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SUMMARY

The response of a thin, rigid viscoplastic plate subjected to a spatially
axisymmetric Gaussian step-pressure impulse loading was studied analytically.
A Gaussian pressure distribution in excess of the collapse load is applied to
the plate, is held constant for a length of time, and then is suddenly removed.
The plate deforms with monotonically increasing deflections until the dynamic
energy is completely dissipated in plastic work. The simply supported plate of
uniform thickness obeys the von Mises yield criterion and a generalized consti-
tutive equation for rigid viscoplastic materials. For the small deflection
bending response of the plate, the governing system of equations is essentially
nonlinear. Transverse shear stress is neglected in the yield condition and
rotary inertia in the equations of dynamic equilibrium. A proportional loading
technique, known to give excellent approximations of the exact solution for the
uniform load case, was used to linearize the problem and obtain the analytical
solutions in the form of eigenvalue expansions. The linearized governing equa-
tion required the knowledge of the collapse load of the corresponding statice
problem.

The effects of load concentration, an order of magnitude change in the
viscosity of the plate material, and load duration were examined while holding
the total impulse constant. In general, as the load became more concentrated,
both the peak central velocity and the time for plate motion to cease increased.
For the less viscous plate, these increases of velocity and time were more pro-
nounced. The final plate profile became more conical as the load concentration
increased but did not approach the purely conical shape predicted for the ideal
point impulse by the rigid perfectly plastic analysis with the Tresca yield cri-
teria. Profiles of the less viscous plate were influenced more by the load con-
centration. The shorter the time of load application, the greater the initial
kinetic energy, the plate response, and the final deformation.

INTRODUCTION

There have been a number of plastic circular plate analyses (refs. 1, 2,
and 3) which permit a time variation of the load; however, there have been few
papers which consider a radial variation other than linear (refs. 3 and 4).
Florence's solutions (ref. 5) for uniform pressure acting over a central region
permit one to vary a single parameter to obtain all intermediate states between
the point load and uniform distribution. The only other general spatial distri-
bution of load which has received significant analytical attention is the Gaus-
sian distribution. By varying a single parameter, this general distribution can
span the extremes from the point load to the uniformly distributed load. This
versatility was recognized by Sneddon (ref. 6) who approximated the dynamic load-
ing of a projectile on a thin, infinite elastic plate by a Gaussian distribution
of pressure. Madden (ref. 7), in his study of shielding of space vehicle struc-
tures against meteoroid penetration, related the meteoroid-shield debris loading



of the main vehicle wall to a Gaussian initial velocity distribution. The first
study of this loading on a plastic plate was made by Thomson (ref. 8). He
obtained the solution for a rigid, perfectly plastic plate obeying the Tresca
yield condition subjected to an ideal impulse of Gaussian distribution. The
corresponding solution for the rigid viscoplastic plate obeying the von Mises
yield condition is presented in reference 9. Weidman (ref. 2), in considering
the response of simply supported circular plastic plates to distributed time-
varying loadings, presented an example of a radial Gaussian distribution of
pressure with an exponential decay. The plate material in reference 2 was also
rigid, perfectly plastic obeying the Tresca yield condition. An approximate
solution for a uniformly distributed load acting over a circular region of
radius a, assuming a Gaussian distribution of velocity at all time, was
obtained by Lepik (ref. 10).

The present paper presents the analytical results for the small deflection
bending response of a simply supported circular plate of rigid viscoplastic
material. The plate is subjected to a spatially axisymmetric Gaussian distri-
bution of pressure having a rectangular pulse in time. (The corresponding solu-
tion for a Gaussian ideal impulse loading is presented in ref. 9.) The effects
of load concentration, of an order of magnitude change in the viscosity of the
plate material, and of load duration are examined while holding the total impulse
constant. Approximate expressions are developed for the time at which plate
motion ceases, for the final shape of the plate, and for the final central
displacement.

Part of the information presented in this report was included in a thesis
entitled "Gaussian Impulsive Loading of Rigid Viscoplastic Plates"™ submitted by
Robert J. Hayduk in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy in Engineering Mechanics, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia, August 1972.

SYMBOLS
Ap series coefficients, equation (A6)
C1,Co constants defined by equations (A5)
F nondimensional load amplitude, !32253
f yield function
h plate half-thickness
Jp(x),Ip(x) Bessel function of first kind of real and imaginary arguments,
respectively
Jé second invariant of deviatoric stress tensor
kr,ﬁ¢ radial and circumferential curvature rates



~ s

Mp, My
Fip

tr
U(p)
u(pyt)

v

yield stress in simple shear

yield moment of plate, ooh2

radial and circumferential bending-moment resultants

radial and circumferential bending-moment resultants at initial yield
nondimensional radial bending-moment resultant, M,./M,
nondimensional circumferential bending-moment resultant, M¢/Mo

. . : PR 1 -8
total nondimensional load-carrying capacity, ‘JQ__(__:_E__>

o B
pressure amplitude at plate center
nondimensional pressure amplitude at plate center, poRz/Mo
shear stress resultant
nondimensional shear stress resultant, RQ/M,
plate radius
radial coordinate
deviator stress tensor
deviator stress tensor at initial yield
time
time for motion to cease
steady component.of velocity
dynamic component of velocity

nondimensional plate velocity, EBE QH
aM, 9t

transverse deflection of plate
transverse coordinate

plate geometry and material constant, _igEgﬂl, sec
0

nondimensional Gaussian shape parameter

material constant, Y©/2k



Yo material constant

€5j strain rate tensor

An eigenvalues determined from equation (A7)
M mass density per unit area of plate -

P nondimensional radial coordinate, r/R

0 j stress tensor

0o yield stress in simple tension

T load duration, sec

o(f) function defined by equations (3)

¢ circumferential coordinate

¢(A,,B) function defined by equation (413)
Y(A,,0,8) function defined by equation (A12)

VZ,Vu harmonic and biharmonic operators in cylindrical coordinates

LINEARIZATION OF THE GENERALIZED CONSTITUTIVE EQUATIONS
FOR RIGID VISCOPLASTIC MATERIALS

A generalized constitutive equation for rigid viscoplastic materials is pre-
sented in this section. Material elasticity is neglected in order to simplify
the analysis as is frequently done in theoretical investigations of dynamic plas-
tic response of structures. Such an assumption is generally believed to be
valid when the dynamic energy is considerably larger than the maximum energy
which could be absorbed in a wholly elastic manner and the duration of loading
is short compared with the fundamental period of vibration.

Perzyna (ref. 11) developed a constitutive equation for rate-sensitive plas-
tic materials by generalizing the constitutive relationships used by previous
researchers (Hohenemser and Prager in ref. 12; and Prager in ref. 13). The gen-
eralized constitutive equation proposed by Perzyna is

g:: = yO &(f) _Of 1
15 = Y0 2(f) 56;3 (1)

where éij is the strain rate tensor and

'1/2
f=J2 -1 (2)
k




The second invariant of the deviatoric stress tensor is t
]
Jo = % Sijsij

where

Sij = 015 - % 1 kK

The function in the generalized constitutive equation (eq. (1)) is defined as

3(f) = 0 (f0) :
(3)
&(f) # 0 (f > 0)

Also, k 1is the yield stress in simple shear and +y° denotes a physical con-
stant of the material.

Perzyna (ref. 14) has shown that the generalized constitutive equation for
viscoplastic materials reduces to the constitutive equations of an incompressi-
ble, perfectly plastic material first considered by von Mises and to the flow
law of perfect plasticity theory. As in the theory of perfectly plastic solids,
convexity of the subsequent dynamic loading surfaces and orthogonality of the
inelastic strain-rate vector to the yield surface follow from Drucker's postu-
lates defining a stable inelastic material with inclusion of time-dependent
terms (ref. 11).

A method of linearizing boundary-value problems in the theory of visco-
plastic solids is described by Wiezbicki in reference 15. In this method, as
shown graphically in figure 1, the concept of proportional loading is used to
relate the state of stress S;3; in the subsequent stress state to the state
of stress §;; on the initial yield surface f = 0. For proportional loading
the direction cosine tensor of the state of stress in deviatoric space is inde-
pendent of time. The proportional loading that satisfies equation (2) is given
by
Jé1/2

k

Sij = Si j (4)

This equation is a reasonable approximation for axisymmetrically loaded, simply
supported circular plates because the plate center and boundary are automati-
cally proportionally loaded; that is, the bending moments must always be equal
at the plate center and the radial bending moment must always be zero at the
plate boundary.

When equation (U4) is utilized, the generalized constitutive equation
(eq. (1)) becomes :

éij = % &(f) Sij . _ (5)



where the viscosity constahﬁ Y equals Y°/2k and f = Sij ~ 1. The ratio

= i
Sij/sij may be expressed in terms of any one of the deviatoric stress compo-
nents. The simplified constitutive equation (eq. (5)) still is nonlinear in
stresses. However, for this analysis, the linear form

®(f) = f ' - (6)

is chosen to produce full linearization of the constitutive equation (eq. (5))
as follows: o

€15 = X(515 - 815 | (7)

It should be noted that equation (7) is really a flow relation for a given struc-
ture rather than a constitutive equation describing a given material (ref. 16).

For the problem of a uniformly loaded, simply supported circular plate with
&(f) o f, Wierzbicki (ref. 15) has shown that the approximate solution, obtained
with the proportional loading hypothesis, agrees very well with a numerical
finite~difference solution without the proportional loading approximation. The
solution of the linearized problem also agrees well with experimental data on
impulsively loaded plates obtained by Florence (ref. 17).

GOVERNING EQUATIONS AND BOUNDARY AND INITIAL CONDITIONS

A Gaussian transverse load, described by
p(r) = poe'Brz/Rz : (8)

is suddenly applied to the entire surface of a rigid viscoplastic plate of
radius R and thickness 2h, where B 1is a nondimensional load shape parame-
ter. The boundary of the plate at r = R is simply supported. After being
applied steadily during the time interval O § t § T, the load is suddenly
removed. The geometry of the plate and loading are shown in figure 2. For

B = 0, equation (8) describes a uniform load; as B approaches <« and p,
approaches ¢, equation (8) describes a point load at the plate center.

In the derivation that follows, the equations apply to the loading phase
0 i t i T. To obtain the equations for the postload phase t > T, the
applied load terms must be omitted. The internal forces and moments acting on
a typical plate element are shown in figure 3. If rotary inertia is neglected
but transverse inertia is taken into account, the equations of motion are

ﬁ_(rQ) + r‘poe‘Br'2/R2 = ur QEE
ar' 3t2
(9)

g;h*Mp) - My = rQ



With the usual assumptions of small deflection plate theory - that is,
plane sections remain plane, strains vary linearly through the thickness, and
strains are linearly related to the curvature - the curvature~rate-—moment rela-
tions, derived from the linearized constitutive equation (eq. (7)), are

i By [cem, - M) - (2Mp - Fy)]

r = 2hM,
(10)
co = W3Y oM, - M - (2fy - Fp)]
The moments M, and Hb satisfy, for any value of r, the equation of the
initial yield surface,
M2 - MMy + MG = M3 | (11)

where M, = 00h2 is the yield moment of the plate material and o, = \/3k is
the yield stress in simple tension.

For small deflections of the plate, the curvature rates kr and k¢ are
related to the deflection rate w by

. 32w
Kp = -2
1 3w (12)
* W
K = 7 ar

Equations (9), (10), and (12) form a linear parabolic system of partial differ-
ential equations with six unknown functions - M,, ’ _ Q, w, K, and K¢ -

plus the unknown static moment distributions M, and M-

By eliminating all unknowns except w, the system of governing equations
can be reduced to the single, fourth-order equation:

UMoh oy -Br2/R2 : - =
9" VHy - p,e-Pr</R a_‘izla__ra_(M)_
3vV3y Po tH 3t r 3r|dr r "o (13)

where

Vu= _32_+l§_ £+_1_3_
ar.z r ar 31"2 r Jr

The right-hand side of equation (13) represents the internal force distribution
in the plate at the initiation of collapse for the static case.

Let pd denote the amplitude of the statiec load-carrying capacity of the

plate, then the right-hand side of equation (13) can be replaced by -pée'Brz/R2
and the governing equation becomes |




UMh oy, v -Br2/R2
—2- V% + u &¥ = (p, - pdle~Pr (14)
3\BY ot = % °

This method of solution, proposed by Wierzbicki (ref. 15), has the impor-
tant property of replacing the unknown static moment distributions Er and ﬁ¢,
whose explicit formulas are not known for the von Mises yield condition, by the

load distribution at initiation of static collapse, that is, pge~Br2/R2. Thus,
the need for explicit formulas has been reduced to finding the value of a con-
stant pd corresponding to a particular value of the shape parameter B. The
determination of the load-carrying capacity of a circular plate under a Gaussian
distribution of pressure is presented in reference 18. For completeness the
variation of p4 and total nondimensional load-carrying capacity,

P' = p6R2 (1 - e-B>
™o Mo 8

obtained by integrating the pressure distribution over the plate, are shown as
functions of B in figure 4.

Define the nondimensional quantities as

m=Mr n =% q = I p==r
(15)
v = .EE w F = V3poR? F' = V3pgR?
aM, 3t M, M,
and let V2 = 235 + 1 §_; then the final form of the governing equation (eq. (14))
ap P ap
is
viy + % a E% = 2\3(F - F')e-BP2 (16)
where
2hM,

The boundary conditions of the simply supported plate are

m=n and qa 0 (p = 0)

(17
v=m=20 p = 1)

By using equations (10), (12), and (9), equations (17), in terms of rate
of deflection, become

1im<§§z -

&) -0 (18a)
0+0

1



&
“.!

1im(33v , 192v _1_3v) .o (18b)
p>0 3p3 P 3p2 p2 ap

29 ,13v] .o | (18¢)
302 P ap p=1 »
v(1,£) = 0 : | N (18d)

For the Gaussian step-pressure loading, the plate is initially flat and at rest;
that is, :

w(p,0) = 0 v(p,0) =0 (19)

RESULTS AND DISCUSSION

The solution to the governing equation (eq. (16)) with associated boundary
and initial conditions (eqs. (18) and (19)) is presented in the appendix. Effects
of load distribution and plate viscosity on plate response are examined while
holding the load duration T and the total impulse It = WRZTPOB‘1(1 - e-B)
constant. The constants used in the graphical presentations were chosen to
be consistent with results of reference 15; that is, T = 0.1 msec and

(50)8_0 = v @ 10. Values of & of 1x 10=3 and 1 x 10~2 sec are

o]
used to show effects of plate material viscosity. Effects of load distribution
are given by the parameter PB. The required variation of p, with B in

order to maintain constant total impulse is given by the parameter

F = V3(p _ B 20
B0 —— (20)

The values of F determined from equation (20) and used in the computations are

e -
B “; ] 4.33013
10-3 4.33229
1 6.85016
10 43.3032
100 433.013
10 000 43 301.3




The load becomes more concentrated at the center of the plate as B is increased
and the amplitude increases almost linearly as 8 becomes large. The graphical
results were obtained by programing the modal solution as given in the appendix
(eqs. (A14), (A15), (A17), and (A18)).

In figure 5, the time histories of the plate central velocity for B rang-
ing from 10-3 to 10 000 are shown collectively for the two values of the parame-
ter oa. The effect of varying the shape of the load from a uniform one to essen-
tially a point load is seen immediately. The peak velocity, which occurs at
the instant of load removal, is increased tremendously - a factor of approxi-
mately 6 for a = 1 x 10-3 sec and 10 for @ = 1 x 10~2 sec. The time for the
central velocity to become zero also increased with B, this effect being more
pronounced for a = 1 x 10~2 sec.

The results of figure 5 indicate smaller values of nondimensional velocity
for o = 1 x 1072 sec. However, the nondimensional velocity v(0,t) plotted
is the actual velocity dw/dt divided by the constant aMo/uRZ. Thus, although
the nondimensional value of velocity decreases with an increase in a, the
actual velocity increases. For example, for B = 10 000 and t o T, the curves
of figures 5(a) and 5(b) show that

[v(o,T)] _ -2
a=1x1077 _ 4,291
[v(0, 0], 1x10-3
which corresponds to
[g_m,r)]
t a=1x10~2
= 2.91

[&H(O,T)]
ot a=1x10-3

Thus, the less viscous plate (the one with the higher value of o and, conse-
quently, the higher value of 7vYy) attains higher velocities, has larger displace-
ments, and acquires more energy from the applied load which requires longer times
to dissipate than the more viscous plate.

The profiles of the plate are shown in figure 6 for both values of @ and
various values of B. As the load becomes more concentrated the profile becomes
more conical, as one would expect. Figure 6(b) indicates that the profiles of
the less viscous plate are influenced more by the shape parameter B8 than are
those for o = 1 x 10-3 sec.

An approximation of the deflection of the plate is obtained from equa-

tion (A18) by retaining only the first term of the series and by using the
approximation

10
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Gy + Cop? + T o807 o (14 97) D (D" | 168 1 (A1,0,8)
1 + Cpp= + % e + (B P &~ (2n)n! 3 A? vO.e

which is obtained from equation (A14) with v(p,0) = 0. The result for
T < t<te is

u = V3 |Cq + Cop2 + 1 eBP2 4 (1 (-1)n(gp2)"
w2, w(p t) Yag 1 + Cop% + 5 e + (B +p )E ____(2__Qn>n'_ )

4
x (F't - Fr - _3%[(5' - F')e-(2>‘1/3a)t

23

I
Fe-(2l1/30.)(t—‘r) + F'] (21)

An approximate expression for the time for motion to cease can be obtained by
setting the derivative of the approximate displacement expression to zero, that

is, Ml -9, is
ot te
(2>\u/3a)-r
tpm X 1n {1+ F_le‘°M1 -1 (22)
£ n -
2A F

Equation (22), plotted in figure 7 for 0 <8 < 100 and the two values of o,
is an implicit function of B since F and F' vary with B. The effect of
B, as shown in figure 7, diminighes after an initial rapid rise of tg¢ with
increasing f. The symbols represent computed times using the complete equation
for the velocity (eq. (A17)). Equation (22) is a very good approximation for
a=1x 10-3 sec; however, except for small values of B, the approximation is
poor for o = 1 x 10~2 sec.

The substitution of equation (22) for tf into equation (21) provides an
approximate expression for the final plate displacements

uR2 tp) = V3 |Gy o+ Cop2 + 1 e=B02 4 (1 (-1)n(p2)"
QZMOW(D £) = g5 C1 v Oap% v g e x (g v o HZ: (2r)n!
(273 /3a) )
xF'3_a_1n1+1;_'e 1/30)T _ q)| _ Fg (23)

I
2X1
and an'approximate expression for the final center displacement
2 ( (271/30)T ) :
BRZ  w(0,tp) = V3 C1+1_>F'§9L_ln1+F_e 1 - 1| - Fr (24)
alM, 8o 28 2x! F'

11



Equation (24) is plotted as a function of B for the two values of @ in fig-
ure 8. The approximations are in excellent agreement with the points computed
from the exact equations for both a = 1 x 10-3 sec and 1 x 10~ sec, although
the ty approximations for the larger value of O were poor for large values
of B as shown in figure 7. Again, the nondimensional central displacements
are shown smaller for @ = 1 x 10-2 sec whereas the actual displacements are
larger than for a =1 x 10-3 sec.

Although not shown, profiles obtained from the approximation (eq. (23))
were compared with profiles obtained from the exact equation (eq. (A18)). For
@ =1x 10-3 sec, the differences between the approximate and exact profiles
were negligibly small for the entire range of B considered, 10-3 to 10 000.
However, for the less viscous plates, a = 1 x 10~-2 sec, the differences were
not negligible and the approximation (eq. (23)) should therefore be restricted
accordingly.

The effect of load duration on the final center displacement is shown in
figure 9. Total impulse was held constant as before. For these results the
approximate expression (eq. (24)) was used with o = 1 x 10-3 sec and B = 10.
The point T = 0 represents the ideal impulse and was calculated by using the
corresponding approximate center displacement equation of reference 9. As seen
in the figure, the center displacement monotonically decreases as the pulse dura-
tion lengthens. The maximum center displacement occurs for the ideal impulse.
The final center displacement becomes zero at T = 3.32 x 10-4 sec, the impulse
duration at which the applied load becomes equal to the collapse load of the
plate. For impulses beyond that duration, the plate remains rigid.

CONCLUDING REMARKS

A thin, simply supported, rigid, viscoplastic plate subjected to a Gaussian
step-pressure impulse loading has been analyzed within the realm of small deflec-
tion bending theory. The plate material obeys the von Mises yield criteria and
a generalized constitutive equation. These considerations lead, essentially, to
nonlinear equations governing the dynamic response of the thin plate. A propor-
tional loading hypothesis, known to give excellent approximations of the exact
solution for the uniform load case, was used to linearize the problem and obtain
analytical solutions in the form of eigenvalue expansions. The linearized gov-
erning equation on the velocity of the plate required the knowledge of the col-
lapse load of the corresponding static problem, that is, the collapse load for
the specific load distribution parameter 8.

The effects of load concentration, an order of magnitude change in the
viscosity of the plate material, and load duration were examined while holding
the total impulse constant. In general, as the load became more concentrated,
both the peak central velocity and the time for plate motion to cease increased.
For the less viscous plate material, these increases of velocity and time for
plate motion to cease were more pronounced. The final plate profile became more
conical as the load concentration increased but did not approach the purely coni-
cal shape predicted by the rigid, perfectly plastic analysis with the Tresca
yield condition for an ideal point impulse. As the viscosity of the plate

12



decreases, the shape parameter has more effect on the final deformed plate
profiles.

Approximate expressions were developed for the time at which plate motion
ceases, the final shape of the plate, and the final central displacement. Com-
parisons with the exact series solution indicated that all approximations were
excellent for a plate property constant a of 1 x 10-3 sec throughout the range
of shape parameter f. For a = 1 x 10-2 sec, the approximation for the final
central deflection was good for the entire range of £, but the other approxima-
tions were limited in usefulness.

Comparisons between the results of the step-pressure loading and the ideal
impulse loading indicate that the viscoplastic plate subjected to a certain
total impulse achieves a larger peak velocity and, consequently, kinetic energy
if the impulse is delivered instantaneously - that is, as an ideal impulse -
rather than over a finite length of time. Consequently, the viscoplastic plate
" subjected to the ideal impulse requires a longer time after load removal to dis-
sipate its higher energy and experiences larger permanent deflections than the
plate subjected to the step-pressure loading of the same total impulse.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

February 8, 1978
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APPENDIX

SOLUTION OF GOVERNING EQUATION BY EIGENVALUE EXPANSION

The governing equation (eq. (16)) can be solved by means of an eigen expan-
sion method since the right-hand side of the equation is not a functlon of time.
Equatlon (16) is repeated here for convenlence

Vdy + 3 0 3V = 23(F - F')e-BP?
U T E ®

Substitution of
vip,t) = ulp,t) + U(p) (A1)
into equation (16) results in

Vu(p,t) + g o éﬁ%%iil + V4U(p) = 23(F - F')e-BP?

which separates into

vV + 3 =0 (A2)

njw
2l

and

v4y = 2J3(F - F')e-BP? (A3)

Equation (A3) is the same as equation (16) except for the absence of the inertia
term. Thus, U(p) is an equilibrium solution of equation (16) with the same
boundary conditions (eqs. (18)), as follows:

U(p) = -V3(F - F1){Cq + Cop2 + 1 eBPZ 4 (1 4 p2 (=nm(8p2)" A4
P = g (C1 + Cap® + g &% (g + 05 < “(2m! LA

where
Ci =1 T .2 B8_1 (=1)mgm
1 6 6 38 © B ; (2m)m!
(A5)
Co = -1 4+ T _1 B (-1)mgm
2 g 8 ", ° :g; (zm)m!

A general solution due to Wierzbicki (ref. 15) satisfying equation (A2) and
all prescribed boundary conditions can be written in the form

14



APPENDIX

up,t) = D AfToOn) Jo0ind) = JoOhp) TgQne e PA/3W)E (26)
n=1

where Jg(x) and Ig(x) denote the Bessel functions of the first kind of real
and imaginary arguments. The solution (eq. (A6)) identically satisfies the
boundary conditions (eqs. (18a), (18b), and (18d)). The eigenvalues XA, are
roots of the following transcendental equation stemming from the boundary con-
dition (eq. (18c)) of zero bending moment at the plate edge: :

Io(Ap) J1(Ap) + I1(Ap) Jo(Ap) - ¥ap Io(hp) JolAp) = O (AT)
The only remaining unknowns in the solution are the series coefficients

A,. These coefficients are evaluated from the initial condition (egs. (19)),
that 1is,

v(p,0) = ulp,0) + U(p) =

Thus,
u(p,0) = =U(p) (A8)

and substituting equation (A6) for u(p,0) gives the following equation:

D hafTo0n) J0m0) = JoOhn) Toig)] = -U(p) (49)

n=1

The coefficients A, can be determined from equation (A9) by_virtue of the
orthogonality of the system [IQ(Xn) Jo(App) = Jo(Ap) Io(knp)] on the interval
[b,1] where p 1is used as a weighting function. Therefore, coefficients Ap
can be determined as

1
f pU(p)[Io()\n) Jo(Ape) - Jo(Ap) Io(lnp)] dp
0
Ay = - - , (810)

]
J p[To(An) Jo(Ape) = Jo(An) Io(App)]? dp
0

where U(p) is defined by equation (A4). The resulting coefficients are

An[To(An) Jo(App) = Jo(An) Io(App)] = -g(F F' )1 V(Ap,0,8) (A11)
n

with the functions Y(Ap,p,R) deflned by the relation

168 V(Ap,p,B) = ¢(xn,s)[xo(xn> Jounp) - Jo(Ap) Io(xnp)] (A12)
M3

15



APPENDIX

where
¢(\n,B) = N_
Io(n) Jo(An){2An[Io(n) J1(kpn) - I1(kg) Jo(An)] - 3Ig(Ap) Jo(An)}
(A13)
and

N = C1 Io(Ap) J1(Ap) - Cq Jo(Ap) I1(Ap) + Co g 1o J1(0p)
An An An

-3 300 + 2 JoOp) | - G2 JoOp)| L I1(Ap) -2 Ighy) + A I1(00p)
A3 A2 An - - AR A

SWw

n n

1 1
+ —6 Io(Ap) f xe—Bx2 Jo(Apx) dx - _B Jo(Ap) f xe-Bx2 Io(Apx) dx
0 0

) 1
+1<x)fx_+x2 [(1)m(3x2)JJ()\x)dx-J(k)f 1
0\An A ( )mz C2m)m! 0\An O\An ! X(B

2\ $° |(-nm(BEx3)
+ X > :E: { (2m)mf ]Io(knx) dx

m=1

Phase 1: 0 <t <t

When equations (A4) and (A6) are summed and equation (A11) is used, the
velocity during loading, phase 1 (0 < t < T), becomes
&

£) = = V3(F = F')[Cq + Cop2 + 1 eBP2 4 (1 4 2 (-1)1(Bp2)"
v(p,t) uB( ){ 1 + Cop“ + > e + (B +p > Sl A > >

v (2n)n!

= (U
+ lgﬁ z ;1_5kb(7\n,p Be (Zk“/h)% (A1h)
n=1 Xn j

The displacement of the plate is determined by integrating equation (A14)
with respect to time. Taking the initial condition of zero displacement
(egs. (19)) into account, the displacement becomes

16
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MR u(5,8) = <VB (F - F1)|Cq + Cop2 + 1 eB0Z 4 (14 2 (-1)m(Bp2)™ |
oo 1Ba U T s+°>; (zmn!
= (ol
- 8 ) ,_15 w(xn,o,s)(e (2n/30t 1) (a15)
n=1 An

Phase 2: T < t < tr

After the load is removed from the plate at time T, phase 2 (T < t < t¢),
the governing differential equation becomes

vy + % a g_v = —2\3F'e-Bp? | (A16)

Utilizing the same eigenvalue expansion techniques as before with continuity of
velocity from phase 1 to phase 2 produces the plate velocity during phase 2
motion as follows:

(0 t) = V3 F1[Cy + Cpp2 + L eBP2 4 (1 4 2 CIPLIGI
vie 18 [1+2° B +(e+p>; (2n)n!
= 4 —(2)4 -
31 VOsps8) L(F = Frye- (/30T o= (2A/3) (4-1) (A17)
V3 n=1 Xg

Integration of equation (A17) with respect to time with continuity of dis-
placement to determine the arbitrary function of integration produces the dis-
placement of the plate during phase 2 motion as follows:

WR2 £) = V3 (Frt - Fr)[Cq + Cop2 + 1 o802 4 (1 4 p2) §° (-1)B(Bp2)"
aZMOW(p ) = e )| C1 + C2p% + 25 e0% 4 (2 4 p 2_‘1 G

(=]
- 4 - L -
+ 23 E 1 xp(xn,p,B)[(F - prye~ (03t | pom(@n/30) (b-t) F']
n=1 kg
(A18)
Equations (A14), (A15), (A17), and (A18) represent the complete solution
for the velocity and displacement of the plate. In the limit as B approaches

0, the Gaussian distribution becomes the uniform distribution of load and this
solution reduces to the solution presented by Wierzbicki (ref. 15).
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Figure 2.- Simply supported circular plate with Gaussian distribution
of pressure applied during time interval T.
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Figure 3.- Element of circular plate with applied forces and moments.
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Figure 4.- Nondimensional coilapse load amplitude and total load-carrying
capacity as functions of load distribution parameter 8.
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Figure 5.- Time history of plate central velocity for various values
of shape parameter 8.
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Figure 6.~ Final plate profiles for various values of shape parameter 8.
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Figure 7.- Comparison of approximate expression (eq. (22)) for time for
motion to cease ¢ty and points determined from complete equations for
step-pressure loading.
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Figure 8.- Comparison of approximate expression (eq. (24)) for final central
deflection and points determined from complete equations for step-pressure

loading.
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