1 J

+ 21 log r + n’l/zr(l”“)/z(log n)S/4 + n’l/4rd"(log r)l/z}

PrROOE. We only consider the case dy = %, since the stationary situation follows as in
the proof of Theorem 2 in Robinson (1995b), with stronger results. Choosing an integer
1<i<r, for dy € [%, 1) from (Al) and with EQxl.;) 1,

!
I
E‘ Z(g—’ 27:1,,)
1 J

and also from (Al) and Assumption 2

o(l)
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E

B+
0<7 :

P 2
E {Z (% 2:11(‘;> } Q) (a + b)

+1 \/J

SO

11 \&J I+1

Next, we consider

with the same definitions as in Robinson (1995b, p. 1648). Further, if we split the terms
a a +aand b by + by corresponding to second and fourth cumulants, we find that
when d, € [%, 1) with Theorem 1

a 0<Z.f2<"°—”1ogj> O{r**!(log r)*}

1+1

and

3 Sk Dlog A + (P4 log 47}

J i+l k>j

0{ (log r? Z Z jHdo=1)

k 1+2) I+

by

Of rl4d°_3(log r)2}

since we will only use r O(n) at most. Choosmg [ ~ pl/G=4d0)(Jog )2/G=4d0) this gives
the first term of this order in the lemma, since (a;)"/? is of smaller order of magnitude.

When d 2% we obtain the same expressions for a, and b, as in Robinson (1995b),
and substituting (1) by {1  exp(il)}~'a(d) and a; by {1 exp(il;)}'a; and defining

p [ |ent oot
J 2 {1 exp(ib)}a;

where K(1) (27n)~!sin(nd/2)sin(1/2) is the Fejér kernel, the same bounds hold here.
However, the bound for the second type of summand considered by Robinson in b,
O(P; P}{ ), is improved in Lemma 2 to O{n"Pk/ (log n)*}. This allows c0n51derat10n of
values of the parameter do < , which otherwise would be restricted to d < . For a, we
can still use the bound given by Robinson.

Then applying Lemma 3, with Lemma 2,

2
1| K& Apda

~ J(logj)* (logjy’* n~'logj
@ O Z{jzt(ldu)Jr A=do + 0=
j 1

O{r3d”’2(10g r)3/2 + p V2201 logj + (log )}

(log r)? (log ©)'2(logn)*  n'2logr
b O Z Z{(Ik)Z(l T k1 —do + (k)=

j 1k>j

o{r2(2dn—l)(log "+ n—lrl+do(log n)s/z 4 g2 2 log  + (log r)4}

and the lemma follows.
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LEMMA 2. Under Assumptions 1 and 5, dy € [%, 1),

- (a(ﬂw@){l exp(id,)} 1) {a( Wil exp(_id))} 1}
H!

(27n)? [l exp{id+u+ Yoy, {1 exp( iw}a;

% {a( Ol exp( g}
{1 exp( i§)}ay

o{n~"k% 1 (log n)*(log k)"/*} (B1)

1} X Ej(h. . ©)dAdudg

where
Ex(A, 1,8 D@A; A v ODAx+)Du  A)DE  Ax)
and D(A) > ,exp(ilf) is the Dirichlet kernel.

PrROOE. Making a change of variable and using the periodicity of D, (Bl) is

1 J a(@){1  exp(iA;)} 1 a( Wil exp( id)} 1
@an)? )| {1 explio)}a; {1 exp( in)}a;

{a( O{1exp(_ i) 1}
{1 exp( i)}

XD(; @)DA+w u HDu ANDE  Adodudt

and this is less in absolute value than

L [T @)l explit)) _ J al {1 exp(_ik))}
2nnPk J,n {1 exp(iw)}a; 1IP@; - o)ldo 2 Al exp( iw)}a;
X D Ay)ldp.
Now using the bound for P; in Lemma 3 and
7 la(@){l exp(il))} .
J_n T et xplio)}a; 1|\D(A; w)dw O(logn) (B2)
the lemma follows. To prove (B2) we consider now
" | a(@){1 exp(id;)} _
L ey 1ot @l
aiy) |7 a(l;, ) a(d;)
B ‘1 exp(id;) ([,/.[ 1 exp{id; w)} 1 exp(id;) | De)|de

and the following intervals of integration:

JMZ _ a(k))
~2;/2

—1
h ’ 1 exp(id;)

a(d; o) 452
do1  expfi(d w)}fo,/z‘w”D(w)‘dw

—ij/2=w<A;/2

dq—dy—1
O(A4A; 42 o).

Next
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a(4))

a; ) a(i))
1 exp(id))

1 exp{i(4; w)}’ ‘1 exp(id;)

34;/2
[ <
Ja;2

~1(34,/2
L,/z

34;/2 a(l w) 34;/2
(0] su; D(w l‘{J ’+'dw+J dw
</1,./z<w£u//z ()| { T 11 explid; o)} 1,2

A’J
o{/l_,.' (A;’“L o %do +/1j> } o(1)

since do<1 (note that |a(A){1 exp(il)}~'| {2mf(A)}'/? is integrable because
dop <1). Then, choosing ¢ >0, fixed, as small as we want, such that Assumption 1 holds
for || <e, as in the proof of Theorem 2 of Robinson (1995a),

—1,/2
’J =
—€

}lD(w)ldw

a(l))

a(k; w) a(;)
1 exp(id))

1 exp{i(4; w)}’ ‘1 exp(id;)

-1
sup
—e<w<-1;/2

X [n |D(w)|dew  O(log n)

a(lj)
1 exp(id))

a(l; w) ' ‘ a(l;)
1 exp{i(d; w)} 1 exp(id))

= ’

Js;.,/z }

-1
sup
31, /2<w=c
43
X [ |D(w)|dw  O(log n)
J—i
and the same bound holds for the remaining intervals of integration

LEMMA 3. Under Assumptions 1 and 5, with dy € [%7 1),
7T
—IT

ProOE. This is Lemma 3 of Robinson (1995b) generalized to cover the non stationary
situation dy € [%, 1) and follows considering the same intervals of integration, where
for the interval [ A;/2, A;/2] we can adapt the proofs of Theorem 1 or Theorem 6
(p 1) in Velasco (1997a), since f(A) is not integrable at the origin, to obtain an
O(%%=D]og j) contribution.

aMH{1 exp(it)} | ' Ado) 1
T epidle, 1| K& A)di  O( log j).

LemMma 4. For p 1,2,...,e€(0,1] and C € (¢, 0), as m — oo,

s (2) ] o)

J p2p,..

PROOE. As in Lemma 1 of Robinson (1995b), f; x’Vdx a’/y for y>0,
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m j/m A
J ~1
+vy J { <—> x7 }dx
i Z G=p/m (N

J 2p3p,...

< 7 1 yars (>
(m/p)y+(rn/p)y (m/p)ZZ

by the mean value theorem. The last term is O(y?m~') for y > 1, zero for y 1 and
O(m™7) for 0 <y <1.

LEMMA 5. For all m=2p, p 2,3, ...,

U 2p1 1+1
‘ﬁ 3 log) 1Ogm+1‘g plogp p+1+logm p) B3)
mj P2p,... m

PROOE. Because fom logxdx  m(logm 1), the left hand side of (B3) is

1 1 (7 1 &
‘w-i-—J logxdx — Z J 10g< >dx
m m )y m p

J 2p3p,.. Jj=
2 lo, 1 1 L1
<pClep D 1§+ 1
m m. = ]

J p2p,..

< p2log p 1)+ 1 +log(m p)
m m

2plogp p+1+log(m p)
p .

LEMMA 6. If the sequence {h;} is a data taper of order p as defined previously, and
the random variables {¢;} satisfy Assumption 6, with v; logj (p/m)> 7"  log},

—1/2_m
Z, ( ) Zv {271T(L;) 1} —p N(O, )
p
where @ is given in (10).

ProOOE. We will follow Robinson (1995b, pp. 1644 47), adapting his non tapered
proof to the tapered case. We have that Z, 2).7 z, and

1—1
Zt hi€; E hsescrs
s 1

n -1 —1)2
2 (Z hf) <%) v;jcos(si;)

remembering that 3" |42 ~ bn. Now the z, form a zero mean martingale difference
array, and from a standard central limit theorem we can deduce that }_z, tends to an N(0,
®) random variable in distribution if
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S EGIF) @0 (B4)
t 1

i E{Z1(|z{>p)} — 0  forall p>0. (B5)
t 1

Not the left hand side of (B4) is

n t—1 t—1

<z hZZh -, <1>> + 2 hs€sh €cisCiy. (B6)

t 1 s 1r/s

The term in parentheses is

n—1 n—1 n—t
{Z (e I)Zhw }+ {Zh W, @}. B7)
r1 1 s 1
Now
n—1 n—t m n—1 n—t
n? W Z Vivi Z > h§+, cos(sA ;)cos(sAr)
r1 k p 1 s 1

n—1 n—t
i h2, , cos*(sh))
m(z hz)z] V2 t 1 s 1 o !

) m
‘— s+1Cs m(z h2 zp
2.7

m n—1 n—t
ViV " B, [cos{s(A;, Ap}
m(z h2)2 ; v J £ t ; +1 J

+cos{s(A; + Ax)}].
Next, using part (A) of Lemma 7, for n large enough,

2 m n—1 m
4p 2 2 2 4 2 -1 2 -1
;(Ey h,_) g g hy E hw,cos (s4) E;pvj—t-O{m (logm)*+n~"}
(B8)
and using part (B) of Lemma 7

_2 m m n—
% <Z h3> Z Z ViV Z U5 Z R2 Jeos{s(A; Ap)}+ cos{s(A; +Ar)}]

J pk/j
2

+ Z B cos{t(A; + Ax)}
T

2
Jok/j )
+ O{mn""(log m)*}. (B9)
Noting that, for 1 < j < n/2,

n -1 n
<Z hf) > Rcos(td;) OGP (B10)
1 1

(see, for example, Lemmas 1 and 2 in Velasco, 1997a), then

-2 m m n
%(Z h?) ZZVJ’VA ([Z W cos{t(A; L)}
r 1
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n 2w m n
Z(Z h%) S v {Z B2 cos{t(A; + Ax)}
1 1

J pk/j

J rk p

2 m m
0{ m YN v+ k)“}
o{ m~'(log m)* Z ij""k"”}

Jork p

O{m™"(log m)*}

and the second term in brackets in (B9) can be neglected. For the other term in (B9) we
can write, including simultaneously the first component of the right hand side of (B8), for
0=<n(n)<m,

,‘;(i h%) Ty

m
1 Jj rk p

n 2
Vive [Z 12 cos{t(A; lk)}]
[l
n 2 n 2
% (Z hf) Z ViVi {Z % cos{t(A; Ak)}}
1 D k: 1

n =2 m n 2
+£ (Z hf) Z Vive [Z 72 cos{t(A; ;Lk)}:|
: 1

J pklji—kl>n

~.

P

% (i hf) i v% Z |:Z h? cos{t(A; lk)}:|
1 k:|j—k|=
Z vl sup |v; vl |:Z hi cos{1(; Ak)}:| )

T pklj—k=yg  li—k=n

m'(logm)® i klz”}
k:|j—kl>n

+0
J P k|-
and this is
p m n -2 n—p n 2
2 2
25a(sn) | 8 {Snean
jp 1 k 0,p2p,... 1

o Sy k) vofwiwen3t 57y a)

Jjor  k>n J p kel j—kl=n
+O{n'**(log m)’}

which using

2|

m 2
Ld Zvi 1+ O{LOgmm) }
P
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n -2 n—p n 2
(Z h?) > {Z ; cos(tflk)} +00' ) + 0{%aog m)z}
1 1

k 0,p2p,...
+ O{n'*P(log m)’} + o(1) ~ @+ o(1).

The errors are o(1) on choosing, for example, 57 ~ m'/2, and ® < oo exists due to (B10).
Then the second term in (B7) is o(1) as n — oo. The first component of (B7) has zero
mean and variance

n—1 n—t 2
o1 (S
t 1 s 1

Now using the same bounds for |c,| as in Robinson (1995b) and noting that sup,|%,| <1,
we obtain that this is O{(log n)*/n}, so (B7) is op(1). The second component of (B6) has
zero mean and variance

min(t—1,u—1)

n n
E 2 § 2 § § 272

2 ht h” hshyct—rct—.vcu—rcufs
t 2

u 2 N r/s
n n 1—1 u—1 u—1
4 272 2 2 2 2 272
2 E h; E E hihc,_,c;_ +4 E h; E h, E E hShcorCrsCy—rCu—s
t 2 s r/s t 3 u 2 s r/s

because the weights {%,} are symmetric around |n/2|. As in Robinson’s paper, the first
term on the right is O{(log m)*/n} and the second has absolute value bounded by

n t—1 -

S5 (S ) () (58 8 4)

t3u 2 N r/s t 3u 2r t—utl

since sup,|ht[‘$ 1, and using the same arguments as in that reference this is
O{(log m)*/m'} and thus we have verified (B4). To prove (B5) we also check the
sufficient condition

n
ZE(ZA)—>0 as n — oo.
1

The left hand side of this equals

7 1—1 4
M4 z’: E <Z hscsct5>
2 1

using the bound for %, and the given reference, completing the proof.
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LEMMA 7. If the sequence {h;} is a data taper of order p as defined previously, for
0<|jl<n/2,

(4)
n—1 n—t 1 n 2
SR> R cos’(s)) i (Z hf) +O(n*j 72 + n)
t 1 s 1 t 1

and, for 0 <|j| <n,
(B)

n—t

2
1 n
2> R cos(s)) 5 {Z % cos(th ,-)} +0(n).
1

s 1

n—

t
PrOOF OF (B). We have

n—1 0
WY R cos(sh) Y by Y k%, cos(shj) + O(n)
K t 1 s 1—t

1 n—1

n—t
5 W, cos(sh;) + O(n)
s 11—t

t 1

n n

%Z I, cos(i2;) > b cos(sh;) + O(n).
t 1 s 1

The first two lines follow by symmetry, because s, h,—, and v, ¢,_, where
Y, Z;’Thf_ﬂcos(slj) and ¢, > | l7thf+tc0s(s/1j), the error terms are due to end
effects, and the last step follows because

n—t

n—1 n—1 n
Z W Z %, cos(sA;) Z 7 Z R cos{(s DA;}
t 1 s t 1 s 1

1—t

n—1 n
D> W{cos(shj)cos(th)) + sin(si )sin(1d,)}
t 1 s 1

> Bk cos(shj)eos(th ) + O(n)

t 1 s 1

since the sine terms cancel out by symmetry again.

PROOF OF (A). Again, by symmetry, changing variable in the sum index, using
trigonometric identities and the proof of property (B),
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1 n—1 n—t
"> 12, cos’(s,) EZ WS, cos(sh;) + O(n)
t 1

s 1=t

1 n—1 n

Ethzhicos%{(s NAj} +0(n)
t 1 s 1

1 n—1 n

ZZ WY R cos{2(s  HA;}]+O(n)
t 1 s 1

1 n—1 n n—1 n

ZZ WY R YTy hcos{(s Dy} +O(n)
t 1 s 1 t 1 s 1

n 2 n 2
% <Z hf) +0|n+ {Z i cos(slzj)}
t 1 s 1

and the lemma follows on using (B10).
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