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Abstract 

A new method has been developed to approximate one Gaussian sum by another.  This 

algorithm is being developed as part of an effort to generalize the concept of a particle filter.  In 

a traditional particle filter, the underlying probability density function is described by particles: 

Dirac delta functions with infinitesimal covariances.  This paper develops an important 

component of a more general filter, which uses a Gaussian sum with “fattened” finite-covariance 

"blobs", i.e., Gaussian components, that replace infinitesimal particles.  The goal of such a filter 

is to save computational effort by using many fewer Gaussian components than particles.  Most 

of the techniques necessary for this type of filter exist.  The one missing technique is a re-

sampling algorithm that bounds the covariance of each Gaussian component while accurately re-

producing the original probability distribution.  The covariance bounds keep the "blobs" from 
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becoming too “fat” to ensure low truncation error in Extended Kalman Filter or Unscented 

Kalman Filter calculations.  A new re-sampling algorithm is described, and its performance is 

studied using two test cases.  The new algorithm enables Gaussian sum filter performance that is 

better than standard nonlinear filters when applied in simulation to a difficult 7-state estimation 

problem: the new filter's RMS error is only 60% higher than the Cramer-Rao lower bound while 

the next best filter's RMS error is 370% higher. 

I. Introduction 

Difficulties can arise when solving certain nonlinear dynamic estimation problems.  For 

example, a common solution algorithm known as the Extended Kalman Filter (EKF) has the 

potential to diverge or to yield sub-optimal accuracy 1,2,3,4.  Various algorithms have been 

developed with the goal of improved convergence robustness or accuracy in the presence of 

strong nonlinearities, among them the Unscented or Sigma-Points Kalman Filter (UKF) 1,5, the 

Particle Filter (PF) 2, and the Moving Horizon Estimator 6, also known as the Backward-

Smoothing Extended Kalman Filter 3. 

The PF is attractive for its simplicity and its theoretical guarantee of convergence to the 

optimal result in the limit of very many particles.  The required number of particles to achieve a 

reasonable result, however, can become overwhelming for a state space dimension as small as 

seven 4 or even as small as three or four 7. 

A sensible generalization of the PF is to use Gaussian sums, also known as Gaussian 

mixtures, to represent probability density functions.  In contrast, a PF effectively works with 

representations that are sums of Dirac delta functions.  A Gaussian mixture generalizes this 

concept by using elements that have finite covariances instead of infinitesimal covariances.  A 

sum of elements with non-negligible width may be able to approximate a probability density 
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function with many fewer terms than would be needed by a PF for the same degree of accuracy, 

as measured based on differences of multiple moments or based on the functional norm 

"distance" from the true probability density.  Thus, a Gaussian mixture filter has the potential to 

solve the curse of dimensionality that causes a PF to become impractical for state space 

dimensions above 2 or 3. 

Gaussian mixture filters have been studied extensively, and Refs. 8 and 9 are two early 

papers on this subject.  The proposed filter, described in Ref. 10, is a modified version of typical 

Gaussian mixture filters that are contained in many references, e.g., Refs. 11, 12, 13, and 14.  It 

implements a separate standard EKF dynamic propagation and measurement update for each 

element of its Gaussian mixture.  Reference 10 demonstrates that a good approximation of the 

full nonlinear Bayesian filter calculations can be implemented by using mixand-by-mixand EKF 

calculations along with static Gaussian multiple-model recalculation of the mixand weights after 

the measurement update, as in Ref. 15.  The present paper's re-sampling algorithm is used by the 

filter in Ref. 10 between its dynamic propagation and measurement update steps in order to 

restrict mixand covariances and limit the total number of mixands.  A strength of the Gaussian 

mixture filter of Ref. 10 is the potential accuracy of its mixand-by-mixand EKF dynamic 

propagation and measurement update.  If each element of the Gaussian mixture has a sufficiently 

small covariance, then the EKF calculations will be very accurate.  This is true because a narrow 

distribution implies accuracy of the Taylor series approximations inherent in the EKF 

calculations.  Reference 9 was one of the first to highlight this important property of a Gaussian 

mixture filter that has mixands with small covariances. 

A number of previously published Gaussian mixture filtering schemes employ a re-
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sampling/re-approximation * step.  Some specifically seek to limit the covariances of the 

mixands 12,13,14.  Others use re-approximation for other reasons, such as limiting the number of 

mixands, e.g. Ref. 11.  Similar to the present paper, other efforts have concentrated solely on the 

problem of re-sampling in a way that bounds mixand covariance, but have not implemented full 

filters, e.g., Refs. 16, 17, 18, and 19.  All of the known previous efforts to re-approximate 

Gaussian mixtures subject to covariance restrictions employ 1-dimensional approaches to reduce 

the covariance in a given mixand.  They use an eigenvalue decomposition of a given mixand's 

covariance matrix and split the corresponding 1-dimensional Gaussians in the resulting product 

into multiple 1-dimensional Gaussians with smaller 1-dimensional standard deviations.  A 

number of the methods develop on-line tests for whether a mixand's covariance is too large for 

accurate local filter approximation and, therefore, in need of re-approximation of multiple 

mixands with smaller covariance 12,13,17,19.  This 1-dimensional splitting approach has drawbacks.  

Consider the required number of new mixands to approximate the original mixture closely while 

respecting a given covariance upper limit.  This number might be very large due to the curse of 

dimensionality:  The needed number of new mixands for a single original mixand could scale as 

M n, where M is the number of 1-dimensional mixands with reduced variance along each axis and 

n is the state space dimension.  There is no obvious way for most of these methods to exploit the 

possibility that severe nonlinearities occur only in a subspace of the state space.  References 18 

and 19 employ strategies that could result in splitting only in a subspace, thereby reducing the 

needed number of new mixands.  The method of Ref. 18 enforces maximum covariances along 

each axis independently of the other axes.  The method of Ref. 19 uses a sigma-points fit 
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criterion to choose a single axis of splitting, and it iterates these operations recursively in case 

multiple axes need splitting.  Most of the developed Gaussian mixture re-approximation schemes 

include methods to reduce or bound the number of mixands, e.g. Refs. 12, 13, 14, 18, and 19.  

These methods perform merging as a separate step from the re-approximation that bounds 

mixand covariance, and the merging may not bound the merged covariances.  Two of the 

methods employ the merging algorithm of Ref. 20.  None of these methods develop limiting 

conditions under which their re-approximated Gaussian mixtures converge to the original 

mixture. 

References 21 and 22 develop weight adaptation schemes that seek to improve Gaussian 

mixture dynamic propagation through continuous-time nonlinear differential equations.  If the 

underlying mixands have covariances that are too large, then this approach can lead to 

unacceptably high model truncation errors when applying EKF or UKF calculations to each 

mixand, regardless of how the weights might be adapted during dynamic propagation.  Reference 

16 found that the weight adaptation approach of Refs. 21 and 22 does not yield significant 

improvements for certain orbit determination problems. 

Other Gaussian mixture re-approximation schemes appear in Refs. 20, 23, and 24.  These 

algorithms' primary goal is to approximate an original mixture by a new one that has fewer 

elements.  The ability to reduce the number of elements can arrest the growth of element 

numbers caused by forming products of state and noise mixtures, or it can lower the numbers as 

much as possible when computational resources are at a premium.  Reference 25 finds the 

algorithm of Ref. 20 to be effective for this purpose.  The present algorithm retains reduction of 

the mixand count as a secondary goal, but its main goal is to develop a new approximate mixture 

whose elements all have covariances that satisfy a Linear Matrix Inequality (LMI) upper bound.  



 

6 

This latter goal is of primary importance when using Gaussian mixtures to generalize nonlinear 

particle filtering. 

The present paper's contribution is a new Gaussian mixture re-approximation algorithm.  It 

has three important properties:  First, it chooses elements of the new mixture so that their 

covariances lie below an LMI upper bound, a bound that could vary with mixand mean or some 

other relevant quantity.  This constraint is included as a means of ensuring that element-by-

element EKF or UKF dynamic propagation and measurement update calculations will yield a 

sufficiently accurate approximation of the a posteriori probability density function when using 

this re-sampling algorithm within an approximate Bayesian nonlinear estimation algorithm.  This 

LMI bounding approach obviates the need to implement multiple 1-dimensional splittings of a 

given mixand along its covariance eigenvectors.  Second, the new algorithm chooses new 

mixture elements and their weights in a way that seeks to approximate the original Gaussian 

mixture distribution accurately in the limit of a large number of new mixands.  This paper 

demonstrates the accuracy of its re-approximation in the limiting case.  Third, the new re-

approximation algorithm tries to hold down the needed number of new mixands through a 

combination of strategies.  These strategies include a) maximization of new element covariances 

subject to the LMI constraint, b) selection of new element means and weights in a way that tends 

to limit the number of new elements when some of the original elements already have 

sufficiently small covariances, and c) fusion of elements if their Gaussian sum can be 

approximated well by a single Gaussian element while respecting the LMI covariance bound. 

A significant property of the new re-approximation scheme is its asymptotic approach to 

the importance re-sampling procedure of a standard particle filter 2 in the limit of a very small 

upper bound on the covariances of the new elements.  This asymptotic similarity causes the 
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corresponding Gaussian mixture filter to be a natural generalization of the particle filter. 

This paper develops and analyzes its new Gaussian mixture re-approximation algorithm in 

5 main sections.  Section II defines Gaussian mixtures using square-root information matrix 

notation and gives an overview of the Gaussian mixture re-approximation algorithm.  Section III 

defines an LMI that bounds the covariances of the elements of the new Gaussian mixture.  It 

develops an algorithm for choosing the covariance of a new element in a way that respects this 

limit while deviating as little as possible from the covariance of a corresponding element of the 

original mixture.  Section IV develops an algorithm for merging elements of the original mixture 

subject to a bound on the relative error between elements of the original mixture and their 

merged counterparts.  The relative error is defined using the Integral Square Difference (ISD) 

error metric between two Gaussian mixtures.  Section V presents the algorithm that selects the 

means, covariances, and weights of the elements which constitute the mixture re-approximation.  

This section summarizes the entire re-approximation algorithm, and it demonstrates that the re-

approximated distribution approaches the original one in the limit of a large number of new 

mixands.  Section VI presents simulated example test results that illustrate the performance and 

usefulness of the new algorithm.  Section VII contains conclusions. 

II. Gaussian Mixture Probability Density Functions and Re-Approximation Overview 

A. Gaussian Mixture Definition 

A Gaussian mixture is a weighted sum of Gaussian distributions.  The ith element of the 

mixture, also called the ith mixand or the ith component, can by characterized by its square-root 

information matrix Ri and its mean μi.  The element probability distribution is: 

)]([)]([5.0
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where x and μi are n-dimensional vectors and Ri is an n-by-n matrix.  The covariance matrix of 

this distribution is Pi = T1 −−
ii RR , where the notation ()-T indicates the inverse of the transpose of 

the matrix in question.  The notation N(x;μ,P) indicates the usual normal distribution in the 

vector x that has mean μ and covariance matrix P.  The notation Nsr(x;μ,R) indicates the same 

distribution in x, except that its covariance is characterized by the square-root information matrix 

R in place of the covariance matrix P.  This latter parameterization of the normal distribution 

will be used throughout the remainder of this paper.  It allows a simple LMI solution in Section 

III, and it is consistent with the target application within a Gaussian mixture filter that uses 

numerically stable square-root information filter (SRIF) calculations. 

Each element of a Gaussian mixture also has a weight, wi.  Each weight must be non-

negative.  The sum of all of the weights equals 1.  If there are N elements in the mixture, then 

∑
=

=
N

i
iw

1
1   and  0≥iw   for i = 1, ..., N (2) 

Given the Gaussian component definition in Eq. (1) and weights that obey the constraints 

in Eq. (2), the corresponding Gaussian mixture is 

∑
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It is straightforward to show that this probability density function preserves the unit 

normalization constraint and that its mean and covariance are, respectively, 

∑
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It is necessary to distinguish between two Gaussian mixture distributions in this paper.  

Suppose that one distribution, distribution "a", is characterized by the weights, mean values, and 



 

9 

square-root information matrices wai, μai, Rai for i = 1, ..., Na.  Similarly, suppose that another 

related distribution, distribution "b", is characterized by wbj, μbj, Rbj for j = 1, ..., Nb.  The 

following short-hand notation is used to indicate these two distributions 

∑
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The goal of this paper is to develop a method that picks the parameters of distribution "b", 

Nb and wbj, μbj, and Rbj for j = 1, ..., Nb.  It seeks to pick these parameters in a way that will cause 

pb(x) to be a good approximation of pa(x) while respecting an LMI lower bound on every Rbj
TRbj 

for j = 1, ..., Nb.  The algorithm's LMI lower bound on Rbj
TRbj is an alternate means of enforcing 

an LMI upper bound on the covariance Pbj = T1 −−
bjbj RR . 

Consider the example 1-dimensional original Gaussian mixture pa(x) and its re-

approximation pb(x) that are plotted along the horizontal axis of Fig. 1.  The distribution pa(x) is 

the solid blue curve, and its three weighted constituents are the three dashed green curves.  The 

re-sampled pb(x) is the dash-dotted red curve.  The standard deviations of the 3 pa(x) components 

are 0.42, 0.75, and 2.06, but each pb(x) component has a smaller standard deviation, 0.20.  The 

goal of this paper is to develop an algorithm that generates pb(x) from pa(x) automatically in a 

way that makes its dash-dotted red curve match the blue curve of pa(x) accurately while 

guaranteeing that each component of pb(x) has a sufficiently small covariance. 

B. Overview of Gaussian Mixture Re-Approximation Algorithm 

This paper's re-approximation algorithm can be divided into three major phases.  The first 

phase of the algorithm performs pre-processing calculations that produce candidate new square-
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root information matrices that respect LMI covariance bounds.  It also calculates corresponding 

covariance matrix decrement square-roots, which are used by the final re-sampling algorithm to 

compute the mean values of new mixands.  The second phase applies a merging calculation to 

original Gaussian mixture pa(x) in order to create a modified mixture pa'(x).  This phase attempts 

to re-set some of the original weights to 0 while others are adjusted in a way that produces 

minimal distortion of the original distribution.  The goal of this phase is to structure pa'(x) in a 

way that may reduce the number of mixands in the final re-sampled distribution.  The last phase 

of the algorithm executes a procedure that determines the means, square-root information 

matrices, and weights of the mixands of the new Gaussian mixture pb(x). 

The next three sections define the details of this re-sampling algorithm.  Section III 

develops the LMI techniques needed to accomplish the first phase.  Section IV develops the 

merging operations used by the second phase.  Section V integrates these components into the 

complete re-approximation algorithm. 

III. LMI Bounds on the Covariances of the New Mixture's Components 

A. Covariance and Square-Root Information Matrix Bounds 

This section defines and solves a Linear Matrix Inequality.  This solution is needed in order 

to compute the constrained covariances of the new mixture elements.  The LMI is used to 

enforce the following lower bound on the information matrices of the elements of the new 

Gaussian mixture pb(x): 

Rbj
TRbj  minminRRT≥    for all j = 1, ..., Nb (6) 

where the matrix inequality is defined in the sense that the symmetric matrix on the left minus 

the symmetric matrix on the right equals a positive semi-definite matrix. 
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This lower bound on the information matrix of each mixture element translates into an 

upper bound on each element's covariance: Pbj = T1 −−
bjbj RR ≤ T1 −−

minminRR  = Pmax.  One can prove 

equivalence between this covariance inequality and Eq. (6) as follows:  The latter matrix 

inequality is equivalent to TT1
minbjbjmin RRRR −− ≤  I.  Equation (6) is equivalent to  

1TT −−
minbjbjmin RRRR  ≥  I.  The left-hand sides of these last two matrix inequalities are the inverses 

of each other.  These last two inequalities are interchangeable because the first is true if and only 

if the symmetric matrix on its left-hand side has no eigenvalue greater than 1, and the second is 

true if and only if its left-hand-side matrix has no eigenvalue less than 1. 

If the re-sampling algorithm must be constrained to choose the elements of pb(x) to have 

covariances less than Pmax, then it suffices to enforce the LMI in Eq. (6).  This LMI provides a 

means of trying to ensure that element-by-element UKF or EKF operations on the mixture, as 

per Ref. 10, will yield a good approximation of optimal Bayesian nonlinear filtering because the 

corresponding local approximations of the filter's dynamics and measurement functions will be 

accurate over the likely range of state variability allowed by Pmax. 

Choice of the bound Pmax is problem-dependent, and no general method has been 

developed for choosing this matrix based on the nonlinearities of the filtering problem’s model 

functions.  The choice of Pmax should consider all of the nonlinearities in the filtering problem's 

dynamics and measurement models.  It should be chosen so that a linear Taylor series 

approximation of each nonlinearity is reasonably accurate over the range of state perturbations 

Δx that respect the bound ρ≤− xx ΔPΔ max
1T  with the limit ρ chosen somewhere in the range 1 to 

3. 

Each Rbj square-root information matrix will be subject to one additional bound beyond 
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that of Eq. (6).  The Gaussian mixture re-sampling algorithm chooses the jth component of pb(x) 

with the goal of improving the accuracy with which pb(x) approximates a particular element of 

pa(x), call it the ith element.  In order for the re-sampling algorithm to work well, it is necessary 

that the covariance of the jth component of pb(x) not exceed the covariance of the corresponding 

ith component of pa(x).  Otherwise, the re-sampling algorithm might not be able to produce a 

good approximation of the ith component of pa(x) because the new approximation’s covariance 

will be no smaller than the smallest covariance of any of its components.  Therefore, an 

appropriate additional bound on the new element's square-root information matrix is 

Rbj
TRbj  ≥   Rai

TRai (7) 

This additional bound might appear to artificially restrict the width of pb(x)'s approximation of 

the ith element of pa(x).  This is not the case, however, because the full algorithm includes a 

compensatory widening of the re-sampled distribution through dispersion of the means of the 

new mixands that it uses to approximate the ith mixand of pa(x). 

One might be tempted to impose an additional LMI upper bound on Rbj
TRbj in order to 

avoid unnecessary narrowness of the new mixands.  Instead, an optimization of Rbj is used as a 

means of limiting the size of Rbj
TRbj.  It provides an effective "soft" upper limit and is easy to 

implement, as shown in the next subsection. 

B. Optimal Solution to a Pair of LMIs 

The algorithm for choosing Rbj seeks the matrix that satisfies the LMIs in Eqs. (6) and (7) 

while simultaneously minimizing two squared weighted-norm metrics: Trace( 1TT −−
minbjbjmin RRRR ) 

and Trace( 1TT −−
aibjbjai RRRR ).  This constrained minimization prevents Rbj from being any larger 

than needed, which yields the largest possible corresponding covariance matrix.  This is a good 
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way to choose Rbj because the largest possible covariance matrix tends to enable pb(x) to 

approximate pa(x) accurately using the fewest possible mixands. 

The optimal solution procedure for this LMI starts by computing the singular value 

decomposition of the matrix 1−
minai RR : 

T
bjbjbj VSU   =  1−

minai RR  (8) 

where Ubj and Vbj are orthonormal matrices and Sbj = diag(σbj1,...,σbjn) is a diagonal matrix with 

the n positive singular values σbj1, ..., σbjn on its diagonal. 

If σbjk ≥  1, for all k = 1, ..., n, then the choice Rbj = Rai respects the LMIs in Eqs. (6) and (7) 

in an optimal manner.  Otherwise, one forms the n-by-n diagonal matrix 

bjfullSδ   =  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

)0,1max(0

0)0,1max(

2

2
1

bjn

bj

σ

σ

L

MOM

L

 (9) 

Next, one deletes all of the zero-valued rows of δSbjfull in order to form the matrix δSbj.  That is, 

row k of δSbjfull is deleted for every k such that σbjk ≥  1.  This latter matrix is then used to form 

the matrix: 

δRbj  =  minbjbj RVS Tδ  (10) 

Finally, one uses orthonormal/upper-triangular (QR) factorization 26 in order to compute Rbj as 

follows: 

⎥⎦
⎤

⎢⎣
⎡

0
bj

bj
R

Q   =  ⎥⎦

⎤
⎢⎣

⎡

ai
bj

R
Rδ

 (11) 

where Qbj is an orthonormal matrix and Rbj is a square, upper-triangular matrix. 

One can prove that this Rbj matrix satisfies the LMIs of Eqs. (6) and (7) if one recognizes 
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the following implication of Eq. (11): that 

Rbj
TRbj = Rai

TRai + δRbj
TδRbj (12) 

The LMI in Eq. (7) follows directly from this relationship.  One can derive Eq. (6) by 

multiplying this relationship on the left by T−
minR  and on the right by 1−

minR .  One can then 

substitute in Eqs. (8) and (10) to show that 1TT −−
minbjbjmin RRRR  = TTT )( bjbjbjbjbjbj VSSSSV δδ+  = 

TTT )( bjbjfullbjfullbjbjbj VSSSSV δδ+ .  The last matrix expression within the parentheses is a diagonal 

matrix, all of whose diagonal elements are no less than 1.  Therefore, 1TT −−
minbjbjmin RRRR ≥  I, 

which is equivalent to Eq. (6). 

It is straight-forward to show that the Rbj matrix of Eq. (11) minimizes both of the squared 

weighted-norm metrics Trace( 1TT −−
minbjbjmin RRRR ) and Trace( 1TT −−

aibjbjai RRRR ) subject to the LMI 

bounds in Eqs. (6) and (7).  Additionally, consider the eigenvalues of the two matrix differences 

(Rbj
TRbj - minminRRT ) and (Rbj

TRbj-Rai
TRai).  Both sets of eigenvalues are non-negative, in 

accordance with the LMIs in Eqs. (6) and (7).  Consider the union of the eigenvalues of these 

two positive semi-definite matrices, a set of 2n eigenvalues.  It is straight-forward to prove that n 

or more of these eigenvalues equal zero.  These properties indicate that Rbj
TRbj is as close as 

possible, in some matrix sense, to minmin RRT  and to Rai
TRai.  Closeness to Rai

TRai tends to reduce 

the number of required new mixands for a given level of probability density approximation 

accuracy. 

Note that the LMI solution Rbj is not unique.  It can be left-multiplied by any orthonormal 

matrix without changing any of the properties described in this subsection, except for upper-

triangularity.  This non-uniqueness presents no problems.  Any Rbj square-root information 
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matrix with the given properties will serve for the development of the new Gaussian mixture 

pb(x). 

C. Covariance Matrix Decrement Square Roots 

A covariance matrix decrement must be computed for each original mixand of distribution 

pa(x).  It is needed in order to define a modified distribution from which the mixand mean values 

of the new pb(x) distribution will be sampled in the overall re-approximation algorithm of 

Section V.  This subsection defines the covariance matrix decrement and develops an algorithm 

to compute it. 

The matrix δRbj from Eq. (10) represents the square-root of an increment to an information 

matrix.  The corresponding covariance decrement is 

δPaibj  =  Pai  -  Pbj  =  T1T1 −−−− − bjbjaiai RRRR  =  T
aibjaibj YY δδ  (13) 

This covariance decrement is positive semi-definite, and δYaibj is its matrix square-root.  This 

square root is needed in Section V.  It can be computed using following formula 

δYaibj  =  1TT1 −−−
djaibjaiai RRRR δ  (14) 

where the matrix Rdjai is determined from the QR factorization 

⎥⎦
⎤

⎢⎣
⎡

0
djai

dj
R

Q   =  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

I
RR bjai

TTδ  (15) 

with Qdj being an orthonormal matrix and Rdjai being a square, upper-triangular matrix. 

One can prove that δYaibj from Eq. (14) satisfies Eq. (13) by squaring the δYaibj expression 

in Eq. (14), as on the right-hand side of Eq. (13), and by algebraically manipulating the result to 

show that it equals T1T1 −−−− − bjbjaiai RRRR .  This manipulation requires the formula T1 −−
djaidjai RR  = I - 
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TT1
bjbjbjbj RRRR δδ −− .  This latter formula can be proved by squaring both sides of Eq. (15) to show 

that djaidjaiRRT  = I + TT1
bjaiaibj RRRR δδ −−  and by using the matrix inversion lemma 27 along with a 

substitution based on Eq. (12).  The next step of the proof of Eq. (13) replaces T1 −−
djaidjai RR  in the 

formula for T
aibjaibj YY δδ  with the equivalent expression given above.  Finally, one performs 

several associative re-groupings of matrix multiplications and two substitutions for bjbj RR δδ T  that 

are based on Eq. (12). 

The covariance decrement square-root matrix δYaibj has some interesting properties.  It has 

only as many columns as δRbj has rows.  This number equals the number of singular values of Sbj 

that satisfy σbjk < 1.  The matrix δYaibj is not unique.  It can be right-multiplied by any 

orthonormal matrix without changing its satisfaction of Eq. (13).  Any δYaibj matrix that satisfies 

this equation will serve for Section V's re-sampling algorithm. 

IV. Algorithm for Merging Elements of the Original Mixture 

In the dynamic filtering application, it is possible that two or more elements of a Gaussian 

mixture will tend to converge to have nearly the same mean and covariance, as was discovered 

during the research that produced Ref. 28.  In such a situation, it is inefficient to maintain two or 

more separate mixands when a single mixand with an increased weight could accurately 

approximate the several original mixands.  Therefore, a method has been developed to search for 

redundancies in the original Gaussian mixture pa(x) and to remove them in order to form a 

modified mixture called pa'(x). 

This merging scheme constitutes an ad hoc method to try to restrict the number of mixands 

in the re-sampled distribution.  It is unlikely to produce the optimal re-sampled distribution for a 
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given bound on the number of mixands.  It is implemented because it may substantially reduce 

the number of mixands in the final re-sampled distribution without significantly affecting the 

distribution's fidelity.  This is especially likely when the algorithm is being used within a 

Bayesian Gaussian mixture filter which has converged to a narrow final distribution that yields 

very accurate state estimates 28. 

A. Selection of Original Mixands for Possible Merging 

Merging of Gaussian mixture pa(x) mixands is attempted only for those mixands with 

sufficiently small covariances, i.e., ones that already satisfy the information matrix lower-bound 

LMI in Eq. (6).  This restriction on candidates for merging represents an ad hoc attempt to merge 

only those mixands that are likely to have converged on top of each other.  It exploits the 

authors' experience that filter convergence tends to produce simultaneous overlapping of 

mixands and smallness of mixand covariances.  As will be discussed in Section V, each original 

mixand with a sufficiently narrow covariance produces at most one re-sampled mixand.  

Therefore, the merging of such mixands in the original distribution can further reduce the 

number of mixands in the re-sampled distribution. 

Suppose that the subset of mixands with the required properties for merging is used to 

define a new Gaussian mixture  
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where the set of means and square-root information matrices used to define pc(x), {(μc1;Rc1), ..., 

(μck;Rck), ... ( cc cNcN R;μ )} is chosen to be the subset of {(μa1;Ra1), ..., (μai;Rai), ... 

( aa aNaN R;μ )} whose elements obey: 

wai  > 0 and  Rai
TRai  minminRRT≥     (17) 



 

18 

Suppose that i(k) defines the mapping from the pc(x) mixand index to the corresponding pa(x) 

mixand index so that (μck;Rck) = (μai(k);Rai(k)) for k = 1, ..., Nc.  Then the new weights used to 

define pc(x) are re-normalized versions of the corresponding subset of the pa(x) weights: 
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Thus, pc(x) is a Gaussian mixture that represents a component of the original pa(x) distribution in 

the sense that pa(x) can be expressed as a weighted sum of pc(x) and another Gaussian mixture. 

B. Merging through Mixand Re-Weighting 

The ad hoc merging algorithm attempts to find a new set of weights for pc(x) that includes 

some zero-valued weights and that results in the modified distribution 
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The new weights are wc'k for k = 1, ..., Nc.  The zero-valued weights correspond to mixands that 

will be dropped during the re-sampling process.  In effect, the dropped mixands are merged into 

the remaining mixands. 

The new weights must be chosen in a way that keeps the functional 2-norm of the 

difference between pc(x) and the new pc'(x) below a small relative error bound: 

2

5.0
2

5.0
2

'2' ||)(||)]([)]()([||)()(|| xxxxxxxx cccccc pεdpεdpppp =
⎭
⎬
⎫

⎩
⎨
⎧
∫≤

⎭
⎬
⎫

⎩
⎨
⎧
∫ −=−

∞

∞−

∞

∞−
 (20) 

where ε is a small positive relative error limit, normally something on the order of 10-2 to 10-4 or 

smaller.  The integrals here and throughout the remainder of the paper are multi-dimensional 

integrals over the vector space associated with the corresponding differential hyper volume 

element, in this case the n-dimensional space associated with dx.  This bound ensures that the 
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dropping of mixands does not substantially alter the initial Gaussian mixture. 

C. Definition and Use of Integral Square Difference 

The probability density function relative error constraint in Eq. (20) can be re-formulated 

by using the ISD between probability density functions.  Given an original probability density 

function pa(x) and a candidate approximation pb(x), the ISD provides a measure of the accuracy 

with which pb(x) approximates pa(x) 23. It is defined to be the integral of the square of the 

difference between these two probability density functions: 
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This quantity is non-negative, and its square root is the functional 2-norm of the difference 

between the probability distributions: 
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A very small value of JISD indicates that pb(x) is a very good approximation of pa(x).  

Distribution pb(x) perfectly matches pa(x) if and only if JISD = 0. 

Reference 23 presents analytic formulas for evaluating the integral in Eq. (21).  The 

formulas used here are modified versions of those found in Ref. 23.  They account for the use of 

square-root information matrices in place of mixand covariance matrices.  Suppose that one 

defines weight vectors for the two probability density functions: wa = [wa1;wa2;wa3;...;waNa] and 

wb = [wb1;wb2;wb3;...;wbNb].  Then the integral in Eq. (21) can be written as a quadratic form in 

these two vectors: 

bbbbbabaaaaaISD HHHJ wwwwww TTT 2 +−=  (23) 

where Haa, Hab, and Hbb are matrices with the respective dimensions Na-by-Na, Na-by-Nb, and Nb-
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by-Nb.  The matrices Haa and Hbb are symmetric and at least positive semi-definite.  The 

elements of these matrices can be evaluated using the formulas: 

∫
∞

∞−
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∫
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∫
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where the notation []ik indicates the row-i/column-k element of the matrix in question. 

The integrals in Eqs. (24a)-(24c) can be evaluated analytically by using the normalization 

property of a Gaussian distribution and the fact that the product of two Gaussian distributions is 

itself a Gaussian distribution, although not properly normalized 23.  These integrals take the 

general form: 
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where the n-by-n matrices cdR  and cdR~  are computed based upon the following QR 

factorization: 
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with Q being a 2n-by-2n orthonormal matrix and cdR  an n-by-n upper-triangular matrix.  Q1 

equals the first n columns of Q, and Q2 equals the last n columns.  These matrices are used to 

compute 
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Equations (25)-(27) have been derived using a lengthy, non-intuitive sequence of matrix/vector 

manipulations that have been omitted for the sake of brevity.  In the special case where Rc = Rd, 

it suffices to use cdR  = cR2  and cdR~  = cR)2/1( , and in this case the Eq. (25) integral 

becomes 
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Using the concept of the ISD, the probability density function relative error constraint in 

Eq. (20) becomes, after squaring both sides of the inequality and using the formulas in Eqs. (23)-

(24c): 

cccccccccc HH wwwwww T2
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where wc = [wc1;wc2;wc3;...;wcNc], wc' = [wc'1;wc'2;wc'3;...;wc'Nc], and  
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D. Determination of Merged Weights 

Given these definitions, the merged weight vector wc' is chosen by solving the following 

mixed real/integer optimization problem: 

find:  ];...;;;[ '3'2'1'' cNccccc wwww=w  (31a) 

to maximize: Number of zero-valued elements in wc' (31b) 

subject to: cNcccc wwww '3'2'1' ...1 ++++=  (31c) 

 kcw '0 ≤    for k = 1, ..., Nc (31d) 
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The integer part of this constrained optimization problem comes from the fact that its 

performance index is the integer count of zero-valued elements of wc'. 

The optimization problem in Eqs. (31a)-(31e) can be solved using brute-force techniques.  

The number of zero-valued elements in wc' can never exceed Nc - 1 due to the weights' 

normalization constraint in Eq. (31c).  A brute-force optimization works through all possible 

combinations of zero-valued elements of wc', starting with the Nc combinations that have Nc - 1 

zero-valued elements, next working with the Nc(Nc-1)/2 combinations that have Nc - 2 zero-

valued elements, etc.  Thus, the Nc combinations that have the highest possible Eq. (31b) 

performance are tried first, followed by the Nc(Nc-1)/2 combinations that have the next highest 

possible Eq. (31b) performance, etc.  For each such combination, the values of the non-zero-

valued wc' elements are found that minimize the left-hand side of Eq. (31e).  This minimization 

can be carried out using a few matrix-vector calculations because the minimized function is 

quadratic in the free elements of wc' while the equality constraint in Eq. (31c) is linear in these 

elements 26.  If all such elements are positive and if the resulting minimum respects the 

inequality in Eq. (31e), then the optimum has been achieved, and there is no need to try any 

combinations with fewer zero-valued wc' elements.  All combinations with the same number of 

zero-valued wc' elements are tried.  If there are multiple possible feasible wc' solutions that yield 

the same number of zero-valued elements, then the one with the lowest left-hand side of Eq. 

(31e) is selected because that one achieves the best fit to the original pc(x) distribution.  If there 

are no feasible points with zero-valued elements of wc', then the new weights are set equal to the 

old weights: wc' = wc. 

It may be possible to solve the mixed integer/real optimization problem in Eqs. (31a)-(31e) 
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without resorting to brute-force techniques, similar to the algorithm in Section 4 of Ref. 29.  The 

computational cost of the brute-force method grows with increasing Nc in a combinatorial 

manner.  Therefore, Nc should be restricted to a relatively small number if nothing better than the 

brute-force algorithm has been implemented. 

E. Re-Weighting of Original Gaussian Mixture 

The solution to the re-weighting optimization problem in Eqs. (31a)-(31e) is used to define 

new weights for the original Gaussian mixture pa(x).  These new weights are 
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The lower line in this formula ensures that  
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because of the normalization constraint on the elements of wc' in Eq. (31c).  The effect of Eq. 

(33) is to retain the composite weight of the merged set of mixands relative to the other mixands.  

Given that the other mixand weights of pa(x) remain unchanged, Eq. (33) also ensures that the 

new weights in Eq. (32) are normalized. 

The new weights in Eq. (32) are used to define a modified version of the original Gaussian 

mixture: 
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The constraint in Eq. (31e) ensures that this mixture will be very close to the original pa(x) 

mixture in the ISD sense.  If the optimization problem in Eqs. (31a)-(31e) fails to find any 

mixand weights that can be set to zero safely, then pa'(x) will be identical to pa(x). 
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V. Sampling Algorithm that Generates the New Gaussian Mixture 

The heart of the Gaussian mixture re-sampling algorithm involves choosing the elements of 

the new pb(x) and their weights so that this mixture will closely approximate the modified 

original mixture pa'(x).  Recall that the elements and weights of pb(x) are, respectively, 

Nsr(x;μbj,Rbj) and wbj for j = 1, ..., Nb, as per Eq. (5b).  The design of pb(x) involves choosing the 

means, square-root information matrices, and weights, μbj, Rbj, and wbj for j = 1, ..., Nb.  This 

section describes how these choices are made.  It also summarizes the entire algorithm and 

demonstrates the convergence of pb(x) to pa'(x) in the limit of large Nb. 

A. Pre-Processing of Square-Root Information Matrices 

The LMI solution calculations from Section III are carried out prior to the selection of new 

mixand components for distribution pb(x).  Each new component of pb(x) is based on a 

component of pa'(x) through a type of sampling.  Its mean and covariance will be based on the 

original mean and covariance of the corresponding pa'(x) element, but with modifications which 

flow from any square-root information matrix perturbation that is required to satisfy the LMIs in 

Eqs. (6) and (7).  Therefore, it is necessary to pre-compute quantities associated with the 

perturbation of the square-root information matrix of each pa'(x) mixand. 

For each i = 1, ..., Na, the following LMI pre-processing calculations are performed:  Use 

Eqs. (8)-(11) to compute Rbj, and rename this candidate distribution-b square-root information 

matrix aiR~ .  Next, use Eqs. (14) and (15) to compute δYaibj, and rename this covariance 

decrement square-root matrix aiY~δ .  Let ndYai denote the number of columns of aiY~δ .  It is no 

larger than n.  If the original mixand square-root information matrix Rai already satisfies the LMI 

in Eq. (6), then aiR~  will equal Rai, aiY~δ  will be an empty matrix, and ndYai will equal 0.  
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B. High-Level Steps of Gaussian Mixture Re-Approximation Algorithm 

The overall re-approximation algorithm has been outlined in Subsection II.B.  It consists of 

three major phases that are defined by the following six steps: 

a) Compute narrowed distribution square-root information matrices aiR~ , covariance 

matrix decrement square roots aiY~δ , and the latter matrices' column dimensions 

ndYai for i = 1, ..., Na, as described in Subsection V.A.  These calculations are carried 

out using Eqs. (8)-(11), (14), and (15), except that aiR~  takes the place of Rbj and 

aiY~δ  takes the place of δYaibj in those equations.  ndYai equals the number of columns 

in aiY~δ , which will be zero if aiR~  = Rai. 

b) Choose the set {(μc1;Rc1), ..., (μck;Rck), ... ( cc cNcN R;μ )} to be the subset of 

{(μa1;Ra1), ..., (μai;Rai), ... ( aa aNaN R;μ )} whose elements obey the conditions in 

Eq. (17).  These define the truncated Gaussian mixture pc(x) in Eq. (16).  If the 

initial count of elements in this set, Nc, is larger than some pre-specified target, 

Nctarget, then discard from this set the (Nc-Nctarget) elements that have the lowest 

corresponding weights in pa(x). 

c) Solve the optimization problem in Eqs. (31a)-(31e) in order to compute the 

modified weights that define the modified truncated Gaussian mixture pc'(x). 

d) Use Eq. (32) to compute the modified weights that define the merged modification 

of the original Gaussian mixture, pa'(x). 

e) Select Nbtarget, the target number of mixands in Gaussian mixture pb(x), initialize 

l0(i) = 0 for i = 1, ..., Na, and initialize empty arrays for μbj, Rbj, and wunbj that will 

store, respectively, the means, square-root information matrices, and un-normalized 
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weights that will be generated by the 9-step algorithm that will be presented in 

Subsection V.C. 

f) Execute the 9-step algorithm that is defined in Subsection V.C. 

The first major algorithm phase is Step a), the LMI pre-computation phase.  Steps b)-d) 

implement phase two, the mixand merging phase.  Steps e) and f) correspond to phase three, the 

final determination of new mixands.  At the end of Step f), the new mixture pb(x) is completely 

defined via μbj, Rbj, and wbj for j = 1, ..., Nb. 

C. A Sampling-Based Approach for Choosing Means, Square-Root Information Matrices, 

and Weights of the Re-Sampled Gaussian Mixture 

The algorithm for choosing the components and weights of pb(x), as defined in Eq. (5b), 

amounts to a sampling algorithm from a Gaussian mixture that is a modified version of pa'(x).  

This modified version has the same means and weights, μai and wa'i for i = 1, ..., Na, but it has 

modified covariances.  In place of the covariance Pai = T1 −−
aiai RR , each mixand's covariance is the 

narrowed value aiP~δ = T~~
aiai YY δδ .  If aiY~δ  is an empty matrix and ndYai = 0, then the 

corresponding covariance is aiP~δ = 0; i.e., the modified mixand is a Dirac delta function. 

The re-sampling algorithm starts with a target number of pb(x) mixands, Nbtarget, and it 

initializes and updates various quantities during its sampling procedure.  These quantities include 

the current total number of actual new mixands, j, along with the mean, square-root information 

matrix, and un-normalized weight of each of these new mixands.  These latter quantities are, 

respectively, μbl, Rbl, and wunbl for l = 1, ..., j.  Another set of stored quantities are the indices of 

the first new mixands of distribution pb(x) that have been sampled from given mixands of 

distribution pa'(x).  Let these indices be designated as l0(i) for i = 1, ..., Na.  These indices are 
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initialized to the values l0(i) = 0 for i = 1, ..., Na in order to indicate that no mixands of 

distribution pb(x) have yet been sampled from the corresponding mixands of distribution pa'(x). 

Given these definitions, the re-sampling algorithm executes the following steps. 

1. Set j = 1 and seed random number generators. 

2. Use a random number generator to draw a scalar sample β from the uniform 

distribution U[0,1] and find the unique value of i in the range 1 to Na such 

that  
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where ε is any small positive number, not necessarily the same number as is 

used in Eq. (31e). 

3. If ndYai > 0, then use a random number generator to sample η from the ndYai-

dimensional, zero-mean, identity-covariance Gaussian distribution N(η;0,I), 

set μbj = μai + ηaiY~δ , and skip to Step 6.  Otherwise, continue to Step 4. 

4. If l0(i) = 0, then set μbj = μai and skip to Step 6.  Otherwise, continue to Step 

5. 

5. Set m = l0(i), increment wunbm by 1, decrement j by 1, and skip to Step 8. 

6. Set Rbj = aiR~  and wunbj = 1. 

7. If l0(i) = 0, then re-assign l0(i) = j. 

8. If btarget
j

l
unbl Nw <∑

=1
, then increment j by 1 and return to Step 2.  

Otherwise, continue to Step 9. 
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9. Set Nb = j, set wbk = wunbk/Nbtarget for k = 1, ..., Nb, and terminate. 

The steps of this algorithm can be interpreted as follows:  Step 2 samples the discrete 

probability "mass" function over the Gaussian mixture weights in order to select mixand i from 

distribution pa'(x).  Mixand i normally will be used to define the new jth mixand of distribution 

pb(x).  If ndYai = 0 and l0(i) > 0, however, then the selection of mixand i will result only in an 

increase of the weight for already existing mixand l0(i). 

Steps 3 or 4 are executed if there is a new mixand element, followed by Steps 6 and 7.  

Step 3 defines the mean of the new jth mixand by sampling from a narrowed Gaussian 

distribution centered at the mean of the corresponding pa'(x) mixand.  Step 4 is like Step 3, 

except that the narrowed Gaussian has zero covariance so that the mean of the new pb(x) mixand 

exactly equals the mean of the original pa'(x) mixand.  This situation occurs when the original 

mixand already has a small enough covariance, one whose square-root information matrix 

already satisfies the LMI in Eq. (6). 

Step 5 executes when the importance sampling algorithm calls for more than one sample 

from a pa'(x) mixand whose original square-root information matrix satisfies the LMI in Eq. (6).  

The algorithm could be re-designed to ignore this situation, in which case distribution pb(x) 

would contain multiple identical mixands because the exact same mean and square-root 

information matrix would be assigned in multiple iterations of, respectively, Steps 4 and 6.  Step 

5 circumvents this inefficiency by increasing the weight of an existing pb(x) mixand instead of 

creating an identical new mixand.  This strategy reduces computational cost for any Gaussian 

mixture filter that uses this re-sampling method. 

Step 8 tests for termination by determining whether the number of attempts to add new 

mixands is equal to Nbtarget.  The algorithm terminates when the total number of iterations of 
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Steps 2-8 equals Nbtarget because the sum of the un-normalized weights wunbl in the Step-8 test 

increases by 1 for each iteration of these steps.  This happens because one and only one of the 

un-normalized weights gets incremented by 1 during each iteration.   The value of j undergoes a 

net increment of 1 for each iteration of Steps 2-8 if and only if one or both of the following 

conditions holds true: ndYai > 0 or l0(i) = 0.  Otherwise, Step 5 is executed as part of the iteration, 

and the net increment to j is 0. 

The index j keeps track of the distribution pb(x) mixand that is in the process of being 

created.  Step 5 decrements this index in recognition of the fact that no new mixand is created if 

the new mixand would have been identical to an existing one.  At the end of the algorithm in 

Step 9, Nb is set equal to j and is guaranteed to be less than or equal to Nbtarget.  Step 9 normalizes 

the un-normalized weights in order to compute the pb(x) distribution's final weights. 

D. Discussion of Algorithm 

The value Nctarget is an upper bound for the number of mixands to consider in the merging 

calculations of Steps b)-d) of the executive algorithm of Subsection V.B.  This value must not be 

too large.  Otherwise, the brute-force solution procedure for the optimization problem in Eqs. 

(31a)-(31e) could become too expensive computationally.  Recall that this procedure is outlined 

immediately after Eqs. (31a)-(31e) in Subsection IV.D. 

Two parts of the algorithm have the potential to reduce the eventual number of mixands in 

distribution pb(x).  The first is the mixand merging procedure in Steps b)-d) of the main 

algorithm of Subsection V.B.  The second is the mixand re-weighting operation in Step 5 of 

Subsection V.C, which happens in lieu of adding a redundant new mixand.  Suppose that a 

nonlinear Bayesian filter converges after initial transients to a distribution that is nearly Gaussian 

and suppose that the converged distribution's covariance respects the upper bound that 
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corresponds to the square-root information matrix LMI in Eq. (6).  In this case, Steps b)-d) of the 

summary algorithm are expected to merge mixands that have any appreciable remaining weight.  

Furthermore, Step 5 of the Subsection V.C algorithm is expected to be reached many times for 

the few mixands with appreciable non-zero weight that will remain after the merging procedure.  

The net result will be eventual convergence to a re-sampled Gaussian mixture pb(x) that has 

relatively few mixands.  These techniques have succeeded in reducing the number of re-sampled 

mixands in several example applications to nonlinear Gaussian mixture filtering. 

E. Demonstration that the Re-Sampled Gaussian Mixture Converges to the Original in the 

Limit of a Large Number of Mixands 

It is possible to demonstrate that pb(x) becomes an arbitrarily good approximation of pa'(x) 

in the limit as Nb becomes arbitrarily large.  If ε in Eq. (31e) of Subsection IV.D is set low 

enough to ensure that pa'(x) is a very good approximation of pa(x), then pb(x) will also converge 

to pa(x) in the limit of large N.  The choice of ε is up to the algorithm designer, and the only 

drawback of choosing a very small ε will be a failure to merge some mixands in distribution 

pa(x) and, therefore, the failure to reduce the number of mixands in distribution pb(x) as much as 

one might like.  Therefore, given the possibility of using a sufficient number of mixands in pb(x), 

the following demonstration that pb(x) converges to pa'(x) is easily extensible to a demonstration 

that pb(x) can be made to converge to pa(x). 

In the limit of very large Nb, it is obvious that the probability mass function sampling in 

Step 2 of the Section V.C algorithm guarantees the following property of the weights of 

distribution pb(x): 

∑=
∈ biJj

bjia ww '    for i = 1, ..., Na (36) 



 

31 

where Jbi is the set of indices of all distribution-pb(x) mixands that have been generated from 

mixand i of distribution pa'(x) in Steps 2-7 of the algorithm of Subsection V.C. 

Next, consider the Monte-Carlo method of selecting the mixand means of distribution 

pb(x).  It is given in Steps 3 and 4 of the Subsection V.C algorithm.  When coupled with Eq. (36), 

this Monte-Carlo procedure for generating mixand means implies the following:  A good 

approximation of pb(x) in the limit of large Nb can be derived via partial replacement of the re-

sampled distribution's mixand summation with integral equivalents.  That is: 

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑=

= ∈

a

bi

N

i Jj
aibjsrbjb Rwp

1
)~,;()( μxx N  

∑ ∫ +≅
=

∞

∞

aN

i
iisraiiaiaisria dIRYw

1
' ),0;()~],~[;( ηηημ
-

NN δx  (37) 

Note that the use of aiR~  in place of Rbj in the fist line of Eq. (37) is consistent with Step 6 of the 

algorithm of Subsection V.C. 

The weight and integral in the second line of Eq. (37) approximate the summation over all j 

∈  Jbi in the first line by virtue of the way that μbj is chosen in Step 3 or 4 of the Subsection V.C 

algorithm.  The zero-mean, identity-covariance dummy integration variable ηi takes the place of 

the random-number-generated vector η in Step 3 of the algorithm of Subsection V.C.  Recall that 

its dimension is ndYai.  If a particular mixand of distribution pa'(x) yields the dimension ndYai = 0 

because aiR~  =  Rai satisfies the LMI in Eq. (6), then Step 4 of the algorithm of Subsection V.C 

applies rather than Step 3.  There is no random-number-generated η vector in this case, and aiY~δ  

is an empty matrix.  Nevertheless, the formula in Eq. (37) can be retained through a re-definition 

of the aiY~δ  matrix to be an n-by-1 matrix of zeros, which redefines ndYai to equal 1.  This 
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redefinition maintains the needed relationship between Rai, aiR~ , and aiY~δ  that is given by Eq. 

(13) if one makes the substitutions Rbj = aiR~  and δYaibj = aiY~δ . 

The ηi integral in Eq. (37) can be evaluated analytically.  One way to evaluate it is to 

employ the unit normalization formula for a standard vector Gaussian distribution.  The resulting 

integral derivation involves several transformations and a significant amount of matrix algebra.  

Its details have been omitted for the sake of brevity.  After integration, Eq. (37) becomes 
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The far right-hand side of this equation is exactly the definition of Gaussian mixture pa'(x), 

thereby demonstrating the convergence of pb(x) to pa'(x) in the limit of large Nb. 

VI. Examples of Algorithm Performance 

A. Fidelity of the Re-Sampled Gaussian Mixture Approximation 

The algorithm described in Sections II-V has been implemented in MATLAB and tested on 

several problems.  Consider the 1-dimensional example whose original Gaussian mixture pa(x) 

and re-sampled mixture pb(x) are plotted in Fig. 1.  The original pa(x) has 3 components and is 

plotted in solid blue along the horizontal axis.  The approximate pb(x) has 5000 components and 

is plotted as the dash-dotted red curve along the same axes.  The 3 components of pa(x) are 

plotted as dashed green curves.  Their respective weights are 0.4410, 0.0687, and 0.4903, their 

mean values are -1.0106, 0.5077, and 0.6145, and their standard deviations are 0.7462, 0.4165, 

and 2.0603.  The components of pb(x) all have the same standard deviation: 0.20.  This is the 

upper limit imposed by the LMI in Eq. (6).  As can be seen from Fig. 1, pb(x) approximates pa(x) 

very well.  The cost of achieving this excellent fit is the need to use 5000 components to 
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construct pb(x).  A fit with an Nb count of only 1000 mixands (not shown) has noticeably less 

accuracy.  

B. Propagation of Probability Density through a Nonlinear Function using a Re-Sampled 

Distribution with Narrowed Mixand Covariances 

Figure 1 illustrates an important point about why this Gaussian mixture re-sampling 

method has been developed.  It plots an example nonlinear function f(x) as the dash-dotted black 

curve.  This function is a cubic spline that is defined by its node x values, f values, and df/dx 

values, as per Table 1.  The figure also shows the exact propagation of the probability density 

function pa(x) through f(x) to produce the corresponding probability density function for f: pf(f) 

= pa[x(f)]/|∂f/∂x|, where x(f) represents the function inverse of f(x).  This probability density is 

plotted as the solid blue distribution that is shown along the left-hand vertical axis (after being 

moved to have its zero value line up at the horizontal position x = -12 and after being scaled 

down by a factor of 3 in order to fit well within the figure's horizontal range).  pf(f) is plotted 

along the vertical f axis because f is its independent variable.  Also plotted on that axis are two 

approximations of pf(f).  The dashed green curve is the pf(f) that results from performing simple 

EKF-type propagations through f(x) for the 3 components of pa(x).  The dash-dotted red curve is 

similar, except that it applies the EKF-type propagations to the 5000 components of pb(x).  It is 

obvious from this plot that the latter approximation is much closer to the truth.  It even 

reproduces the bi-modal peaks of the true distribution.  Thus, there can be significant benefit in 

terms of nonlinear filtering accuracy if one re-approximates pa(x) by a Gaussian mixture pb(x) 

with covariance bounds on each of its components.  This benefit occurs even for the case of Nb = 

1000 mixands that is mentioned at the end of the previous subsection. 

Note that no particular mathematical criterion has been defined in order to determine the 
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minimum required number of new mixands Nb that achieves good approximation accuracy of 

pa(x) and pf(f).  The numbers Nb = 1000 and Nb = 5000 are representative values that help to 

illustrate the potential accuracy of this new re-approximation method. 

C. Bayesian Conditional Probability Density Calculations with a Nonlinear Measurement 

Function 

A different calculation is required in order to illustrate the benefits of using a re-sampled 

Gaussian mixture with bounded component covariances when performing the measurement 

update of a nonlinear filter.  Suppose that pa(x) of Fig. 1 is the a priori probability distribution 

for x, and suppose that f(x) of Fig. 1 is a nonlinear measurement function rather than a nonlinear 

dynamic propagation function.  Suppose that the measurement model takes the form: 

y = f(x) + ν (39) 

where y is the measurement and ν is Gaussian measurement noise with a mean of zero and a 

covariance of Pνν.  Then Bayes’ rule dictates that the a posteriori probability distribution of x is 
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where C is a normalization constant.  This posterior distribution can be approximated as a 

Gaussian sum by using EKF or UKF calculations to do individual updates for each of the 

Gaussian components followed by re-weighting of the components.  The re-weighting is based 

on chi-squared statistics of the components’ normalized innovations, as in Ref. 10. 

Figure 2 presents three a posteriori probability density functions for this example.  The 

measurement error covariance is Pνν = (0.1)2.  A truth-model simulation generated xtrue = -2.0965 

and y = 0.2996.  The solid blue curve is the true a posteriori probability density.  The dash-

dotted red curve is the result of applying multiple-model Gaussian/EKF calculations to the 5000 
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mixands of Fig. 1's approximate a priori distribution pb(x).  The dashed green curve is similar, 

except it applies the approximate multiple-model Gaussian/EKF calculations directly to the 3 

elements of the true a priori distribution pa(x). The dash-dotted red curve is a much better 

approximation of the solid blue curve than is the dashed green curve.  The improvement of the 

red dash-dotted curve vs. the green dashed curve further illustrates the advantage for nonlinear 

Gaussian mixture filtering when using the mixand covariance limit in this paper's re-sampling 

technique. 

Although not shown in Fig. 2, significant accuracy improvement occurs even for the case 

of Nb = 1000 mixands that has been mentioned at the ends of the previous 2 subsections. The 

decision to plot a case with Nb = 5000 mixands has been made in order to emphasize the possible 

accuracy of this technique. 

It is possible to improve upon the Gaussian mixture re-approximation accuracy and the 

nonlinear filtering accuracy shown in Figs. 1 and 2 when re-sampling with Nb as small as 100.  

Such performance improvements have been achieved by using the more complicated re-sampling 

algorithm of Ref. 30.  Future research might fruitfully combine ideas from Ref. 30 with the 

present re-sampling technique in order to produce a more efficient method. 

D. Performance of the Gaussian Mixture Re-Approximation Algorithm within a Bayesian 

Nonlinear Filter 

This paper's new re-approximation algorithm has been used to develop a full nonlinear 

Gaussian mixture filter.  Reference 10 defines this new filtering algorithm and reports the results 

of applying it to a simulation of the Blind Tricyclist nonlinear estimation problem of Ref. 4. 

The Blind Tricyclist constitutes a challenging 7-state nonlinear estimation problem.  It 

includes unknown planar position and heading states of the tricycle.  Its nonlinear relative 
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bearing measurements are made to two moving reference points that are mounted on two 

separate merry-go-rounds, each with 2 unknown parameters that must be estimated by the filter.  

These extra filter states are the angle and the constant angular rate of each merry-go-round. 

Two different regularized particle filters have been tried on this problem, one with 3000 

particles and another with 10000 particles.  Neither performs very well.  Reference 4 obtained 

the best performance using the Backwards Smoothing EKF (BSEKF) of Ref. 3, which is also 

known as the Moving-Horizon Estimator 6.  None of these existing filters exhibited performance 

that was close to the Cramer-Rao lower bound 4. 

The new re-sampling algorithm of this paper, when embedded in the modified Gaussian 

mixture filter of Ref. 10, achieved better performance than all the filters described in Ref. 4.  It 

used the target number of mixands after re-sampling Nbtarget = 7000, and it used the following 

square-root information matrix lower bound in Eq. (6): Rmin = diag[1/(2.6 m); 1/(2.6 m); 1/(1.04 

rad); 1/(0.3467 rad); 1/(0.4 rad); 1/(2000 rad/sec); 1/(2000 rad/sec)].  Thus, the position 

component standard deviations are limited to 2.6 m per axis after dynamic propagation, the 

heading standard deviation is limited to 1.04 rad (60 deg), the two merry-go-rounds' angular 

standard deviations are limited to 0.3467 rad (20 deg) and 0.4 rad (23 deg), respectively, and 

their rate standard deviations are limited to 2000 rad/sec (115000 deg/sec or 318 Hz).  The rate 

standard deviation limits have been set high because the rates do not directly enter any problem 

function nonlinearities.  The component error standard deviations used to define Rmin have been 

selected to make the geometric nonlinearities in the Blind Tricyclist problem reasonably well 

approximated by linearized models over the corresponding state uncertainty ranges.  The chosen 

Nbtarget value enables a reasonably accurate approximation of the wide initial state probability 

density function using a Gaussian mixture that respects the covariance bounds associated with 



 

37 

Rmin. 

The performance of the Gaussian mixture re-sampling algorithm within the new nonlinear 

filter is characterized by Figs. 3 and 4.  Figure 3 plots the root-mean-square (RMS) position error 

magnitude time histories for 8 filters along with the Cramer-Rao lower bound for this error.  

These RMS values are compute for 100 Monte Carlo simulations of the estimation problem for 

each filter for the case of large initial errors.  The 8 filters include an EKF, two UKFs with 

different tuning parameters, two BSEKFs with different horizons of explicit backwards 

smoothing (BSEKF A using 30 samples and BSEKF B using 40 samples), two regularized PFs 

with different particle counts (PF A using 3000 particles and PF B using 10000 particles), and 

the new Gaussian mixture filter that includes this paper's re-sampling algorithm with re-sampling 

control parameters defined in the preceding paragraph (designated as the "Blob" filter in Fig. 3).  

Note that this comparison does not explicitly include comparisons with alternate Gaussian 

mixture filters, e.g., those of Refs. 11, 12, 13, and 14.  Such a comparison should be done, but it 

is beyond the scope of the present paper and of Ref. 10, which is the source of Fig. 3. 

Figure 3 is similar to Fig. 5 of Ref. 4, except that the two PFs show improved performance 

here in comparison to the figure from Ref. 4.  This improved performance results from the 

removal of an aliasing problem from the PFs that was caused by the 2π ambiguities of the 

problem's heading angle and merry-go-round angles.  These ambiguities, when coupled with the 

PF's regularization calculations, caused mischief with the original PF results reported in Ref. 4. 

It is clear from Fig. 3 that the new "blob" filter achieves the best performance of all 8 

filters.  Its solid blue curve is always the lowest of all 8 filters, and it is much nearer to the 

Cramer-Rao lower bound (CRLB) than any of the other filters.  At the end of the filtering run, 

the "blob" filter RMS error is only 60% higher than the CRLB, but the two next best filters, 
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BSEKFs A and B, have final RMS errors that are 370% higher than the CRLB. 

In fact, the new filter's RMS error lies slightly below the CRLB out to t = 37.5 seconds.  

This result seems inconsistent with the theory that the CRLB really is a lower bound.  

Furthermore, the curves of 4 of the other filters lie below the CRLB during the first 9.5 sec.  

These seemingly impossible results are conjectured to be artifacts of using only a finite number 

of Monte-Carlo simulations in order to generate Fig. 3. 

Reference 10 also considers the normalized estimation error squared (NEES) of the filter 

state as a measure of consistency.  The new "blob" filter exhibits somewhat reasonable 

consistency, and it displays the 2nd best consistency during the second half of the filtering 

interval.  PF B achieves the best NEES filter consistency. 

Another important performance feature of the Gaussian mixture re-sampling algorithm is 

depicted in Fig. 4.  This figure plots statistics of the actual number of mixands in distribution 

pb(x) after re-sampling, Nb.  This number varies from case to case for the 100 Monte Carlo runs, 

and it varies with time.  The figure plots the maximum (solid blue curve), mean (dash-dotted red 

curve) and minimum (dashed green curve) of Nb over the 100 cases as functions of time since 

filter initialization.  The initial values of all three statistics equal 7000, consistent with the chosen 

value of Nbtarget.  As time progresses through the filtering run, however, all three statistics start to 

drop.  They all drop to very low values by the end of the run at t = 141 sec, with the final 

maximum being 8, the mean 3.77, and the minimum 1.  This decay of Nb is a useful property 

because the computational burden of running the "blob" filter scales linearly with Nb.  Any 

ability to reduce Nb while maintaining filter performance will reduce the filter's need for 

computational resources. 

The sharp drop in all three Nb statistics over time can be attributed to the ad hoc measures 
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by which the re-sampling algorithm attempts to limit the number of mixands in pb(x).  Recall that 

the first of these measures is the re-sampler's attempt to merge redundant mixands, as described 

in Section IV and as implemented in Steps b)-d) of the executive algorithm defined in Subsection 

V.B.  The second of these measures is the re-sampler's ability to re-weight a single mixand of 

pb(x) instead of replicating it.  This re-weighting occurs if the original mixand from distribution 

pa(x) has a covariance sufficiently small to satisfy the LMI in Eq. (6) along with a weight 

sufficiently large to be selected multiple times during the probability mass function sampling in 

Step 2 of the algorithm in Subsection V.C. 

One might be concerned that the small Nb values near the final time in Fig. 4 could cause 

problems like those caused by a lack of particle diversity in a PF.  This is not the case because 

the Gaussian mixture "blob" filter does not rely solely on particle diversity in order to give width 

to its approximation of the a posteriori Bayesian distribution.  Distribution width is also inherent 

in the covariance of each mixand.  Therefore, a single mixand can have sufficient diversity if the 

true Bayesian distribution is narrow and nearly Gaussian.  Note, also, that it would be possible 

for a filter based on the present re-sampling procedure to increase its Nb if an increase were to 

become necessary.  The increase would happen after a dynamic propagation if that propagation 

added enough state uncertainty to cause the LMI in Eq. (6) to be violated by the mixands that 

characterized the new a priori filter distribution. 

The new "blob" filter is computationally much more expensive than a simple EKF or UKF.  

Reference 4 reports mean computation times for all of the filters averaged over the 100 Monte 

Carlo cases.  The EKF requires only 0.08 sec, on average, to filter the entire data batch when 

running in MATLAB on a Windows XP Professional Workstation, and the two UKFs require only 

1.18 sec.  BSEKF A requires 60.84 sec, on average, and BSEKF B requires 110.6 sec.  The latter 
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BSEKF requires more execution time because it performs explicit nonlinear smoothing over a 

longer interval.  PF A requires 149 sec, and PF B requires 695 sec, numbers that differ somewhat 

from those reported in Ref. 4 due to the fix-up of the angular aliasing problems.  PF B is slower 

than PF A due to its use of 3.3 times as many particles.  The mean execution time for the "blob" 

filter is 187 seconds.  Thus, the new "blob" filter is more expensive computationally than 6 of the 

other 7 filters, but it uses 3.7 times less computing power than PF B.  Better PF performance 

might be achievable by increasing the number of particles beyond 10000, but the computational 

cost would make it much less attractive than the new Gaussian mixture "blob" filter for this 

particular problem. 

Similar to a PF, the calculations of the "blob" filter are almost completely parallelizable, all 

except the inexpensive re-weighting at the end of the measurement update 10, and the mixand 

merging operations of Section IV.  Therefore, its execution speed has the potential to be 

significantly increased by mapping it onto a parallel processor. 

Most of the details about the Blind Tricyclist problem and all of its mathematical equations 

have been omitted from the present discussion for the sake of brevity.  The interested reader 

should consult Ref. 4 to learn the details of this benchmark nonlinear estimation problem.  

Reference 4 cites a link to MATLAB software for the benchmark problem's various dynamics and 

measurement functions.  The software can be downloaded by researchers in order to test their 

own nonlinear filters. 

VII. Conclusions 

A new Gaussian mixture re-approximation/re-sampling algorithm has been developed.  It 

has three goals.  First, it seeks to create a new mixture that is a close approximation of the 

original mixture.  Second, it limits the covariances of the elements of the new mixture so that 
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each one will propagate accurately through typical EKF or UKF nonlinear filter calculations, 

provided that the covariances have been limited to a sufficient degree for a given problem model.  

The algorithm’s third goal, which is of secondary priority, is to limit the number of components 

of the re-sampled mixture. 

The new re-sampling algorithm represents a natural generalization of a particle filter's 

importance re-sampling, but with new complexities.  Covariance matrices of the new mixture 

components are bounded from above.  These bounds define systems of linear matrix inequalities 

that set lower bounds on the corresponding square-root information matrices.  Optimal solutions 

to the linear matrix inequalities determine new mixand square-root information matrices that are 

as close as possible to those of the original mixture.  Mean values of the new mixture 

components are sampled from modified components of the original mixture that have reduced 

covariances.  These covariance reductions compensate for the fact that the total covariance of the 

new mixture is determined by two contributions, one from the reduced covariances of the new 

mixands and the other from the variability of the new mixands' mean values. 

The re-sampling algorithm has been tested on two sets of example problems.  The results 

show that a good approximation of the original probability density can be achieved with 

significantly narrowed covariances of the re-sampled mixands.  This achievement enables 

accurate Bayesian nonlinear estimation calculations via application of simple EKF or UKF 

operations within the Gaussian mixture framework and using a multiple-model-filter approach.  

In one Monte Carlo test, the new re-sampling algorithm enabled a new Gaussian mixture filter to 

achieve significantly better performance on a difficult 7-state nonlinear estimation problem than 

has been achieved by four other popular types of nonlinear filters. 



 

42 

References 

 

1. Julier, S., Uhlmann, J., and Durrant-Whyte, H.F., "A New Method for the Nonlinear 

Transformation of Means and Covariances in Filters and Estimators," IEEE Transactions on 

Automatic Control, Vol. AC-45, No. 3, 2000, pp. 477-482. 

2. Arulampalam, M.S., Maskell, S., Gordon, N., and Clapp, T., "A Tutorial on Particle Filters 

for Online Nonlinear/Non-Gaussian Bayesian Tracking," IEEE Transactions on Signal 

Processing, Vol. 50, No. 2, Feb. 2002, pp. 174-188. 

3. Psiaki, M.L., "Backward-Smoothing Extended Kalman Filter," Journal of Guidance, 

Control, and Dynamics, Vol. 28, No. 5, Sept.-Oct. 2005, pp. 885-894. 

4. Psiaki, M.L., "The Blind Tricyclist Problem and a Comparative Study of Nonlinear Filters," 

IEEE Control Systems Magazine, Vol. 33, No. 3, June 2013, pp. 40-54. 

5. Wan, E.A., and van der Merwe, R., "The Unscented Kalman Filter," Kalman Filtering and 

Neural Networks, S. Haykin, ed., J. Wiley & Sons, (New York, 2001), pp. 221-280. 

6. Rao, C.V., Rawlings, J.B., and Mayne, D.Q., "Constrained State Estimation for Nonlinear 

Discrete-Time Systems: Stability and Moving Horizon Approximations," IEEE. Trans. on 

Automatic Control, Vol. 48, No. 2, Feb. 2003, pp. 246-258. 

7. Psiaki, M.L., "Estimation Using Quaternion Probability Densities on the Unit Hypersphere", 

Journal of the Astronautical Sciences, Vol. 54, Nos. 3-4, July-Dec. 2006, pp. 415-431. 

8. Sorenson, H.W., and Alspach, D.L., "Recursive Bayesian Estimation Using Gaussian 

Sums," Automatica, Vol. 7, No. 4, 1971, pp. 465-479. 

9. Alspach, D.L. and Sorenson, H.W., “Nonlinear Bayesian Estimation using Gaussian Sum 

Approximations,” IEEE Transactions on Automatic Control, Vol. 17, No. 4, Aug. 1972, pp. 

439–448. 



 

43 

 

10. Psiaki, M.L., "The 'Blob' Filter: Gaussian Mixture Nonlinear Filtering with Re-Sampling for 

Mixand Narrowing," Proc. IEEE/ION PLANS 2014, May 5-8, 2014, Monterey, CA.  

(preprint available online at 

http://gps.mae.cornell.edu/psiaki_gaussmixfilter_ieeeionplans2014.pdf.) 

11. van der Merwe, R., and Wan, E., "Gaussian Mixture Sigma-Point Particle Filters for 

Sequential Probabilistic Inference in Dynamic State-Space Models," Proceedings of the 

International Conference on Acoustics, Speech and Signal Processing, (Hong Kong), IEEE, 

Apr. 2003.  Available at http://www.cse.ogi.edu/~rudmerwe/pubs/index.html. 

12. Faubel, F., McDonough, J., and Klakow, D., “The Split and Merge Unscented Gaussian 

Mixture Filter,” IEEE Signal Processing Letters, Vol. 16, No. 9, Sept. 2009, pp. 786-789. 

13. Huber, M.F., "Adaptive Gaussian Mixture Filter Based on Statistical Linearization," Proc. 

14th International Conf. on Information Fusion, Chicago, IL, July 5-8, 2011, pp. 1-8. 

14. Horwood, J.T., and Poore, A.B., "Adaptive Gaussian Sum Filters for Space Surveillance," 

IEEE Transactions on Automatic Control, Vol. 56, No. 8, Aug. 2011, pp. 1777–1790. 

15. Bar-Shalom, Y., Li, X.-R., and Kirubarajan, T., Estimation with Applications to Tracking 

and Navigation, J. Wiley & Sons, (New York, 2001), pp. 441-443. 

16. Horwood, J.T., Aragon, N.D., and Poore, A.B., "Gaussian Sum Filters for Space 

Surveillance: Theory and Simulations," Journal of Guidance, Control, and Dynamics, Vol. 

34, No. 6, Nov.-Dec. 2011, pp. 1839-1851. 

17. DeMars, K.J., Bishop, R.H., and Jah, M.K., "Entropy-Based Approach for Uncertainty 

Propagation of Nonlinear Dynamical Systems," Journal of Guidance, Control, and 

Dynamics, Vol. 36, No. 4, July-Aug. 2013, pp. 1047-1057. 



 

44 

 

18. Bayramoglu, E., Ravn, O., and Andersen, N.A., "A Novel Hypothesis Splitting Method 

Implementation for Multi-Hypothesis Filters," Proc. 10th IEEE International Conference on 

Control & Automation, Hangzhou, China, June 12-14, 2013, pp. 574-579. 

19. Havlak, F., and Campbell, M., "Discrete and Continuous Probabilistic Anticipation for 

Autonomous Robots in Urban Environments," IEEE Transactions on Robotics, to appear, 

2014. 

20. Runnalls, A.R., "Kullback-Leibler Approach to Gaussian Mixture Reduction," IEEE Trans. 

on Aerospace and Electronic Systems, Vol. 43, No. 3, July 2007, pp. 989-999. 

21. Terejanu, G., Singla, P., Singh, T., and Scott, P.D., “Uncertainty Propagation for Nonlinear 

Dynamic Systems using Gaussian Mixture Models,” Journal of Guidance, Control, and 

Dynamics, Vol. 31, No. 6, Nov.-Dec. 2008, pp. 1623-1633. 

22. Terejanu, G., Singla, P., Singh, T., and Scott, P.D., “Adaptive Gaussian Sum Filter for 

Nonlinear Bayesian Estimation,” IEEE Transactions on Automatic Control, Vol. 56, No. 9, 

Sept. 2011, pp. 2151–2156. 

23. Williams, J.L., and Maybeck, P.S., "Cost-Function-Based Gaussian Mixture Reduction for 

Target Tracking," Proceedings of the Sixth International Conference on Information Fusion, 

Cairns, Queensland, Australia, 2003.  Available online at http://ieee-

aess.org/isif/sites/default/files/proceedings/fusion03CD/regular/r214.pdf. 

24. Salmond, D.J., "Mixture Reduction Algorithms for Uncertain Tracking," Technical Report 

88004, Farnborough, UK: Royal Aerospace Establishment, January 1988. 

25. Schoenberg, J.R., Campbell, M., and Miller, I., "Posterior Representation with a Multi-

Modal Likelihood Using the Gaussian Sum Filter for Localization in a Known Map," 

Journal of Field Robotics, Vol. 29, No. 2, March/April 2012, pp. 240-257. 



 

45 

 

26. Gill, P.E., Murray, W., and Wright, M.H., Practical Optimization, Academic Press, (New 

York, 1981), pp. 37-40, 164. 

27. Kailath, T., Linear Systems, Prentice-Hall, (Englewood Cliffs, N.J., 1980), p. 656. 

28. Psiaki, M.L., "Global Magnetometer-Based Spacecraft Attitude and Rate Estimation," 

Journal of Guidance, Control, and Dynamics, Vol. 27, No. 2, March-April 2004, pp. 240-

250. 

29. Bunea, F., Tsybakov, A.B., Wegkamp, M.H., and Barbu, A., "Spades and Mixture Models," 

The Annals of Statistics, Vol. 38, No. 4, Aug. 2010, pp. 2525-2558. 

30. Psiaki, M.L., Schoenberg, J.R., and Miller, I.T., "Gaussian Mixture Approximation by 

Another Gaussian Mixture for 'Blob' Filter Re-Sampling," AIAA Paper No. 2010-7747, 

Proc. AIAA Guidance, Navigation, and Control Conf., Aug. 2-5, 2010, Toronto, Canada. 



 

46 

Table 1.  Spline Node Values to Define Example f(x) 

x spline 
nodes 

f values at 
nodes 

df/dx values 
at nodes 

-15 0 1/150 
-10 1/30 1/120 
-9 1/20 3/80 
-2 1/3 3/80 
-1 7/20 1/60 
1 23/60 1/30 

1.5 13/30 19/180 
10 4/3 8/81 
15 53/30 13/150 
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Figure Captions 

Fig. 1. A 3-component original Gaussian mixture, a 5000-component re-

approximation, and their propagation through a nonlinear function. 

Fig. 2. True and approximate a posteriori probability distributions after a 

nonlinear measurement update. 

Fig. 3. Blind Tricyclist RMS position error time histories of eight filters and the 

Cramer-Rao lower bound, as computed from 100 Monte-Carlo simulations 

(from Ref. 10). 

Fig. 4. Maximum, mean, and minimum Nb time histories for "blob" filter runs on 

100 Monte-Carlo simulations of the Blind Tricyclist problem (from Ref. 

10). 
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Fig. 2. True and approximate a posteriori probability distributions after a 

nonlinear measurement update. 
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Fig. 3. Blind Tricyclist RMS position error time histories of eight filters and the 

Cramer-Rao lower bound, as computed from 100 Monte-Carlo 

simulations (from Ref. 10). 
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Fig. 4. Maximum, mean, and minimum Nb time histories for "blob" filter runs on 

100 Monte-Carlo simulations of the Blind Tricyclist problem (from Ref. 

10). 


