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Abstract. We determine extremal entire functions for the problem of ma-

jorizing, minorizing, and approximating the Gaussian function e−πλx
2

by en-

tire functions of exponential type. The combination of the Gaussian and a

general distribution approach provides the solution of the extremal problem
for a wide class of even functions that includes most of the previously known

examples (for instance [3], [4], [10] and [17]), plus a variety of new interesting

functions such as |x|α for −1 < α; log
`
(x2 + α2)/(x2 + β2)

´
, for 0 ≤ α < β;

log
`
x2+α2

´
; and x2n log x2 , for n ∈ N. Further applications to number theory

include optimal approximations of theta functions by trigonometric polynomi-
als and optimal bounds for certain Hilbert-type inequalities related to the

discrete Hardy-Littlewood-Sobolev inequality in dimension one.

Introduction

We recall that an entire function F : C → C is of exponential type at most 2πδ
if for every ε > 0 there exists a positive constant C, such that the inequality

|F (z)| ≤ Ce(2πδ+ε)|z|

holds for all z ∈ C. For a given function f : R→ R, the Beurling-Selberg extremal
problem consists of finding an entire function F (z) of exponential type at most 2πδ,
such that the integral ∫ ∞

−∞
|F (x)− f(x)|dx (0.1)

is minimized. An important variant of this problem, useful in many applications
to number theory and analysis, occurs when we impose the additional condition
that F (z) is real valued on R and satisfies F (x) ≥ f(x) for all x ∈ R. In this case
a function F (z) that minimizes the integral (0.1) is called an extreme majorant of
f(x). Extreme minorants are defined in an analogous manner.

This extremal problem was solved in unpublished work of A. Beurling in the
late 1930’s for the function f(x) = sgn(x). Later A. Selberg used translates of
Beurling’s extremal function to majorize and minorize the characteristic function
of an interval. Selberg made use of this construction to obtain a sharp form of the
large sieve inequality. Further applications in analytic number theory are discussed
in [23] and [24]. An outline of the early development of this theory, including simple
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proofs of the Erdös-Turán inequality and the Montgomery-Vaughan inequality (see
[20]) is presented in [30].

General solutions to the Beurling-Selberg extremal problem for different classes
of functions have been identified in several recent papers, and these have included
new number theoretical applications. A key ingredient in most applications is
the close connection between entire functions of exponential type and functions
with compactly supported Fourier transform via the Paley-Wiener theorem. The
extremal problem for the exponential function f(x) = e−λ|x|, λ > 0, is discussed by
Graham and Vaaler in [10], with applications to Tauberian theorems. The problem
for f(x) = xn sgn(x) and f(x) = (x+)n, where n is a positive integer, is considered
by Littmann in [16], [17] and [18]. In [3] and [4], Carneiro and Vaaler extended the
construction of extremal approximations for a class of even functions that includes
f(x) = log |x|, f(x) = log

(
x2/(x2 + 4)

)
and f(x) = |x|α, with −1 < α < 1.

Recently, Chandee and Soundararajan in [5] used the extremal functions for
f(x) = log

(
x2/(x2 + 4)

)
to obtain improved upper bounds for |ζ( 1

2 + it)| assuming
the Riemann Hypothesis (RH). They remarked that the extremals for the function
f(x) = log

(
(x2 + α2)/(x2 + 4)

)
, for α 6= 0, not contemplated in the previous

literature, naturally arise in bounding |ζ( 1
2 ±α+ it)|, assuming RH. We will return

to this example later in this paper, since the family of functions f(x) = log
(
(x2 +

α2)/(x2 + β2)
)
, for 0 ≤ α < β, is contemplated by the methods we are about to

present.
Other problems on approximation by entire functions and trigonometric polyno-

mials have been investigated by Carneiro [2], Ganelius [8], Ganzburg and Lubinsky
[9], Graham and Vaaler [11], Montgomery [19] and Vaaler [31]. Related extremal
problems in several variables are considered by Barton, Montgomery and Vaaler
[1], Holt and Vaaler [13] and Li and Vaaler[15].

This paper is divided into three parts. In the first part we consider the problem
of majorizing, minorizing, and approximating the Gaussian function

x 7→ Gλ(x) = e−πλx
2

(0.2)

on R by entire functions of exponential type. Here λ > 0 is a parameter. We make
use of classical interpolation techniques and integral representations to achieve this
goal.

The second part is independent of the first and presents a new approach to
the Beurling-Selberg extremal problem based on distribution theory. The main
ingredient here is the Paley-Wiener theorem for distributions. Our method provides
the solution of the extremal problem for a wide class of even functions once one
knows the classical solution for a family of even functions with an independent
parameter. In the present work this family of even function is given by (0.2) for
λ > 0.

Various applications are presented in the third part of the paper. Most of the
previously known cases become corollaries of this method (for instance, the results
in [3], [4], [10] and [17]), and we obtain the solution to the extremal problems for
new interesting functions such as |x|α for −1 < α; log

(
(x2 + α2)/(x2 + β2)

)
, for

0 ≤ α < β; log
(
x2 + α2

)
; and |x|2n log |x| , for n ∈ N. Some of the extremal

L1(R)-approximations (without the one-sided condition) have previously been ob-
tained by Sz.- Nagy (cf. [27, Chapter 7]). Further applications to number theory
include optimal approximations of theta functions by trigonometric polynomials
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and optimal bounds for certain Hilbert-type inequalities related to the discrete
Hardy-Littlewood-Sobolev inequality in dimension one.

Part I: The Gaussian

1. The Extremal Problem for the Gaussian

For each positive value of λ we define three entire functions of the complex
variable z as follows:

Kλ(z) =
(cosπz

π

){ ∞∑
n=−∞

(−1)n+1 Gλ
(
n+ 1

2

)(
z − n− 1

2

)}, (1.1)

Lλ(z) =
(cosπz

π

)2
{ ∞∑
m=−∞

Gλ
(
m+ 1

2

)(
z −m− 1

2

)2 +
∞∑

n=−∞

G′λ
(
n+ 1

2

)(
z − n− 1

2

)}, (1.2)

Mλ(z) =
( sinπz

π

)2
{ ∞∑
m=−∞

Gλ(m)
(z −m)2

+
∞∑

n=−∞

G′λ(n)
(z − n)

}
. (1.3)

The function Kλ(z) is an entire function of exponential type π which interpo-
lates the values of the function Gλ(z) at points of the coset Z + 1

2 . We will show
that among all entire functions of exponential type at most π, the function Kλ(z)
provides the best approximation to Gλ(z) with respect to the L1-norm on R.

The function Lλ(z) is a real entire function of exponential type 2π which inter-
polates both the values of Gλ(z) and the values of its derivative G′λ(z) on the coset
Z+ 1

2 . Similarly, the function Mλ(z) is a real entire function of exponential type 2π
which interpolates both the values of Gλ(z) and the values of its derivative G′λ(z)
on the integers Z. By a real entire function we understand an entire function whose
restriction to R is real valued. We will show that these functions satisfy the basic
inequality

Lλ(x) ≤ Gλ(x) ≤Mλ(x) (1.4)
for all real x. Moreover, we will show that the value of each of the two integrals∫ ∞

−∞

{
Gλ(x)− Lλ(x)

}
dx and

∫ ∞
−∞

{
Mλ(x)−Gλ(x)

}
dx,

is minimized.
In order to state a more precise form of our main results for the Gaussian func-

tion, we make use of the basic theta functions. Here v is a complex variable, τ is a
complex variable with ={τ} > 0, q = eπiτ , and e(z) = e2πiz. Our notation for the
theta functions follows that of Chandrasekharan [6]. Thus we define

θ1(v, τ) =
∞∑

n=−∞
q(n+ 1

2 )2e
(
(n+ 1

2 )v
)
, (1.5)

θ2(v, τ) =
∞∑

n=−∞
(−1)nqn

2
e(nv), (1.6)

θ3(v, τ) =
∞∑

n=−∞
qn

2
e(nv). (1.7)

We note that for a fixed value of τ with ={τ} > 0, each of the functions v 7→ θ1(v, τ),
v 7→ θ2(v, τ), and v 7→ θ3(v, τ) is an even entire function of v. The function
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v 7→ θ1(v, τ) is periodic with period 2, and satisfies the identity

θ1(v + 1, τ) = −θ1(v, τ) (1.8)

for all complex v. Both of the functions v 7→ θ2(v, τ), and v 7→ θ3(v, τ), are periodic
with period 1. They are related by the identity

θ2(v + 1
2 , τ) = θ3(v, τ). (1.9)

The transformation formulas for the theta functions (see [6, Chapter V, Theorem 9,
Corollary 1]) provide a connection with the Gaussian function Gλ(z). In particular
we have

∞∑
n=−∞

(−1)nGλ(n− v) = λ−
1
2 θ1
(
v, iλ−1

)
, (1.10)

∞∑
n=−∞

Gλ(n+ 1
2 − v) = λ−

1
2 θ2
(
v, iλ−1

)
, (1.11)

∞∑
n=−∞

Gλ(n− v) = λ−
1
2 θ3
(
v, iλ−1

)
. (1.12)

Our first main result identifies the entire function Kλ(z) as the unique best
approximation to Gλ(z) on R among all entire functions of exponential type at
most π.

Theorem 1. Let F (z) be an entire function of exponential type at most π. Then

λ−
1
2

∫ 1
2

− 1
2

θ1
(
u, iλ−1

)
du ≤

∫ ∞
−∞

∣∣Gλ(x)− F (x)
∣∣ dx, (1.13)

and there is equality in (1.13) if and only if F (z) = Kλ(z).

Next we consider the problem of minorizing Gλ(z) on R by a real entire function
of exponential type at most 2π.

Theorem 2. Let F (z) be a real entire function of exponential type at most 2π such
that

F (x) ≤ Gλ(x)
for all real x. Then ∫ ∞

−∞
F (x) dx ≤ λ− 1

2 θ2
(
0, iλ−1

)
, (1.14)

and there is equality in (1.14) if and only if F (z) = Lλ(z).

Here is the analogous result for the problem of majorizing Gλ(z) on R by a real
entire function of exponential type at most 2π.

Theorem 3. Let F (z) be a real entire function of exponential type at most 2π such
that

Gλ(x) ≤ F (x)
for all real x. Then

λ−
1
2 θ3
(
0, iλ−1

)
≤
∫ ∞
−∞

F (x) dx, (1.15)

and there is equality in (1.15) if and only if F (z) = Mλ(z).
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It follows from Theorem 1 that for δ > 0, the entire function z 7→ Kλδ−2(δz) is
the unique best L1-approximation to Gλ(x) by an entire function of exponential
type πδ. In a similar manner, using Theorem 2 and Theorem 3, one can check
that the real entire functions z 7→ Lλδ−2(δz) and z 7→ Mλδ−2(δz) are the unique
extremal minorant and majorant, respectively, of exponential type 2πδ for the
function Gλ(x).

The entire function Kλ(z) has exponential type π, and the restriction x 7→ Kλ(x)
of this function to R is clearly integrable. It follows that the Fourier transform

K̂λ(t) =
∫ ∞
−∞

Kλ(x)e(−xt) dx

is a continuous function on R, and is supported on the compact interval [− 1
2 ,

1
2 ].

The entire functions Lλ(z) andMλ(z) have exponential type 2π, and the restrictions
of these functions to R are both integrable. Hence their Fourier transforms

L̂λ(t) =
∫ ∞
−∞

Lλ(x)e(−xt) dx, and M̂λ(t) =
∫ ∞
−∞

Mλ(x)e(−xt) dx,

are both continuous, and both Fourier transforms are supported on the compact
interval [−1, 1]. These Fourier transforms can be given explicitly in terms of the
theta functions.

Theorem 4. If − 1
2 ≤ t ≤

1
2 then the Fourier transform t 7→ K̂λ(t) is given by

K̂λ(t) = θ1(t, iλ). (1.16)

If −1 ≤ t ≤ 1 then the Fourier transforms t 7→ L̂λ(t) and t 7→ M̂λ(t) are given by

L̂λ(t) = (1− |t|)θ1(t, iλ)− (2π)−1λ sgn(t)
∂θ1
∂t

(t, iλ), (1.17)

and
M̂λ(t) = (1− |t|)θ3(t, iλ)− (2π)−1λ sgn(t)

∂θ3
∂t

(t, iλ). (1.18)

Theorem 4 plainly provides an alternative representation for each of the entire
functions Kλ(z), Lλ(z), and Mλ(z). Because t 7→ K̂λ(t) is continuous and has
compact support, the Fourier inversion formula and (1.16) imply that

Kλ(z) =
∫ ∞
−∞

K̂λ(t)e(zt) dt =
∫ 1

2

− 1
2

θ1(t, iλ)e(zt) dt

for all complex z. Analogous representations hold for the functions Lλ(z) and
Mλ(z) using (1.17) and (1.18).

The extremal entire functions that we have identified here can be used to de-
termine corresponding extremal trigonometric polynomials associated to the theta
functions. Let N be a non-negative integer. We define

kλ,N (x) = λ
1
2

∞∑
n=−∞

K(2N+2)−2λ

(
(2N + 2)(x+ n)

)
= λ

1
2 (2N + 2)−1

N∑
n=−N

K̂(2N+2)−2λ

( n

2N + 2

)
e(nx),

(1.19)

where the equality of these sums follows from the Poisson summation formula and
the fact that K̂(2N+2)−2λ(t) = 0 for 1

2 ≤ |t|. In particular, kλ,N (x) is a trigonometric
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polynomial of degree N defined on the quotient group R/Z. We will show that
this trigonometric polynomial is the best approximation to the the theta function
x 7→ θ3

(
x, iλ−1

)
in L1-norm on R/Z.

Theorem 5. Let p(x) be a trigonometric polynomial of degree at most N defined
on R/Z. Then∫ 1

2

− 1
2

θ1
(
u, iλ−1(2N + 2)2

)
du ≤

∫
R/Z

∣∣θ3(x, iλ−1
)
− p(x)

∣∣ dx, (1.20)

and there is equality in (1.20) if and only if p(x) = kλ,N (x).

In a similar manner, we define

lλ,N (x) = λ
1
2

∞∑
n=−∞

L(N+1)−2λ

(
(N + 1)(x+ n)

)
= λ

1
2 (N + 1)−1

N∑
n=−N

L̂(N+1)−2λ

( n

N + 1

)
e(nx),

(1.21)

and

mλ,N (x) = λ
1
2

∞∑
n=−∞

M(N+1)−2λ

(
(N + 1)(x+ n)

)
= λ

1
2 (N + 1)−1

N∑
n=−N

M̂(N+1)−2λ

( n

N + 1

)
e(nx).

(1.22)

Again the identities in (1.21) and (1.22) follow from the Poisson summation formula
and the fact that L̂(N+1)−2λ(t) = M̂(N+1)−2λ(t) = 0 for 1 ≤ |t|. Both of the
functions lλ,N (x) and mλ,N (x) are real valued trigonometric polynomials of degree
N defined on the quotient group R/Z. It follows from (1.4) and (1.12) that they
satisfy the inequality

lλ,N (x) ≤ θ3
(
x, iλ−1

)
≤ mλ,N (x) (1.23)

at each point x in R/Z. We will prove that these trigonometric polynomials are the
extreme minorant and majorant for the function x 7→ θ3

(
x, iλ−1

)
on R/Z.

Theorem 6. If q(x) is a real valued trigonometric polynomial of degree at most N
such that

q(x) ≤ θ3
(
x, iλ−1

)
(1.24)

at each point x in R/Z, then∫
R/Z

q(x) dx ≤ θ2
(
0, iλ−1(N + 1)2

)
. (1.25)

Moreover, there is equality in (1.25) if and only if q(x) = lλ,N (x). If r(x) is a real
valued trigonometric polynomial of degree at most N such that

θ3
(
x, iλ−1

)
≤ r(x) (1.26)

at each point x in R/Z, then

θ3
(
0, iλ−1(N + 1)2

)
≤
∫

R/Z
r(x) dx. (1.27)

Moreover, there is equality in (1.27) if and only if r(x) = mλ,N (x).
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2. Integral Representations

Lemma 7. Let z and w be distinct complex numbers. Then we have

Gλ(z)−Gλ(w)
z − w

= 2πλ
3
2

∫ 0

−∞

∫ 0

−∞
e−2πλtuGλ(z − t)Gλ(w − u) du dt

− 2πλ
3
2

∫ ∞
0

∫ ∞
0

e−2πλtuGλ(z − t)Gλ(w − u) du dt.
(2.1)

Proof. It suffices to prove the identity (2.1) for λ = 1, then the general case will
follow from an elementary change of variables. Therefore we simplify our notation
and write G(z) = G1(z). We note that G(z) satisfies the identity

G(z)−1 =
∫ ∞
−∞

e2πztG(t) dt (2.2)

for all complex numbers z, and the identity

G(z)G(w)e2πzw = G(z − w) (2.3)

for all pairs of complex numbers z and w. From (2.2) we get

G(z)−G(w)
z − w

= G(z)G(w)
{
G(w)−1 −G(z)−1

z − w

}
= G(z)G(w)(z − w)−1

∫ ∞
−∞

{
e2πwt − e2πzt

}
G(t) dt.

(2.4)

Then using Fubini’s theorem we find that

(z − w)−1

∫ ∞
−∞

{
e2πwt − e2πzt

}
G(t) dt

= 2π
∫ 0

−∞

{∫ 0

t

e2π(z−w)u du
}
e2πwtG(t) dt

− 2π
∫ ∞

0

{∫ t

0

e2π(z−w)u du
}
e2πwtG(t) dt

= 2π
∫ 0

−∞

{∫ u

−∞
e2πwtG(t) dt

}
e2π(z−w)u du

− 2π
∫ ∞

0

{∫ ∞
u

e2πwtG(t) dt
}
e2π(z−w)u du

= 2π
∫ 0

−∞

{∫ 0

−∞
e2πw(t+u)G(t+ u) dt

}
e2π(z−w)u du

− 2π
∫ ∞

0

{∫ ∞
0

e2πw(t+u)G(t+ u) dt
}
e2π(z−w)u du

= 2π
∫ 0

−∞

∫ 0

−∞
e2π(wt+zu)G(t+ u) dt du

− 2π
∫ ∞

0

∫ ∞
0

e2π(wt+zu)G(t+ u) dt du.

(2.5)
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Next we apply (2.3) twice and get

G(z)G(w)e2π(wt+zu)G(t+ u) = G(z)G(w)G(u)G(t)e−2πtu+2πwt+2πzu

= G(z − u)G(w − t)e−2πtu.
(2.6)

Then we combine (2.4), (2.5) and (2.6) to obtain the special case

G(z)−G(w)
z − w

= 2π
∫ 0

−∞

∫ 0

−∞
e−2πtuG(z − t)G(w − u) du dt

− 2π
∫ ∞

0

∫ ∞
0

e−2πtuG(z − t)G(w − u) du dt.
(2.7)

The more general identity (2.1) follows by replacing z with λ
1
2 z, by replacing w

with λ
1
2w, and by making a corresponding change of variables in each integral on

the right of (2.7). �

Lemma 8. Let z and w be distinct complex numbers. Then we have

Gλ(z)
(z − w)2

− Gλ(w)
(z − w)2

− G′λ(w)
z − w

= (2π)2λ
5
2

∫ 0

−∞

∫ 0

−∞
te−2πλtuGλ(z − t)

{
Gλ(w)−Gλ(w − u)

}
du dt

− (2π)2λ
5
2

∫ ∞
0

∫ ∞
0

te−2πλtuGλ(z − t)
{
Gλ(w)−Gλ(w − u)

}
du dt.

(2.8)

Proof. We differentiate both sides of (2.1) with respect to w and obtain the identity

Gλ(z)
(z − w)2

− Gλ(w)
(z − w)2

− G′λ(w)
z − w

= 2πλ
3
2

∫ 0

−∞

∫ 0

−∞
e−2πλtuGλ(z − t)G′λ(w − u) du dt

− 2πλ
3
2

∫ ∞
0

∫ ∞
0

e−2πλtuGλ(z − t)G′λ(w − u) du dt.

(2.9)

Using integration by parts we get∫ 0

−∞
e−2πλtuG′λ(w − u) du

= 2πλ
∫ 0

−∞
te−2πλtu

{
Gλ(w)−Gλ(w − u)

}
du,

(2.10)

and ∫ ∞
0

e−2πλtuG′λ(w − u) du

= 2πλ
∫ ∞

0

te−2πλtu
{
Gλ(w)−Gλ(w − u)

}
du.

(2.11)

The corollary follows now by combining (2.9), (2.10) and (2.11). �

In order to apply the identities (1.10), (1.11) and (1.12), we require simple esti-
mates for certain partial sums.
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Lemma 9. For all real u and positive integers N , we have
N∑

n=−N−1

(−1)nGλ(n+ 1
2 − u)�λ min{1, |u|}, (2.12)

N∑
n=−N−1

{
Gλ(n+ 1

2 )−Gλ(n+ 1
2 − u)

}
�λ min{1, |u|}, (2.13)

N∑
n=−N

{
Gλ(n)−Gλ(n− u)

}
�λ min{1, |u|}, (2.14)

where the constant implied by �λ depends on λ, but not on u or N .

Proof. For each positive integer N ,

u 7→ Sλ,N (u) =
N∑

n=−N−1

(−1)nGλ(n+ 1
2 − u)

is an odd function of u. Hence its derivative is an even function of u. Therefore we
get ∣∣Sλ,N (u)

∣∣ =
∣∣∣∣∫ u

0

S′λ,N (v) dv
∣∣∣∣

≤
∫ |u|

0

{ ∞∑
n=−∞

∣∣G′λ(n+ 1
2 − v)

∣∣} dv

≤ Cλ|u|,

where

Cλ = sup
v∈R

{ ∞∑
n=−∞

∣∣G′λ(n+ 1
2 − v)

∣∣}
is obviously finite. We also have∣∣Sλ,N (u)

∣∣ ≤ sup
v∈R

{ ∞∑
n=−∞

∣∣Gλ(n+ 1
2 − v)

∣∣} <∞,

and the bound (2.12) follows.
The proofs of (2.13) and (2.14) are very similar. �

We have noted that the entire function z 7→ Gλ(z) − Kλ(z) vanishes at each
point of the coset Z + 1

2 . It follows that

z 7→ π

cosπz

{
Gλ(z)−Kλ(z)

}
is an entire function.

Lemma 10. For all complex z we have
π

cosπz

{
Gλ(z)−Kλ(z)

}
= πλ

∫ ∞
−∞

Gλ(z − t)
coshπλt

∫ 1
2

− 1
2

cosh 2πλtu θ1
(
u, iλ−1

)
du dt.

(2.15)
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Proof. We use the partial fraction expansion

lim
N→∞

N∑
n=−N−1

(−1)n+1

z − n− 1
2

=
π

cosπz
, (2.16)

which converges uniformly on compact subsets of C\{Z+ 1
2}. Then it follows from

(1.1) and (2.16) that

π

cosπz

{
Gλ(z)−Kλ(z)

}
= lim
N→∞

N∑
n=−N−1

(−1)n+1

{
Gλ(z)−Gλ(n+ 1

2 )
z − n− 1

2

}
.

(2.17)

As the function on the left of (2.17) is entire and a compact subset of C intersects
Z+ 1

2 in finitely many points, we find that the limit on the right of (2.17) converges
uniformly on compact subsets of C.

For positive integers N and all real u let

Sλ,N (u) =
N∑

n=−N−1

(−1)nGλ(n+ 1
2 − u).

Then (1.10) implies that

lim
N→∞

Sλ,N (u) = λ−
1
2 θ1
(
u− 1

2 , iλ
−1
)
. (2.18)

We use the identity (2.1) with w = n + 1
2 and sum over integers n satisfying

−N − 1 ≤ n ≤ N . We find that

N∑
n=−N−1

(−1)n+1

{
Gλ(z)−Gλ(n+ 1

2 )
z − n− 1

2

}
= 2πλ

3
2

∫ ∞
0

∫ ∞
0

e−2πλtuGλ(z − t)Sλ,N (u) du dt

− 2πλ
3
2

∫ 0

−∞

∫ 0

−∞
e−2πλtuGλ(z − t)Sλ,N (u) du dt.

(2.19)

Next we let N → ∞ on both sides of (2.19). The limit on the left hand side is
determined by (2.17). On the right hand side we use (2.12) and the dominated
convergence theorem to move the limit inside the integral. Then we use (2.18). In
this way we arrive at the identity

π

cosπz

{
Gλ(z)−Kλ(z)

}
= 2πλ

∫ ∞
0

∫ ∞
0

e−2πλtuGλ(z − t)θ1
(
u− 1

2 , iλ
−1
)

du dt

− 2πλ
∫ 0

−∞

∫ 0

−∞
e−2πλtuGλ(z − t)θ1

(
u− 1

2 , iλ
−1
)

du dt.

(2.20)
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If 0 < t then, using (1.8) and the fact that u 7→ θ1
(
u, iλ−1

)
is an even function,

we get∫ ∞
0

e−2πλtuθ1
(
u− 1

2 , iλ
−1
)

du

=
∞∑
m=0

∫ 1

0

e−2πλt(u+m)θ1
(
u+m− 1

2 , iλ
−1
)

du

=
∞∑
m=0

(−1)me−2πλtm

∫ 1

0

e−2πλtuθ1
(
u− 1

2 , iλ
−1
)

du

=
{
eπλt + e−πλt

}−1
∫ 1

2

− 1
2

e−2πλtuθ1
(
u, iλ−1

)
du

=
{

2 coshπλt
}−1

∫ 1
2

− 1
2

cosh 2πλtu θ1
(
u, iλ−1

)
du.

(2.21)

If t < 0 then in a similar manner we find that∫ 0

−∞
e−2πλtuθ1

(
u− 1

2 , iλ
−1
)

du

= −
{

2 coshπλt
}−1

∫ 1
2

− 1
2

cosh 2πλtu θ1
(
u, iλ−1

)
du.

(2.22)

The identity (2.15) follows now by combining (2.20), (2.21) and (2.22). �

Because z 7→ Lλ(z) interpolates both the value of Gλ(z) and the value of its
derivative G′λ(z) at each point of the coset Z + 1

2 , the entire function

z 7→ Gλ(z)− Lλ(z)

has a zero of multiplicity at least 2 at each point of Z + 1
2 . It follows that

z 7→
(

π

cosπz

)2{
Gλ(z)− Lλ(z)

}
is an entire function. In a similar manner, we find that

z 7→
(

π

sinπz

)2{
Mλ(z)−Gλ(z)

}
is an entire function.

Lemma 11. For all complex z we have(
π

cosπz

)2{
Gλ(z)− Lλ(z)

}
= 2π2λ2

∫ ∞
−∞

tGλ(z − t)
sinhπλt

∫ 1
2

− 1
2

e−2πλtu
{
θ3
(
u, iλ−1

)
− θ3

(
1
2 , iλ

−1
)}

du dt,

(2.23)
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and(
π

sinπz

)2{
Mλ(z)−Gλ(z)

}
= 2π2λ2

∫ ∞
−∞

tGλ(z − t)
sinhπλt

∫ 1
2

− 1
2

e−2πλtu
{
θ2
(

1
2 , iλ

−1
)
− θ2

(
u, iλ−1

)}
du dt.

(2.24)

Proof. In order to establish (2.23) we use the partial fraction expansion

lim
N→∞

N∑
n=−N−1

1(
z − n− 1

2

)2 =
(

π

cosπz

)2

, (2.25)

which converges uniformly on compact subsets of C\
{
Z+ 1

2

}
. Then it follows from

(1.2) and (2.25) that(
π

cosπz

)2{
Gλ(z)− Lλ(z)

}
= lim
N→∞

N∑
n=−N−1

{
Gλ(z)

(z − n− 1
2 )2
−

Gλ(n+ 1
2 )

(z − n− 1
2 )2
−
G′λ(n+ 1

2 )
z − n− 1

2

}
.

(2.26)

As in the proof of Lemma 10, the limit on the right of (2.26) converges uniformly
on compact subsets of C.

For positive integers N and all real u let

Tλ,N (u) =
N∑

n=−N−1

{
Gλ(n+ 1

2 )−Gλ(n+ 1
2 − u)

}
.

From (1.11) we conclude that

lim
N→∞

Tλ,N (u) = λ−
1
2
{
θ2
(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
. (2.27)

We apply the identity (2.8) with w = n + 1
2 and sum over integers n satisfying

−N − 1 ≤ n ≤ N . We get
N∑

n=−N−1

{
Gλ(z)

(z − n− 1
2 )2
−

Gλ(n+ 1
2 )

(z − n− 1
2 )2
−
G′λ(n+ 1

2 )
z − n− 1

2

}

= (2π)2λ
5
2

∫ 0

−∞

∫ 0

−∞
te−2πλtuGλ(z − t)Tλ,N (u) du dt

− (2π)2λ
5
2

∫ ∞
0

∫ ∞
0

te−2πλtuGλ(z − t)Tλ,N (u) du dt.

(2.28)

As in the proof of Lemma 10, we let N →∞ on both sides of (2.28). The limit on
the left hand side is determined by (2.26). On the right hand side we use (2.13),
the dominated convergence theorem and (2.27). In this way we obtain the identity(

π

cosπz

)2{
Gλ(z)− Lλ(z)

}
= (2πλ)2

∫ 0

−∞

∫ 0

−∞
te−2πλtuGλ(z − t)

{
θ2
(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
du dt

− (2πλ)2
∫ ∞

0

∫ ∞
0

te−2πλtuGλ(z − t)
{
θ2
(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
du dt.

(2.29)
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If 0 < t then, using that v 7→ θ2(v, τ) has period 1 and (1.9), we get∫ ∞
0

e−2πλtu
{
θ2
(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
du

=
∞∑
m=0

∫ 1

0

e−2πλt(u+m)
{
θ2
(
0, iλ−1

)
− θ2

(
u+m, iλ−1

)}
du

=
{

1− e−2πλt
}−1

∫ 1

0

e−2πλtu
{
θ2
(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
du

=
{

2 sinhπλt
}−1

∫ 1
2

− 1
2

e−2πλtu
{
θ3
(

1
2 , iλ

−1
)
− θ3

(
u, iλ−1

)}
du.

(2.30)

If t < 0 then in a similar manner we find that∫ 0

−∞
e−2πλtu

{
θ2
(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
du

= −
{

2 sinhπλt
}−1

∫ 1
2

− 1
2

e−2πλtu
{
θ3
(

1
2 , iλ

−1
)
− θ3

(
u, iλ−1

)}
du.

(2.31)

The identity (2.23) follows now by combining (2.29), (2.30) and (2.31).
The proof of (2.24) proceeds along the same lines using (1.12) and (2.14). We

leave the details to the reader. �

Corollary 12. For all real values of x we have

0 <
(

π

cosπx

)2{
Gλ(x)− Lλ(x)

}
, (2.32)

and

0 <
(

π

sinπx

)2{
Mλ(x)−Gλ(x)

}
. (2.33)

In particular, the inequality (1.4) holds for all real x.

Proof. For real u the periodic function u 7→ θ3
(
u, iλ−1

)
takes its maximum value

at u = 0 and its minimum values at u = 1
2 . Therefore the function

t 7→
∫ 1

2

− 1
2

e−2πλtu
{
θ3
(
u, iλ−1

)
− θ3

(
1
2 , iλ

−1
)}

du,

which appears in the integrand on the right of (2.23), is positive for all real values
of t. This plainly verifies the inequality (2.32).

In a similar manner using (1.9), the periodic function u 7→ θ2
(
u, iλ−1

)
takes its

maximum value at u = 1
2 and its minimum value at u = 0. Hence the function

t 7→
∫ 1

2

− 1
2

e−2πλtu
{
θ2
(

1
2 , iλ

−1
)
− θ2

(
u, iλ−1

)}
du,

which appears in the integrand on the right of (2.24), is positive for all real values
of t. This establishes the inequality (2.33). �
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3. Proof of Theorem 1

We recall that v 7→ θ1(v, iλ) is an entire function of the complex variable v. The
product formula for this theta function (see [6, Chapter V, Theorem 6]) provides
the representation

θ1
(
v, iλ−1

)
= 2e−π(4λ)−1

∞∏
l=1

(
1− e−2πλ−1l

)
cosπv

∞∏
m=1

(
1 + e−2πλ−1m+2πiv

) ∞∏
n=1

(
1 + e−2πλ−1n−2πiv

)
.

(3.1)

It follows from (3.1) that the only real zeros of θ1
(
v, iλ−1

)
are zeros of cosπv.

That is, the only real zeros are simple zeros at the points of Z + 1
2 . Because

θ1
(
0, iλ−1

)
> 0, it follows that θ1

(
u, iλ−1

)
> 0 for all real values of u in the

open interval − 1
2 < u < 1

2 . This implies that the integral on the left of (1.13) is
positive. Also, the integral on the right of (2.15) is positive for real values of z = x.
Alternatively, we have

π

cosπx

{
Gλ(x)−Kλ(x)

}
> 0

for all real x, and therefore

sgn
{
Gλ(x)−Kλ(x)

}
= sgn(cosπx) (3.2)

for all real x.
From the series expansion (1.5) we find that

λ−
1
2

∫ 1
2

− 1
2

θ1(u, iλ−1) du =
1
π

∞∑
n=−∞

(−1)n

n+ 1
2

Ĝλ(n+ 1
2 ), (3.3)

where

Ĝλ(t) = λ−
1
2 e−πλ

−1t2 =
∫ ∞
−∞

Gλ(x)e(−xt) dx

is the Fourier transform of Gλ(x) on R. Now let F (z) be an entire function of
exponential type at most π. Without loss of generality we may assume that∫ ∞

−∞

∣∣Gλ(x)− F (x)
∣∣ dx <∞.

It follows that F is integrable on R and therefore the Fourier transform

t 7→ F̂ (t) =
∫ ∞
−∞

F (x)e(−tx) dx

is continuous on R, and supported on
[
− 1

2 ,
1
2

]
. The function

x 7→ sgn(cosπx)

is periodic on R with period 2, and has the Fourier expansion

sgn(cosπx) = lim
N→∞

1
π

N∑
n=−N−1

(−1)n

n+ 1
2

e
(
(n+ 1

2 )x
)
. (3.4)
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Moreover, the partial sums on the right of (3.4) are uniformly bounded, and there-
fore ∫ ∞

−∞
sgn(cosπx)

{
Gλ(x)− F (x)

}
dx

= lim
N→∞

1
π

N∑
n=−N−1

(−1)n

n+ 1
2

∫ ∞
−∞

{
Gλ(x)− F (x)

}
e
(
(n+ 1

2 )x
)

dx

= lim
N→∞

1
π

N∑
n=−N−1

(−1)n

n+ 1
2

{
Ĝλ
(
−n− 1

2

)
− F̂

(
−n− 1

2

)}
=

1
π

∞∑
n=−∞

(−1)n

n+ 1
2

Ĝλ
(
n+ 1

2

)
.

(3.5)

It is clear from (3.3) and (3.5) that

λ−
1
2

∫ 1
2

− 1
2

θ1
(
u, iλ−1

)
du ≤

∫ ∞
−∞

∣∣Gλ(x)− F (x)
∣∣ dx, (3.6)

and this verifies (1.13). Then (3.2), (3.3) and (3.5) lead to the identity

λ−
1
2

∫ 1
2

− 1
2

θ1
(
u, iλ−1

)
du =

∫ ∞
−∞

sgn(cosπx)
{
Gλ(x)−Kλ(x)

}
dx

=
∫ ∞
−∞

∣∣Gλ(x)−Kλ(x)
∣∣ dx.

(3.7)

Plainly (3.7) shows that there is equality in the inequality (1.13) in case F (z) =
Kλ(z).

Finally, we assume that F (z) is an entire function of exponential type at most
π for which there is equality in the inequality (1.13). Then (3.3) and (3.5) imply
that ∫ ∞

−∞
sgn(cosπx)

{
Gλ(x)− F (x)

}
dx =

∫ ∞
−∞

∣∣Gλ(x)− F (x)
∣∣ dx. (3.8)

As x 7→ Gλ(x)− F (x) is continuous, we conclude from (3.8) that

sgn(cosπx)
{
Gλ(x)− F (x)

}
=
∣∣Gλ(x)− F (x)

∣∣
for all real x. This implies that

Gλ
(
n+ 1

2

)
= Kλ

(
n+ 1

2

)
= F

(
n+ 1

2

)
for each integer n. Therefore

z 7→ Kλ(z)− F (z) (3.9)

is an entire function of exponential type at most π and takes the value zero at each
point of the set Z + 1

2 . From basic interpolation theorems for entire functions of
exponential type (see [32, Vol. II, p. 275]), we conclude that the entire function
(3.9) is identically zero. This completes the proof of Theorem 1.
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4. Proofs of Theorems 2 and 3

Let F (z) be an entire function of exponential type at most 2π such that

F (x) ≤ Gλ(x) (4.1)

for all real x. Clearly we may assume that x 7→ F (x) is integrable on R, for if not
then (1.14) is trivial. Using [10, Lemma 4], (1.11) and (4.1), we find that

∫ ∞
−∞

F (x) dx = lim
N→∞

N∑
n=−N

(
1− |n|

N + 1

)
F (n+ v)

≤ lim
N→∞

N∑
n=−N

(
1− |n|

N + 1

)
Gλ(n+ v)

= λ−
1
2 θ2
(

1
2 − v, iλ

−1
)

(4.2)

for all real v. We have already noted that v 7→ θ2
(

1
2 − v, iλ

−1
)

takes its minimum
value at v = 1

2 . Hence (4.2) implies that∫ ∞
−∞

F (x) dx ≤ λ− 1
2 θ2
(
0, iλ−1

)
,

and this proves (1.14).
In Corollary 12 we proved that F (z) = Lλ(z) satisfies the inequality (4.1) for

all real x. In this special case there is equality in the inequality (4.2) when v = 1
2 .

Thus we have ∫ ∞
−∞

Lλ(x) dx = λ−
1
2 θ2
(
0, iλ−1

)
. (4.3)

Now assume that F (z) is an entire function of exponential type at most 2π that
satisfies (4.1) for all real x, and assume that there is equality in the inequality (4.2).
It follows that v = 1

2 and

F (n+ 1
2 ) = Gλ(n+ 1

2 )

for all integers n. Then from (4.1) we also get

F ′(n+ 1
2 ) = G′λ(n+ 1

2 )

for all integers n. Of course this shows that the entire function

z 7→ F (z)− Lλ(z) (4.4)

has exponential type at most 2π, vanishes at each point of Z + 1
2 , and its derivative

also vanishes at each point of Z + 1
2 . By a second application of [10, Lemma 4] we

conclude that the entire function (4.4) is identically zero. This proves Theorem 2,
and Theorem 3 can be proved by the same sort of argument.
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5. Proof of Theorem 4

The partial sums for the series (1.5) defining t 7→ θ1(t, iλ) converge absolutely
and uniformly for t in R. Therefore we find that

∫ 1
2

− 1
2

θ1(t, iλ)e(tz) dt =
∞∑

n=−∞
e−πλ(n+ 1

2 )2
∫ 1

2

− 1
2

e
(
t(z + n+ 1

2 )
)

dt

=
(cosπz

π

){ ∞∑
n=−∞

(−1)n
e−πλ(n+ 1

2 )2(
z + n+ 1

2

)}
= Kλ(z).

(5.1)

Then (1.16) follows from (5.1) by Fourier inversion. In a similar manner we find
that

∫ 1

−1

(
1− |t|

)
θ1(t, iλ)e(tz) dt

=
∞∑

n=−∞
e−πλ(n+ 1

2 )2
∫ 1

−1

(
1− |t|

)
e
(
t(z + n+ 1

2 )
)

dt

=
∞∑
−∞

e−πλ(n+ 1
2 )2
(

sinπ(z + n+ 1
2 )

π(z + n+ 1
2 )

)2

=
(cosπz

π

)2 ∞∑
m=−∞

Gλ
(
m+ 1

2

)(
z −m− 1

2

)2 ,

(5.2)

and

−(2π)−1λ

∫ 1

−1

sgn(t)
∂θ1
∂t

(t, iλ)e(tz) dt

= −(2π)−1λ

∞∑
−∞

e−πλ(n+ 1
2 )2
{

2πi(n+ 1
2 )
}∫ 1

−1

sgn(t)e(tz) dt

= λ

∞∑
n=−∞

e−πλ(n+ 1
2 )2
{

2π(n+ 1
2 )

z + n+ 1
2

}(
sinπ(z + n+ 1

2 )
π

)2

=
(cosπz

π

)2 ∞∑
n=−∞

G′λ
(
n+ 1

2

)(
z − n− 1

2

) .

(5.3)

Now (1.17) follows from (5.2) and (5.3) by Fourier inversion. The proof of (1.18)
is essentially the same. We note that (1.17) and (1.18) are both special cases of a
general formula for Fourier transforms given in [30, Theorem 9].
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6. Proof of Theorem 5 and 6

Let δ = 2N + 2, and let p be a trigonometric polynomial of degree at most N .
The Fourier expansions (1.5) and (3.4) imply that∫

R/Z

∣∣θ3(x, iλ−1
)
− p(x)

∣∣dx ≥ ∣∣∣ ∫
R/Z
{θ3(x, iλ−1)− p(x)} sgn(cosπδx) dx

∣∣∣
=
∣∣∣ ∫

R/Z
θ3
(
x, iλ−1

)
sgn(cosπδx) dx

∣∣∣
=
∣∣∣ 2
π

∞∑
n=−∞

(−1)n

2n+ 1
e−πλ

−1(n+ 1
2 )2δ2

∣∣∣
=
∫ 1

2

− 1
2

θ1
(
u, iλ−1δ2

)
du,

(6.1)

which proves (1.20). The representation of θ3
(
v, iλ−1

)
in (1.12), and the second

representation of kλ,N in (1.19) imply that

θ3
(
x, iλ−1

)
− kλ,N (x) = λ

1
2

∞∑
m=−∞

{
e−πλ(x+m)2 −Kδ−2λ

(
δ(x+m)

)}
for all x ∈ R/Z. The identity Gδ−2λ(δx) = Gλ(x) and (3.2) give

sgn
{
θ3
(
x, iλ−1

)
− kλ,N (x)

}
= sgn(cosπδx), (6.2)

hence for p = kλ,N we have equality in (6.1). To prove uniqueness, note that in
order to have equality in (6.1) we must have

p

(
n+ 1

2

δ

)
= θ3

(
n+ 1

2

δ
, iλ−1

)
(6.3)

for n = 0, 1, 2, ..., 2N + 1. Since the degree of p(x) is at most N , such a polynomial
exists and is unique [32, Vol II, page 1], and we showed in (6.2) that kλ,N already
satisfies (6.3). This completes the proof of Theorem 5

We now prove the minorant part of Theorem 6. Let δ = N + 1. Let q be a
trigonometric polynomial of degree at most N satisfying q(x) ≤ θ3

(
x, iλ−1

)
at each

x ∈ R\Z. We use the fact that the degree of q is at most N (and δ = N + 1), and
we apply (1.11) to obtain∫

R/Z
q(x) dx = δ−1

N∑
n=0

q

(
n+ 1

2

δ

)

≤ δ−1
N∑
n=0

θ3

(
n+ 1

2

δ
, iλ−1

)
= θ2

(
0, iλ−1δ2

)
.

(6.4)

This proves (1.25). Equations (1.12) and (1.21) imply that

θ3
(
x, iλ−1

)
− lλ,N (x) = λ

1
2

∞∑
m=−∞

{
e−πλ(x+m)2 − Lδ−2λ

(
δ(x+m)

)}
≥ 0 (6.5)
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for all x ∈ R/Z, which proves the first inequality in (1.23). Since Lλ interpolates
the values of Gλ at Z + 1

2 , we have equality in (6.5), and hence

lλ,N

(
n+ 1

2

δ

)
= θ3

(
n+ 1

2

δ
, iλ−1

)
(6.6)

for n = 0, 1, ..., N . Moreover, (1.21) and (1.14) imply that∫
R/Z

lλ,N (x) dx = λ
1
2

∫ ∞
−∞

Lδ−2λ(δx) dx = θ2
(
0, iλ−1δ2

)
. (6.7)

Therefore equality occurs in (1.25) for q = lλ,N . It remains to establish uniqueness.
If equality occurs in (6.4) then

q

(
n+ 1

2

δ

)
= θ3

(
n+ 1

2

δ
, iλ−1

)
= lλ,N

(
n+ 1

2

δ

)
for n = 0, ..., N . Since q and lλ,N both minorize θ3

(
x, iλ−1

)
, their derivatives at

the points δ−1
(
n+ 1

2

)
where n = 0, ..., N must be equal. Hence q satisfies 2N + 2

conditions which determine a unique trigonometric polynomial of degree at most N
[32, Vol. II, p. 23], and therefore q = lλ,N . The proof for the extremal majorizing
trigonometric polynomial proceeds along analogous lines using interpolation points
at δ−1n for n = 0, ..., N .

Part II: Distribution Approach

7. The Paley-Wiener Theorem for Distributions

Let D(R) ⊆ S(R) ⊆ E(R) be the usual spaces of C∞ functions on R as defined in
the work of L. Schwartz [28], and let E ′(R) ⊆ S ′(R) ⊆ D′(R) be the corresponding
dual spaces of distributions. Our notation and terminology for distributions follows
that of [7], and precise definitions for these spaces are given in [7, Section 2.3]. We
write ϕ(x) for a generic element in the space S(R) of Schwartz functions. If T in
S ′(R) is a tempered distribution we write T (ϕ) for the value of T at ϕ. Then the
Fourier transform of T is the tempered distribution T̂ defined by

T̂ (ϕ) = T (ϕ̂),

where

ϕ̂(y) =
∫ ∞
−∞

ϕ(x)e(−yx) dx

is the Fourier transform of the function ϕ. Functions g : R→ R in any Lp class or
with polynomial growth can be regarded as elements of S ′(R) and we will usually
make the identification

g(ϕ) =
∫ ∞
−∞

g(x)ϕ(x) dx

for all ϕ in S(R).
We recall the following form of the Paley-Wiener theorem for distributions, which

is obtained by combining Theorem 1.7.5 and Theorem 1.7.7 in [14].

Theorem 13 (Paley-Wiener for distributions). Let δ > 0, and let U be a tempered
distribution in S ′(R) with Fourier transform Û supported in the compact interval
[−δ, δ]. Then Û belongs to E ′(R), and

z 7→ F (z) = Ûξ
(
e(ξz)

)
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defines an entire function of the complex variable z = x+ iy such that∣∣F (z)
∣∣�B

(
1 + |z|

)B exp{2πδ|y|} (7.1)

for some number B ≥ 0 and all z in C. Moreover, the entire function F (z) satisfies
the identity

U(ϕ) =
∫ ∞
−∞

F (x)ϕ(x) dx

for all ϕ in S(R).
Conversely, suppose that F (z) is an entire function of the complex variable z that

satisfies the inequality (7.1) for some numbers B ≥ 0 and δ > 0. Then there exists
a tempered distribution V in S ′(R) such that V̂ belongs to E ′(R), V̂ is supported on
the compact interval [−δ, δ],

F (z) = V̂ξ
(
e(ξz)

)
,

and

V (ϕ) =
∫ ∞
−∞

F (x)ϕ(x) dx

for all ϕ in S(R).

Here we write Ûξ to indicate that the distribution Û is acting on the function
ξ 7→

(
e(ξz)

)
.

8. Optimal Integration

Throughout Part II of this paper we let λ denote a parameter on an interval
I ⊂ R. Then we consider a family of real valued even functions x 7→ G(λ, x) satis-
fying the following properties for each λ ∈ I.

(i) The function x 7→ G(λ, x) is continuous on R and differentiable on R/{0}.

(ii) There exist constants C = C(λ) > 0 and ε = ε(λ) > 0 such that, for all
x ∈ R and t ∈ R,

|G(λ, x)| ≤ C

(1 + |x|)1+ε
and |Ĝ(λ, t)| ≤ C

(1 + |t|)1+ε
.

(iii) The Fourier transform t 7→ Ĝ(λ, t) is non-negative and radially non-increasing.

Depending on the type of problem to be treated (minorant, majorant or best
approximation), we will require one additional hypothesis about the family G(λ, x),
for each λ ∈ I.

(iv) (Minorant) There is a unique extremal minorant z 7→ L(λ, z) of exponential
type 2π that interpolates the values of G(λ, x) at Z + 1

2 .

(v) (Majorant) There is a unique extremal majorant z 7→M(λ, z) of exponen-
tial type 2π that interpolates the values of G(λ, x) at Z.
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(vi) (Best Approximation) There is a unique best approximation z 7→ K(λ, z)
of exponential type π that interpolates the values of G(λ, x) at Z + 1

2 and
satisfies

sgn(cosπx) {G(λ, x)−K(λ, x)} ≥ 0.

We will call {x 7→ G(λ, x)}λ∈I a minorant family if it satisfies properties (i)-(iv)
above. The notions of majorant family and best approximation family are defined
analogously using (v) and (vi) instead of (iv), respectively.

Observe that hypotheses (iv), (v) and (vi) do not need to coexist. Indeed, each
problem can be treated independently. Examples of families of functions satisfying
the conditions (i) - (iv) listed above that we have in mind for potential applications
in this paper are given in the table below (note that in these cases λ ∈ (0,∞)),
together with the minimal values of the corresponding integrals.

G(λ, x) Minorant Majorant Best Approximation

e−πλx
2 ∑

n 6=0

(−1)n λ−
1
2 e−πλ

−1n2 ∑
n 6=0

λ−
1
2 e−πλ

−1n2
∞∑

n=−∞

(−1)nλ−
1
2 e−πλ

−1
(
n+

1
2

)2
π
(
n+ 1

2

)
e−λ|x| 2

λ − csch
(
λ
2

)
coth

(
λ
2

)
− 2

λ
2
λ −

2
λ sech

(
λ
2

)
2λ

λ2 + 4π2x2

2
eλ + 1

2
eλ − 1

∞∑
n=−∞

(−1)n
e−λ
∣∣n+ 1

2

∣∣
π
(
n+ 1

2

)
Table 1: Examples of solutions to the Beurling-Selberg problem.

Our goal here is to be able to integrate the parameter λ with respect to a suitable
non-negative Borel measure on I and obtain the solution to a different extremal
problem. One might first guess that the class of suitable measures ν on I would
consist of those measures for which the function

g(x) =
∫
I

G(λ, x) dν(λ)

is well defined, and that this would be the function to be approximated. Such
a method was carried out in [3], [4] and [10]. It turns out that this condition is
unnecessarily restrictive, and in order to find the optimal minimal conditions to be
imposed on the measure ν one must look at things on the Fourier transform side.

We will illustrate what this condition should be in the minorant case. Define the
difference function

D(λ, x) = G(λ, x)− L(λ, x) ≥ 0.
The minimal integral corresponds to∫ ∞

−∞
{G(λ, x)− L(λ, x)}dx = D̂(λ, 0).

If we succeed in our attempt to integrate the parameter λ, we will end up solving
an extremal problem for which the value of the minimal integral is given by (and
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thus we want to impose the finiteness)∫
I

∫ ∞
−∞
{G(λ, x)− L(λ, x)} dx dν(λ) =

∫
I

D̂(λ, 0) dν(λ) <∞. (8.1)

We will show that this is also a sufficient condition.

Suppose ν is a non-negative Borel measure on I satisfying (8.1). Since

|D̂(λ, t)| ≤ D̂(λ, 0)

for all t ∈ R, we observe that the function

t 7→
∫
I

D̂(λ, t) dν(λ)

is well defined. In particular, from the classical Paley-Wiener theorem, the Fourier
transform t 7→ L̂(λ, t) is supported on [−1, 1], and therefore∫

I

D̂(λ, t) dν(λ) =
∫
I

Ĝ(λ, t) dν(λ)

for |t| ≥ 1. We are now in position to state the three main results of Part II of the
paper. In the following theorems we write

[α, β]c = (−∞, α) ∪ (β,∞)

for the complement in R of a closed interval [α, β].

Theorem 14 (Distribution Method - Minorant). Let {x 7→ G(λ, x)}λ∈I be a mi-
norant family and ν be a non-negative Borel measure on I satisfying∫

I

∫ ∞
−∞
{G(λ, x)− L(λ, x)} dxdν(λ) <∞.

Let g : R → R be a function on S ′(R) that is continuous on R/{0}, differentiable
on R/{0}, and such that

ĝ(ϕ) =
∫ ∞
−∞

{∫
I

Ĝ(λ, t) dν(λ)
}
ϕ(t) dt

for all Schwartz functions ϕ supported on [−1, 1]c. Then there exists a unique ex-
tremal minorant l(z) of exponential type 2π for g(x). The function l(x) interpolates
the values of g(x) at Z + 1

2 and satisfies∫ ∞
−∞
{g(x)− l(x)} dx =

∫
I

∫ ∞
−∞
{G(λ, x)− L(λ, x)}dx dν(λ).

Theorem 15 (Distribution Method - Majorant). Let {x 7→ G(λ, x)}λ∈I be a ma-
jorant family and ν be a non-negative Borel measure on I satisfying∫

I

∫ ∞
−∞
{M(λ, x)−G(λ, x)}dx dν(λ) <∞.

Let g : R → R be a function on S ′(R) that is continuous on R, differentiable on
R/{0}, and such that

ĝ(ϕ) =
∫ ∞
−∞

{∫
I

Ĝ(λ, t) dν(λ)
}
ϕ(t) dt
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for all Schwartz functions ϕ supported on [−1, 1]c. Then there exists a unique
extremal majorant m(z) of exponential type 2π for g(x). The function m(x) inter-
polates the values of g(x) at Z and satisfies∫ ∞

−∞
{m(x)− g(x)} dx =

∫
I

∫ ∞
−∞
{M(λ, x)−G(λ, x)}dx dν(λ).

Theorem 16 (Distribution Method - Best Approximation). Let {x 7→ G(λ, x)}λ∈I
be a best approximation family and ν be a non-negative Borel measure on I satisfying∫

I

∫ ∞
−∞
|G(λ, x)−K(λ, x)| dxdν(λ) <∞.

Let g : R→ R be a function on S ′(R) that is continuous on R/{0}, and such that

ĝ(ϕ) =
∫ ∞
−∞

{∫
I

Ĝ(λ, t) dν(λ)
}
ϕ(t) dt

for all Schwartz functions ϕ supported on [− 1
2 ,

1
2 ]c. Then there exists a unique best

approximation k(z) of exponential type π for g(x). The function k(x) interpolates
the values of g(x) at Z + 1

2 , satisfying

sgn(cosπx) {g(x)− k(x)} ≥ 0

and ∫ ∞
−∞
|g(x)− k(x)|dx =

∫
I

∫ ∞
−∞
|G(λ, x)−K(λ, x)| dxdν(λ).

Similar results can be stated for the problem of majorizing or minorizing by
functions of exponential type 2πδ, or determining best approximations by functions
of type πδ. It is a matter of changing the interpolation points to δZ or δ(Z + 1

2 ),
and changing the support intervals to [−δ, δ]c in the case of minorants/majorants
and to [− δ2 ,

δ
2 ]c in the case of best approximations. For simplicity, we will proceed

in our exposition only with type 2π for minorants/majorants and type π for the
best approximation problem.

The condition

ĝ(ϕ) =
∫ ∞
−∞

{∫
I

Ĝ(λ, t) dν(λ)
}
ϕ(t) dt

for all Schwartz functions ϕ supported on [−δ, δ]c, that appears on the statements of
the theorems, asserts that the Fourier transform ĝ, which is a tempered distribution,
is actually given by a function

t 7→
∫
I

Ĝ(λ, t) dν(λ)

outside the interval [−δ, δ]. This is typical behavior of functions with polynomial
growth, that might have a Fourier transform given by a singular part supported
on the origin plus an additional component given by a function outside the origin
(e.g. the Fourier transform of − log |x| is given by (2|t|)−1 away from the origin). It
is clear in this context that the only information relevant for the Beurling-Selberg
extremal problem is knowledge of the Fourier transform of the original function
outside a compact interval.

Finally, we shall see that this method applied to the Gaussian family

G(λ, x) = Gλ(x) = e−πλx
2
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is quite powerful, producing most of the previously known examples in the liter-
ature, and a wide class of new ones. In particular, we will be able to deal with
families of functions such as

G̃(α, x) = log
(
x2 + α2

x2 + 4

)
and G̃(α, x) = |x|α.

We could also integrate the new parameter α to produce further examples. Al-
though these families do not satisfy the original requirements (i)-(iv) this is a per-
fectly reasonable argument, since by Fubini’s theorem, an integral with respect to
the parameter α will only produce a different measure ν for the original integration
on the parameter λ for the Gaussian. Therefore, there is no loss of generality in
starting the procedure with a family of functions satisfying the regularity require-
ments (i)-(iv) and iterating the method as desired.

9. Proofs of Theorems 14 and 15

Here we give a detailed proof of Theorem 14. The proof of Theorem 15 follows
the same general method.

First we construct the extreme minorant. Recall that

D(λ, x) = G(λ, x)− L(λ, x) ≥ 0.

Then for each x ∈ R we define the nonnegative valued function

d(x) =
∫
I

D(λ, x) dν(λ). (9.1)

It may happen that the value of d(x) is∞ at some points x. However, the function
x 7→ d(x) is integrable on R, because∫ ∞

−∞
d(x) dx =

∫
I

∫ ∞
−∞

D(λ, x) dxdν(λ) =
∫
I

D̂(λ, 0) dν(λ) <∞

by the hypotheses of our theorem. Hence the Fourier transform d̂(t) is a continuous
function given by

d̂(t) =
∫ ∞
−∞

d(x) e(−tx) dx =
∫ ∞
−∞

∫
I

D(λ, x) e(−tx) dν(λ) dx

=
∫
I

∫ ∞
−∞

D(λ, x) e(−tx) dxdν(λ) =
∫
I

D̂(λ, t) dν(λ),
(9.2)

and for |t| ≥ 1 we have

d̂(t) =
∫
I

Ĝ(λ, t) dν(λ). (9.3)

Let U ∈ S ′(R) be the tempered distribution determined by

U(ϕ) =
∫ ∞
−∞
{g(x)− d(x)}ϕ(x) dx. (9.4)

We shall prove that the Fourier transform Û is supported on [−1, 1]. In fact, for
any ϕ ∈ S(R) with support in [−1, 1]c we have

Û(ϕ) = ĝ(ϕ)− d̂(ϕ)

=
∫ ∞
−∞

{∫
I

Ĝ(λ, t) dν(λ)
}
ϕ(t) dt−

∫ ∞
−∞

d̂(t)ϕ(t) dt = 0 ,
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by (9.3) and the hypotheses of the theorem. By the Paley-Wiener theorem for
distributions we find that Û ∈ E ′(R), and therefore

z 7→ l(z) = Ûξ (e(ξz))

defines an entire function of exponential type 2π such that

U(ϕ) =
∫ ∞
−∞

l(x)ϕ(x) dx (9.5)

for all ϕ ∈ S(R). From (9.4) and (9.5) we conclude that

d(x) = g(x)− l(x) ≥ 0 (9.6)

for almost all x ∈ R. In particular, we get∫ ∞
−∞
{g(x)− l(x)} dx =

∫ ∞
−∞

d(x) dx =
∫
I

D̂(λ, 0) dν(λ)

=
∫
I

∫ ∞
−∞
{G(λ, x)− L(λ, x)}dx dν(λ) <∞.

Next we consider the interpolation points. Because of conditions (i) and (ii), the
Poisson summation formula can be applied to D(λ, x) giving a pointwise identity

∞∑
n=−∞

D(λ, x+ n) =
∞∑

k=−∞

D̂(λ, k) e(xk). (9.7)

From condition (iv) of our hypotheses we have D
(
λ, n + 1

2

)
= 0 for all n ∈ Z.

Therefore we apply (9.7) at x = 1
2 , and use the classical Paley-Wiener theorem. In

this way we arrive at the identity

D̂(λ, 0) = −
∞∑

k=−∞
k 6=0

(−1)k Ĝ(λ, k). (9.8)

Now we define the function

d1(x) = g(x)− l(x).

We note that d1(x) is a non-negative, continuous function on R/{0} that is equal
almost everywhere to d(x) defined in (9.1), and thus in L1(R). Define a periodic
function p : R/Z→ R+ ∪ {∞} by

p(x) =
∑
n∈Z

d1(n+ x).

An application of Fubini’s theorem provides∫
R/Z

p(x) dx =
∫ ∞
−∞

d1(x) dx <∞ ,

and therefore p(x) ∈ L1(R/Z). Moreover, the Fourier coefficients of p(x) satisfy

p̂(k) = d̂1(k) = d̂(k)

for all k ∈ Z. Convolution with the smoothing Féjer kernel

FN (x) =
1

N + 1

(
sinπ(N + 1)x

sinπx

)2
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produces the pointwise identity

p ∗ FN (x) =
N∑

k=−N

(
1− |k|

N

)
p̂(k) e(xk)

= d̂(0) +
N∑

k=−N
k 6=0

(
1− |k|

N

)
d̂(k) e(xk)

= d̂(0) +
N∑

k=−N
k 6=0

(
1− |k|

N

) ∫
I

Ĝ(λ, k) dν(λ) e(xk)

= d̂(0) +
∫
I

{
N∑

k=−N
k 6=0

(
1− |k|

N

)
Ĝ(λ, k) e(xk)

}
dν(λ) ,

where we have used (9.3). In particular, at x = 1
2 we obtain

d̂(0) = p ∗ FN
(

1
2

)
+
∫
I

{
N∑

k=−N
k 6=0

(−1)k+1

(
1− |k|

N

)
Ĝ(λ, k)

}
dν(λ). (9.9)

By condition (iii) of the hypotheses, the integrand in (9.9) in non-negative. More-
over, by condition (ii) it converges absolutely to (9.8) as N → ∞. Therefore, an
application of Fatou’s lemma together with (9.2) gives us

d̂(0) ≥ lim inf
N→∞

p ∗ FN
(

1
2

)
+ lim inf

N→∞

∫
I

{
N∑

k=−N
k 6=0

(−1)k+1

(
1− |k|

N

)
Ĝ(λ, k)

}
dν(λ)

≥ lim inf
N→∞

p ∗ FN
(

1
2

)
+
∫
I

lim inf
N→∞

{
N∑

k=−N
k 6=0

(−1)k+1

(
1− |k|

N

)
Ĝ(λ, k)

}
dν(λ)

= lim inf
N→∞

p ∗ FN
(

1
2

)
+
∫
I

D̂(λ, 0) dν(λ)

= lim inf
N→∞

p ∗ FN
(

1
2

)
+ d̂(0) ,

and since p ∗ FN (x) is non-negative we conclude that

lim inf
N→∞

p ∗ FN
(

1
2

)
= 0.
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We now use the definition of p(x), Fubini’s theorem and Fatou’s lemma again to
arrive at

0 = lim inf
N→∞

p ∗ FN
(

1
2

)
= lim inf

N→∞

∫ 1

0

p(y)FN
(

1
2 − y

)
dy

= lim inf
N→∞

∫ 1

0

{∑
n∈Z

d1(n+ y)
}
FN
(

1
2 − y

)
dy

= lim inf
N→∞

∑
n∈Z

{∫ 1

0

d1(n+ y)FN
(

1
2 − y

)
dy
}

≥
∑
n∈Z

lim inf
N→∞

∫ 1

0

d1(n+ y)FN
(

1
2 − y

)
dy

=
∑
n∈Z

d1

(
n+ 1

2

)
,

(9.10)

where the last equality follows from the fact that d1(x) is continuous at the points
n+ 1

2 , n ∈ Z. From (9.10) and the non-negativity of d1(x) we arrive at the impli-
cation

d1

(
n+ 1

2

)
= 0⇒ g

(
n+ 1

2

)
= l
(
n+ 1

2

)
(9.11)

for all n ∈ Z. From (9.6) and the fact that g(x) is differentiable on R/{0} (by
hypothesis) we also have

g′
(
n+ 1

2

)
= l′

(
n+ 1

2

)
for all n ∈ Z.

Finally, we show that the integral is minimal and we establish uniqueness. As-
sume that l̃(z) is a real entire function of exponential type 2π such that

l̃(x) ≤ g(x) (9.12)

for all x ∈ R, and suppose that {g(x)− l̃(x)} is integrable. In this case the function

j(z) = l(z)− l̃(z)
has exponential type 2π and is integrable on R. An application of [10, Lemma 4]
together with (9.11) and (9.12) gives us

ĵ(0) = lim
N→∞

N∑
n=−N

(
1− |n|

N

)
j
(
n+ 1

2

)
= lim
N→∞

N∑
n=−N

(
1− |n|

N

) (
g
(
n+ 1

2

)
− l̃
(
n+ 1

2

))
≥ 0 .

(9.13)

This plainly verifies that∫ ∞
−∞
{g(x)− l̃(x)} dx ≥

∫ ∞
−∞
{g(x)− l(x)} dx ,

and establishes the minimality of the integral. If equality occurs in (9.13) we must
have

l̃
(
n+ 1

2

)
= g
(
n+ 1

2

)
= l
(
n+ 1

2

)
(9.14)

for all n ∈ Z. From (9.12) we also have

l̃ ′
(
n+ 1

2

)
= g′

(
n+ 1

2

)
= l′

(
n+ 1

2

)
(9.15)
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for all n ∈ Z. The interpolation conditions (9.14) and (9.15) imply that

j
(
n+ 1

2

)
= j′

(
n+ 1

2

)
= 0

for all n ∈ Z. By a second application of [10, Lemma 4], we conclude that the
entire function j(z) is identically zero. This proves the uniqueness of the extremal
minorant l(z), and completes the proof.

In the proof of uniqueness in the majorant case, we will obtain

j′(n) = 0

for all n 6= 0, since the original function g(x) is not assumed to be differentiable
at the origin. A further application of [10, Lemma 4] shows that j′(0) = 0, and so
leads to uniqueness.

10. Proof of Theorem 16

The approach here is similar to the proof of Theorem 15. We start by considering
the difference function

D(λ, x) = G(λ, x)−K(λ, x) ,

and for each x ∈ R define the function

d(x) =
∫
I

D(λ, x) dν(λ) .

From condition (v) in the hypotheses, we know that

sgn(cosπx) d(x) ≥ 0 , (10.1)

with this value being possibly infinite at some points. Observe, however, that d(x)
is integrable on R, with∫ ∞

−∞
|d(x)|dx =

∫ ∞
−∞

∫
I

|D(λ, x)|dν(λ) dx

=
∫
I

∫ ∞
−∞
|G(λ, x)−K(λ, x)|dxdν(λ) <∞.

An application of Fubini’s theorem gives us

d̂(t) =
∫
I

D̂(λ, t) dν(λ)

for all t ∈ R. Because z 7→ K(λ, z) has exponential type π, we have

d̂(t) =
∫
I

Ĝ(λ, t) dν(λ) (10.2)

for |t| ≥ 1
2 . Let V ∈ S ′(R) be the tempered distribution given by

V (ϕ) =
∫ ∞
−∞
{g(x)− d(x)}ϕ(x) dx. (10.3)

We shall prove that the Fourier transform V̂ is supported on
[
− 1

2 ,
1
2

]
. In fact, for

any ϕ ∈ S(R) with support in
[
− 1

2 ,
1
2

]c we have

V̂ (ϕ) = ĝ(ϕ)− d̂(ϕ)

=
∫ ∞
−∞

{∫
I

Ĝ(λ, t) dν(λ)
}
ϕ(t) dt−

∫ ∞
−∞

d̂(t)ϕ(t) dt = 0 ,
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by (10.2) and the hypotheses of the theorem. By the Paley-Wiener theorem for
distributions we find out that V̂ ∈ E ′(R) and

z 7→ k(z) = V̂ξ (e(ξz))

defines an entire function of exponential type π such that

V (ϕ) =
∫ ∞
−∞

k(x)ϕ(x) dx (10.4)

for all ϕ ∈ S(R). From (10.3) and (10.4) we conclude that

d(x) = g(x)− k(x) (10.5)

for almost all x ∈ R. In particular,∫ ∞
−∞
|g(x)− k(x)|dx =

∫ ∞
−∞
|d(x)|dx

=
∫
I

∫ ∞
−∞
|G(λ, x)−K(λ, x)|dx dν(λ) <∞ .

Since g(x) is continuous on R/{0} (by hypothesis) and k(x) is the restriction to
R of an entire function, expressions (10.1) and (10.5) imply that

sgn(cosπx) {g(x)− k(x)} ≥ 0

for all x ∈ R. In particular, we must have

g
(
n+ 1

2

)
= k

(
n+ 1

2

)
for all n ∈ Z.

Recall that the function x 7→ sgn(cosπx) is periodic on R with period 2 and has
the Fourier series expansion

sgn(cosπx) = lim
N→∞

1
π

N∑
n=−N−1

(−1)n

n+ 1
2

e
(
(n+ 1

2 )x
)
. (10.6)

Moreover, the partial sums on the right of (10.6) are uniformly bounded. If h(z)
is an entire function of exponential type π that is integrable on R, then its Fourier
transform ĥ(t) will be supported on

[
− 1

2 ,
1
2

]
. Then we will have∫ ∞

−∞
sgn(cosπx)h(x) dx

= lim
N→∞

1
π

N∑
n=−N−1

(−1)n

n+ 1
2

∫ ∞
−∞

h(x) e
(
(n+ 1

2 )x
)

dx

= lim
N→∞

1
π

N∑
n=−N−1

(−1)n

n+ 1
2

ĥ
(
−n− 1

2

)
= 0.

(10.7)

Now assume that k̃(z) is an entire function of exponential type π such that∫ ∞
−∞
|g(x)− k̃(x)|dx <∞.
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In this case, the function {k(x)− k̃(x)} has exponential type π and is integrable on
R. Thus, using (10.7) we obtain∫ ∞

−∞
|g(x)−k̃(x)|dx ≥

∣∣∣∣∫ ∞
−∞

sgn(cosπx) {g(x)− k̃(x)} dx
∣∣∣∣

=
∣∣∣∣∫ ∞
−∞

sgn(cosπx)
{(
g(x)− k(x)

)
+
(
k(x)− k̃(x)

)}
dx
∣∣∣∣

=
∣∣∣∣∫ ∞
−∞

sgn(cosπx) {g(x)− k(x)} dx
∣∣∣∣

=
∫ ∞
−∞
|g(x)− k(x)|dx ,

(10.8)

proving the minimality of the integral. If equality occurs in (10.8) we must have

k̃
(
n+ 1

2

)
= g
(
n+ 1

2

)
= k

(
n+ 1

2

)
for all n ∈ Z. Therefore

z 7→ k(z)− k̃(z) (10.9)

is an entire function of exponential type at most π and takes the value zero at each
point of the set Z + 1

2 . From basic interpolation theorems for entire functions of
exponential type (see [32, Vol. II, p. 275]), we conclude that the entire function
(10.9) is identically zero, proving the uniqueness. This completes the proof.

Part III: Applications

By combining the results from Part I and Part II, we are able to solve the
Beurling-Selberg extremal problem for a wide class of even functions, extending the
results in [3], [4], [10] and [17]. As mentioned in the Introduction, some of the L1(R)-
approximations (without the one-sided conditions) recover results of Sz.-Nagy [21,
27]. Sz.-Nagy’s results are applicable to functions with a Fourier transform that
satisfies certain monotonicity conditions for t ≥ δ > 0 and are either even or odd.
It is an interesting open problem to determine if the extremals for all such functions
can be obtained from our methods. Throughout Part III of this paper we consider
extremal minorants/majorants of exponential type 2π, and best approximations of
exponential type π, unless otherwise specified.

11. Positive Definite Functions

Recall that in Part I we worked with the family of Gaussian functions

Gλ(x) = e−πλx
2
,

where λ > 0 is a parameter. The Fourier transform t 7→ Ĝλ(t) is given by

Ĝλ(t) = λ−
1
2 e−πλ

−1t2 .

In Theorems 1, 2 and 3 we constructed, for each λ > 0, the extremal minorant
Lλ(z), the extremal majorant Mλ(z), and the best approximation Kλ(z), for Gλ(x).
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These functions satisfy all the hypotheses (i)-(vi) of the distribution method. The
values of the minimal integrals are given by∫ ∞

−∞
{Gλ(x)− Lλ(x)} dx

= λ−
1
2

(
1− θ2

(
0, iλ−1

))
=

∞∑
n=−∞
n 6=0

(−1)nĜλ(n) ,
(11.1)

∫ ∞
−∞
{Mλ(x)−Gλ(x)} dx

= λ−
1
2

(
θ3
(
0, iλ−1

)
− 1
)

=
∞∑

n=−∞
n 6=0

Ĝλ(n) ,
(11.2)

∫ ∞
−∞

∣∣Gλ(x)−Kλ(x)
∣∣ dx

= λ−
1
2

∫ 1
2

− 1
2

θ1
(
u, iλ−1

)
du =

1
π

∞∑
n=−∞

(−1)n

n+ 1
2

Ĝλ(n+ 1
2 ) .

(11.3)

From the three expressions above and the transformation formulas (1.10), (1.11)
and (1.12) we obtain the estimates∫ ∞

−∞
{Gλ(x)− Lλ(x)}dx = O

(
e−

π
λ
)

as λ→ 0 , and O
(
λ−

1
2
)

as λ→∞ , (11.4)

∫ ∞
−∞
{Mλ(x)−Gλ(x)} dx = O

(
e−

π
λ
)

as λ→ 0 , and O(1) as λ→∞ , (11.5)∫ ∞
−∞

∣∣Gλ(x)−Kλ(x)
∣∣ dx = O

(
e−

π
4λ
)

as λ→ 0 , and O
(
λ−

1
2
)

as λ→∞ . (11.6)

In order to apply Theorems 14, 15, and 16, to the Gaussian family, we require a
non-negative measure ν defined on the Borel subsets of I = (0,∞). We further
require that integrals with respect to ν over the parameter λ appearing in (11.1),
(11.2) and (11.3) are finite. The estimates (11.4), (11.5) and (11.6) show that this
class of measures is relatively large because of the very fast decay at the origin.
One should compare this class of measures with the ones used in [3], [4], and [10],
to fully notice the improvement.

As a first application we present the following result.

Corollary 17. Let ν be a finite non-negative Borel measure on (0,∞) and consider
the function g : R→ R given by

g(x) =
∫ ∞

0

e−πλx
2
dν(λ) . (11.7)

(i) There exists a unique extremal minorant l(z) of exponential type 2π for
g(x). The function l(x) interpolates the values of g(x) at Z+ 1

2 and satisfies∫ ∞
−∞
{g(x)− l(x)} dx =

∫ ∞
0

{ ∞∑
n=−∞
n 6=0

(−1)nĜλ(n)

}
dν(λ).
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(ii) There exists a unique extremal majorant m(z) of exponential type 2π for
g(x). The function m(x) interpolates the values of g(x) at Z and satisfies∫ ∞

−∞
{m(x)− g(x)} dx =

∫ ∞
0

{ ∞∑
n=−∞
n 6=0

Ĝλ(n)

}
dν(λ).

(iii) There exists a unique best approximation k(z) of exponential type π for g(x).
The function k(x) interpolates the values of g(x) at Z + 1

2 and satisfies∫ ∞
−∞
|g(x)− k(x)|dx =

∫ ∞
0

{
1
π

∞∑
n=−∞

(−1)n

n+ 1
2

Ĝλ(n+ 1
2 )

}
dν(λ).

Due to a classical result of Schoenberg (see [22, Theorems 2 and 3]), a function
g : R → R admits the representation (11.7) if and only if its radial extension to
RN is positive definite, for all N ∈ N, or equivalently if the function g

(
|x|1/2

)
is

completely monotone. Recall that a function f(t) is completely monotone for t ≥ 0
if

(−1)nf (n)(t) ≥ 0 for 0 < t <∞, and n = 1, 2, 3, . . . ,

and
f(0) = f(0+).

The last condition expresses the continuity of f(t) at the origin. Using this char-
acterization we arrive at the following interesting examples contemplated by our
Corollary 17.

Example 1. g(x) = e−α|x|
2r
, α > 0, and 0 < r ≤ 1.

Example 2. g(x) =
(
x2 + α2

)−β
, α > 0 and β > 0.

The first example shows that we can recover all the theory for the exponential
function g(x) = e−λ|x| developed in [3], [4] and [10], from the family of Gaussian
functions and the distribution method. The second example includes the Poisson
kernel g(x) = 2λ/(λ2 + 4π2x2), λ > 0. The values of the minimal integrals in these
cases are collected in the Table 1 of Section 8.

Recently, Chandee and Soundararajan [5] used the extremal functions for f(x) =
log
(
x2/(x2 + 4)

)
, described in [3], to obtain improved upper bounds for |ζ( 1

2 + it)|
assuming the Riemann Hypothesis (RH). They remarked that the extremal func-
tions for f(x) = log

(
(x2 +α2)/(x2 +4)

)
, where α 6= 0, which were not contemplated

in the previous literature, arise in bounding |ζ( 1
2 ±α+ it)| assuming RH. They note

that knowledge of the associated extremal functions would lead to improved results
in the critical strip for estimates of the type

log ζ(s) = O

{
(log t)1−2α

log log t

}
(11.8)

where s = (1/2 + α) + it and 0 ≤ α < 1/2. Inequality (11.8) can be found in [29,
Theorem 14.5].

Here we are able to obtain the extremal functions for this class as an application
of Corollary 17.
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Example 3. g(x) = − log
(
x2 + α2

x2 + β2

)
, for 0 < α < β.

Indeed, for 0 < α < β consider the nonnegative finite measure

dν(λ) =

{
e−πλα

2 − e−πλβ2
}

λ
dλ ,

and observe that

− log
(
x2 + α2

x2 + β2

)
=
∫ ∞

0

e−πλx
2

{
e−πλα

2 − e−πλβ2
}

λ
dλ .

In particular, the values of the minimal integrals in the one-sided approximations
are given by∫ ∞

−∞

{
− log

(
x2 + α2

x2 + β2

)
− lα,β(x)

}
dx = 2 log

(
1 + e−2πα

1 + e−2πβ

)
,

and ∫ ∞
−∞

{
mα,β(x) + log

(
x2 + α2

x2 + β2

)}
dx = 2 log

(
1− e−2πα

1− e−2πβ

)
.

We expect to return to the applications of these extremal functions to the theory
of the Riemann zeta-function in future work.

12. Extremal Functions for |x|σ

In this section we write s = σ + it for a complex variable, and we define the
meromorphic function s 7→ γ(s) by

γ(s) = π−s/2Γ
(s

2

)
.

The function γ(s) is analytic on C except for simple poles at the points s =
0,−2,−4, . . . . It also occurs in the functional equation

γ(s)ζ(s) = γ(1− s)ζ(1− s), (12.1)

where ζ(s) is the Riemann zeta-function.

Lemma 18. Let 0 < δ and let ϕ(t) be a Schwartz function supported on [−δ, δ]c.
Then

s 7→
∫ ∞
−∞
|t|−s−1ϕ(t) dt (12.2)

defines an entire function of s, and the identity

γ(s+ 1)
∫ ∞
−∞
|t|−s−1ϕ(t) dt = γ(−s)

∫ ∞
−∞
|x|s ϕ̂(x) dx (12.3)

holds in the half plane {s ∈ C : −1 < σ}. In particular, the function on the right
of (12.3) is analytic at the points s = 0, 2, 4, . . . .

Proof. Because ϕ(t) is supported in [−δ, δ]c, the function t 7→ |t|−s−1ϕ(t) is inte-
grable on R for all complex values s. Hence by Morera’s theorem the integral on the
right of (12.2) defines an entire function. The identity (12.3) holds in the infinite
strip {s ∈ C : −1 < σ < 0} by [25, Lemma 1, p. 117], and therefore it holds in the
half plane {s ∈ C : −1 < σ} by analytic continuation. The left hand side of (12.3)
is clearly analytic at each point of {s ∈ C : −1 < σ}, hence the right hand side of
(12.3) is also analytic at each point of this half plane. �
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Lemma 18 asserts that, for −1 < σ and σ 6= 0, 2, 4, ..., the Fourier transform of
the function x 7→ γ(−σ)|x|σ is given by the function

t 7→ γ(σ + 1)|t|−σ−1

outside the interval [−δ, δ].
We intend to apply the distribution method with the Gaussian. Toward this

end, consider the non-negative Borel measure νσ on (0,∞) given by

dνσ(λ) = λ−
σ
2−1 dλ ,

and observe that we have∫ ∞
0

Ĝλ(t) dνσ(λ) = γ(σ + 1)|t|−σ−1. (12.4)

For −1 < σ, the measure νσ is admissible for the minorant and best approximation
problems according to the asymptotics (11.4) and (11.6). For the majorant problem
we shall require that 0 < σ, according to the asymptotics (11.5).

It will be convenient to introduce the Dirichlet L-function L(s, χ), where χ is
the unique nonprincipal Dirichlet character to the modulus 4. This L-function is
defined in the half plane {s ∈ C : 1 < σ} by the absolutely convergent series

L(s, χ) =
∞∑
n=1

χ(n)n−s =
∞∑
n=0

(−1)n(2n+ 1)−s.

Then the L-function extends by analytic continuation to an entire function of s.
As χ is a primitive character, the L-function satisfies the functional equation

ξ(s, χ) = ξ(1− s, χ),

where s 7→ ξ(s, χ) is the entire function defined by

ξ(s, χ) =
(

4
π

) s+1
2

Γ
(
s+ 1

2

)
L(s, χ). (12.5)

Lemma 19. Let σ > −1. Then we have∫ ∞
−∞

∫ ∞
0

∣∣Gλ(x)−Kλ(x)
∣∣λ−σ2−1 dλ dx =

(
4
π

) 3+σ
2

Γ
(

1 + σ

2

)
L(2+σ, χ). (12.6)

Proof. Using Fubini’s theorem, (1.5), and (1.13), we get∫ ∞
−∞

∫ ∞
0

∣∣Gλ(x)−Kλ(x)
∣∣λ−σ2−1 dλ dx

=
∫ ∞

0

{
λ−

1
2

∫ 1
2

− 1
2

θ1
(
u, iλ−1

)
du

}
λ−

σ
2−1 dλ

=
∫ ∞

0

{ ∞∑
n=−∞

(−1)n

π(n+ 1
2 )
e−πλ

−1(n+ 1
2 )2

}
λ
−σ−3

2 dλ.

(12.7)
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Because ∫ ∞
0

{ ∞∑
n=−∞

1
π|n+ 1

2 |
e−πλ

−1(n+ 1
2 )2

}
λ
−σ−3

2 dλ

=
∞∑

n=−∞

1
π|n+ 1

2 |

{∫ ∞
0

λ
−σ−3

2 e−πλ
−1(n+ 1

2 )2 dλ
}

= γ(1 + σ)
∞∑

n=−∞

1
π

∣∣n+ 1
2

∣∣−σ−2
<∞,

the partial sums of the series on the right of (12.7) are dominated by an integrable
function. Thus we have∫ ∞

0

{ ∞∑
n=−∞

(−1)n

π(n+ 1
2 )
e−πλ

−1(n+ 1
2 )2

}
λ
−σ−3

2 dλ

=
∞∑

n=−∞

(−1)n

π(n+ 1
2 )

{∫ ∞
0

λ
−σ−3

2 e−πλ
−1(n+ 1

2 )2 dλ
}

= γ(1 + σ)
∞∑

n=−∞

(−1)n

π(n+ 1
2 )

∣∣n+ 1
2

∣∣−σ−1

=
(

4
π

) 3+σ
2

Γ
(

1 + σ

2

)
L(2 + σ, χ).

(12.8)

Identities (12.7) and (12.8) imply that the identity (12.6) holds for σ > −1. �

The following lemma can be proved in a similar manner using Theorems 2 and
3, and then applying termwise integration to the series (1.6) and (1.7).

Lemma 20. Let σ > −1. Then we have∫ ∞
−∞

∫ ∞
0

{
Gλ(x)− Lλ(x)

}
λ−

σ
2−1 dλ dx =

(
2− 21−σ) γ(1 + σ) ζ(1 + σ). (12.9)

Let σ > 0. Then we have∫ ∞
−∞

∫ ∞
0

{
Mλ(x)−Gλ(x)

}
λ−

σ
2−1 dλ dx = 2 γ(1 + σ) ζ(1 + σ). (12.10)

Theorems 14, 15 and 16 now apply. The values of the integrals in the following
corollary are obtained from Lemmas 19 and 20.

Corollary 21. Let −1 < σ with σ 6= 0, 2, 4, ... and let

gσ(x) = γ(−σ)|x|σ.

(i) There exists a unique extremal minorant lσ(z) of exponential type 2π for
gσ(x). The function lσ(x) interpolates the values of gσ(x) at Z + 1

2 and
satisfies∫ ∞

−∞
{gσ(x)− lσ(x)} dx =

(
2− 21−σ)γ(1 + σ) ζ(1 + σ). (12.11)
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(ii) If 0 < σ, there exists a unique extremal majorant mσ(z) of exponential type
2π for gσ(x). The function mσ(x) interpolates the values of gσ(x) at Z and
satisfies ∫ ∞

−∞
{mσ(x)− gσ(x)} dx = 2 γ(1 + σ) ζ(1 + σ). (12.12)

(iii) There exists a unique best approximation kσ(z) of exponential type π for
gσ(x). The function kσ(x) interpolates the values of gσ(x) at Z + 1

2 , satis-
fying

sgn(cosπx){gσ(x)− kσ(x)} ≥ 0

and∫ ∞
−∞

∣∣gσ(x)− kσ(x)
∣∣ dx =

(
4
π

) 3+σ
2

Γ
(

1 + σ

2

)
L(2 + σ, χ). (12.13)

Corollary 21 provides a complete description of the extremal functions associated
to x 7→ |x|σ. For σ ≤ −1 these functions are not integrable at the origin, and
therefore no extremals exist, and for σ = 2k, k ∈ Z+, these functions are entire, have
only polynomial growth, and therefore the extremal problem is trivial. Previous
results had been obtained in [3] and [4] for the functions x 7→ |x|σ, −1 < σ < 1,
and in [17] for the functions x 7→ |x|2k+1, with k ∈ Z+.

Next we consider Hilbert-type inequalities. It is well known that there is a
simple relationship between the solution of the Beurling-Selberg extremal problem
for a function g : R→ R and the existence of optimal bounds for Hermitian forms
involving the Fourier transform ĝ. Such bounds for Hermitian forms are called
Hilbert-type inequalities. Detailed proofs of these inequalities can be found in [30,
Theorem 16] or [3, Theorem 7.1]. In particular we report here on the Hilbert-
type inequalities that follow from Corollary 21. They involve the same kernel as
the classical discrete Hardy-Littlewood-Sobolev inequality (see [12, p. 288]), and
generalize the result contained in [3, Corollary 7.2].

Corollary 22. Let ξ1, ξ2, ..., ξN be real numbers such that 0 < δ ≤ |ξm − ξn|
whenever m 6= n. Let a1, a2, ..., aN be complex numbers. If 0 < σ < 1 then

−
(
2− 22−σ)ζ(σ)

δσ

N∑
n=1

|an|2 ≤
N∑
m=1

N∑
n=1
n 6=m

aman
|ξm − ξn|σ

.

If σ = 1 then,

− log 4
δ

N∑
n=1

|an|2 ≤
N∑
m=1

N∑
n=1
n 6=m

aman
|ξm − ξn|

.

And if 1 < σ then

−
(
2− 22−σ)ζ(σ)

δσ

N∑
n=1

|an|2 ≤
N∑
m=1

N∑
n=1
n 6=m

aman
|ξm − ξn|σ

≤ 2ζ(σ)
δσ

N∑
n=1

|an|2.

The constants appearing in these inequalities are the best possible.
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13. Further Examples

We complete our list of applications with two additional examples contemplated
by the distribution method.

Corollary 23. Let α ≥ 0 and consider

x 7→ τα(x) = − log(x2 + α2).

(i) There exists a unique extremal minorant lα of exponential type 2π for τα.
The function lα interpolates the values of τα at Z + 1

2 , and satisfies∫ ∞
−∞
{τα(x)− lα(x)} dx = 2 log

(
1 + e2πα

)
.

(ii) If 0 < α, there exists a unique extremal majorant mα of exponential type
2π for τα. The function mα interpolates the values of τα at Z, and satisfies∫ ∞

−∞
{mα(x)− τα(x)} dx = 2 log

(
1− e2πα

)
.

(iii) There exists a unique best approximation kα of exponential type π for τα.
The function kα interpolates the values of τα at Z + 1

2 , and satisfies

sgn(cosπx){τα(x)− kα(x)} ≥ 0,

and∫ ∞
−∞
|τα(x)− kα(x)|dx =

∫ ∞
0

{
1
π

∞∑
n=−∞

(−1)n

n+ 1
2

Ĝλ(n+ 1
2 )

}
e−πλα

2

λ
dλ.

Proof. For 0 ≤ α we have the identity

− log(x2 + α2) =
∫ ∞

0

{
e−πλ(x2+α2) − e−πλ

}
λ

dλ . (13.1)

Let ϕ be a Schwartz function supported in [−δ, δ]c. An application of Fubini’s
theorem leads to the identity∫ ∞

−∞
− log(x2+α2) ϕ̂(x) dx

=
∫ ∞
−∞

{∫ ∞
0

{
e−πλ(x2+α2) − e−πλ

}
λ

dλ

}
ϕ̂(x) dx

=
∫ ∞

0

∫ ∞
−∞

{
e−πλ(x2+α2) − e−πλ

}
λ

ϕ̂(x) dx dλ

=
∫ ∞

0

{∫ ∞
−∞

Ĝλ(t)ϕ(t) dt
}
e−πλα

2

λ
dλ

=
∫ ∞
−∞

{∫ ∞
0

Ĝλ(t)
e−πλα

2

λ
dλ

}
ϕ(t) dt.

(13.2)

Equation (13.2) provides the Fourier transform of − log(x2 +α2) outside a compact
interval [−δ, δ]. We can therefore apply the distribution method (Theorems 14, 15
and 16) with the Gaussian family, and measure ν on I = (0,∞) given by

dν(λ) =
e−πλα

2

λ
dλ.



38 CARNEIRO, LITTMANN AND VAALER

According to the asymptotics (11.4), (11.5) and (11.6), if α > 0 we can treat the
three approximation problems, and if α = 0 we can only treat the minorant and
the best approximation problem (which is in agreement with the fact that − log |x|
is unbounded from above). The special case of − log |x| (when α = 0) was obtained
in [3] and [4]. �

Corollary 24. Let n ∈ N and define hn by

hn(x) = (−1)n+1x2n log(x2).

(i) There exists a unique extremal minorant ln of exponential type 2π for hn.
The function ln interpolates the values of hn at Z + 1

2 , and satisfies∫ ∞
−∞
{hn(x)− ln(x)} dx =

(
2− 21−2n

)
(2n)! (2π)−2nζ(2n+ 1).

(ii) If n > 0, there exists a unique extremal majorant mn of exponential type 2π
for hn. The function mn interpolates the values of hn at Z, and satisfies∫ ∞

−∞
{mn(x)− hn(x)}dx = 2(2n)! (2π)−2nζ(2n+ 1).

(iii) There exists a unique best approximation kn of exponential type π for hn.
The function kn interpolates the values of hn at Z + 1

2 , and satisfies

sgn(cosπx){hn(x)− kn(x)} ≥ 0,

and ∫ ∞
−∞

∣∣hn(x)− kn(x)
∣∣ dx =

2
π

(2n)! (2π)−2nL(2n+ 2, χ).

Proof. Let ϕ be a Schwartz function supported in [−δ, δ]c. We make use of identity
(13.1) (with α = 0) and repeated applications of Fubini’s theorem. We find that∫ ∞
−∞

hn(x) ϕ̂(x) dx =
∫ ∞
−∞

(−1)n x2n

{∫ ∞
0

{
e−πλx

2 − e−πλ
}

λ
dλ

}
ϕ̂(x) dx

=
∫ ∞

0

∫ ∞
−∞

(−1)n x2n

{
e−πλx

2 − e−πλ
}

λ
ϕ̂(x) dxdλ

=
1

(2π)2n

∫ ∞
0

{∫ ∞
−∞

Ĝ
(2n)
λ (t)ϕ(t) dt

}
1
λ

dλ

=
1

(2π)2n

∫ ∞
−∞

{∫ ∞
0

Ĝ
(2n)
λ (t)
λ

dλ

}
ϕ(t) dt

=
1

(2π)2n

∫ ∞
−∞

(
d
dt

)2n
{∫ ∞

0

Ĝλ(t)
λ

dλ

}
ϕ(t) dt.

(13.3)

Then using (12.4), the last integral on the right of (13.3) can be written as

=
γ(1)

(2π)2n

∫ ∞
−∞

(
d
dt

)2n

|t|−1 ϕ(t) dt

=
(2n)!

(2π)2n

∫ ∞
−∞
|t|−2n−1 ϕ(t) dt.

(13.4)
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Hence, the Fourier transform of hn in the distribution sense, outside the compact
interval [−δ, δ], is given by the function

t 7→ (2n)!
(2π)2n

|t|−2n−1 =
(2n)!

(2π)2n
γ(2n+ 1)−1

∫ ∞
0

Ĝλ(t) dν2n(λ),

where the last identity follows from (12.4) with σ = 2n. An application of Theorems
14, 15 and 16 with measure

dν(λ) =
(2n)!

(2π)2n
γ(2n+ 1)−1λ−n−1dλ,

together with the formulas in Lemmas 19 and 20, lead to the desired result.
�
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