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Gaussian synapses for probabilistic neural
networks
Amritanand Sebastian 1, Andrew Pannone1, Shiva Subbulakshmi Radhakrishnan 1,2 & Saptarshi Das 1,3,4

The recent decline in energy, size and complexity scaling of traditional von Neumann

architecture has resurrected considerable interest in brain-inspired computing. Artificial

neural networks (ANNs) based on emerging devices, such as memristors, achieve brain-like

computing but lack energy-efficiency. Furthermore, slow learning, incremental adaptation,

and false convergence are unresolved challenges for ANNs. In this article we, therefore,

introduce Gaussian synapses based on heterostructures of atomically thin two-dimensional

(2D) layered materials, namely molybdenum disulfide and black phosphorus field effect

transistors (FETs), as a class of analog and probabilistic computational primitives for hard-

ware implementation of statistical neural networks. We also demonstrate complete tunability

of amplitude, mean and standard deviation of the Gaussian synapse via threshold engineering

in dual gated molybdenum disulfide and black phosphorus FETs. Finally, we show simulation

results for classification of brainwaves using Gaussian synapse based probabilistic neural

networks.
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T
he last five decades have witnessed an unprecedented and
exponential growth in computational power, primarily
driven by the success of the semiconductor industry.

Relentless scaling1 of complementary metal oxide semiconductor
(CMOS) technology enabled by breakthroughs in material dis-
covery2, innovation in device physics3, transformation in micro
and nanolithography techniques4, and the triumph of von Neu-
mann architecture5 contributed to the computing revolution.
Scaling has three characteristic aspects to it. Energy scaling to
ensure practically constant computational power budget, size
scaling to ensure faster and cheaper computing since more and
more transistors can be packed into the same chip area, and
complexity scaling to ensure incessant growth in computational
power of single on-chip processor. The golden era of metal oxide
semiconductor field effect transistor (MOSFET) scaling, also
referred to as the Dennard scaling era6, has witnessed concurrent
scaling of all three aspects for almost three decades. However,
around 2005, the energy scaling ended owing to fundamental
thermodynamic limitations at the device physics level, popularly
known as the Boltzmann tyranny7. Size scaling continued for
another decade albeit with new challenges8 and eventually ended
in 2017 owing to limitations at the materials level imposed by
quantum mechanics1. Complexity scaling is also on decline owing
to the non-scalability of traditional von Neumann computing
architecture and the impending “Dark Silicon” era that presents a
severe threat to multi-core processor technology9. In order to
sustain the growth in computational power, it is imperative that
all three aspects of scaling must be reinstated immediately
through material rediscovery, device innovations, and advance-
ment in higher complexity computing architectures.

The extraordinarily complex neurobiological architecture of
the mammalian nervous system that seamlessly executes diverse
and intricate functionalities such as adaption, perception, acqui-
sition of sensory information, learning, memory formation,
emotions, cognition, motor action, and many more has inspired
computer scientists to think beyond the traditional von Neumann
architecture in order to resurrect complexity scaling. The neural
architecture deploys billions of information processing units,
neurons, which are connected via trillions of synapses in order to
accomplish massively parallel, synchronous, coherent, and con-
current computation. This is markedly different from the von
Neumann architecture, where the logic and memory units are
physically isolated and operate sequentially, i.e., instruction fetch
and data operation cannot occur simultaneously. Furthermore,
unlike the deterministic digital switches (logic transistors), neural
architecture uses probabilistic and analog computational primi-
tives in order to accomplish adaptive functionalities such as
pattern recognition and pattern classification, which form the
foundation for mammalian problem solving and decision making.

In the above context, IBM’s bioinspired CMOS chip, True
North, is a remarkable breakthrough in neuromorphic comput-
ing, achieving the complexity of more than 1 million neurons or
256 million synapses while consuming a miniscule 70 mW of
power10. Similarly, extensive work by Luca Benini et al. have
recently shown that hardware digital neural networks consume
comparable or less energy than the human brain for complex
tasks, such as, image recognition11. While these are impressive
advancements, the inherent scaling challenges associated with the
digital CMOS technology can ultimately limit the implementation
of very-large-scale artificial neural networks (ANNs), invoking
the critical and imminent need for energy efficient analog com-
puting primitives for ANNs. Recent years have, therefore, wit-
nessed innovation in analog devices such as the memristors12–14,
coupled oscillators15, and various targeted components16–18,
which can emulate neural spiking, neural transmission, and
neural plasticity and hence can be used as computational

primitives in ANNs. While these devices do provide some energy
benefit at the architectural level for specific applications, they fail
to address the intrinsic energy and size scaling needs at the device
level, which can ultimately lead to stagnation in complexity
scaling. Further challenges associated with ANNs are often
overlooked. For example, ANNs deployed for pattern classifica-
tion problems require optimum training algorithms and learning
rules to identify the class statistics with desired accuracy within a
short training time. Unfortunately, the most popular and widely
used heuristic backpropagation algorithm19, is inherently slow
and remains vulnerable to local minima in spite of extensive
modifications in recent years using methods such as conjugate
gradient, quasi-Newton, and Levenberg–Marquardt (LM) to
improve the convergence20. In order to address the slow learning,
incremental adaptation, and inherent unreliability of ANNs,
novel classification techniques based on statistical principles must
be embraced.

In this article, we experimentally demonstrate how a new class
of analog devices, namely, Gaussian synapses, based on the het-
erostructure of novel atomically thin two dimensional (2D)
layered semiconductors enables the hardware implementations of
probabilistic neural networks (PNNs) and thereby reinstates all
three aforementioned quintessential scaling aspects of computing.
In short, 2D materials facilitate aggressive size scaling, analog
Gaussian synapses offer energy scaling, and PNNs enable com-
plexity scaling. Combined, these new developments can facilitate
Exascale Computing and ultimately benefit scientific discovery,
national security, energy security, economic security, infra-
structure development, and advanced healthcare programs21,22.

Results
Probabilistic neural network. Our overall approach is sum-
marized in Fig. 1a. First, we reintroduce PNN that was proposed
by Specht, D. F.23 PNN is derived from Bayesian computing and
Kernel density method24. As shown in Fig. 1b, unlike ANNs,
which necessitate multiple hidden layers, each with a large
number of nodes, PNNs are comprised of a pattern layer and a
summation layer and can map any input pattern to any number
of output classifications. Furthermore, ANNs use activation
functions such as sigmoid, rectified linear unit (ReLU), and their
various derivatives for determining pattern statistics. This is often
extremely difficult to accomplish with reasonable accuracy for
non-linear decision boundaries. PNNs, on the contrary, use
parent probability distribution functions (PDFs) approximated by
Parzen window25 and a non-parametric function to define the
class probability, which in the case of Gaussian kernel is defined
by Gaussian distribution as shown in Fig. 1c. PNNs, therefore,
facilitate seamless and accurate classification of complex patterns
with arbitrarily shaped decision boundaries. Furthermore, PNNs
can be extended to map higher dimensional functions since
multivariate Gaussian kernels are simply the product of uni-
variate kernels as shown in Fig. 1d.

Unfortunately, in spite of the widespread applications and
simplicity of PNNs, their hardware implementation is rather
sparse. In fact, neither ANNs nor PNNs have been extensively
realized using hardware components. While there is growing
interest towards the development of devices for the hardware
implementation of ANNs, the effort and investment towards the
hardware implementation of PNNs are still very limited. One
reason is that the hardware implementation of probability
functions associated with the PNNs, such as the Gaussian,
requires multicomponent digital CMOS circuits that leads to
severe area and energy inefficiency. For example, the “Bump”
circuit demonstrated by Delbruck, T. uses seven transistors26.
Similarly, the Gaussian synapse proposed by Choi, J. et al. consists
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of a pair of differential amplifiers and several arithmetic
computational units27. Madrenas, J. et al. introduced an alternate
method to obtain Gaussian function by combining the exponen-
tial characteristics of MOSFETs in sub-threshold and square
characteristics in inversion28. The circuit was further improved
for better symmetry and greater control and tunability by adding
more transistors in a floating gate configuration29,30. Another
approach is to use a Gilbert Gaussian function, where two
sigmoid curves are combined using a differential pair along with a
current mirror31,32. Without any extra circuitry to reduce
asymmetry, the most compact circuit uses five transistors28. As
we will discuss in the following section, our experimental
demonstration of Gaussian synapses uses only two transistors,
which significantly improves the area and energy efficiency at the
device level and provides cascading benefits at the circuit,
architecture, and system levels. This will stimulate the much-
needed interest in the hardware implementation of PNNs for a
wide range of pattern classification problems.

Gaussian synapse. Figure 1e shows the schematic of our pro-
posed two transistor Gaussian synapse based on heterogeneous
integration of n-type molybdenum disulfide (MoS2) and p-type
black phosphorus (BP) back-gated field effect transistors (FETs).
Fig. 1e also shows the equivalent circuit diagram for the Gaussian
synapse, which simply consists of two variable resistors in series.
The two variable resistors, i.e., RMoS2

and RBP correspond to the
MoS2 and BP FETs. Fig. 1f shows the experimentally measured
transfer characteristics i.e., the drain current (ID) versus back-gate
voltage (VBG) of the Gaussian synapse for different drain voltages

(VD). The fabrication process flow and electrical measurement
setup for Gaussian synapses are described in the experimental
method section. Clearly, the transfer characteristics resemble a
Gaussian distribution which can be modeled using the following
equation.

ID ¼
A
ffiffiffiffiffiffiffiffiffiffiffi

2πσ2V
p exp �

VBG � μV
� �2

2σ2V

" #

;A ¼ βVD ð1Þ

Where, A; μV and σV are, respectively, the amplitude, mean,
and standard deviation of the Gaussian. For a specific MoS2/BP
pair, μV and σV are found to be constants, whereas, A varies
linearly with VD. The emergence of Gaussian transfer character-
istics can be explained using the experimentally measured
transfer characteristics of its constituents, i.e., the MoS2 FET
and the BP FET, as shown in Fig. 1g, h, respectively. MoS2 FETs
exhibit unipolar n-type characteristics, irrespective of the choice
of contact metal, owing to the phenomenon of metal Fermi level
pinning close to the conduction band that facilitates easier
electron injection, whereas, BP FETs are predominantly p-type
with large work function contact metals such as Ni33–36.
Furthermore, unlike conventional enhancement mode Si FETs
used in CMOS circuits, both MoS2 and BP FETs are depletion
mode, i.e., they are normally ON without applying any back-gate
voltage. Remarkably, this simple difference results in the unique
Gaussian transfer characteristics for the MoS2/BP pair in spite of
the device structure closely resembling a CMOS logic inverter.
From the equivalent circuit diagram, the current (ID) through the
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Gaussian synapse can be written as:

ID ¼
VD

RMoS2
þ RBP

ð2Þ

For extreme VBG values, i.e., large negative (lesser than −30 V)
and large positive (greater than 30 V), the MoS2 FET and the BP
FET are in their respective OFF states, making the corresponding
resistances, i.e., RMoS2

and RBP very large (approximately TΩ).

This prevents any current conduction between the source and the
drain terminal of the Gaussian synapse. However, as the MoS2
FET switches from OFF state to ON state, current conduction
begins and increases exponentially with VBG following the
subthreshold characteristics and reaches its peak magnitude
determined by VD. Beyond this peak, the current starts to
decrease exponentially following the subthreshold characteristics
of the BP FET. As a result, the series connection of the MoS2 and
BP FETs exhibits non-monotonic transfer characteristics with
exponential tails that mimics a Gaussian distribution.

It must be noted that the Gaussian synapses do not utilize the
ON state FET performance and, therefore, are minimally
influenced by the carrier mobility values of the n-type and p-
type FETs. Instead, the Gaussian synapse exploits the sub-
threshold FET characteristics, where the slope is independent of
the carrier mobility of the semiconducting channel material. For
symmetric Gaussian synapses, it is therefore more desirable to
ensure similar sub-threshold slope (SS) values for the respective
FETs than the carrier mobility. Ideally, the SS values for both
FETs should be 60 mV decade−1. However, presence of a nonzero
interface trap capacitance worsens the SS. The SS can be
improved by minimizing interface states at the 2D/gate-dielectric
interface, as well as by scaling the thickness of the gate dielectric.
It is also desirable to have FETs with Ohmic contacts for Gaussian
synapses to ensure that the SS is determined by the thermionic
emission of carriers in order to reach the minimum theoretical
value of 60 mV decade−1 at room temperature. For Schottky
contact FETs, the SS can be severely degraded due to tunneling of
carriers through the Schottky barrier.

While our proof-of-concept demonstration of Gaussian
synapses is based on exfoliated MoS2 and BP flakes, it is well
known that the micromechanical exfoliation is not a scalable
manufacturing process for large-scale integrated circuits. There-
fore, hardware implementation of PNNs using Gaussian synapses
will necessitate large-area growth of MoS2 and BP. Fortunately,
recent years have seen tremendous progress in wafer-scale growth
of high quality MoS2 and BP using chemical vapor deposition
(CVD) and metal organic chemical vapor deposition (MOCVD)
techniques37–41. Furthermore, while we have used two different
2D materials, MoS2 and BP, for our demonstration of Gaussian
synapses owing to their superior performance as n-type and p-
type FETs, respectively, there are 2D materials, such as, WSe2,
which offer ambipolar transport, i.e., the presence of both
electron and hole conduction42 and can be grown over large area
using CVD techniques43. However, the performance of WSe2
based n-type and p-type FETs are limited by the presence of large
Schottky barriers at the metal/2D contact interfaces36. By
resolving the contact resistance related issues36 and improving
the quality of large-area synthesized WSe2, it is possible to
implement Gaussian synapses based solely on WSe2 as well.
Moreover, in recent years several groups have demonstrated p-
type MoS2 and n-type BP, by implementing smart contact
engineering and/or doping strategies44,45. Therefore, very-large-
scale integration of Gaussian synapses based on a CVD grown
single 2D material will be possible in the near future for the
hardware realization of PNNs. Since the focus of this article is to

introduce the novel Gaussian synapse and its benefit as a
statistical computing primitive, we avoided material optimization.

Gaussian synapses are inherently low power since they exploit
the subthreshold characteristics of the FET devices. In this
context, we would like to remind the readers that the total power
consumption (Ptotal) in digital CMOS circuit comprises, primar-
ily, of dynamic switching power (Pdynamic) and static leakage

power (Pstatic) and is given by the following equation:

Ptotal ¼ Pdynamic þ Pstatic ¼ ηCV2
DDf þ IstaticVDD ð3Þ

Note that, η is the activity factor, C is the capacitance of the
circuit, f is the switching frequency, and VDD is the supply
voltage. During the Dennard scaling era, the power consumption
of the chip was dominated by Pdynamic, which was kept constant

by scaling the threshold voltage (VTH) and concurrently the
supply voltage (VDD) of the MOSFET. However, beyond 2005, the
voltage scaling stalled since further reduction in VTH resulted in
an exponential increase in the static leakage current (Istatic) and
hence static power consumption. This is a direct consequence of
the non-scalability of the subthreshold swing (SS) to below 60 mV
decade−1, as determined by the Boltzmann statistics. In fact, Ptotal
in the present Dark-Si era is mostly dominated by Pstatic.
Regardless of whether the dynamic or static power dominates,
reinstating VDD scaling is the only way to escape the Boltzmann
tyranny. This is why in recent years, subthreshold logic
circuits, which utilize VDD that is close to or even less than
VTH, have received significant attention for ultra-low power
applications46,47. New subthreshold logic and memory design
methodologies have already been developed and demonstrated on
a fast Fourier transform (FFT) processor48, as well as analog VLSI
neural systems49.

Note that our proposed Gaussian synapses naturally require
operation in subthreshold regime in order to exploit the
exponential feature in the transfer characteristics of the n-type
and p-type transistors. Furthermore, as shown in Fig. 1f, Gaussian
synapses maintain their characteristic features even when the
supply voltage (VDS) is scaled down to 200 mV or beyond. This
allows the Gaussian synapses to be inherently low power. For the
proof-of-concept demonstration of Gaussian synapses, we have
used relatively thicker back-gate and top-gate oxides with
respective thicknesses of 285 nm and 120 nm. This necessitates
the use of rather large back-gate and top-gate voltages in the
range of −50 V to 50 V and −35 V to 35 V, respectively. The
power consumption by our proof-of-concept Gaussian synapses
will still be high in spite of scaling the supply voltage and
exploiting the subthreshold current conduction in the range of
nano amperes through the MoS2 and BP FETs. This is because
power consumption by Gaussian synapse is simply the area under
the ID versus VBG curve. By scaling the thicknesses of both the top
and bottom gate dielectrics, it is possible to scale the operating
gate voltages and thereby achieve desirable power benefits from
the Gaussian synapses. Ultra-thin dielectric materials such as
Al2O3 and HfO2, which offer much larger dielectric constants, εox,
of ≈9 and 25, respectively, are now routinely used as gate oxides
for highly scaled Si FinFETs50. It must also be emphasized that
the use of atomically thin 2D materials allows geometric
miniaturization of Gaussian synapses without any loss of
electrostatic integrity, which aids size scaling. We would like to
remind the readers that the scalability of FETs is captured
through a simple parameter called the screening length

(λSC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εbody
εox

tbodytox

q

), which determines the decay of the

potential (band bending) at the source/drain contact interface
into the semiconducting channel. In this expression, tbody and tox
are the thicknesses and εbody and εox are the dielectric constants of
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the semiconducting channel and the insulating oxide, respec-
tively. As discussed by Frank et al.51, to avoid short channel
effects the channel length of an FET (LCH) has to be at least three
times higher than the screening length (λSC). For atomically thin
semiconducting monolayers of 2D materials,tbody is 0.6 nm, which

corresponds to λSC of 1.3 nm, whereas, for the most advanced
FinFET technology the thickness of Si fins can be scaled down
to only 5 nm without severely increasing the bandgap due to
quantum confinement effects and reducing the mobility due to
enhanced surface roughness scattering. Nevertheless, the above
discussions, clearly articulate how BP/MoS2 2D heterostructure
based Gaussian synapses can facilitate effortless hardware
realization of PNNs and thereby aid complexity scaling without
compromising energy and size scaling.

Reconfigurable Gaussian synapse. For the hardware imple-
mentation of Gaussian synapses, it is highly desirable to
demonstrate complete tunability of the device transfer function,
i.e., A; μV, and σV of the Gaussian distribution. This could be

achieved, seamlessly, in our device structure via threshold engi-
neering through additional gating of either or both MoS2 and BP
FETs. Fig. 2a shows the schematic representation of a reconfi-
gurable Gaussian synapse, where, both MoS2 and BP FETs are
dual-gated (DG). The top-gate stack was fabricated using
hydrogen silsesquioxane (HSQ)52,53 as the top-gate dielectric with
nickel/gold (Ni/Au) as the top-gate electrode. The fabrication
process flow is described in the experimental method section.
Fig. 2b shows the experimentally measured back-gated transfer
characteristics of the MoS2 FET at VD = 1 V for different top-gate
voltages (VN). Clearly, VN controls the back-gate threshold vol-
tage, VTN of the MoS2 FET as shown in Fig. 2c. The energy band
diagram shown in the inset of Fig. 2c can be used to explain the
concept of threshold voltage engineering using gate electrostatics.
The top-gate voltage determines the height of the potential bar-
rier for electron injection inside the MoS2 channel, which must be
overcome by applying a back-gate voltage to enable current
conduction from the source to the drain terminal. Negative top-
gate voltages increase the potential barrier for electron injection
and hence necessitate larger positive back-gate voltages to achieve
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the mean (μV) of the Gaussian synapse without changing the amplitude (A) and the standard deviation (σV). g μV as a function of VN ¼ VP. h Transfer

characteristics of the Gaussian synapse for different values of VN ¼ �VP. This configuration allows us to configure σV while keeping μV constant. i σV as a

function of VN ¼ �VP. However, this configuration also results in an increase in the amplitude (A) of the Gaussian synapse as σV increases. This increase

can be adjusted by changing the drain voltage (VD) since A is linearly proportional to VD. Nevertheless, by controlling VN;VP and VD, it is possible to adjust

the mean, standard deviation and amplitude of the Gaussian synapse
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similar level of current conduction. As such, VTN becomes more
positive (less negative) for large negative VN values. Note that the
slope (αN) of VTN versus VN in Fig. 2c must be proportional to
the ratio of top-gate capacitance (CTG) to the back-gate capaci-
tance (CBG). This follows directly from the principle of charge
balance, which ensures that the channel charge induced by the
top-gate voltage must be compensated by the back-gate voltage at
threshold. We extracted the value for αN to be 1.91. This is
consistent with the theoretical prediction of approximately 1.94,
given that the top-gate and back-gate dielectric thicknesses are
120 nm and 285 nm, respectively and the top-gate insulator, HSQ,
has a slightly lower dielectric constant (≈3.2) than the back-gate
insulator, SiO2 (3.9). Fig. 2d shows the experimentally measured
back-gated transfer characteristics of the BP FET at VD = 1 V, for
different top-gate voltages (VP). As expected, VP controls the
back-gate threshold voltage, VTP of the BP FET as shown in
Fig. 2e. Here, the top-gate voltage influences the height of the
potential barrier for hole injection, which is overcome by
applying a back-gate voltage, enabling current conduction from
the drain to the source terminal. The corresponding energy band
diagram is shown in the inset of Fig. 2e. Positive top-gate voltages
increase the potential barrier for hole injection and hence
necessitate larger negative back-gate voltages to achieve similar
level of current conduction. As such, VTP becomes more negative
(less positive) for large positive VP values. We also extracted the
slope (αP) of VTP versus VP in Fig. 2e and, as expected, found a
similar value of ≈2.

The dual-gated MoS2 and BP FETs allow complete control of
the shape of the Gaussian synapse. Fig. 2f shows the
experimentally measured transfer characteristics of the Gaussian
synapse for different values of VN ¼ VP. This configuration
allows us to shift the mean (μV) of the Gaussian synapse without
changing the amplitude (A) or the standard deviation (σV) Fig. 2g
shows μV plotted as a function of VN ¼ VP. We are able to do this
since the back-gate threshold voltages for both MoS2 and BP
FETs shift in the same direction in this configuration. Similarly,
Fig. 2h shows the experimentally measured transfer character-
istics of the Gaussian synapse for different values of VN ¼ �VP.
Under this configuration, the back-gate threshold voltages for
MoS2 and BP FETs shift in opposite directions. As such the μV of
the Gaussian distribution remains constant, whereas, σV keeps
increasing. Fig. 2i shows σV plotted as a function of VN ¼ �VP.
However, this configuration also results in an increase in the
amplitude (A) of the Gaussian synapse as σV increases. This
increase can be adjusted by changing the drain voltage (VD) since
A is linearly proportional to VD. Nevertheless, by controlling
VN;VP, and VD, it is possible to adjust the mean, standard
deviation, and amplitude of the Gaussian synapse.

Scaled Gaussian synapses. In order to project the performance of
scaled Gaussian synapses, we used the Virtual Source (VS) model
that was originally developed by Khakifirooz, A. et al. for short
channel Si MOSFETs54. for short channel Si MOSFETs. The
Gaussian transfer characteristics (ID versus VG for different VD)
were simulated in the following Eqs. 4, 5, and 6. In the VS model,
both the subthreshold and the above threshold behavior is cap-
tured through a single semi-empirical and phenomenological
relationship that describes the transition in channel charge den-
sity from weak to strong inversion (Eq. 5).

ID ¼
VD

RN þ RP

;RN ¼
LN
WN

1

μNQN

;RP ¼
LP
WP

1

μPQP

; ð4Þ

QN ¼ CBGm
kBT

q
log 1þ exp

VG � VTN

mkBT=q

� �� �

;

QP ¼ CBGm
kBT

q
log 1þ exp �

VG � VTP

mkBT=q

� �� �

;

ð5Þ

VTN ¼ αVN;VTP ¼ αVP; α ¼ CTG=CBG; ð6Þ

Here, RN and RP are the resistances, LN and LP are the lengths,
WN and WP are the widths, μN and μP are the carrier mobility
values, and QN and QP are the inversion charges corresponding to
the n-type and the p-type 2D-FETs, respectively. The band
movement factor m can assumed to be unity for a fully depleted
and ultra-thin body 2D-FET with negligible interface trap
capacitance. Finally, VTN and VTP are the threshold voltages of
the n-type and p-type 2D FETs determined by their respective
top-gate voltages VN and VP. Note, that in the subthreshold
regime, the inversion charges i.e., QN and QP increase
exponentially with VG, whereas above threshold, the inversion
charge is a linear function of VG, which is seamlessly captured
through the VS model. Fig. 3a, b show the simulated transfer
characteristics of the individual n-type and p-type 2D FETs,
respectively, and Fig. 3c shows the transfer characteristics of the
Gaussian synapse based on their heterostructure for different
combinations of the top-gate voltages, following the VS model, as
described above. Furthermore, Fig. 3d–f, respectively, demon-
strate the tunability of A; μV, and σV of the Gaussian synapse via
top-gate voltages VN and VP. More details on the design of
Gaussian synapses can be found in the supplementary informa-
tion section.

Brainwave classification. Next, we show simulation results
suggesting that PNNs based on Gaussian synapses can be used
for the classification of various neural oscillations, also known as
the brainwaves that are fundamental to human awareness, cog-
nition, emotions, and actions. These rhythmic and repetitive
oscillations that originate from synchronous and complex firing
of neural ensembles are observed throughout the central nervous
system and are essential in controlling the neuro-physiological
health of any individual. As shown in Fig. 4a, the brainwaves are
divided into five frequency bands based on the present under-
standing and interpretation of their functions. Lower frequency
(0.5–3.5 Hz) and higher amplitude delta waves (δ) are generated
during deepest meditation and dreamless sleep, suspending all
external awareness and facilitating healing and regeneration.
Disruptions in δ-wave activity can lead to neurological disorders
such as dementia, schizophrenia, parasomnia, epilepsy, and
Parkinson’s disease. Low frequency (4–8 Hz) and high amplitude
theta waves (θ) originate during sleep or deep meditation
with senses withdrawn from the external world and focused
within. Normal firing of θ-waves enables learning, memory,
intuition, and introspection, while excessive activity can lead to
attention-deficit/hyperactivity disorder (ADHD). Mid-frequency
(8–14 Hz) and mid-amplitude alpha waves (α) represent the
resting state of the brain and facilitate mind/body coordination,
mental peace, alertness, and learning. High frequency (16–32 Hz)
and low amplitude beta waves (β) dominate the wakeful state
of consciousness, direct our concentration towards cognitive
tasks such as problem solving and decision-making, and at
the same time consume a tremendous amount of energy.
In clinical context, β-waves can be used as biomarkers as
they indicate the release of gamma aminobutyric acid, the
principal inhibitory neurotransmitter in the mammalian nervous
system. Finally, gamma waves (γ) are the fastest (32–64 Hz)
and quietest brain waves. These waves were dismissed as neural
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noise until recently, when researchers discovered the
connection to greater consciousness and spiritual activity cul-
minating in the state of universal love and altruism55. The above
discussion clearly shows the immense importance of brainwaves
in regulating our daily experience. Instabilities in brain rhythm
can be catastrophic, leading to insomnia, narcolepsy, panic
attacks, obsessive-compulsive disorder, agitated depression,
hyper-vigilance, and impulsive behaviors. Early diagnosis of
abnormal brainwave activity through neural networks can help
prevent chronic neuro diseases and mental and emotional
disorders.

Figure 4b, c, and 4d show the frequency pattern of the
normalized power spectral density (PSD) for each type of
brainwaves, extracted from the Fast Fourier Transform (FFT) of
the time domain Electroencephalography (EEG) data (sequential
montage) with increasing sampling times that correspond to
sample sizes of N= 512, 2560, and 6400, respectively. Clearly, as
the training set becomes more and more exhaustive, the discrete
frequency responses corresponding to each type of brainwave
evolve into continuous spectrums that show complex patterns.
Furthermore, the system is highly nonlinear with functional
dependence of the PSDs on frequency being rather complicated
for each type of brainwave. As such, classification of brainwave
patterns using conventional ANNs, can be challenging56–58. In
addition, ANNs require optimum training algorithms and
extensive feature extraction and preprocessing of the training
sample in order to achieve reasonable accuracy. In contrast, as
demonstrated in Fig. 4d, the PNN adopts single pass learning by
defining the class PDF for each of the brainwave pattern in the
frequency domain using Gaussian mixture model (GMM)59,60.
GMM is represented as the weighted sum of a finite number of
scaled (different variance) and shifted (different mean) normal

distributions as described by Eq. 2.

p xð Þ ¼
X

K

i¼1

ψiN x=μi; σ i
	 


;N x=μi; σ i
	 


¼
1
ffiffiffiffiffiffiffiffiffiffi

2πσ2i
p exp �

x � μi
� �2

2σ2i

" #

;

X

K

i¼1

ψi ¼ 1

ð7Þ

A GMM with K components is parameterized by two types of
values, the component weights (ψi) and the component means

(μi) and variances (σ2i ) with the constraint that
P

K

i¼1

ψi ¼ 1, so that

the total probability distribution normalizes to unity. For each
type of brainwave pattern, the GMM parameters for the K
component were estimated from the training data corresponding
to N= 25,600, using the non-linear least square method. Figure
4e shows root mean square errors (RMSEs) calculated as a
function of K, i.e., the number of Gaussian curves used in the
corresponding GMMs. Clearly, a very limited number of
Gaussian functions are necessary to capture the non-linear
decision boundary for each of the brainwaves. This enormously
reduces the energy and size constraint for the PNNs based on
Gaussian synapses.

Finally, Fig. 5a shows simulation results evaluating the PNN
architecture for the detection of new brainwave patterns. The
PNN consists of 4 layers: input, pattern, summation, and output.
The amplitude of the new FFT data is relayed from the input layer
to the pattern layer as the drain voltage (VD) of the Gaussian
synapses, whereas, the frequency range (0–64 Hz) is mapped to
the back-gate voltage (VG) range. The summation layer integrates
the current over the full swing of VG from the individual pattern
blocks and communicates with the winner-takes-it-all (WTA)
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circuit that allows the output layer to recognize the brainwave
patterns. We implemented our PNN architecture on 10 whole-
night polysomnographic recordings, obtained from 10 healthy
subjects in a sleep laboratory using a digital 32-channel polygraph
(details can be found in the method section). The percentage of
different brainwave components as recognized by the PNN are
shown as a color map in Fig. 5b. As expected, the PNN recognizes
the dominant presence of delta and theta waves in the sleep
samples. Furthermore, Fig. 5c shows the total power consumption
(details can be found in the supplementary information section)
by the PNN as a function of the supply voltage (VDD) and sample
volume (N). As expected, the power dissipation scales with N
and VDD. Interestingly, even for a large sample volume of N=
2 × 105, corresponding to 8 h of EEG data, the power consump-
tion by the proposed PNN architecture was found to be as frugal
as 3 μW for VDD ¼ 0:1V, which increases to only 350 μW for
VDD ¼ 1:0V. A direct comparison of power dissipation with
digital CMOS will be premature at this time, especially since the
peripheral circuits required for the proposed PNN architecture

will add power dissipation overhead. Nevertheless, these pre-
liminary results show that the PNN architectures based on
Gaussian synapses can offer extreme energy efficiency.

Discussion
In conclusion, we have demonstrated reconfigurable Gaussian
synapses based on the heterostructure of atomically thin 2D
layered semiconductors as a new class of analog and probabilistic
computational primitives that can reinstate both energy and size
scaling aspects of computation. Furthermore, we elucidated how
Gaussian synapses enable direct hardware realization of PNNs,
which offer simple and effective solutions to a wide range of
pattern classification problems and thereby resurrect complexity
scaling. Finally, we show simulation results suggesting that PNN
architecture based on Gaussian synapses is capable of recognizing
complex neural oscillations or brainwave patterns from large
volumes of EEG data with extreme energy efficiency. We believe
that these findings will foster the much-needed interest in
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hardware implementation of PNNs and ultimately aid high per-
formance and low power computing infrastructure.

Methods
Device fabrication and measurements. MoS2 and BP flakes were micro-
mechanically exfoliated on 285 nm thermally grown SiO2 substrates with highly
doped Si as the back-gate electrode. The thicknesses of the MoS2 and BP flakes
were in the range of 3–20 nm. MoS2 is a 2D layered material with the lattice
parameters a= 3.15 A°, b= 3.15 A°, c= 12.3 A°, α= 90°, β= 90°, and γ= 120°.
The layered nature due to van der Waals (vdW) bonding results in a higher value
for c. This enables mechanical exfoliation of the material to obtain ultra-thin layers
of MoS2. BP exhibits a puckered honeycomb lattice structure. It has phosphorous
atoms existing on two parallel planes. The lattice parameters are given by a= 3.31
A°, b= 10.47 A°, c= 4.37 A°, α= 90°, β= 90°, and γ= 90°. The Source/Drain
contacts were defined using electron-beam lithography (Vistec EBPG5200). Ni
(40 nm) followed by Au (30 nm) was deposited using electron-beam (e-beam)
evaporation for the contacts. Both devices were fabricated with a channel length of
1 µm. The width of the MoS2 and BP devices were 0.78 µm and 2 µm, respectively.
The top-gated devices were fabricated with hydrogen silsesquioxane (HSQ) as the
top-gate dielectric. The top-gate dielectric was deposited by spin coating 6% HSQ
in methyl isobutyl ketone (MIBK) (Dow Corning XR-1541–006) at 4000 rpm for
45 s and baked at 80 °C for 4 min. The HSQ was patterned using an e-beam dose of
2000 µC cm−2 and developed at room temperature using 25% tetra-
methylammonium hydroxide (TMAH) for 30 s following a 90 s rinse in deionized
water (DI). Next, the HSQ was cured in air at 180 °C and then 250 °C for 2 min and
3 min, respectively. The thickness of the HSQ layer, used as the top-gate dielectric
was 120 nm. Top-gate electrodes with Ni (40 nm) followed by Au (30 nm) were
patterned with the same procedure as the source and drain contacts. Given the
instability of BP, we took special care to ensure minimal exposure time to the air

while fabricating BP devices by storing the material in vacuum chambers between
different fabrication steps. In addition, all the three lithography steps involved in
the device fabrication were done within a period of 3 days. The electrical char-
acterizations were obtained at room temperature in high vacuum (≈10–6 Torr) a
Lake Shore CRX-VF probe station and using a Keysight B1500A parameter
analyzer.

EEG data. The data used for our study were obtained from the DREAMS project,
which were acquired in a sleep laboratory of a Belgium hospital using a digital 32-
channel polygraph (BrainnetTM System of MEDATEC, Brussels, Belgium). They
consist of whole-night polysomnographic recordings, coming from healthy sub-
jects. At least two EOG channels (P8—A1, P18—A1), three EEG channels (CZ—
A1 or C3—A1, FP1—A1, and O1—A1), and one submental EMG channel were
recorded. The standard European Data Format (EDF) was used for storing. The
sampling frequency was 200 Hz. These recordings have been specifically selected
for their clarity (i.e., that they contain few artifacts) and come from persons, free of
any medication, volunteers in other research projects, conducted in the sleep lab.

Data availability
The data that support the plots within this paper and other findings of this study are

available from the corresponding authors upon reasonable request.

Code availability
The codes used for data analysis are available from the corresponding authors upon

request.
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