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Abstract

We establish particular wavelet-based decompositions of Gaussian stationary processes in
continuous time. These decompositions have a multiscale structure, independent Gaussian
random variables in high-frequency terms, and the random coefficients of low-frequency terms
approximating the Gaussian stationary process itself. They can also be viewed as extensions of
the earlier wavelet-based decompositions of Zhang and Walter (1994) for stationary processes,
and Meyer, Sellan and Taqqu (1999) for fractional Brownian motion. Several examples of
Gaussian random processes are considered such as the processes with rational spectral densi-
ties. An application to simulation is presented where an associated Fast Wavelet Transform-like
algorithm plays a key role.

1 Introduction

Consider a real-valued Gaussian stationary process X = {X(t)}t∈R having the integral represen-
tation

X(t) =
∫

R
g(t− u)dB(u) =

∫

R
eitxĝ(x)dB̂(x), (1.1)

where g ∈ L2(R) is a real-valued function, called a kernel function, ĝ ∈ L2(R) is its Fourier
transform defined by convention as

ĝ(x) =
∫

R
e−ixug(u)du,

{B(u)}u∈R is a standard Brownian motion and {B̂(x)}x∈R = {B1(x) + iB2(x)}x∈R is a complex-
valued Brownian motion satisfying B1(x) = B1(−x), B2(x) = −B2(−x), x ≥ 0, with two inde-
pendent Brownian motions {B1(x)}x≥0 and {B2(x)}x≥0 such that EB1(1)2 = EB2(1)2 = (4π)−1.
(The latter conditions on B̂(x) ensure that the second integral in (1.1) is real-valued and has
the same covariance structure as the first integral in (1.1).) Many Gaussian stationary processes,
especially those of practical interest, can be represented by (1.1). See, for example, Rozanov
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(1967) and others. The covariance function R(t) = EX(t)X(0) of X and its Fourier transform
are given by

R(t) = (g ∗ g∨)(t) =
1
2π
|̂ĝ|2(−t), R̂(x) = |ĝ(x)|2, (1.2)

where g∨(u) = g(−u) is the time reversion operation and ∗ stands for convolution. The Fourier
transform R̂(x) is also known as the spectral density of X. Note, however, that the two rightmost
expressions in (1.2) are not meaningful for general g ∈ L2(R) because the function R may be in
neither L2(R) nor L1(R).

Under mild assumptions on g and in a special Gaussian case, Theorem 1 of Zhang and Walter
(1994) states that a Gaussian process X in (1.1) has a wavelet-based expansion

X(t) =
∞∑

n=−∞
aJ,nθJ(t− 2−Jn) +

∞∑

j=J

∞∑
n=−∞

dj,nΨj(t− 2−jn), (1.3)

for any J ∈ Z, with convergence in the L2(Ω)-sense for each t. Here, aJ = {aJ,n}n∈Z, dj =
{dj,n}j≥J,n∈Z are independent N (0,1) random variables. The functions θj and Ψj are defined
through their Fourier transforms as

θ̂j(x) = ĝ(x) 2−j/2 φ̂(2−jx), Ψ̂j(x) = ĝ(x) 2−j/2 ψ̂(2−jx), (1.4)

where φ and ψ are scaling and wavelet functions, respectively, associated with a suitable orthogonal
Multiresolution Analysis (MRA, in short). For more information on scaling function, wavelet
and MRA, see for example Mallat (1998), Daubechies (1992), or many others. Moreover, the
coefficients aj,n and dj,n in (1.3) can be expressed as

aj,n =
∫

R
X(t)θj(t− 2−jn)dt, dj,n =

∫

R
X(t)Ψj(t− 2−jn)dt, (1.5)

with the functions θj and Ψj , “dual” to θj and Ψj , defined through

θ̂j(x) = ĝ(x)−1 2−j/2 φ̂(2−jx), Ψ̂j(x) = ĝ(x)−1 2−j/2 ψ̂(2−jx). (1.6)

Zhang and Walter (1994) call (1.3) a Karhunen-Loève-like (KL-like) wavelet-based expansion. It
is discussed in several textbooks, for example, Walter and Shen (2001), and Vidakovic (1999).
The sum

∑
n aJ,nθJ(t − 2−Jn) in (1.3) is interpreted as an approximation term at scale 2−J ,

and the sums
∑

n dj,nΨj(t − 2−jn), j ≥ J , are interpreted as detail terms at finer scales 2−j ,
j ≥ J . The KL-like expansion is related to the wavelet-vaguelette expansions of Donoho (1995),
the expansions of Benassi and Jaffard (1994), and others, where J = −∞ in (1.3) and hence the
first approximation term in (1.3) is absent.

Though the approximation term
∑

n aJ,nθJ(t − 2−Jn) in (1.3) involves independent N (0,1)
random variables aJ,n which are convenient to deal with in theory, the term is also unnatural in
one important respect. It is customary with wavelet bases that not only an approximation term
but also the respective approximation coefficients, the sequence aJ,n in this case, approximate the
signal at hand. The sequence aJ,n does not have this property because it consists of independent
random variables and hence cannot approximate a typically dependent stationary process X(t).
In this work, we modify the approximation terms as

∞∑
n=−∞

aJ,nθJ(t− 2−Jn) =
∞∑

n=−∞
XJ,nΦJ(t− 2−Jn) (1.7)
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so that the new approximation coefficients XJ = {XJ,n}n∈Z now have this property, namely,

2J/2XJ,[2J t] ≈ X(t) (1.8)

in a suitable sense, as J →∞, where [x] denotes the integer part of x ∈ R.
In the relation (1.7) above,

Φ̂J(x) =
ĝ(x)

ĝJ(2−Jx)
2−J/2φ̂(2−Jx) =

θ̂J(x)
ĝJ(2−Jx)

(1.9)

with the discrete Fourier transform ĝJ(y) of a sequence gJ = {gJ,n}. (A discrete Fourier transform
of g = {gn} is defined by

ĝ(x) =
∞∑

n=−∞
gne−inx, x ∈ R,

and is periodic with the period 2π.) The random sequence XJ = {XJ,n} in (1.7) is defined as

X̂J(x) = ĝJ(x)âJ(x) (1.10)

in the frequency domain. Moreover, we expect that

XJ,n =
∫

R
X(t)ΦJ(t− 2−Jn)dt, (1.11)

where

Φ̂J(x) =
(

ĝJ(2−Jx)
ĝ(x)

)
2−J/2φ̂(2−Jx). (1.12)

The relation (1.7) can be informally and easily verified by taking the Fourier transform of its two
sides.

It is well-known (e.g. Daubechies (1992) in the deterministic context) that (1.8) is a property
of the corresponding wavelet basis functions. When

GJ(2−Jx) :=
ĝJ(2−Jx)

ĝ(x)
≈ 1, (1.13)

we have Φ̂J(x) ≈ 2−J/2φ̂(2−Jx) ≈ 2−J/2 for large J (typically, φ̂(0) =
∫
R φ(t)dt = 1) and hence,

by (1.11), we expect that

2J/2XJ,n =
2J/2

2π

∫

R
X̂(x)e−ix2−JnΦ̂J(x)dx

≈ 1
2π

∫

R
X̂(x)e−ix2−Jndx = X(2−Jn).

The conditions for (1.7) and (1.8) will thus involve the function GJ given in (1.13).

Though the modification (1.7) appears small, it is fundamental and important in several
ways, and surprisingly leads to many research questions. For example, the modification allows
for several applications such as simulation considered in Section 8 below. The wavelet-based
decomposition (1.3) with (1.7) can also be viewed as a generalization to the wide framework of
stationary Gaussian processes of a particular wavelet decomposition of fractional Brownian motion
established in Sellan (1995), Meyer, Sellan and Taqqu (1999). It thus shows that self-similarity
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(of fractional Brownian motion, for instance) is not a necessary condition for constructing wavelet
decompositions in that fashion. See also Pipiras (2004) who explored a similar decomposition
for a non-Gaussian self-similar process called the Rosenblatt process. Didier and Pipiras (2006)
study analogous wavelet decompositions for stationary time series in discrete time.

The decomposition (1.3) with (1.7) can be viewed as being more general than (1.3) - becoming
(1.3) when Xj = aj are independent, N (0, 1) random variables. For this reason, both decompo-
sitions should be viewed under one framework. This is the view taken in the following definition
and in a parallel paper Didier and Pipiras (2006).

Definition 1.1 Decompositions (1.3) and (1.3) with (1.7) will be called adaptive wavelet decom-
positions.

Adaptiveness refers to the fact that the basis functions are chosen based on the dependence
structure of the underlying stationary Gaussian process.

The rest of the paper is organized as follows. In Section 2, we briefly introduce a wavelet
basis to be used in wavelet-based decompositions. In Section 3, we state the assumptions on the
discrete deterministic approximations gJ and the functions g. In Section 4, we consider several
examples of Gaussian stationary processes and their discrete approximations. The KL-like wavelet
decomposition (1.3) and its modification (1.7) are proved in Section 5. In particular, we reprove
the decomposition (1.3) because inaccurate assumptions were used in Zhang and Walter (1994).
We show that there is a FWT-like algorithm relating {Xj,n} across different scales in Section 6.
In Sections 7 and 8, we examine convergence of discrete random approximations XJ and illustrate
simulation in practice. Finally, in Appendix A, we consider integration of stationary Gaussian
processes.

2 Wavelet bases of L2 (R)

We specify here a scaling function φ and a wavelet ψ which will be used below. There are many
choices for these functions. We shall work with particular Meyer wavelets (Meyer (1992), Mallat
(1998)) because of their nice theoretical properties. The results of this paper and their proofs rely
on specific nice properties of the selected Meyer wavelets. Other wavelet bases could be taken,
e.g. the celebrated Daubechies wavelets, and are being currently investigated. Meyer wavelets are
also used in Zhang and Walter (1994), Meyer et al. (1999) and others.

Let S(R) be the Schwartz class of C∞(R) functions f that decay faster than any polynomial
at infinity and so do their derivatives, that is,

lim
|t|→∞

tm
dnf(t)

dtn
= 0,

for any m,n ≥ 1. We can choose a scaling function φ ∈ S(R) satisfying

φ̂(x) ∈ [0, 1], φ̂(x) = φ̂(−x),

φ̂(x) =
{

1, |x| ≤ 2π/3,
0, |x| > 4π/3,

φ̂(x) decreases on [0,∞).

The corresponding CMF u has the discrete Fourier transform

û(x) =
{ √

2 φ̂(2x), |x| ≤ 2π/3,
0, |x| > 2π/3.
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The wavelet function ψ associated with φ is such that ψ ∈ S(R) and

ψ̂(x) =
1√
2

v̂
(x

2

)
φ̂

(x

2

)
with v̂(x) = e−ixû(x + π), (2.1)

where v is the other CMF. One can verify that, for the Meyer wavelets,

ψ̂(x) = e−
ix
2

(
φ̂

(x

2

)2
− φ̂(x)2

)1/2

. (2.2)

In particular, ψ̂(x) = 0 for |x| ≤ 2π/3 and |x| ≥ 8π/3. The collection of functions φ(t −
k), 2j/2ψ(2jt− k), k ∈ Z, j ≥ 0, makes an orthonormal basis of L2(R).

3 Basis functions and discrete approximations

Let g ∈ L2(R) be a kernel function appearing in (1.1), and gJ = {gJ,n}n∈Z, J ∈ Z, be sequences
of real numbers such that gJ ∈ l2(Z). Following Section 1 (see, in particular, (1.13)), we shall
think of gJ as a discrete (deterministic) approximation of g at scale 2−J .

A discrete approximation gJ ∈ l2(Z) induces a discrete (random) approximation XJ = {XJ,n}
defined by (1.10), that is,

XJ,n =
∞∑

k=−∞
gJ,kaJ,n−k (3.1)

in the time domain, or symbolically

X̂J(x) = ĝJ(x)âJ(x) (3.2)

in the frequency domain, where aJ = {aJ,n} are independent N (0,1) random variables (Gaus-
sian white noise). As J → ∞, we expect that 2J/2XJ,[2J t] approximates X(t) defined by (1.1).
Conversely, we may think that a random discrete approximation XJ of X given by (1.1) can
be represented by (3.1) with a sequence gJ . Hence, XJ also induces a deterministic discrete
approximation gJ of g.

We will make some of the following assumptions on g and gJ . Let Lp
loc(R) consist of functions

which are in Lp on any compact interval of R. Set also

GJ(x) =
ĝJ(x)
ĝ(2Jx)

, x ∈ R. (3.3)

Note that, with the notation (3.3), expressions (1.9) and (1.12) become

Φ̂J(x) = (GJ(2−Jx))−1 2−J/2φ̂(2−Jx), Φ̂J(x) = GJ(2−Jx)2−J/2φ̂(2−Jx) (3.4)

Assumption 1: Suppose that

ĝ−1 ∈ L2
loc(R). (3.5)

Assumption 2: Suppose that, for any J ∈ Z,

GJ , G−1
J ∈ L2

loc(R). (3.6)
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Assumption 3: Suppose that, for any J0 ∈ Z,

max
p=−1,1

max
k=0,1,2

sup
J≥J0

sup
|x|≤4π/3

∣∣∣∣
∂k(GJ(x))p

∂xk

∣∣∣∣ < ∞. (3.7)

Assumption 4: Suppose that, for large |x|,
∣∣∣∣
∂kĝ(x)
∂xk

∣∣∣∣ ≤
const
|x|k+1

, k = 0, 1, 2. (3.8)

Assumption 5: Assume that, for large J ,

|GJ(0)− 1| ≤ const 2−J . (3.9)

As explained below, Assumptions 1 and 2 ensure that the basis functions used in decompo-
sitions are well-defined. Assumptions 3, 4 and 5 will be used to establish the modification (1.7)
and to show that XJ is an approximation sequence for X in the sense of (1.8).

Observe that the functions θj and Ψj in (1.4) are well-defined pointwise through the inverse
Fourier transform since θ̂j , Ψ̂j ∈ L1(R) for ĝ ∈ L2(R). By using Assumptions 1 and 2, the functions
θj and Ψj in (1.6), Φj in (1.9) and Φj in (1.12) (see also (3.4)) are well-defined pointwise through
the inverse Fourier transform as well. Moreover, θj ,Ψj , Φj , Φj are in L2(R) because their Fourier
transforms are in L2(R).

Appendix A contains some results on defining integrals
∫

X(t)f(t)dt. See, in particular, the
definition of a related function space L2

g(R) in (A.6) of integrands f(t). Since θj ,Ψj ∈ L2
g(R),

the coefficients aj,n and dj,n in (1.5) are well-defined. Using properties of integrals developed in
Appendix A, it is easy to see that aj,n and dj,n are independent N (0, 1) random variables. Since
Φj ∈ L2

g(R), the integral in (1.11) is well-defined as well.

Another consequence of the above assumptions are useful bounds on the functions Φj , Ψj . We
will use these bounds several times below.

Lemma 3.1 Under Assumptions 3 and 4 above, we have

|2−j/2Φj(2−ju)|, |2−j/2Φj(2−ju)| ≤ C

1 + |u|2 , u ∈ R, (3.10)

|Ψj(2−ju)| ≤ C2−j/2

1 + |u|2 , u ∈ R, (3.11)

where a constant C does not depend on j ≥ j0, for fixed j0.

Proof: By definition of Φj in (1.9) (see also (3.4)) and after a change of variables, observe that

2−j/2Φj(2−ju) =
1
2π

∫

R
eiux(Gj(x))−1φ̂(x)dx, u ∈ R. (3.12)

Since supp{φ̂} ⊂ {|x| ≤ 4π/3}, we obtain by Assumption 3 that

|2−j/2Φj(2−ju)| ≤ C, u ∈ R, (3.13)
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for a constant C which does not depend on j ≥ j0, for fixed j0. Using integration by parts in
(3.12) twice and Assumption 3, we have

2−j/2Φj(2−ju) = − 1
2πu2

∫

R
eiux ∂2

∂x2

(
(Gj(x))−1φ̂(x)

)
dx, u ∈ R.

By Assumption 3 and properties of φ̂, for any j ≥ j0,

|2−j/2Φj(2−ju)| ≤ C

|u|2
∫

|x|≤4π/3

(∣∣∣∣
∂2

∂x2
(Gj(x))−1

∣∣∣∣

+
∣∣∣∣

∂

∂x
(Gj(x))−1

∣∣∣∣ +
∣∣∣(Gj(x))−1

∣∣∣
)

dx ≤ C

|u|2 , u ∈ R.

The bound (3.10) for Φj follows from (3.13) and (3.14). The case of Φj is proved similarly.
To show the bound (3.11), observe from (1.4) that

Ψj(2−ju) =
2j/2

2π

∫

R
eiuxĝ(2jx)ψ̂(x)dx, u ∈ R. (3.14)

Since supp{ψ̂} ⊂ {2π/3 ≤ |x| ≤ 8π/3}, we obtain by Assumption 4 that

|Ψj(2−ju)| ≤ C2j/2

∫ 8π/3

2π/3

dx

1 + 2jx
≤ C ′2−j/2, u ∈ R, (3.15)

for constants C,C ′ which do not depend on j ≥ j0, for fixed j0. Using integration by parts in
(3.14) and Assumption 4, we have

Ψj(2−ju) = − 2j/2

2πu2

∫

R
eiux ∂2

∂x2

(
ĝ(2jx)ψ̂(x)

)
dx, u ∈ R. (3.16)

Hence, by using properties of ψ̂ and Assumption 4, for j ≥ j0,

|Ψj(2−ju)| ≤ C2j/2

|u|2
∫

2π/3≤|x|≤8π/3

(
22j

∣∣∣∣
∂2ĝ

∂x2
(2jx)

∣∣∣∣ + 2j

∣∣∣∣
∂ĝ

∂x
(2jx)

∣∣∣∣ + |ĝ(2jx)|
)

dx

≤ C ′2j/2

|u|2
∫ 8π/3

2π/3

(
22j

1 + 23jx3
+

2j

1 + 22jx2
+

1
1 + 2jx

)
dx ≤ C ′′ 2

−j/2

|u|2 , u ∈ R. (3.17)

The bound (3.11) follows from (3.15) and (3.17). 2

4 Examples

We consider here several examples of Gaussian stationary processes together with their possible
discrete approximations.

Example 4.1 The Ornstein-Uhlenbeck (OU) process X is perhaps the best-known Gaussian
stationary process. It is the only Gaussian stationary process which is Markov. The OU process
can be represented by (1.1) with

g(t) = σe−λt1{t≥0}, ĝ(x) =
σ

λ + ix
, (4.1)
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for some λ > 0 and σ > 0.
At this point, one can approximate either g or X. We do so for the process X because it has

a well-known discrete approximation. Observe from (1.1) and (4.1) that, for J, n ∈ Z,

X(2−J(n + 1)) = e−λ2−J
X(2−Jn) + σ

√
1− e−2λ2−J

2λ
aJ,n+1,

where {aJ,n}n∈Z is a Gaussian white noise. Therefore, since we expect 2J/2XJ,[2J t] ≈ X(t), it
appears natural to consider the discrete approximation

XJ,n = 2−J/2σ

√
1− e−2λ2−J

2λ
(I − e−λ2−J

B)−1 aJ,n, (4.2)

where B denotes the backshift operator (not to be confused with Bm) and I = B0. In other
words, XJ is an AR(1) time series (see Brockwell and Davis (1991)).

In view of (4.1) and (4.2), the deterministic discrete approximations gJ have the discrete
Fourier transforms

ĝJ(x) = 2−J/2σ

√
1− e−2λ2−J

2λ
(1− e−λ2−J

e−ix)−1. (4.3)

Furthermore, ĝ and ĝJ satisfy Assumptions 1 to 5. Indeed, Assumptions 1 and 2 hold because,
for every J ∈ Z,

ĝ−1(x) =
λ + ix

σ
, GJ(x) = 2J/2

√
1− e−2λ2−J

2λ

2−Jλ + ix

1− e−λ2−J e−ix
(4.4)

and G−1
J are continuous functions on R, and thus square-integrable on compact sets.

To show Assumption 3, consider the domain DJ0 = {z ∈ C : 0 ≤ Re(z) ≤ 2−J0λ, |Im(z)| ≤
4π/3}. The functions

F (z) =
{ z

1−e−z , z ∈ C\{i2kπ, k ∈ Z},
1, z = 0,

and F (z)−1 are holomorphic and different from zero on the open set DJ0
ε = {w ∈ C : infz∈DJ0 |z−

w| < ε} ⊃ DJ0 . By setting z = 2−Jλ + ix ∈ DJ0 , we have GJ(x) = CJF (z) for all J ≥ J0 and
|x| ≤ 4π/3, where 0 < c1 ≤ CJ ≤ c2 < +∞ for some c1, c2. Hence, Assumption 3 must hold.

Assumption 4 follows from the relation

∂kĝ(x)
∂xk

=
σ(−i)kk!

(λ + ix)k+1
, k = 0, 1, 2, ...

Finally, Assumption 5 is also satisfied because

|GJ(0)− 1| =
∣∣∣∣∣2

J/2

√
1− e−2λ2−J

2λ

(
2−Jλ

1− e−λ2−J

)
− 1

∣∣∣∣∣ =

√
λ2−J

1− e−λ2−J

∣∣∣∣∣

√
1 + e−λ2−J

2

−
√

1− e−λ2−J

λ2−J

∣∣∣∣∣ ≤ C1

(∣∣∣∣∣

√
1 + e−λ2−J

2
− 1

∣∣∣∣∣ +

∣∣∣∣∣

√
1− e−λ2−J

λ2−J
− 1

∣∣∣∣∣

)
≤ C2 2−J

for constants C1, C2 > 0.
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Example 4.2 Consider a Gaussian stationary process (1.1) with a kernel function g having the
Fourier transform

ĝ(x) =
f(x)
h(x)

. (4.5)

Here,

f(x) =
∏

k∈P1

p(ak, bk;x) p(−ak, bk; x)
∏

m∈P2

p(0, cm; x), (4.6)

h(x) =
∏

k∈Q1

p(dk, ek;x) p(−dk, ek; x)
∏

m∈Q2

p(0, fm; x) (4.7)

with

p(a, b; x) = ix + ia + b, (4.8)

where P1,P2,Q1 and Q2 are finite sets of indices. It is assumed that polynomials f(x) and h(x)
have no common roots, and also that ∀k ∈ Q1, ek 6= 0, and ∀m ∈ Q2, fm 6= 0. Note that the
polynomials f and h are Hermitian symmetric. Hence, ĝ is also Hermitian symmetric and thus g
is real-valued. Kernel functions ĝ as in (4.5) correspond to rational spectral densities (Rozanov
(1967)).

To define a discrete approximation ĝJ of ĝ, consider first p(a, b; x), which is a “building block”
of f in (4.6) and h in (4.7). Define a discrete approximation of p(a, b;x) as

pJ(a, b; x) = 2J
(
1− e−2−Jb−2−J ia−ix

)
(4.9)

and also, in analogy to (3.3), set

PJ(x) =
pJ(a, b; x)
p(a, b; 2Jx)

=
1− e−2−Jb−2−J ia−ix

ix + 2−J ia + 2−Jb
. (4.10)

The form (4.9) ensures that pJ(a, b; x)pJ(−a, b;x) and pJ(0, b; x) are Hermitian symmetric func-
tions. Define now a discrete approximation ĝJ of ĝ by (4.5), where p’s in (4.6) and (4.7) are
replaced by pJ ’s. The function GJ is then given by (4.5), where p’s in (4.6) and (4.7) are replaced
by PJ ’s.

We shall now verify that ĝ and ĜJ satisfy Assumptions 1-5. Assumptions 1 and 2 are satisfied
because the “building blocks” p−1, PJ and P−1

J for ĝ−1, GJ and G−1
J are continuous functions on

the real line. To show Assumption 3, it is enough to prove (3.7) for the function PJ . Similarly to
the case of the Ornstein-Uhlenbeck process, we are interested in the behavior of F and F−1 for
z = i(x + 2−Ja) + 2−Jb, where |x| ≤ 4π/3 and J ≥ J0. So, define the set

DJ0 =
{

z ∈ C : 0 ≤ <(z) ≤ 2−J0b, |=(z)| ≤ 4π

3
+ <(z)

∣∣∣a
b

∣∣∣
}

,

and note that z = i(x + 2−Ja) + 2−Jb ∈ DJ0 when |x| ≤ 4π/3 and J ≥ J0. Also, consider the set
DJ0

ε = {w ∈ C : infz∈DJ0 |z − w| < ε}. The functions F and F−1 are holomorphic on DJ0
ε ⊃ DJ0

for small enough ε, and thus Assumption 3 holds.
Consider now Assumption 4. The condition (3.8) is satisfied for k = 0 by the definition of ĝ

and the implicit assumption ĝ ∈ L2(R) (that is, the polynomial h has a higher degree than the
polynomial f). When k = 1, note that

∂ĝ(x)
∂x

=
f ′(x)
h(x)

− f(x)h′(x)
(h(x))2
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and the condition (3.8) follows since the difference between the degrees of f ′(x) and h(x), and
those of f(x)h′(x) and (h(x))2 increased by 1. The case k = 2 can be argued in a similar way.

To show (3.9) in Assumption 5, it is enough to prove it for

PJ(0) =
1− e−2−Jb−2−J ia

2−J ia + 2−Jb
.

This can be done by using standard properties of exponentials and using their Taylor expansions.
Finally, let us note that the discrete approximations gJ based on (4.9) correspond to ARMA

time series XJ (Brockwell and Davis (1991)).

5 Adaptive wavelet decompositions

We first reestablish the decomposition (1.3) of Zhang and Walter (1994) by providing a more
rigorous proof.

Theorem 5.1 (Zhang and Walter (1994)) Let X be a Gaussian stationary process given by (1.1).
Suppose that Assumptions 1 and 2 of Section 3 hold. Then, with the notation of Section 1, the
process X admits the following wavelet-based decomposition: for any J ∈ Z,

X(t) =
∞∑

n=−∞
aJ,nθJ(t− 2−Jn) +

∞∑

j=J

∞∑
n=−∞

dj,nΨj(t− 2−jn) (5.1)

=
∞∑

j=−∞

∞∑
n=−∞

dj,nΨj(t− 2−jn), (5.2)

with the convergence in the L2(Ω)-sense for each t, and independent N (0, 1) random variables
aJ,n, dj,n that are expressed through (1.5).

Proof: (Zhang and Walter (1994)) Under Assumptions 1 and 2, the basis functions θJ and Ψj

in (5.1) and (5.2) are well-defined pointwise (Section 3). The coefficients aj,n, dj,n are well-defined,
independent N (0, 1) random variables (Section 3). Except for more rigor, the rest of the proof
follows that of Zhang and Walter (1994). Since the proof is short, we provide it to the reader’s
convenience.

Observe that

E

(
X(t)−

N2∑

n=−N1

aJ,nθJ(t− 2−Jn)−
K∑

j=J

M2∑

n=−M1

dj,nΨj(t− 2−jn)

)2

= E

(
X(t)2 − 2

N2∑

n=−N1

X(t)aJ,nθJ(t− 2−Jn)− 2
K∑

j=J

M2∑

n=−M1

X(t)dj,nΨj(t− 2−jn)

+

(
N2∑

n=−N1

aJ,nθJ(t− 2−Jn) +
K∑

j=J

M2∑

n=−M1

dJ,nΨj(t− 2−jn)

)2)
. (5.3)

By using Appendix A and the definition of function θj (Sections 1 and 3), we have

EX(t)aJ,n = EX(t)
∫

R
X(s)θJ(s− 2−Jn)ds =

1
2π

∫

R
eitx|ĝ(x)|2 ̂θJ(· − 2−Jn)(x)dx

=
1
2π

∫

R
ei(t−2−Jn)x|ĝ(x)|2θ̂J(x)dx =

1
2π

∫

R
ei(t−2−Jn)x2−J/2ĝ(x)φ̂J(2−Jx)dx = θJ(t− 2−Jn). (5.4)
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Similarly, we have
EX(t)dj,n = Ψj(t− 2−jn). (5.5)

Using (5.4), (5.5) and independence of aJ,n, dj,n, relation (5.3) becomes

R(0)−
N2∑

n=−N1

θJ(t− 2−Jn)2 −
K∑

j=J

M2∑

n=−M1

(Ψj(t− 2−jn))2. (5.6)

Observe from the definition of θJ that

θJ(t− 2−Jn) =
1
2π

∫

R
ei(t−2−Jn)x2−J/2ĝ(x)φ̂J(2−Jx)dx

=
1
2π

∫

R
ĝ(x)2J/2( ̂φ(2J(·+ t)− n))(x)dx =

1
2π

∫

R
g(u)2J/2φ(n− 2J(u + t))du, (5.7)

and similarly

Ψj(t− 2−jn) =
1
2π

∫

R
g(u)2j/2ψ(n− 2j(u + t))du. (5.8)

Since the collection of functions 2J/2φ(n− 2J(u + t)), 2j/2φ(n− 2j(u + t)), j ≥ J , n ∈ Z, makes
an orthonormal basis of L2(R) for any t ∈ R, and since R(0) =

∫
R |g(t)|2dt, we obtain from (5.7)

and (5.8) that relation (5.6) converges to 0 as Ni, Mi (i = 1, 2) and K approach infinity. 2

In the next result, we modify the approximation term in the decomposition (5.1) according to
(1.7).

Theorem 5.2 Let X be a Gaussian stationary process given by (1.1). Suppose that Assumptions
1 and 2 of Section 3 hold. Then, with the notation of Section 1, the process X admits the following
wavelet-based decomposition: for any J ∈ Z,

X(t) =
∞∑

n=−∞
XJ,nΦJ(t− 2−Jn) +

∞∑

j=J

∞∑
n=−∞

dj,nΨj(t− 2−jn). (5.9)

The convergence in (5.9) is in the L2(Ω)-sense for each t under Assumption 3, and it is almost
sure, uniform over compact intervals of t under Assumptions 3 and 4. The sequence XJ =
{XJ,n}n∈Z is defined by either (1.11) or (3.1).

Proof: We first argue that the definitions (1.11) and (3.1) of Xj are equivalent. By using
Appendix A, observe that, for XJ,n defined by (1.11) and aJ,n defined by (1.5),

E
(
XJ,n −

N2∑

k=−N1

gJ,kaJ,n−k

)2
= E

(∫

R
X(t)

(
ΦJ(t− 2−Jn)−

N2∑

k=−N1

gJ,kθJ(t− 2−J(n− k))

)
dt

)2

=
1
2π

∫

R

∣∣∣ĝJ(2−Jx)−
N2∑

k=−N1

gJ,ke
ix2−Jk

∣∣∣
2
2−J

∣∣∣φ̂(2−Jx)
∣∣∣
2
dx −→ 0,

as Ni → ∞ (i = 1, 2), since
∑

k gJ,ke
ixk converges to ĝJ(x) in L2(−π, π) and φ̂ has a compact

support.
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To show (5.9), we start with (5.1) and modify its first sum as (1.7), that is,

∞∑
n=−∞

aJ,nθJ(t− 2−Jn) =
∞∑

n=−∞
XJ,nΦJ(t− 2−Jn). (5.10)

We first show that, under Assumption 3, the R.H.S. converges in the L2(Ω)-sense for fixed t
and, under Assumptions 3 and 4, almost surely, uniformly over compacts of t. Observe that,
by Lemma 3.1, |ΦJ(t − 2−Jn)| ≤ C/(1 + |t − 2−Jn|2) and, by Lemma 3 in Meyer et al. (1999),
|XJ,n| ≤ A

√
log(2 + |n|) a.s., where a random variable A does not depend on n. The almost sure

convergence uniformly on compacts t ∈ K follows since

sup
t∈K

∞∑
n=−∞

|XJ,n||ΦJ(t− 2−Jn)| ≤ A sup
t∈K

∞∑
n=−∞

√
log(2 + |n|)

1 + |t− 2−Jn|2 < ∞ a.s.

For the convergence in L2(Ω), observe that, for fixed t,

E

( ∞∑
n=−∞

|XJ,n||ΦJ(t− 2−Jn)|
)2

≤ CE
∞∑

n=−∞

|XJ,n|2
1 + |n|2

∞∑
n=−∞

1
1 + |n|2 < ∞.

We shall now prove the equality in (5.10). Observe that, for each u,

θJ(u) =
∞∑

k=−∞
gJ,kΦJ(u− 2−Jk). (5.11)

Indeed, arguing as above,

Fm(u) =
m∑

k=−m

gJ,kΦJ(u− 2−Jk) −→ F (u) =
∞∑

k=−∞
gJ,kΦJ(u− 2−Jk). (5.12)

pointwise, and

F̂m(x) =

(
m∑

k=−m

gJ,ke
−i2−Jkx

)
ĝ(x)

ĝJ(2−Jx)
2−J/2φ̂(2−Jx) −→ θ̂J(x) (5.13)

in L2(R), since
∑m

k=−m gJ,ke
−ikx converges to ĝJ(x) in L2(−π, π), and ĝ(x)/ĝJ(2−Jx) is bounded

by Assumption 3 on the compact support of φ̂(2−Jx). Hence, Fm → θJ in L2(R) and θJ = F a.e.
Since both F and θJ are continuous, we obtain (5.11).

Set now, for m ≥ 1,

a
(m)
J,n =

{
aJ,n, |n| ≤ m,
0, |n| > m,

X
(m)
J,n =

∞∑

k=−∞
gJ,ka

(m)
J,n−k.

By using (5.11), we obtain that

∞∑
n=−∞

a
(m)
J,n θJ(t− 2−Jn) =

∞∑
n=−∞

X
(m)
J,n ΦJ(t− 2−Jn). (5.14)
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The L.H.S. of (5.14) converges in L2(Ω) to the L.H.S. of (5.10) (and, in fact, also almost surely
by the Three Series Theorem). Let us show that the R.H.S. of (5.14) converges to the R.H.S. of
(5.10). We want to argue next that

sup
m≥1

|X(m)
J,n | ≤ A

√
log(2 + |n|) a.s. (5.15)

for a random variable A which only depends on J . By using the Lévy-Octaviani inequality (e.g.
Proposition 1.1.1 in Kwapień and Woyczyński (1992)), we have

P

(
sup

m=1,...,M
|X(m)

J,n | > a

)
≤ 2P

(
|X(M)

J,n | > a
)
, (5.16)

for any a > 0 and M ≥ 1. By the Three Series Theorem, X
(M)
J,n → XJ,n almost surely, as M →∞.

Hence, passing to the limit with M in (5.16), we have

P

(
sup
m≥1

|X(m)
J,n | > a

)
≤ 2P (|XJ,n| > a).

The bound (5.15) now follows as in the proof of Lemma 3 in Meyer et al. (1999). By using Lemma
3.1 and the bound (5.15), the R.H.S. of (5.14) converges a.s. to the R.H.S. of (5.10).

It is left to show that the second term in (5.9) converges almost surely and uniformly on
compacts. By Lemma 3 in Meyer et al. (1999),

|dj,n| ≤ A
√

log(2 + |j|)
√

log(2 + |n|) a.s.,

where a random variable A does not depend on j, n. By Lemma 3.1, we have

|Ψj(t− 2−jn)| = |Ψj(2−j(2jt− n))| ≤ C2−j/2

1 + |2jt− n|2 ,

for j ≥ J . Then, as in the proof of Theorem 2 in Meyer et al. (1999),

∞∑

j=J

∞∑
n=−∞

|dj,n||Ψj(t− 2−jn)| ≤ A′
∞∑

j=J

2−j/2
√

log(2 + |j|)
∞∑

n=−∞

√
log(2 + |n|)

1 + |2jt− n|2

≤ A′′
∞∑

j=J

2−j/2
√

log(2 + |j|)
√

log(2 + |2jt|) < ∞

a.s. uniformly over compact intervals of t. 2

6 FWT-like algorithm

We show here that discrete approximation sequences Xj are related across different scales by a
FWT-like algorithm.

Proposition 6.1 Let Xj and dj be the sequences appearing in (5.9), and let u and v denote the
CMFs associated with the orthogonal Meyer MRA. Then, under Assumptions 1–4 of Section 3:

(i) (Reconstruction step)
Xj+1 = uj∗ ↑2 Xj + vj∗ ↑2 dj , (6.1)
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where the filters uj and vj are defined through their discrete Fourier transforms

ûj(x) =
ĝj+1(x)
ĝj(2x)

û(x), v̂j(x) = ĝj+1(x)v̂(x); (6.2)

(ii) (Decomposition step)

Xj =↓2 (ud
j ∗Xj+1), dj =↓2 (vd

j ∗Xj+1), (6.3)

where x stand for the time reversal of a sequence x, and the filters ud
j and vd

j are defined through
their discrete Fourier transforms by

ûd
j (x) =

(
ĝj(2x)
ĝj+1(x)

)
û(x), v̂d

j (x) =

(
1

ĝj+1(x)

)
v̂(x). (6.4)

The convergence in (6.1) and (6.3) is in the L2(Ω)-sense, and also absolute almost surely.

Proof: Observe first that the filters uj , vj , u
d
j , v

d
j are well-defined since ûj , v̂j , û

d
j , v̂

d
j ∈ L2(−π, π).

The latter follows by writing

ûj(x) = Gj+1(x)
(
Gj(2x)

)−1
û(x), v̂j(x) = Gj+1(x)ĝ(2j+1x)v̂(x),

ûd
j (x) = Gj+1(x)−1 Gj(2x)û(x), v̂d

j (x) = Gj+1(x)−1 ĝ(2j+1x)−1v̂(x) (6.5)

(see (3.3)), and using Assumptions 1 and 3.
(i) To show (6.1), we need to prove

Xj+1,n =
∞∑

k=−∞
Xj,kuj,n−2k +

∞∑

k=−∞
dj,kvj,n−2k. (6.6)

We first prove the convergence in (6.6) in the L2(Ω)-sense. Observe that, by using (1.11), (1.5)
and Appendix A,

E

(
Xj+1,n −

(
K∑

k=−K

(
Xj,kuj,n−2k + dj,kvj,n−2k

))2

= E

(∫

R
X(t)

(
Φj+1(t− 2−j−1n)−

K∑

k=−K

Φj(t− 2−jk)uj,n−2k −
K∑

k=−K

Ψj(t− 2−jk)vj,n−2k

)
dt

)2

=
1
2π

∫

R
|ĝ(x)|2

∣∣∣e−i2−j−1nxΦ̂j+1(x)− Φ̂j(x)
K∑

k=−K

e−i2−jkxuj,n−2k− Ψ̂j(x)
K∑

k=−K

e−i2−jkxvj,n−2k

∣∣∣
2
dx

=
1
2π

∫

R

∣∣∣e−i2−j−1nxĝj+1(2−j−1x)2−(j+1)/2φ̂(2−j−1x)− ĝj(2−jx)2−j/2φ̂(2−jx)·

·
K∑

k=−K

e−i2−jkxuj,n−2k − 2−j/2ψ̂(2−jx)
K∑

k=−K

e−i2−jkxvj,n−2k

∣∣∣
2
dx.

Hence, it is sufficient to prove that

ĝj(2−jx)2−j/2φ̂(2−jx)
∞∑

k=−∞
e−i2−jkxuj,n−2k + 2−j/2ψ̂(2−jx)

∞∑

k=−∞
e−i2−jkxvj,n−2k
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= e−i2−j−1nxĝj+1(2−j−1x)2−(j+1)/2φ̂(2−j−1x) (6.7)

with the convergence in L2(R). We only consider the case n = 2p (the case n = 2p + 1 may be
treated in an analogous fashion). Then, relation (6.7) becomes

ĝj(2−jx) 2−j/2 φ̂(2−jx)
∞∑

m=−∞
ei2−jmxuj,2m + 2−j/2ψ̂(2−jx)

∞∑
m=−∞

ei2−jmxvj,2m

= ĝj+1(2−j−1x) 2−(j+1)/2 φ̂(2−j−1x). (6.8)

The L.H.S. of (6.8) is

ĝj(2−jx) 2−j/2 φ̂(2−jx)
ûj(2−j−1x) + ûj(2−j−1x + π)

2
+2−j/2ψ̂(2−jx)

v̂j(2−j−1x) + v̂j(2−j−1x + π)
2

= 2−12−j/2 φ̂(2−jx)
(
ĝj+1(2−j−1x) û(2−j−1x) + ĝj+1(2−j−1x + π) û(2−j−1x + π)

)

+2−12−j/2 ψ̂(2−jx)
(
ĝj+1(2−j−1x) v̂(2−j−1x) + ĝj+1(2−j−1x + π) v̂(2−j−1x + π)

)

= ĝj+1(2−j−1x)
(
2−j/2 φ̂(2−jx)

û(2−j−1x) + û(2−j−1x + π)
2

+2−j/2ψ̂(2−jx)
v̂(2−j−1x) + v̂(2−j−1x + π)

2

)

+2−12−j/2
(
φ̂(2−jx)û(2−j−1x + π) + ψ̂(2−jx)v̂(2−j−1x + π)

)
·

·
(
ĝj+1(2−j−1x + π)− ĝj+1(2−j−1x)

)
.

This is also R.H.S. of (6.8) since

2−j/2 φ̂(2−jx)
û(2−j−1x) + û(2−j−1x + π)

2
+ 2−j/2ψ̂(2−jx)

v̂(2−j−1x) + v̂(2−j−1x + π)
2

= 2−(j+1)/2φ̂(2−j−1x)

(this is the Fourier transform of the last relation in the proof of Theorem 7.7 in Mallat (1998))
and, with y = 2−j−1x,

φ̂(2−jx)û(2−j−1x + π) + ψ̂(2−jx)v̂(2−j−1x + π) = φ̂(2y)û(y + π) + ψ̂(2y)v̂(y + π)

= 2−1/2φ̂(y)
(
û(y)û(y + π) + v̂(y)v̂(y + π)

)
= 0,

where we used the facts φ̂(2y) = 2−1/2φ̂(y)û(y) ((7.30) in Mallat (1998)), ψ̂(2y) = 2−1/2φ̂(y)v̂(y)
((7.57) in Mallat (1998)) and û(y)û(y + π) + v̂(y)v̂(y + π) = 0 (Theorem 7.8 in Mallat (1998)).

We now show that the convergence in (6.6) is also absolute almost surely. By using Assump-
tions 3, 4, and integration by parts twice, we may conclude that |uj,k|, |vj,k| ≤ C(1 + |k|2)−1,
k ∈ Z. By Lemma 3 in Meyer et al. (1999), |Xj,k|, |dj,k| ≤ A

√
log(2 + |k|) a.s., where a random

variable A does not depend on k. The absolute convergence a.s. now follows.
(ii) The proof of (6.3) follows by similar arguments. We need to prove that

Xj,n =
∞∑

k=−∞
Xj+1,ku

d
j,k−2n (6.9)
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and

dj,n =
∞∑

k=−∞
Xj+1,kv

d
j,k−2n. (6.10)

To show (6.9) with convergence in the L2(Ω)-sense, it suffices to prove that

e−i2−jnxĝj(2−jx)2−j/2φ̂(2−jx)

= ĝj+1(2−(j+1)x)2−(j+1)/2φ̂(2−(j+1)x)
∞∑

k=−∞
e−ik2−(j+1)xud

j,k−2n. (6.11)

But the R.H.S. of (6.11) is

ĝj+1(2−(j+1)x)2−(j+1)/2φ̂(2−(j+1)x)
∞∑

m=−∞
e−i(2n+m)2−(j+1)xud

j,m

= ĝj+1(2−(j+1)x)2−(j+1)/2φ̂(2−(j+1)x)e−in2jxûd
j (2

−(j+1)x)

= 2−(j+1)/2φ̂(2−(j+1)x)e−in2jxĝj(2−jx)û(2−(j+1)x), (6.12)

which is also the L.H.S. of (6.11) by using φ̂(2y) = 2−1/2φ̂(y)û(y). The proof of the equality (6.10)
in the L2(Ω)-sense is similar. The absolute almost surely convergence of (6.9) and (6.10) may be
deduced by arguments analogous to those for the absolute almost surely convergence of (6.6). 2

7 Convergence of random discrete approximations

We will also assume the following:

Assumption 6: Suppose that there are β ∈ N∪{0} and α ∈ (0, 1] such that, for any compact K,

∣∣∣X(t)−X(s)−X(1)(s)(t− s)− . . .−X(β)(s)
(t− s)β

β!

∣∣∣ ≤ A|t− s|β+α for all t ∈ R, s ∈ K, a.s.,

(7.1)
where a random variable A depends only on K. (As usual, f (k) denotes the kth derivative of f .)

Note that (7.1) implies, for some random variable B,

|X(t)−X(s)| ≤ B|t− s|γ for all t ∈ R, s ∈ K, with γ = 1 ∧ (β + α). (7.2)

Condition (7.1) in Assumption 6 is satisfied by many Gaussian stationary processes. It follows,
in particular, from the two conditions:

X(β) is α-Hölder a.s. (7.3)

and
|X(t)| ≤ C(1 + |t|)β+α a.s. (7.4)

By Theorem and a discussion on pp. 181-182 in Cramér and Leadbetter (1967), (7.3) follows from
∫ ∞

0
x2β+2α log(1 + x)|ĝ(x)|2dx < ∞. (7.5)
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There is also an equivalent condition in terms of the autocovariance function of a stationary
Gaussian process.

Condition (7.4) is always satisfied for stationary Gaussian processes that are bounded on
compact intervals, such as for those satisfying (7.3). In fact, a stronger condition holds:

|X(t)| ≤ C
√

log(2 + |t|) a.s., (7.6)

where C is a random variable. To see this, note that the discrete-time sequence Xk =
supt∈[k,k+1) |X(t)| is stationary. Moreover, by Theorem 2 in Lifshits (1995), p. 142, for some
m ∈ R and σ > 0,

P (X0 ≥ m + τ) ≤ 2(1− Φ(τ/σ)), τ > 0,

where Φ is the distribution function of standard normal law. In other words, the right tail of the
distribution function of Xn decays at least as fast as that of the distribution function of standard
normal law. The bound (7.6) can then be obtained as (3.15) in Lemma 3 of Meyer et al. (1999).

We shall need some assumptions stronger than parts of Assumptions 3 and 5.

Assumption 3*: Suppose that, for any J0 ∈ Z,

max
k=0,1,...,β+[α]+2

sup
J≥J0

sup
|x|≤4π/3

∣∣∣∣
∂kGJ(x)

∂xk

∣∣∣∣ < ∞. (7.7)

Assumption 5*: Assume that, for large J ,

|GJ(0)− 1| ≤ const 2−(β+1)J . (7.8)

As in Lemma 3.1, under Assumption 3*, we have

|2−j/2Φj(2−ju)| ≤ C

1 + |u|β+[α]+2
, u ∈ R, (7.9)

where a constant C does not depend on j ≥ j0, for fixed j0.
In addition, we will suppose the following:

Assumption 7: If β ≥ 1 in Assumption 6, suppose that

G
(n)
J (0) =

∂nGJ

∂xn
(0) = 0, n = 1, . . . , β. (7.10)

The next result establishes convergence of random discrete approximations.

Proposition 7.1 Under Assumptions 2,3,5 of Section 3 and Assumption 6 above, we have

sup
t∈K

|2J/2XJ,[2J t] −X(t)| ≤ A1 2−Jγ a.s., (7.11)

where K is a compact interval and A1 is a random variable that does not depend on J . If, in
addition, Assumptions 3*,5* and 7 above hold, then

sup
t∈K

|2J/2XJ,[2J t] −X([2J t]2−J)| ≤ A2 2−J(β+α) a.s., (7.12)

where a random variable A2 does not depend on J .
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Proof: Suppose without loss of generality that K = [0, 1]. In view of Assumption 6, it is
enough to show (7.12) or that

sup
k=0,...,2J

∣∣∣2J/2XJ,k −X(k2−J)
∣∣∣ ≤ A2−J(β+α) a.s.

Note by Assumption 7 and the properties of the scaling function φ that
∫

R
unΦJ(u)du = (−i)−nΦ̂(n)

J (0) = (−i)−n ∂n

∂xn

(
GJ(x)2−J/2φ̂(2−Jx)

)∣∣∣
x=0

= 0,

for n = 1, . . . , β. By using Appendix A, Assumptions 5* and 6 (with (7.9)), we have

|2J/2XJ,k−X(k2−J)| ≤ 2J/2

∫

R

∣∣∣X(t)−X(k2−J)− . . .−X(β)(k2−J)
(t− k2−J)β

β!

∣∣∣|ΦJ(t− k2−J)|dt

+X(k2−J)|GJ(0)− 1| ≤ A2J/2

∫

R
|t− k2−J |β+α|ΦJ(t− k2−J)|dt + B2−(β+1)J

= A2J/2

∫

R
|u|β+α|ΦJ(u)|du + B2−(β+1)J (setting u = 2−Jv)

= A′2−J(β+α)

∫

R
|v|β+α|2−J/2ΦJ(2−Jv)|dv ≤ A′′2−J(β+α)

∫

R

|v|β+α

1 + |v|β+[α]+2
dv = A′′′2−J(β+α). 2

According to Proposition 7.1, the discrete approximations 2J/2XJ,[2J t] converge to the process
X(t). Note also that, when β ≥ 1, the convergence is faster on the dyadics than on the whole
interval. An interesting question is whether the faster convergence rate β + α can be obtained on
an interval for some other approximation based on XJ,[2J t].

For a function f , defined on either R or Z, consider the operator

(∆p
hf)(a) =

p∑

k=0

(
p

k

)
(−1)p−kf(a + kh), p ∈ N,

where a, h are in either R or Z, respectively. When f = fk is a function on Z, we write

∆pfk = (∆p
1f)(k) and ∆pf = (∆p

1f)(0).

In view of the condition (7.1), to obtain the faster rate β +α on a whole interval, it is natural
to try an approximation which includes the terms mimicking the β derivatives in (7.1). Thus, for
β ≥ 1, consider the approximations

X̂β,J(t) = 2J/2XJ,[2J t] + 2J/2
β∑

p=1

∆pXJ,[2J t]

2−Jp

(t− [2J t]2−J)p

p!
, (7.13)

with the idea that 2J/2∆pXJ,[2J t] ≈ X(p)(t)2−Jp for large J . For example, when β = 1,

X̂1,J(t) = 2J/2XJ,[2J t] + 2J/2
XJ,[2J t]+1 −XJ,[2J t]

2−J
(t− [2J t]2−J).

When β = 0, we get X̂0,J(t) = 2J/2XJ,[2J t].
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Although intuitive, the approximation X̂β,J in (7.13) may not converge to X(t) at the faster
rate β +α on compact intervals (see Remark 7.1 below). It turns out, though, that a modification
of (7.13) does attain that rate. In order to build such approximation, we will make use of
Lemma 7.1 below, stated without proof. Observe from (7.12) that replacing 2J/2∆pXJ,[2J t] by
(∆p

2−J X)([2J t]/2J) in the approximation (7.13) makes an error of the desired faster rate α + β.
Lemma 7.1 shows that, after suitable correction, (∆p

2−J X)([2J t]/2J) approximates X(p)([2J t]/2J)
(and then X(p)(t)) at the desired rate α+β. This correction needs to be taken into account when
considering a modification to X̂β,J .

For any x ∈ R, define the function sx on Z by

sx(k) = x + k, k ∈ Z.

Note that ∆psj
0 =

∑p
k=0

(
p
k

)
(−1)p−kkj , j ∈ N (recall from above that ∆psj

0 = (∆p
1s

j
0)(0)).

Lemma 7.1 Let β ∈ N, α ∈ (0, 1) and G ⊆ R be an open interval. If f : G → R is a Lipschitz
function of order β + α in the sense of (7.1), then, for N 3 p ≤ β, a ∈ G, we have

∆p
hf(a)
hp

− f (p)(a) =
β−p∑

j=1

f (p+j)(a)
(p + j)!

hj ∆psp+j
0 + O(hβ+α−p), (7.14)

as h → 0.

Define the approximation function X̃β,J(t) by

X̃β,J(t) = X̃(0),J +
β∑

p=1

X̃(p),J(t)
p!

(t− [2J t]2−J)p, (7.15)

where

X̃(0),J := 2J/2XJ,[2J t], X̃(β),J :=
2J/2∆βXJ,[2J t]

2−Jβ

and

X̃(p),J :=
2J/2∆pXJ,[2J t]

2−J
+

β−p∑

j=1

X̃(p+j),J

(p + j)!
2−Jj ∆psp+j

0 , p = 1, 2, ..., β − 1.

Proposition 7.2 Under stronger assumptions of Proposition 7.1, we have

sup
t∈K

|X̃β,J(t)−X(t)| ≤ A2−J(β+α) a.s., (7.16)

where K is a compact interval and A is random variable that does not depend on J .

Proof: If the relation

X̃(p),J −X(p)([2J t]2−J) = O(2−J(β+α−p)) (7.17)

holds for p = 0, 1, 2, ..., β, then, by Assumption 6,

|X̃β,J(t)−X(t)| ≤
∣∣∣∣∣X̃β,J(t)−X([2J t]2−J)−

β∑

p=1

X(p)([2J t]2−J)
p!

(t− [2J t]2−J)p

∣∣∣∣∣
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+

∣∣∣∣∣X(t)−X([2J t]2−J)−
β∑

p=1

X(p)([2J t]2−J)
p!

(t− [2J t]2−J)p

∣∣∣∣∣ = O(2−J(β+α)),

which proves (7.16).
Relation (7.17) holds for p = 0 by Proposition 7.1. To show (7.17) for β ≥ 1, we argue by

backward induction. For p = β, by Proposition 7.1 and Lemma 7.1, we have

|X̃(β),J −X(β)([2J t]2−J)| ≤
∣∣∣∣∣
2J/2∆βXJ,[2J t]

2−Jβ
− ∆βX([2J t]2−J)

2−Jβ

∣∣∣∣∣

+

∣∣∣∣∣
∆βX([2J t]2−J)

2−Jβ
−X(β)([2J t]2−J)

∣∣∣∣∣ = O(2−J(β+α−β)).

Assume by induction that (7.17) holds for p + 1, ..., β − 1, β (with p ≥ 1). Then, by Proposition
7.1 and Lemma 7.1, we obtain that

|X̃(p),J −X(p)([2J t]2−J)| ≤
∣∣∣∣∣
2J/2∆pXJ,[2J t]

2−Jp
− ∆pX([2J t]2−J)

2−Jp

∣∣∣∣∣

+

∣∣∣∣∣
∆pX([2J t]2−J)

2−Jp
−X(p)([2J t]2−J)−

β−p∑

j=1

X(p+j)([2J t]2−J)
(p + j)!

2−Jj∆psp+j
0

∣∣∣∣∣

+

∣∣∣∣∣
β−p∑

j=1

X(p+j)([2J t]2−J)
(p + j)!

2−Jj∆psp+j
0 −

β−p∑

j=1

X̃(p+j),J

(p + j)!
2−Jj∆psp+j

0

∣∣∣∣∣ = O(2−J(β+α−p)). 2

Remark 7.1 When β = 2, the approximation X̃β,J becomes

X̃2,J = 2J/2XJ,[2J t]+2J/2

(
XJ,[2J t]+1 −XJ,[2J t]

2−J
+

XJ,[2J t]+2 − 2XJ,[2J t]+1 + XJ,[2J t]

2 2−J

)
(t−[2J t]2−J)

+2J/2
XJ,[2J t]+2 − 2XJ,[2J t]+1 + XJ,[2J t]

(2−J)2
(t− [2J t]2−J)2. (7.18)

Compare (7.18) with the approximations X̂2,J given in (7.13). Observe that, if X̂2,J also converges
to X at the rate 2 + α, then

O(2−J(2+α)) = X̃2,J − X̂2,J

= 2J/2
XJ,[2J t]+2 − 2XJ,[2J t]+1 + XJ,[2J t]

2 2−J
(t− [2J t]2−J)

or, by using (7.12) in Proposition 7.1,

O(2−J(2+α)) =
X(([2J t] + 2)2−J)− 2X(([2J t] + 1)2−J) + X([2J t]2−J)

2−J
(t− [2J t]2−J)

or, by using Taylor expansions,

O(2−J(2+α)) = (2X ′′(t1)−X ′′(t2))2−J (t− [2J t]2−J),

with t1 = t1(J) and t2 = t2(J) that are close to t. The last relation may not be satisfied under
our assumptions, showing that one cannot expect X̂2,J to converge to X at the rate 2 + α.

20



Although the approximations X̃β,J converge to X at the faster rate β+α, these approximations
do not necessarily have continuous paths. Indeed, it can be easily verified that X̃β,J is continuous
when β = 1, 2 but not so when β = 3. For a fixed β ≥ 2, it may be desirable to have not only
a continuous but also a Cβ−1 approximation Xβ,J . Moreover, in analogy to (7.15), in order to
have the faster convergence, we would expect the p-th derivative of the approximation Xβ,J at
[2J t]2−J to approximate the p-th derivative of the process X at t.

We generally found such Cβ−1 approximations difficult to construct. One difficulty is the
following. As in (7.15), we may seek an approximation Xβ,J which is a polynomial of order β on
an interval ([2J t]2−J , [2J t]2−J + 1). Since Xβ,J is globally Cβ−1, we would require its derivatives
X

p
β,J , p = 0, 1, ..., β−1, to be equal to prescribed values at the endpoints [2J t]2−J and [2J t]2−J +1.

Requiring this yields 2β equations that a polynomial Xβ,J must satisfy. Since a polynomial of
order β has only β + 1 coefficients, this is not possible in general. Despite this difficulty, we have
found the following general scheme to yield Cβ−1 approximations, at least for the first several
values of β ≥ 2.

To construct a C1 approximation X2,J , we could require first that its derivative

2−J/2X
(1)
2,J(t) = 2−J/2X̂1,J(t) based on the sequence

∆XJ,[2J t]

2−J

=
∆XJ,[2J t]

2−J
+

1
2−J

(
∆XJ,[2J t]+1

2−J
− ∆XJ,[2J t]

2−J

)
(t− [2J t]2−J)

=
∆XJ,[2J t]

2−J
+

∆2XJ,[2J t]

(2−J)2
(t− [2J t]2−J). (7.19)

Observe that, by construction using continuous approximation X̂1,J , X
(1)
2,J is continuous. More-

over, X
(1)
2,J approximates X(1)(t), and X

(2)
2,J on the interval ([2J t]2−J , [2J t]2−J + 1) approximates

X(2)(t). Integrating (7.19) and requiring it to be continuous yields the following approximation

2−J/2X2,J(t) =
XJ,[2J t]+1 + XJ,[2J t]

2
+

∆XJ,[2J t]

2−J
(t− [2J t]2−J)

+
∆2XJ,[2J t]

(2−J)2
(t− [2J t]2−J)2. (7.20)

Note that X2,J differs from X̂2,J by the constant term.
Similarly, to construct a C2 approximation X3,J , we could require that

X
(1)
3,J(t) = X2,J(t) based on the sequence

∆XJ,[2J t]

2−J
.

Integrating the resulting expression and requiring it to be continuous yields

X3,J(t) =
1
6
XJ,[2J t]+2 +

4
6
XJ,[2J t]+1 +

1
6
XJ,[2J t] +

1
2

∆2XJ,[2J t]

2−J
(t− [2J t]2−J)

+
1
2

∆2XJ,[2J t]

(2−J)2
(t− [2J t]2−J)2 +

1
6

∆3XJ,[2J t]

(2−J)3
(t− [2J t]2−J)3 (7.21)

(the subindex 2 in ∆2XJ,[2J t] is not a typo). The approximation (7.21) is C2 and its derivatives
of orders p = 0, 1, 2, 3 approximate those of the process X.
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We expect that the above scheme yields Cβ−1 approximations Xβ,J for any β ≥ 2. However,
as explained in Remark 7.2 below, we cannot expect these approximations to convergence at the
faster rate β + α. This is perhaps not surprising, because the discontinuous approximations in
(7.15) are already nontrivial.

Remark 7.2 One cannot expect the approximation X2,J in (7.21) to converge to X at the faster
rate 2 + α. Indeed, if this rate were achieved, we would have (see (7.18))

O(2−J(2+α)) = X̃2,J(t)−X2,J(t)

= XJ,[2J t]+1 −XJ,[2J t] −
XJ,[2J t]+2 − 2XJ,[2J t]+1 + XJ,[2J t]

2 2−J
(t− [2J t]2−J)

or, by using (7.11),
O(2−J(2+α)) = X(([2J t] + 1)2−J)−X([2J t]2−J)

−X(([2J t] + 2)2−J)− 2X(([2J t] + 1)2−J) + X([2J t]2−J)
2−J

(t− [2J t]2−J)

or, by Taylor expansions,

O(2−J(2+α)) = X ′([2J t]2−J)2−J +
1
2
X ′′(t1)2−2J −X ′′(t2)2−J (t− [2J t]2−J),

with t1 = t1(J) and t2 = t2(J) close to t, or, by expanding X ′([2J t]2−J) further,

O(2−J(2+α)) = X ′(t)2−J +
1
2
X ′′(t1)2−2J −X ′′(t2)2−J (t− [2J t]2−J).

This relation may not be satisfied under our assumptions on X.

8 Simulation: the case of the OU process

We will illustrate here how the results of Sections 6 and 7 can be used to simulate a stationary
process X. We consider only the case of the OU process in Example 4.1. Recall from that example
that the discrete approximations taken for the OU process are

ĝJ(x) = 2−J/2σ

√
1− e−2λ2−J

2λ
(1− e−λ2−J

e−ix)−1 (8.1)

and the corresponding discrete random approximations XJ are suitable AR(1) time series in (4.2).
With the choice (8.1) of approximations, observe that the filters uj and vj used in reconstruction
(6.1) become

ûj(x) =
2−1/2

√
1 + e−2λ2−(j+1)

(1 + e−λ2−(j+1)
e−ix)û(x), (8.2)

v̂j(x) = 2−(j+1)/2σ

√
1− e−2λ2−(j+1)

2λ
(1− e−λ2−(j+1)

e−ix)−1v̂(x). (8.3)

Suppose one wants to simulate the OU process on the interval [0, 1]. The idea is to begin by
generating a discrete approximation X0 at scale 20. This step is easy as X0 is an AR(1) time
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Figure 1: Approximations XJ and the logarithms of their sup differences.

series. Then, substituting X0 into (6.1), one may get the approximation X1, and continuing
recursively from X1 now, the approximation XJ for arbitrary fixed J ≥ 1. Note that applying
(6.1) recursively each time essentially involves just simulating independent N (0, 1) random vari-
ables and computing filters uj and vj . Proposition 7.1 ensures that the properly normalized XJ

approximate the OU process uniformly over [0, 1] and exponentially fast in J .
We illustrate this in Figure 1 for the OU process with λ = 1, σ = 1. The plot on the left

depicts the consecutive approximations Xj from X0 at scale 20 to XJ at the finest scale 2−J with
J = 11. In the right plot, we present the sup-differences between consecutive approximations
Xj−1 and Xj , j = 2, . . . , 11, on the log scale. The decay in that plot confirms that normalized
approximations XJ converge to the OU process exponentially fast in J .

Several comments should be made on how approximations Xj are obtained in Figure 1. Though
theoretically unjustified, we use not Meyer but the celebrated Daubechies CMFs with N = 8 zero
moments. The advantage of these CMFs is that they have finite length (equal to 2N). In
particular, the filters uj in (8.3) are then also finite (of length 2N + 2) for any j. The filters vj ,
however, are not finite and are truncated in practice, disregarding those elements that are smaller
than a prescribed level δ = 10−10. Let us also note that applications of (6.1) involve more elements
of Xj than those plotted in Figure 1. This is achieved by taking the initial approximation X0 of
suitable length. Some indication on how this is done, can be seen from the analogous simulation
of fractional Brownian motion in Pipiras (2005).

Finally, let us indicate another interesting feature of the above simulation. Focus on the filters
vj defined by (8.3). They have infinite length and are truncated in practice. It may seem from the
definition (8.3) that vj have to be taken of very long length as j increases because the elements
of the filter

(1− e−λ2−(j+1)
e−ix)−1 =

∞∑

k=0

e−λ2−(j+1)ke−ixk

decay extremely slowly for larger j. In fact, the opposite turns out to be true. As j increases, the
filters vj can essentially be taken of finite length 2N − 2, and things get even better for larger j
in a way!

To explain why this happens, recall (e.g. Mallat (1998), Theorem 7.4) that N zero moments
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translates into the factorization

v̂(x) = (1− e−ix)N v̂0,N (x), (8.4)

where, in the case of Daubechies CMF v, the filters v0,N have also finite length. An explanation
follows by observing that

1− e−ix

1− e−λ2−(j+1)
e−ix

=
∞∑

k=0

a
(j)
k e−ixk → 1,

or a
(j)
0 → 1, a

(k)
0 → 0, k ≥ 1, as j →∞. More precisely,

1− e−ix

1− e−λ2−(j+1)
e−ix

− 1 =
−e−ix(1− e−λ2−(j+1)

)
1− e−λ2−(j+1)

e−ix
= −(1− e−λ2−(j+1)

)
∞∑

k=1

e−λ2−(j+1)(k−1)e−ixk,

so that the elements a
(j)
k , k ≥ 1, are bounded by 1− e−λ2−(j+1) ≤ λ2−(j+1) → 0, as j →∞.

A On the integration of stationary Gaussian processes

Let {X(t)}t∈R be a Gaussian stationary process given by (1.1). We define here the integral
∫

R
X(t)f(t)dt, (A.1)

for suitable functions f and state its properties as used throughout the paper. No proofs will be
given as most of them are standard. Our strategy will be to define (A.1) both pathwise and as
an L2(Ω) limit and to show that the two definitions coincide in relevant cases. In the pathwise
case, the integral (A.1) will be denoted by Iω(f) (i.e. defined ω-wise), and, in the L2(Ω) case, it
will be denoted by I2(f).

For simplicity, we assume that the sample paths of X are continuous. Path continuity is not
a stringent assumption since, by Belayev’s alternative (Belayev (1960)), either the sample paths
of a Gaussian stationary process are continuous or very badly-behaved in the sense of possessing
discontinuities of the second type.

Assume first that f(t) =
∑n

i=1 fi1[ai,bi)(t) is a step function. For such function, the stochastic
integral (A.1) may be defined pathwise as the ordinary Riemann integral

Iω

( n∑

i=1

fi1[ai,bi]

)
=

n∑

i=1

∫ bi

ai

X(t)dt. (A.2)

Lemma A.1 The integral (A.2) has the following properties: for step functions f, f1 and f2, and
with the notation I(f) = Iω(f):

(P1) I(f) is a Gaussian random variable with mean zero.
(P2) The following moment formulae hold:

EI(f)2 =
1
2π

∫

R
|ĝ(x)|2|f̂(x)|2dx; (A.3)

E
[
I(f1)I(f2)

]
=

1
2π

∫

R
|ĝ(x)|2f̂1(x)f̂2(x)dx; (A.4)

E
[
I(f)X(t)

]
=

1
2π

∫

R
eitx|ĝ(x)|2f̂(x)dx. (A.5)

(P3) For real c and d, I(cf1 + df2) = cI(f1) + dI(f2).
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An extension of the integral (A.1) to more general functions f can be achieved by an argument
of approximation in L2(Ω). Consider the space of deterministic functions

L2
g :=

{
f ∈ L2(R) :

∫

R
|f̂(x)|2|ĝ(x)|2dx < ∞

}
(A.6)

with the inner product

〈f1, f2〉L2
g

:=
1
2π

∫

R
f̂1(x)f̂2(x)|ĝ(x)|2dx. (A.7)

Denote also
Is

X =
{
Iω(f) : f is a step function

}
, (A.8)

equipped with the ordinary L2(Ω) inner product

EIω(f1)Iω(f2). (A.9)

The space Is
X and the restriction of L2

g to step functions are isometric since, for elementary
functions f1 and f2,

EIω(f1)Iω(f2) =
1
2π

∫

R
f̂1(x)f̂2(x)|ĝ(x)|2dx = 〈f1, f2〉L2

g
. (A.10)

Thus, a natural way to define the integral I2 for a given f ∈ L2
g is to take a sequence of step

functions ln that approximate f in the L2
g norm, and set I2(f) as the corresponding L2(Ω) limit

of Iω(ln). The following result can be proved as Lemma 5.1 in Pipiras and Taqqu (2000).

Lemma A.2 For every function f ∈ L2
g(R), there is a sequence {ln} of step functions such that

‖f − ln‖L2
g
−→ 0.

Given f ∈ L2
g, we may use Lemma A.2 to define (A.1) as

I2(f) = lim(L2(Ω))Iω(ln), (A.11)

where {ln} is a sequence of step functions such that ‖f − ln‖L2
g
→ 0. This definition does not

depend on the approximating sequence of f . The integral I2(f) has the following properties.

Theorem A.1 The map I2 : f −→ I2(f) defined by (A.11) is an isometry between the spaces
L2

g and IX = {I2(f) : f ∈ L2
g}. Moreover, I2(f) = Iω(f) a.s. for step functions f , and the

integral I2(f) satisfies the properties (P1), (P2) and (P3) of Lemma A.1 with I(f) = I2(f) and
f, f1, f2 ∈ L2

g.

It is possible to define (A.1) also pathwise for more general integrand functions. As discussed
in Section 7, for a Gaussian stationary process {X(t)}t∈R, we have, almost surely,

|X(t)| ≤ C
√

log(2 + |t|), t ∈ R, (A.12)

where C is a random variable. Consider the space

L := {f ∈ L1(R) :
∫

R

√
log(2 + |t|)|f(t)|dt < ∞}. (A.13)

For f ∈ L, in view of (A.12) we may define

Iω(f) =
∫

R
X(t)f(t)dt

pathwise as an improper Riemann integral. One can show that I2(f) = Iω(f) a.s. for f ∈ L∩L2
g.
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