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We systematically extend Bogoliubov theory beyond the mean field approximation of the Bose-
Hubbard model in the superfluid phase. Our approach is based on the time dependent variational
principle applied to the family of all Gaussian states (i.e., Gaussian TDVP). First, we find the best
ground state approximation within our variational class using imaginary time evolution in 1d, 2d
and 3d. We benchmark our results by comparing to Bogoliubov theory and DMRG in 1d. Second,
we compute the approximate 1- and 2-particle excitation spectrum as eigenvalues of the linearized
projected equations of motion (linearized TDVP). We find the gapless Goldstone mode, a continuum
of 2-particle excitations and a doublon mode. We discuss the relation of the gap between Goldstone
mode and 2-particle continuum to the excitation energy of the Higgs mode. Third, we compute linear
response functions for perturbations describing density variation and lattice modulation and discuss
their relations to experiment. Our methods can be applied to any perturbations that are linear or
quadratic in creation/annihilation operators. Finally, we provide a comprehensive overview how our
results are related to well-known methods, such as traditional Bogoliubov theory and random phase
approximation.

I. INTRODUCTION

The Bose-Hubbard model provides a theoretical de-
scription of interacting cold atoms in optical lattices [1],
which in the last years have proven to be a promising
experimental platform. Its Hamiltonian is given by

Ĥ = −
∑

〈i,j〉
b̂†i b̂j +

U

2

∑

i

b̂†i b̂
†
i b̂ib̂i − µ

∑

i

b̂†i b̂i , (1)

where b̂†i and b̂i are the bosonic creation and annihilation
operators for a particle on site i of a square lattice. The
model has been analyzed theoretically with a several dif-
ferent methods, ranging from the historical Bogoliubov
theory [2] to later approaches based on the Gutzwiller
ansatz [3].
For different choices of the model parameters U and

µ, the system exhibits two different phases in the ther-
modynamic limit: a superfluid phase (small U) and a
Mott insulator phase (large U). One characterization of
the superfluid phase is that the U(1) symmetry gener-

ated by the particle number operator N̂ =
∑

i b̂
†
i b̂i [4] is

spontaneously broken for N → ∞. This leads to both a
gapless Goldstone mode and a massive Higgs amplitude
mode in the excitation spectrum around the transition.
The properties of these have both been described the-
oretically, e.g., with methods based on the Gutzwiller
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ansatz [5–7], strong coupling [8, 9], the variational clus-
ter approach [10], the random phase approximation [11]
or the ladder diagram approximation for the continuum
theory [12], and observed in experimental realizations of
the model [13–15].

The aim of our paper is to introduce a systematic
generalization of the Bogoliubov mean field theory for
the superfluid phase. Our method is best described as
Gaussian time dependent variational principle (Gaussian
TDVP), i.e., we compute system properties from the fam-
ily of bosonic Gaussian states [16] given by displaced and
squeezed vacua. This is in contrast to Bogoliubov the-
ory which is based on the smaller variational family of
coherent states, i.e., just displaced vacua.

Bogoliubov theory describes the model by suit-
ably truncating the Hamiltonian to a quadratic non-
interacting mean field Hamiltonian. The minimal energy
of this Hamiltonian approximates remarkably well the
exact ground state energy. Furthermore, the mean field
Hamiltonian can be diagonalized using Bogoliubov trans-
formations and its spectrum describes the dispersion re-
lation of the gapless Goldstone mode of the model. This
last step is equivalent to applying the linearized time de-
pendent variational principle to coherent states (coherent
TDVP).

Bogoliubov theory, however, also presents several
drawbacks. First, the Bogoliubov ground state energy
approximation is not variational, i.e., the mean field
ground state does not minimize the expectation value
with respect to the full Hamiltonian. Second, it does not
capture other excitations beyond the Goldstone one, such
as the Higgs amplitude mode or bound doublon states.
Third, the Goldstone quasiparticles are non-interacting
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and thus, the decay of quasiparticles excitations can only
be studied by re-including the initially discarded Hamil-
tonian terms as a perturbation [17].

By instead applying linearized TDVP to an extended
variational manifold, i.e., the larger class of Gaussian
states in place of just coherent states, we overcome all
of these drawbacks. First, we compute a variational
ground state approximation given by the Gaussian state
|ψg〉 with minimal energy expectation value. For this,
we use imaginary time evolution and show that |ψg〉
can be efficiently computed in any dimension from
two self-consistent equations. Second, our approximate
excitation spectrum captures both 1- and 2-particle
states, which include the gapless Goldstone mode, a
doublon mode and a gapped mode which may be inter-
preted as a Higgs amplitude mode. The approximate
excitation spectrum arises as the eigenvalues of the
linearized TDVP equations of motion on the tangent
space of Gaussian states. Third, the Gaussian tangent
plane naturally captures the interaction of quasi-particle
excitations in the 1- and 2-particle sector. This allows
us to extract spectral response functions associated
to linear and quadratic perturbations and to compute
decay and time evolution of excitations.

This paper is structured as follows: In Section II, we
introduce our variational manifold and compute the best
approximation of the system’s ground state in the su-
perfluid phase, i.e., the Gaussian state with the minimal
energy expectation value. In Section III, we study the
linearization of the projected real time evolution on such
manifold to obtain an expression for the system’s exci-
tation spectrum. In Section IV, we develop a geometric
linear response theory consistent with our approxima-
tion scheme to capture how linear perturbations couple
to different parts of the spectrum. In Section V, we ex-
pand on the relationship between our methods and others
also based on a Gaussian or coherent state ansatz man-
ifold (specifically Bogoliubov theory) and discuss differ-
ences and advantages. Finally, we conclude in Section VI
with a comprehensive discussion of our results. In Ap-
pendices A-C, we review Bogoliubov theory, its partial
equivalence to coherent TDVP and how to make it self-
consistent by iteration. In Appendices D-F, we provide
further details on the Gaussian ground state approxima-
tion, the linearized equations of motion and linear re-
sponse theory. Finally, in Appendix G we illustrate the
equivalence between our Gaussian method and the ran-
dom phase approximation scheme based on ladder Feyn-
man diagrams.

II. GAUSSIAN GROUND STATE
APPROXIMATION

As first step of applying our variational methods, we
compute the best Gaussian state |ψg〉, i.e., the nor-
malized Gaussian states whose energy expectation value

E|ψg〉 = 〈ψg| Ĥ |ψg〉 on the full Hamiltonian is minimal.

A. Variational manifold

We generalize the Bogoliubov theory of the Bose-
Hubbard model by extending the variational manifold
for the system state to the full manifold M of bosonic
Gaussian states. This is in contrast to regular Bogoliubov
theory, where the variation is only done with respect to
coherent states. The manifold of Gaussian states can be
conveniently parametrized by first squeezing and then
displacing the reference vacuum |0〉, i.e., we consider the
variational manifold

M =
{

|β, λ〉 = U(β, λ) |0〉
}

, (2)

with unitaries U(β, λ) = D(β)S(λ) defined by

D(β) = exp

[

1

2

∑

k

(

βk b̂
†
k − β∗

k b̂k

)

]

, (3)

S(λ) = exp





1

2

∑

kq

(

λk,q b̂
†
k−q b̂

†
q − λ∗k,q b̂k−q b̂q

)



 , (4)

where b̂k = 1√
N

∑

i e
−ikxi b̂i are the momentum space an-

nihilation operators. Here, βk is a complex vector and
λk,q is a complex matrix invariant under q → k − q.
The indices k and q run in the reciprocal lattice. The
only redundancy contained in this parametrization is the
symmetry of λ. For a system with N bosonic degrees
of freedom, we count N(N + 3)/2 complex coordinates
(βk, λk,q) or N(N + 3) real coordinates

xa =
(

Re(βk),Re(λk,q), Im(βk), Im(λk,q)
)

. (5)

We will use the shorthand notation U(xg) for the choices
of xa, such that U(xg) |0〉 = |ψg〉.
The manifold is closed under the action of any sub-

group generated by any operators that are linear and
quadratic in creation/annihilation operators. In particu-
lar, this applies to the U(1) symmetry group generated

by the total number operator N̂ =
∑

i b̂
†b̂i. Here, for

any Gaussian state |ψ〉 other than the vacuum |0〉 we

find a whole ring of inequivalent states eiθN̂ |ψ〉 with the
same energy expectation value. Therefore, we expect this
variational manifold to be well suited to capture sponta-
neously broken U(1) symmetry phase of the system, i.e.,
the superfluid phase, and its features, such as the mass-
less Goldstone mode.
While the symmetry of the Bose-Hubbard model is

known to be only spontaneously broken in the thermo-
dynamic limit (N → ∞), our ansatz already gives rise
to a family of non-symmetric approximate ground states
at finite N . We furthermore point out that, while finite
temperature spontaneous breaking of a continuous sym-
metry at zero temperature is ruled out in 1D, there might
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still be quasi-long range order, therefore a broken sym-
metry ansatz can turn out to be a reasonable choice also
in 1D.
The manifold contains a submanifold of states which

are translationally invariant, namely the set of states
|ψ(βk, λk,q)〉 with βk = δk,0β0 and λk,q = δk,0λ0,q. For
the ground state search, it is sufficient to restrict our-
selves to this submanifold as we expect the ground state
to preserve the translational symmetry of the problem.
For the study of excitations around the translationally
invariant ground state, we will then use the full mani-
fold in order to capture also excitations with non-zero
momentum.
The tangent space T|ψ〉 of the variational manifold at

the point |ψ〉 is naturally spanned by the states with 1-
and 2-particle excitations, i.e.,

T|ψ(x)〉M = span
{

U(x)b̂†k |0〉 , U(x)b̂
†
k−q b̂

†
q |0〉

}

k,q
. (6)

Put differently, the variational class of all Gaussian states
captures accurately the 1- and 2-particle quasiparticle
excitation sector of our model.

B. Imaginary time evolution

The first step of our procedure to exploit the given
choice of variational manifold is to find within it the best
approximation of the ground state, that is the state with
the lowest energy expectation value. One strategy to do
this is to consider the projected imaginary time evolution.
This is the solution of the evolution equation

d

dτ
|ψ(τ)〉 = −P|ψ(τ)〉Ĥ |ψ(τ)〉 , (7)

where P|ψ(τ)〉 is the orthogonal projector onto the tangent
space to the manifold at |ψ(τ)〉. This projection ensures
that the solution will be contained in the ansatz manifold
at all times τ . This evolution converges from a random
initial state to a local minimum of the energy expectation
value function and can be shown to be equivalent to a gra-
dient descent method. For Gaussian states, we find sim-
ple equations for the stationary point of this evolution,
i.e., the state |ψg〉 ∈ M such that −P|ψg〉Ĥ |ψg〉 = 0,
and see that they only admit a single solution up to the

redundancy generated by eiαN̂ .
This solution |ψg〉 can be characterized analytically, in-

dependently of the system size or dimensionality, in terms
of two parameters A and B, which can be efficiently com-
puted numerically as the fixed point of two coupled self-
consistent equations. For more details on this calculation
and on how to parametrize the approximate ground state
see Appendix D.

C. Ground state properties

Having obtained an analytical expression for the ap-
proximate ground state, it is then possible to calculate

0
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FIG. 1. Comparison of ground state energies in 1d. We
compare the following approaches: (a) Minimal energy on
manifold of coherent states E|βc

0〉
from (A5), (b) Bogoliubov

ground state energy EBogoliubov = E|βc
0〉

− ∆ from (A17) in
the limit N → ∞, (c) DMRG energy EDMRG and (d) min-
imal energy E|ψg〉 of all Gaussian states for N = 501. The
DMRG results were computed for finite systems with open
boundary conditions and then extrapolated to the thermody-
namic limit N → ∞. The Gaussian state energy E|ψg〉 at
N = 501 appears to have already substantially reached the
thermodynamic limit value.

the predictions of our model for ground state properties
such as the energy and particle densities. The quality
of our method can be benchmarked by comparing these
quantities with the ones obtained through other meth-
ods, such as Bogoliubov theory or, at least in one di-
mension, with a numerical DMRG [18] calculation (see

Figure 1). Our variational energy E|ψg〉 = 〈ψg| Ĥ |ψg〉 is
higher than the DMRG one, as expected, but lower than
the one obtained by other variational choices, such as
the coherent state |βc

0〉 with minimal energy E|βc
0〉. The

energy obtained as the ground state energy of the Bogoli-
ubov mean field Hamiltonian is generally lower than ours
and remarkably close to the DMRG result. However, it
is important to emphasize that this energy EBogoliubov

is not variational as it is computed with respect to the
truncated mean field Hamiltonian, which actually does
not admit a well defined ground state in the zero mo-
mentum mode. More precisely the state minimizing the
mean field energy is infinitely squeezed, which would lead
to a diverging energy expectation value with respect to
the full Bose-Hubbard Hamiltonian.

Thus, the Gaussian variational family provides a con-
sistent class to approximate the ground state of the Bose-
Hubbard model in the superfluid phase, even though its
ground state energy estimate is worse than the one ob-
tained from Bogoliubov theory. However, the strength
of our extended variational family lies in its prediction
of quasiparticle excitations and their properties, such as
life time and linear response.
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III. QUASI PARTICLE EXCITATIONS

We can derive an approximate excitation spectrum
from the perspective of our Gaussian variational mani-
fold by looking at real time evolution of the system pro-
jected onto the manifold. As our variational class gener-
alizes the set of coherent state manifold used in standard
Bogoliubov theory, we will be able to capture higher ex-
citation modes of the model.
The projected real time evolution is computed as

prescribed by the time dependent variational principle
(TDVP) [19, 20]. Such principle can be formulated as
stating that the real time evolution projected on the man-
ifold of Gaussian states takes the form

d

dt
|ψ(t)〉 = P|ψ(t)〉(−iĤ) |ψ(t)〉 , (8)

and generates a Hamiltonian time evolution flow Φt :
M → M that, in a neighbourhood of the stationary
state |ψg〉, reduces to a sum of phase rotations. From the
perspective of our variational manifold, the frequencies
of these rotations provide a natural approximation of the
lowest excitation energies.

A. Linearized TDVP

We calculate the excitation energies as shown in Fig-
ure 2, as the eigenvalues of the linearized equations of
motion, that can be understood as a generalization of
the well-known Gross-Pitaevskii equation [21, 22].
In particular, we consider the linearization of this pro-

jected real time evolution around the stationary point
|ψg〉, that defines a linear map K at the tangent space of
|ψg〉, mapping a tangent vector |V 〉 onto

∂V P|ψ〉(−iĤ) |ψ〉 =
(

∂V P|ψ〉
)

(−iĤ) |ψ〉+ P|ψg〉(−iĤ) |V 〉 ,
(9)

where ∂V indicates the directional derivative on M eval-
uated at |ψg〉 in the direction indicated by |V 〉.
Using the fact that |ψg〉 is a stationary point of the

evolution, i.e., P|ψg〉(−iĤ) |ψg〉 = 0, we can write the
map K as a real N(N+3)×N(N+3) matrix, referring to
the tangent plane basis {U(xg) |W a〉} (see Appendix E),

Ka
b =

∂

∂xb
Re 〈W a| U†(x)ĤU(x) |0〉 , (10)

where xa refers to the real coordinates (5) of the manifold
and the orthonormal frame |W a〉 is given by

{|W a〉} =
{

b̂†k |0〉 , b̂
†
k−q b̂

†
q |0〉 , ib̂†k |0〉 , ib̂

†
k−q b̂

†
q |0〉

}

. (11)

To give this matrix representation of K we are here
employing a real formalism in which we use a real
parametrization and we consider the tangent plane as
real vector space, i.e., we consider the vectors |W 〉 and
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FIG. 2. Excitation spectra for µ = 0. We compare the quasi-
particle excitation spectrum computed from Gaussian TDVP
with Bogoliubov theory. The results are shown for µ = 0
and two different values of the interaction strength (U = 0.1
and U = 1) in 1, 2 and 3 dimensions. The spectrum was
computed as eigenvalues of Ka

b from (10), where we inter-
polated the continuum part of the spectrum from systems
The computations were performed for N = (501, 1012, 413)
for dim = (1, 2, 3) respectively.

|W ′〉 = i|W 〉 to be linearly independent (and orthogonal
with respect to the real inner product Re 〈W |W ′〉). This
is naturally dictated by the fact that the linearized equa-
tions of motion from (9) do not commute with complex
multiplication, i.e., Ka

b is not complex-linear, as elabo-
rated in Appendix E. Another formal expression for the
matrix K is

Ka
b = −

∑

c

Ωac
∂

∂xc
∂

∂xb
E(x), (12)

where E(x) is the energy expectation value of the state
|ψ(x)〉, and the matrix Ω is the antisymmetric symplectic
form defined in (F11).
The evaluation of this matrix (10) reduces to calculat-

ing expectation values using Wick’s theorem and taking
derivatives, therefore it can be calculated analytically in
terms of the ground state parameters obtained in the
previous section. More details on the form of K can be
found in Appendix E. K is a symplectic matrix whose
eigenvalues come in complex conjugate pairs ±iω. The
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FIG. 3. Comparison with Bogoliubov spectrum. We compare the spectra from Gaussian TDVP (left figure) with the one from
Bogoliubov theory (right figure). For this, we overlap both figures (middle figure) and zoom into the narrow light strip around
the Bogoliubov dispersion relation Ek (red dotted line). We see that the Goldstone mode merges into the TDVP continuum
spectrum in the same region, where free Bogoliubov theory predicts Ek to lie inside the 2-particle continuum (indicated by
arrows). The TDVP was performed in 1 dimension for N = 501, µ = 0 and U = 0.01.

values of ω are our estimates of the excitation energies of
the model.

Due to the translational invariance of Ĥ the matrix
K is block diagonal, with each block acting on the span
of tangent vectors with fixed total momentum, which we
labeled by k in in (E1). The approximate excitation ener-
gies ω can therefore also be labeled by the total momen-
tum k their respective eigenvector. The size of each block
grows linearly in N , and therefore in the thermodynamic
limit N → ∞ there is an infinity of eigenvalues ωk for
each k, which can arrange themselves in a continuum plus
possibly some discrete excitations that represent bound
states.

B. Excitation spectrum

In Figure 2, we show the dispersion relations obtained
by diagonalizing the matrix K numerically. For mo-
menta close to zero, we always find a gapless isolated
mode that agrees well with the Bogoliubov dispersion re-
lation Ek. However, we also find a continuum of states
that have energies above this Goldstone mode and that
always shows a gap around k = 0. Finally, for certain
parameter choices, e.g., for strong interactions, our spec-
trum also contains another isolated state above the con-
tinuum, which can be interpreted as a doublon state.

We point out that the fact that our method gives a
gapless mode was to be expected. Indeed, N̂ commutes
with the Hamiltonian and the vector N̂ |ψ〉 is part of the
tangent plane for all |ψ〉 ∈ M, because N̂ is quadratic in
the bosonic creation and annihilation operators. There-
fore there exists a direction in the manifold along which
the energy is constant. In this direction, the Hessian
∂
∂xa

∂
∂xbE(x) has a vanishing eigenvalue and thus, be-

cause of equation (12), also K does.
Our method captures the tangent plane generated by

displacements and squeezing, i.e., it is spanned by 1- and
2-particle excitations. A generic eigenvector |Ek〉 of Ka

b

with momentum k is

|Ek〉 = U(xg)
[

C b̂†k +
∑

q

Cq b̂
†
k+q b̂

†
−q

]

|0〉 , (13)

where C,Cq ∈ C. We should therefore compare our re-
sults with the 1- and 2-particle excitation spectrum ob-
tained from Bogoliubov theory.
Traditional Bogoliubov theory constructs the excita-

tion spectrum from the 1-particle dispersion relation Ek
(see (A13)) of the mean field Hamiltonian

[Ĥ]|βc
0〉 = E|βc

0〉 −∆c +
∑

k

Ec
k (δB̂

c
k)

†δB̂c
k , (14)

as reviewed in A. The dispersion relation Ek is indepen-
dent of the interaction strength U and becomes exact
in the limit U → 0+. General eigenstates of [Ĥ]|βc

0〉
consist of non-interacting excitations created by (δB̂c

k)
†.

A general 2-particle excitation with momentum k is
therefore given by (δB̂c

k+q)
†(δB̂c

k−q)
† |βc

0〉 and has energy
Ek+q + Ek−q.
Because of the gapless nature of the 1-particle Bo-

goliubov dispersion relation, the continuum of non-
interacting 2-particle excitations is never separated in en-
ergy from the 1-particle dispersion, as seen in Figure 3
(right) and discussed in Appendix A. The gap between
the isolated bound state (Goldstone mode) and the con-
tinuum of higher excitations is therefore a new feature of
Gaussian TDVP due to the fact that it implements the
interaction within the 1- and 2-particle sectors.
While the Goldstone mode continues to be well-

described by the Bogoliubov dispersion relation Ek, the
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spectrum of 2-particle excitations from Gaussian TDVP
starts to divert as we increase U . In particular, we see
that for sufficiently large U both, the Goldstone mode
and the doublon mode are completely separate from the
continuum.
In figure 3, we compare Gaussian TDVP and Bogoli-

ubov theory in the regime where the Goldstone mode
partially intersects with the continuum. We observe that
this intersection appears for small U in the Gaussian
TDVP results only in those regimes where also the in Bo-
goliubov theory the 1-particle mode lies partially above
the bottom of the many particle continuum. This phe-
nomenon occurs for choices of µ and system dimension
dim such that the dispersion relation Ek is not convex,
i.e., there exist q, k, such that Ek + Eq < Eq+k. In
Appendix A, we show that this can only happen for
µ < 6 − 2 dim. The Gaussian TDVP continuum (light
orange) agrees well with the Bogoliubov 2-particle spec-
trum (light red), where it intersects with the Goldstone
mode, i.e., roughly for 2πk/N ∈ (π/4, 3π/4). Outside of
this region, the two disagree: While the Gaussian TDVP
gives rise to a finite gap between continuum and isolated
Goldstone mode, 2-particle continuum and 1-particle dis-
persion relation necessarily touch for the non-interacting
mean field Hamiltonian from Bogoliubov theory.
In this regime of intersecting continuum and Goldstone

mode, Gaussian TDVP can (at least partially) describe
the decay of the Goldstone mode into the continuum of
modes with a higher number of excitations. This phe-
nomenon is known as Beliaev damping [17] and is not
captured by the standard Bogoliubov theory, but so far
has been typically obtained from perturbative expansions
by re-including higher order terms of the Hamiltonian.
We will investigate this decay of 1-particle excitations
into the continuum in section IVB.

C. Higgs mode

Another suggestive observation can be made on the
physical interpretation of the gapped mode at the bot-
tom of the continuum. A possible interpretation is that
it is a remnant of what, near the superfluid to Mott in-
sulator transition, becomes known as the Higgs mode. It
corresponds to oscillations of the amplitude of the order
parameter 〈b0〉 (while the Goldstone mode is interpreted
as oscillations of the order parameter phase) and it has
been observed experimentally by coupling to it through
modulation of the tunneling amplitude [13].

The prediction of our model for the continuum gap,
which because of this possible interpretation we will la-
bel as EHiggs, can be studied numerically through the
diagonalization of the matrix K described in the previ-
ous paragraphs. At fixed non-zero U , EHiggs converges
to a finite non-zero value in the thermodynamic limit.
We are also able to give an analytical asymptotic result

for the limit in which U → 0 while µ varies so as to keep
a constant particle number density of the ground state

0.0

0.5

1.0

1.5

5 10 50 100 500 1000 5000
0.0

0.5

1.0

1.5

FIG. 4. Continuum/Higgs gap as function of 1/U . This figure
shows the gap between the gapless Goldstone mode and the
continuum of excitations as a function of 1/U in 1d and 2d
and for different system sizes. The asymptotic value for large
N and small U obtained in equation (15) is also indicated for
N = 1001 in 1d and N = 1012 in 2d.

n = 〈N̂〉 /N (see Appendix E). In this limit, we have that
the gap goes to zero linearly in the interaction strength
U , namely

lim
U→0

EHiggs

U
= α(N,n) ∼ 2

3
√
2n

2
3N− 1

3 as N → ∞ .

(15)

Note that it is instrumental that we took here first the
limit U → 0, before studying the large N asymptotics.

In Figure 4 one can see the numerical results for the
behaviour of the ratio between the Higgs gap and U and
notice how it indeed approaches a constant asymptotic
value for small U . In the large U region, it has instead
an unexpected divergent behaviour (the gap should close
at the SF/MI transition [6]), however this can be under-
stood as a breaking down of our model at the transition
where Gaussian states are no longer a good description
of the system’s ground state. It is instead interesting to
see how the constant small U behaviour matches the ex-
perimentally measured value of the Higgs mode gap [13]
even better than the previous theoretical results obtained
with Gutzwiller theory.

IV. LINEAR RESPONSE

We use our variational manifold and the real time evo-
lution projected onto it to study the response of the sys-
tem to small perturbations. This is significant as it pro-
vides possible connections to actual experiments, where
certain system responses can be probed and measured.
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FIG. 5. Spectral functions for (a) Density variation V̂
(k)
density from (20) and (b) Lattice modulation V̂

(k)
lattice from (21). We show,

as colour plots, the values of the spectral response functions Zk(ω) in the relevant range of values of k and ω. In the first
column of each panel, we show more logarithmic graphs of Zk(ω) for fixed slice of k (indicated by vertical lines of the respective
color in the second column). The computations were performed for N = (501, 1012, 413) for dim = (1, 2, 3) respectively. To
extract a continuous response functions, we performed a binning in energy intervals of ∆ω = (0.13, 0.2, 0.37) for dim = (1, 2, 3)
respectively.
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FIG. 6. Comparison: Density variation (20) and lattice modulation (21) at k = 0. We compare the response functions from
density variation with the one from lattice modulations. The response to the lattice modulation is by several orders of magnitude
stronger. Note that we rescaled the data by factors of 10±x to fit into the same range. The computations were performed for
N = (501, 1012, 413) for dim = (1, 2, 3) respectively. To extract a continuous response functions, we performed a binning in
energy intervals of ∆ω = (0.5, 1, 1) for dim = (1, 2, 3) respectively.

A. Spectral Functions

We model an external perturbation by considering the
time dependent perturbed Hamiltonian

Ĥλ(t) = Ĥ + λϕ(t) V̂ , (16)

where Ĥ is the unperturbed Bose-Hubbard Hamilto-
nian (1), ϕ(t) is a classical external field that couples

to the system through the Hermitian operator V̂ and λ
is a real parameter. We shall then consider the projected
real time evolution |ψλ(t)〉 of the system under such per-

turbed Hamiltonian and evaluate its response in terms
of the expectation value of the same coupling operator
V̂ . In particular, we consider this response in the limit
of small perturbations, i.e., we compute quantities only
up to first order in the parameter λ. Thus, we consider
the response

δV (t) =
d

dλ
〈ψλ(t)|V̂ |ψλ(t)〉

λ=0
(17)

to the perturbation V̂ .
As discussed in Appendix F, the Fourier space re-
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FIG. 7. Peak merging into continuum. We plot the spectral
response function Zk(ω) relative to a density perturbation for
a set of different momenta k. The function is calculated for
a set of parameters (dim = 1, U = 0.01 and µ = 0) such
that for some values of k the Goldstone mode merges into the
continuum spectrum. The plot shows how the delta-like peak
of the Goldstone mode transforms into a finite width feature
when this merge occurs (purple line).

sponse δV (ω), calculated on the variational manifold as
explained above, takes the form δV (ω) = ϕ̃(ω)χ(ω),
where ϕ̃ is the Fourier transform of the perturbing field
ϕ(t) and ZV (ω) ≡ −πImχ(ω) is the response function

of the system with respect to the perturbation V̂ . Such
response functions are expressed in terms of the spec-
tral decomposition of the linearized real time evolution
K defined in Section III as

ZV (ω) =
1

2
sign(ω) |ea(ω) dVa|2 δ(|ω|) , (18)

where dV is the gradient differential form of the real val-
ued function on the manifold 〈ψ(β, h)|V̂ |ψ(β, h)〉, e(ω)
are the eigenvectors of K (defined in Appendix E) with
eigenvalue ω and δ(|ω|) is a normalization of the eigen-
vectors defined in equation (F21).
For the Bose-Hubbard model, we consider the following

types of perturbations:

V̂
(k)
1−particle =

∑

k

U(xg)(ib̂†k − ib̂k)U†(xg) . (19)

V̂
(k)
density =

∑

i

b̂†i b̂i cos(kxi) (20)

V̂
(k)
lattice =

∑

〈i,j〉
(b†i b̂j + b†j b̂i) cos(kxi) . (21)

In (19), we use a linear operator to create a single particle
perturbation of momentum k. The other two perturba-
tions are quadratic in creation and annihilation opera-
tors, such that the excitation consists in general of both
single- and 2-particle excitations. In (20), we consider
a spatial density variation by modulating the chemical

potential with momentum k, which couples directly to
the local particle density. In (21), we consider a spa-
tial modulation of momentum k of the hopping constant.
This can be achieved through a modulation of the lattice
depth [23]. Such perturbation naturally couples to the
kinetic energy operator.
The different response functions Zk(ω), obtained by

evaluating (18) for different types of perturbation oper-
ators of momentum k and at energy ω, give us an indi-
cation of how strongly each type of perturbation couples
to different regions of the spectrum.
A first observation we can make is on the behaviour

of the isolated Goldstone mode in those situations when
it merges with the continuum part of the spectrum. In
Figure 7, we see how the isolated peak of the response
function broadens into a wider feature inside the contin-
uum. This indicates how, even when the Goldstone mode
is not an isolated eigenstate, it still survives as a finite
lifetime excitation of the system.
We can then also compare how the different pertur-

bations considered couple to the system. In Figure 6,
we see how the perturbation that couples the strongest
to the continuum modes at k = 0 is the lattice modula-
tion operator. Although it has to be mentioned that the
definition of the normalizations of the perturbations (20-
21) is not free of some arbitrariness, the large difference
in these coupling strengths provides a further element
of support to the identification of the lower continuum
modes as the Higgs excitation. Indeed it is known that
the Higgs mode should be excited most easily through
perturbations of the kinetic energy term of the Hamilto-
nian, while the Goldstone mode through perturbations
in the particle density [6].

B. Real time evolution

The analysis of the response function can also give in-
dications on the real time evolution of perturbations of
the system. Indeed, we can interpret the operator V̂ as
creating a perturbation described by the tangent vector
|δψg(0)〉 = P|ψg〉(−iV̂ ) |ψg〉 at t = 0, which is equivalent
to giving the system a kick by choosing ϕ(t) = δ(t). The
evolution in the tangent plane of this perturbation vec-
tor is then given by dΦt at |ψg〉, i.e., the push-forward
of the real time evolution flow Φt around the stationary
point. dΦt is a linear map on the tangent space at |ψg〉,
explicitly it is given by the matrix eKt with respect to
the basis (6).

We consider an initial perturbation |δψg(0)〉 in the
1-particle sector of the tangent plane, i.e., we require
|δψg(0)〉 to be only spanned by 1-particle states in ba-
sis (6). In particular, this is accomplished by the per-

turbation created by V̂
(k)
1−particle. The time evolution of

|δψg(0)〉 under the map dΦt can then show different char-
acteristic behaviour. If the perturbation is created at a
momentum value where there exists an isolated Gold-
stone state with a strong coupling to the 1-particle sec-
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FIG. 8. Time evolution of 1-particle weight. We show, for
different momenta k, the real time evolution of the 1-particle

weight Wk(t) = | 〈ψk(0)|ψk(t)〉 |
2, where |ψk〉 = V̂

(k)
1 particle |ψg〉

is a perturbation vector in the one particle sector of the tan-
gent plane. The overlap in the previous equation is computed
as explained in Appendix F.

tor (quantified by the 1-particle response function), the
perturbation will persist indefinitely. If, instead, the ex-
citation has a momentum at which the 1-particle per-
turbation couples sufficiently strongly to the continuum,
a part of it will decay into the continuum modes, disap-
pearing in a time proportional to the inverse of the width
of the response function. Finally, if there is no isolated
Goldstone state at the chosen momentum, but only the
continuum, the perturbation will have a finite lifetime
and decay completely into continuum excitations.
In Figure 8, we show the overlap of the time evolved

perturbation with the 1-particle sector of the tangent
plane, for different total momenta of the initial perturba-
tion. A perturbation with momentum k corresponding to
an isolated Goldstone state will maintain a large overlap
with the 1-particle sector. For perturbations with mo-
mentum k closer to the region where the Goldstone mode
merges with the continuum, a larger part of the overlap
with the 1-particle sector will decay in time. Finally, if
the perturbation has a total momentum k, for which no
isolated Goldstone state exists in the spectrum, the sin-
gle particle overlap will decay completely to zero after a
finite lifetime. Such decay behavior is similar to what
can also be seen in quantum optical systems coupled to
unconventional photon baths [24].
This behaviour of the evolution of perturbations can

be interpreted as a remnant in lattice systems of what in
continuum Bose-Einstein condensates (BEC) is known
as the Beliaev damping of excitations, i.e., the decay of
1-particle excitations into the continuum of many parti-
cle excitations due to scattering interactions. Our vari-
ational scheme successfully captures at least part of this
behaviour, namely the one associated to the 1- and 2-
particle sector that are fully included in our tangent
space. This is in contrast to the traditional Bogoliubov

theory that is restricted to the non-interacting 1-particle
sector. In particular, standard Bogoliubov theory cannot
describe the interaction with the continuum consistently,
which can only be incorporated by re-including the pre-
viously neglected terms as perturbations [17].

V. RELATIONS BETWEEN METHODS

Our study is based on the time dependent variational
principle (TDVP), where we project the equations of
motion on a given variational class and linearize them
around the stationary state that provides the best ap-
proximation of the ground state. While we focused on
the class of all Gaussian states, the method can be ap-
plied to any suitable family of states, so it is natural to
compare the results between different variational classes.
In the context of Bogoliubov theory, it is natural to com-
pare our larger manifold of all bosonic Gaussian states
D(β)S(λ) |0〉 with the smaller sub manifold consisting
only of coherent (or displaced) states D(β) |0〉. Table I
summarizes the different methods.
(i) Coherent TDVP around |βc

0〉. If we apply lin-
earized TDVP to the manifold of coherent states, we ob-
tain the same excitation spectrum as the single-particle
spectrum of Bogoliubov mean field theory (see Ap-
pendix B). The latter is defined by taking the full Hamil-
tonian and using the commutation relations to normal or-
der the creation and annihilation operators with respect
to the coherent state |βc

0〉 that minimizes the energy on
the coherent state manifold. At this point, we can trun-
cate at quadratic order to obtain the mean field Hamil-
tonian [Ĥ]|βc

0〉 and use a Bogoliubov transformation to
compute its excitation spectrum Ek. However, we should
point out that [Ĥ]|βc

0〉 contains more information than the
linearized TDVP, as it gives us a Hamiltonian operator
whose minimal energy EBogoliubov is a better estimate of
the system’s ground state energy than just E|βc

0〉. On the
other hand, this energy is not variational, i.e., it cannot
be expressed as the expectation value of an ansatz state
on the full system Hamiltonian. Furthermore, the trun-
cation of [Ĥ]|βc

0〉 is not self-consistent, because |β
c
0〉 is not

its ground state.
(ii) Coherent TDVP around |ψc

0〉. After finding the
best Gaussian ground state approximation |ψg〉, we can
linearize the equations of motion restricted to the space
of displacements. This is equivalent to iterating tra-
ditional Bogoliubov theory as reviewed in appendix C,
where we find the self-consistent mean field Hamilto-
nian [Ĥ]|ψg〉, whose ground state is again |ψg〉. The 1-

particle spectrum Eg
k from this Hamiltonian is gapped

and consequently not a good approximation to the Gold-
stone mode. However, we can use Eg

k to construct the 2-

particle continuum of the quadratic Hamiltonian [Ĥ]|ψg〉.
Interestingly, the resulting 2-particle spectrum provides
a good approximation to the continuum with Gaussian
TDVP (see figure 11). In this way, we can understand
the gap Eg

0 as already encoding the interaction energies
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TABLE I. Comparison of tangent plane methods. We relate known methods to compute excitation spectra based on choosing
a tangent plane of (i) coherent states around |βc

0〉, (ii) coherent states around |ψg〉 and (iii) general Gaussian states around |ψg〉
and list for which combinations, we find the expected gapless Goldstone mode.

Linearized TDVP Projected Hamiltonian

spectrum of Ka
b equivalent method: spectrum of P|ψ〉ĤP|ψ〉

(i) Coherent states
gapless Goldstone mode Ec

k ⇒
Bogoliubov theory

gapped 1-particle spectrum
around |βc

0〉 (see Appendix A-B)

(ii) Coherent states
gapped 1-particle spectrum Eg

k ⇒
Iterated Bogoliubov theory

gapped 1-particle spectrum
around |ψg〉 (see Appendix C)

(iii) Gaussian states gapless Goldstone mode,
⇒

Random phase approximation gapped 1-particle spectrum,

around |ψg〉 gapped 2-particle spectrum (see Appendix G) gapped 2-particle spectrum

between two particle excitations that is required to ap-
proximate the interacting 2-particle spectrum.

(iii) Gaussian TDVP around |βc
0〉. In order to obtain

a self-consistent ground state, we enlarge the manifold
of states and introduce general Gaussian states, which
also allow for squeezing. Indeed, the Gaussian state of
minimal energy |ψg〉 can also be identified as the state
that fulfills the property of being the ground state of
the corresponding mean field Hamiltonian [Ĥ]|ψg〉, i.e.,
the quadratic truncation of the full Hamiltonian when
normal-ordered with respect to |ψg〉. If we apply lin-
earized TDVP to the extended manifold of Gaussian
states, we obtain the spectrum object of this paper, which
naturally contains both 1- and 2-particle excitations (see
Section III). The Gaussian TDVP spectrum can be equiv-
alently obtained using random phase approximation (see
Appendix G). More precisely, the Gaussian state |ψg〉
can be used as the reference vacuum when expanding
Green’s functions in terms of Feynman diagrams. We
can consistently resum all ladder diagrams to obtain an
approximate excitation spectrum, that agrees with the
one found through Gaussian TDVP.

Projected Hamiltonian. Finally, there is a well-known
alternative [25–27] to compute excitation spectra from a
tangent plane based on the projected Hamiltonian. In-
stead of linearizing the equations of motion, we can di-
rectly take the tangent plane as variational ansatz for
eigenstates by projecting the full Hamiltonian onto it,
i.e., HP = P|ψ〉ĤP|ψ〉, and then computing its spec-
trum. The eigenstates |Ei〉 with energy Ei of the pro-
jected Hamiltonian HP are manifestly variational, i.e.,
their expectation value with respect to the full Hamil-
tonian is equal to Ei and there exists a true eigenstate
of the full Hamiltonian with smaller energy. This is not
necessarily the case for the eigenvectors of Ka

b in the
linearized TDVP. In [25], it has been further pointed out
that–in contrast to the projected Hamiltonian method–
the linearized TDVP may incorrectly predict massless ex-
citation modes. This occurs whenever the approximate

ground state within the chosen variational family spon-
taneously breaks a symmetry which is not spontaneously
broken in the exact ground state. In the case of the
Bose-Hubbard model, this is actually a desirable feature:
while the true ground state only breaks the U(1) symme-
try in the limit N → ∞, the family of Gaussian states
already breaks this symmetry for finite N and is thus
well-suited to study the superfluid phase in the thermo-
dynamic limit.

VI. DISCUSSION AND OUTLOOK

Our Gaussian TDVP method naturally generalizes
Bogoliubov theory to describe the superfluid phase of
the Bose-Hubbard model. The presented methods pro-
vide systematic framework to compute (a) approximate
ground state energies, (b) excitation spectra and (c) lin-
ear response functions for general variational families.

(a) Our variational ansatz of all Gaussian states pro-
vided a good variational approximation of the degenerate
set of ground states. While its ground energy prediction
is generally worse than the ground state energy of the tra-
ditional Bogoliubov mean field Hamiltonian, our method
has the advantage of being manifestly variational, i.e.,
we find a concrete state whose energy expectation value
with respect to the full Hamiltonian provides a rigorous
upper bound to the true ground state energy.

(b) The linearized equations of motion projected onto
the full Gaussian tangent plane allowed us to capture
interactions between 1-particle excitations. We find a
gapless mode that can be identified with the Goldstone
mode that is well-approximated by traditional Bogoli-
ubov theory. We point out that, compared to other vari-
ational approaches such as [10], our variational family is
chosen so as to yield a Goldstone mode that is exactly
gapless. We also find a gap between Goldstone mode and
2-particle continuum that is not captured by traditional
Bogoliubov theory’s non-interacting n-particle spectrum.



11

We argued that the lowest band of the 2-particle contin-
uum can be identified as the Higgs mode. Finally, for
some parameter choices, we found an isolated doublon
state.

(c) Using eigenvalues and eigenvectors of the linearized
equations of motion, we could compute spectral functions
for linear perturbations that are generated by arbitrary
linear and quadratic operators. Here, we observed how
these different perturbations coupled to isolated bound
states, e.g., the Goldstone and the doublon mode. Fi-
nally, we described the time evolution of the Goldstone
mode, in particular its (partial) decay depending on its
interplay with the 2-particle continuum.

An interesting feature of the TDVP is the interplay
and relations to other methods, such as Bogoliubov the-
ory and random phase approximation. For the compu-
tation of excitation spectra, we find that these standard
methods give the same results as the TDVP computation
for the correct choice of variational manifold. Another in-
teresting observation is the fact that the 2-particle con-
tinuum of the Gaussian TDVP is well-approximated by
the free 2-particle spectrum from coherent TDVP (or
equivalently: iterated Bogoliubov theory) around the
best Gaussian state |ψg〉. This suggests that the 1-
and 2-particle spectrum can be approximated by a hy-
brid approach with two different quadratic Hamiltonians,
i.e., the Bogoliubov Hamiltonian [Ĥ]|βc

0〉 and the iter-

ated Bogoliubov Hamiltonian [Ĥ]|ψg〉. While the former
describes the massless Goldstone mode, we can use the
latter’s free 2-particle spectrum to approximate the in-
teracting 2-particle spectrum of the full Hamiltonian.

The one of our predictions that calls most for fur-
ther inquiry is the gapped 2-particle continuum above
the Goldstone mode. It will be interesting to further ex-

plore with other methods whether the identification of
the lowest continuum mode as the Higgs mode is correct
and whether the gap that separates it from the Gold-
stone mode survives, once one also considers excitations
of three or more particles.
The presented scheme is self-consistent and requires no

other assumptions than the choice of variational man-
ifold. In particular, it can be easily applied to other
variational families, such as non-Gaussian states [27] or
Gutzwiller states. To study the Bose-Hubbard model
also in the Mott phase, we expect that a variational man-
ifold that combines both, Gutzwiller states and Gaus-
sian transformations, i.e., the family of states resulting
from applying a Gaussian unitary to a Gutzwiller prod-
uct state, is particularly promising and will be analyzed
in future work.

ACKNOWLEDGMENTS

We thank Abhay Ashtekar, Bertrand Halperin, Andy
Martin, Marcos Rigol, Richard Schmidt and Yao Wang
for inspiring discussions. TG, LH and IC thank Har-
vard University for the hospitality during several vis-
its. TG, LH, CH and IC are supported by the
Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germanys Excellence Strat-
egy EXC-2111 39081486. LH is funded by the the
Max Planck Harvard Research Center for Quantum
Optics. TS acknowledges the Thousand-Youth-Talent
Program of China. CH and IC acknowledge funding
through ERC Grant QUENOCOBA, ERC-2016-ADG
(Grant no.742102). ED acknowledges funding through
Harvard-MIT CUA, AFOSR-MURI: Photonic Quantum
Matter (award FA95501610323) and DARPA DRINQS
program (award D18AC00014).

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

[2] N. N. Bogolyubov, J. Phys.(USSR) 11, 23 (1947), [Izv.
Akad. Nauk Ser. Fiz.11,77(1947)].

[3] D. Pekker, B. Wunsch, T. Kitagawa, E. Manousakis,
A. S. Sørensen, and E. Demler, Phys. Rev. B 86, 144527
(2012).

[4] S. Sachdev, Quantum Phase Transitions (Cambridge
University Press, Cambridge, UK, 1999).

[5] S. D. Huber, B. Theiler, E. Altman, and G. Blatter,
Phys. Rev. Lett. 100, 050404 (2008).

[6] S. D. Huber, E. Altman, H. P. Büchler, and G. Blatter,
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Appendix A: Review of Bogoliubov theory

In the main part of this paper, we generalize the well-
known Bogoliubov theory of the Bose-Hubbard model
by extending the underlying variational family from co-
herent to squeezed coherent states. To allow for a fair
comparison, we now review the three steps involved in
traditional Bogoliubov theory.
For later computations, it is useful to write the Bose-

Hubbard Hamiltonian (1) in momentum space

Ĥ =
∑

k

εk b̂
†
k b̂k +

U

2N

∑

k,p,q

b̂†k+q b̂
†
p−q b̂k b̂p (A1)

where we defined b̂k = 1√
N

∑

i e
−ikxi b̂i on the recipro-

cal lattice and introduced the non-interacting dispersion
relation

εk = −2
dim
∑

d=1

cos
2πkd
Nd

− µ , (A2)

where Nd refers to the number of lattice sites in the d-th
direction, such that N =

∏

dNd.
Step 1 (coherent variation). Bogoliubov theory ap-
proximates the ground state within the class of transla-
tionally invariant coherent states, i.e., the states

|β0〉 = D(β0) |0〉 with D(β0) = eβ0b̂
†
0−β∗

0 b̂0 , (A3)

satisfying 〈β0| bk |β0〉 = β0δ0,k. Within this class, the
average energy value is minimized for |β0| equal to

βc
0 :=

√

−ε0N/U (A4)

leading to the expectation value

E|βc
0〉 = 〈βc

0| Ĥ |βc
0〉 = ε0 |βc

0|2 +
U

2N
|βc

0|4 = −ǫ
2
0N

2U
,

(A5)

provided that ε0 < 0. There is a larger set of solutions
given by β0 = βc

0e
iϕ associated to the spontaneously bro-

ken U(1) symmetry generated by N̂ =
∑

k b̂
†
k b̂k.

Step 2 (mean field Hamiltonian). We can use |βc
0〉

to define the mean field Hamiltonian

[Ĥ]|βc
0〉 = E|βc

0〉+
1

2

∑

k

(

U c
k(δb̂

c
k)

†δb̂ck + V c
k δb̂

c
kδb̂

c
−k +H.c.

)

,

(A6)

where δb̂ck = b̂k−δk,0βc
0, U

c
k = εk+

2U
N

|βc
0|2 = εk−2ε0 and

V c
k = U

N
(βc

0)
2 = −ε0. Here, we define [Ĥ]|ψ〉 to be the

quadratic Hamiltonian resulting from the quadratic trun-
cation of Ĥ written as normal ordered polynomial in cre-

ation and annihilation operators δb̂†k and δb̂k associated

to the Gaussian state |ψ〉, i.e., in our case, δb̂k |βc
0〉 = 0.

Step 3 (squeezed ground state). The mean field

Hamiltonian [Ĥ]|βc
0〉 is quadratic, implying that we can

diagonalize it by applying the Bogoliubov transformation

S(λ) = exp
(

1
2

∑

k(λk b̂
†
k b̂

†
−k − λ∗k b̂k b̂−k)

)

. (A7)

We perform the transformation by expressing b̂k in terms
of new creation and annihilation operators

δB̂k = D(β)S(λ) b̂k S†(λ)D†(β) (A8)

= uk(b̂k − βk)− vk(b̂
†
−k − βk) (A9)

The diagonalization is accomplished by βc
0, u

c
k = coshλck

and vck = sinhλck, where λ
c
k is given by

tanh 2λck = −V
c
k

U c
k

, (A10)

such that the Hamiltonian takes the form

[Ĥ]|βc
0〉 = E|βc

0〉 −∆c +
∑

k

Ec
k (δB̂

c
k)

†δB̂c
k , (A11)

where the energy shift ∆c and the excitations Ec
k are

∆c =
1

2

∑

k

ε20

εk − 2ε0 +
√

(2ε0 − εk)2 − ε20
, (A12)

Ec
k =

√

(U c
k)

2 − (V c
k )

2 =
√

(εk − 2ε0)2 − ε20 . (A13)

The formal ground state of this Hamiltonian is given by a
state |βc

0, λ
c〉 = D(βc

0)S(λc) |0〉, such that δB̂c
k |βc

0, λ
c〉 =

0. The Bogoliubov spectrum is gapless, i.e., we have
Ec
0 = 0.
The full spectrum of the mean field Hamiltonian

[Ĥ]|βc
0〉 is constructed from the 1-particle Bogoliubov

spectrum Ec
k, whose excitations are non-interacting. De-

pending on the shape of the function Ec
k, i.e., if there

exist k, q with Ec
k > Ec

k−q + Ec
q , it is possible to find a su-

perposition of excitations with total momentum k whose
total energy is less than Ek. To get the lower bound on
the excitation continuum, we need to compute

Emin
k = min

qi

∑

i

Ec
qi

with k =
∑

i

qi . (A14)

For the system in one dimension, it is sufficient to com-
pute the slope for k = 0, namely E ′

0, to find the explicit
form of the lower bound to be given by

Emin
k = min

(

Ek,
√

4 + 2µ
2πk

N

)

. (A15)

We can derive the condition on µ, such that there is some
range of k, for which Emin

k lies underneath the Bogoliubov
spectrum Ec

k. This condition is given by ∂2kEc
k(µ) = 0, i.e.,

the second derivative of Ec
k must vanish. Its solution is

2πk

N
= cos−1

(

8 + 3µ−
√

5µ2 + 32µ+ 48

4

)

, (A16)
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FIG. 9. Bogoliubov spectrum. We show the Bogoliubov dis-
persion relation Ek as dashed line (red) within the 2-particle
spectrum (light red) which is again embedded into the full
excitation spectrum (light blue). Note that Ek only depends
on µ and the dimension, but is independent of U .

which only exists for µ ≤ 4. In higher dimensions, we
can consider the slice k = (kx, 0, . . . , 0), which leads to
an effective rescaling of µ→ µ+2(dim−1). In this case,
we therefore have the condition µ < 6 − 2 dim to have
part of the continuum spectrum to lie underneath the
1-particle dispersion relation Ek.

Let us make the following three important remarks.
First, the Bogoliubov energy

EBogoliubov = E|βc
0〉 −∆c (A17)

is not variational, i.e., it is not the expectation value of
the state |βc

0, λ
c〉 with respect to the full Hamiltonian,

but rather the minimal energy of the mean field Hamil-
tonian [Ĥ]|βc

0〉. Only the energy E|βc
0〉 is variational, i.e.,

it minimizes the energy expectation value within the class
of coherent states.
Second, the state |βc

0, λ
c〉 is actually ill defined in the zero

mode, due to λck → ∞ for k → 0. Put differently, the
minimal energy EBogoliubov is only reached in the limit of
an infinitely squeezed state, whose energy with respect
to the full Hamiltonian actually diverges.
Third, we could have computed the Bogoliubov disper-
sion relation without defining the mean field Hamiltonian
[Ĥ]|βc

0〉, but rather just by studying the real time flow of
the full Hamiltonian projected on the manifold of coher-
ent states and linearized around the stationary coherent
state |βc

0〉 (see Appendix B). Thus, we do not need to
perform the second and third step, if we are only inter-
ested in the variational ground state energy E|βc

0〉 and
the dispersion relation Ec

k, i.e., we are content with not
computing ∆. In this case, it is sufficient to linearize
Hamiltonian flow around the variational state |βc

0〉 and
compute the spectrum of its generator. This is exactly

what we do in this paper, but for the extended variational
family of all Gaussian states.

Appendix B: Bogoliubov theory as coherent TDVP

In this section, we show explicitly that coherent TDVP
gives rise to the same 1-particle spectrum as Bogoliubov
theory. We consider the manifold of displaced vacua (co-
herent states)

|β〉 = D(β) |0〉 with D(β) = e
∑

k(βk b̂
†

k
−β∗

k b̂k) . (B1)

Here, β is a vector written in the momentum basis, i.e.,
its components are labeled by k. The tangent plane at

the state |β〉 is spanned by vectors of the form D(β)b̂†k |0〉.
Therefore, the projected real time evolution can be com-
puted from the quantity

hk(β) = 〈0|b̂kD†(β)ĤD(β)|0〉 , (B2)

which for the Bose Hubbard model evaluates to

hk(β) = εkβk +
U

N

∑

k1,k2

β∗
k1+k2−kβk1βk2 . (B3)

Expressed in real components, the resulting evolution is

(

Reβ̇

Imβ̇

)

=

(

Imh(β)
−Reh(β)

)

= −i
1√
2
T−1

(

h(β)
−h∗(β)

)

,

(B4)

where we introduced the transformation matrix

T =
1√
2

(

1 i1
1 −i1

)

. (B5)

The symbols β and h denote the column vectors that
group the values of βk and hk for all values of k.
The linearization around |βc

0〉 is then given by

K =
(

∂
∂Reβ ,

∂
∂Imβ

)

(

Reβ̇

Imβ̇

)

(B6)

=
√
2
(

∂
∂β
, ∂
∂β∗

)

(

Reβ̇

Imβ̇

)

T

= −iT−1
(

∂
∂β
, ∂
∂β∗

)

(

h(β)
−h∗(β)

)

T , (B7)

where we expressed the derivatives with respect to Reβ
and Imβ in terms of derivatives with respect to β and
β∗, taken as independent variables. All derivatives are
evaluated at βk = δk,0β

c
0. The matrix iK, whose eigen-

values ±ω represent the TDVP estimate of the 1-particle
excitation energies of the model, is then, up to similarity
transformations, equal to

K =

[

(

∂
∂β
, ∂
∂β∗

)

(

h(β)
−h∗(β)

)]

βk=δk,0β
c
0

. (B8)
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This matrix decomposes into blocks of the form

Kk =

(

U c
k V c

k

−V c
k −U c

k

)

(B9)

with U c
k = εk−2ε0 and V c

k = −ε0 as in Appendix A. The
eigenvalues ±ωk are given by

ωk =
√

(U c
k)

2 − (V c
k )

2 = Ec
k , (B10)

which is in full agreement with Bogoliubov theory (A13).

Appendix C: Iterated Bogoliubov theory

Bogoliubov theory is not self-consistent, in the sense
that we construct the mean field Hamiltonian [Ĥ]|βc

0〉
from the displaced state |βc

0〉, but when we compute the

ground state of [Ĥ]|βc
0〉, we do not find |βc

0〉 again. We
can therefore ask if there exists a state |ψ〉, which is the

ground state of its own mean field Hamiltonian [Ĥ]|ψ〉.

A natural way to find this state consists of applying
the Bogoliubov procedure repeatedly:

Step 1 (displacement). Starting with the Gaussian
state |β0, λ〉 with real β0 and λ, we can choose a new real
displacement β′

0, such that the energy is minimized. The
resulting β′

0 is given by

β′
0 =

√

−Nε0
U

−
∑

k

(2v2k + vkuk) , (C1)

where uk = coshλ and vk = sinhλ.

Step 2 (quadratic expansion). Once the new dis-
placed ground state |β′

0, λ〉 has been found, we can com-

pute the unique quadratic Hamiltonian [Ĥ]|β′
0,λ〉 through

the following steps: First, we express the Hamiltonian in
terms of the new annihilation operators

δb̂′k = uk (b̂k − δ0,k β
′
0)− vk (b̂

†
−k − δ0,k β

′
0) , (C2)

that annihilate |β′
0, λ〉. Second, we use the canonical com-

mutation relations [δb̂′k, δb̂
′
p
†] = δk,p to write the Hamil-

tonian as sum of normal ordered operators. Third and fi-
nally, we truncate the resulting Hamiltonian at quadratic
order to define

[Ĥ]|β0,λ〉 = E|β0,λ〉+
1

2

∑

k

(

Ũ ′
kδb̂

′
k
†δb̂′k + Ṽ ′

kδb̂
′
kδb̂

′
−k +H.c.

)

.

(C3)

Note that this is the straight-forward generalization of
how we constructed the mean field Hamiltonian [Ĥ]|βc

0〉
in Bogoliubov theory. The coefficients Ũk and Ṽk are

...

...

|ψg〉

|λ′, β′
0〉

|λ, β′
0〉

|λ, βc
0〉

|βc
0〉|0〉

FIG. 10. Iterated Bogoliubov theory. This figure illustrates the
procedure of applying the steps of Bogoliubov theory itera-
tively to find best Gaussian approximation |ψg〉 to the ground
state of the Bose-Hubbard model. The individual sheets rep-
resent coherent states, i.e., states with fixed λ, but different
values of β. Traditional Bogoliubov is based on the first two
steps from |0〉 to |βc

0〉 to |λ, βc
0〉

explicitly given by

Ũk = εk
(

u2k + v2k
)

+
2U

N
ukvk

(

∑

q

uqvq + β′
0
2
)

+
2U

N

(

u2k + v2q

)(

∑

q

v2q + β2
0

)

,

(C4)

Ṽk = 2εkukvk +
U

N

(

u2k + v2k

)(

∑

q

uqvq + β′
0
2
)

+
4U

N
ukvk

(

∑

q

v2q + β′
0
2
)

.

(C5)

Step 3 (new ground state). The ground state |β′
0, λ

′〉
of the mean field Hamiltonian can be encoded in another
Bogoliubov transformation

δB̂′
k = u′k (b̂k − δ0,k β

′
0)− v′k (b̂

†
−k − β′

0δ0,k) . (C6)

Here, we have u′k = uk ũ
′
k + vk ṽk and v′k = ukṽk + vkũ

′
k

with ũ′k = cosh λ̃′k, ṽk = sinh λ̃′k and tanh 2λ̃′k = −Ṽk/Ũk.
The ground state energy of the mean field Hamiltonian
is given by

〈β′
0, λ

′| [Ĥ]|β′
0,λ〉 |β

′
0, λ

′〉 = E|β′
0,λ〉 − ∆̃′ , (C7)

with ∆̃′ = −
∑

k

(

Ũk (ṽ
′
k)

2 + Ṽk ũ
′
kṽ

′
k

)

. The resulting ex-

citation spectrum is given by

E ′
k =

√

Ũ2
k − Ṽ 2

k . (C8)

We can repeat these steps to move from |β′
0, λ

′〉 to
|β′′

0 , λ
′〉, |β′′

0 , λ
′′〉 and so on. For the Bose-Hubbard model,

this algorithm converges to the best Gaussian state

|ψg〉 = |λg, βg
0〉 = lim

n→∞
|β(n)

0 , λ(n)〉 , (C9)
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FIG. 11. Comparison of Gaussian TDVP (labelled as
TDVP) with iterated Bogoliubov theory. We compare the
data of Gaussian TDVP from figure 2 with the 1- and
2-particle spectrum of the non-interacting Hamiltonian of
[Ĥ]|ψg〉 from (C10), which we obtained from the iterated Bo-
goliubov theory (labelled as iBogoliubov).

i.e., iterated Bogoliubov theory gives the same approx-
imate ground state as imaginary time evolution on the
variational class of all Gaussian states. In fact, we can
run into similar troubles as for imaginary time evolu-
tion: We could get stuck in a local minima, i.e., a state
that is the ground state of its mean field Hamiltonian
without being the global minimum among all Gaussian
states. Another problem of iterated Bogoliubov theory

could arise if we encounter V
(n)
k > 2U

(n)
k at some step n,

in which case the mean field Hamiltonian [Ĥ]|ψ(n)〉 would
not be bounded from below and consequently we could
not compute the next ground state.
At |ψg〉, we find the quadratic Hamiltonian

[Ĥ]|ψg〉 = E|ψ0〉 +
∑

k

Eg
k (δB̂

g
k)

†δB̂g
k (C10)

with δB̂g
k = limn→∞ δB̂

(n)
k , that provides a self-

consistent generalization of traditional Bogoliubov the-
ory. In particular, we find |ψg〉 is the ground state of

its own quadratic Hamiltonian [Ĥ]|ψg〉. Moreover, the

ground state energy of [Ĥ]|ψg〉 coincide with the ex-

pectation value 〈ψg|Ĥ|ψg〉 or, put differently, we find

limn→∞ ∆(n) = 0. However, when looking at the spec-

trum Eg
k = limn→∞ E(n)

k around the Gaussian ground
state approximation |ψg〉, we find a gap Eg

0 > 0, i.e., the
1-particle spectrum computed from iterated Bogoliubov
theory does not capture the massless Goldstone mode
and is therefore worse than traditional Bogoliubov the-
ory. However, we can use the quadratic Hamiltonian

[Ĥ]|ψg〉 to compute a 2-particle spectrum based on the

assumption that the particles with dispersion relation Eg
k

do not interact. When comparing the resulting 2-particle
continuum with the one from Gaussian TDVP, we find
good agreement–in particular in the region around k = 0.

Appendix D: Computation of Gaussian ground state
approximation

We review the underlying analytical and semi-
analytical methods associated to Section II, that enabled
us to compute the best Gaussian state, i.e., the Gaus-
sian state |ψg〉 with the lowest energy expectation value

with respect to Ĥ. We can restrict ourselves to searching
for the ground state in the translationally invariant sub-
manifold, which is parametrized by β0 and λk := λ0,k.
Due to the U(1) invariance, it is always possible to find a
ground state in which both these parameters are real. It
turns out to be very convenient to parametrize the state
in terms of the Bogoliubov parameters βk, uk = coshλk
and vk = sinhλk such that

δB̂k = U(β, λ) b̂k U†(β, λ)

= uk(b̂k − βk)− vk(b̂
†
−k − βk)

(D1)

will annihilate the Gaussian state |β, λ〉 = U(β, λ) |0〉.
The stationary point |ψg〉 of the imaginary time evolu-

tion is characterized by vanishing P|ψg〉(−Ĥ) |ψg〉, which
translates into the conditions

〈0|b̂0U†(β, λ)H|ψ(β, λ)〉 = 0 , (D2)

〈0|b̂k b̂−kU†(β, λ)H|ψ(β, λ)〉 = 0 . (D3)

Rewriting these conditions in terms of our parameters
(β0, λk) gives

ε0 +
U

N
(β2

0 +A+ 2B) = 0 ,

(D4)
[

εk +
2U

N
(β2

0 +B)

]

ukvk +
U

2N
(β2

0 +A)(u2k + v2k) = 0 ,

(D5)

where we defined A =
∑

k ukvk and B =
∑

k v
2
k and εk

is the dispersion relation in (A2). Equations (D5) are
solved by

βg
0
2
= −Nε0

U
−A− 2B , (D6)

ugk =
1√
2

√

(1− T 2
k )

− 1
2 + 1 , (D7)

vgk =
1√
2
signTk

√

(1− T 2
k )

− 1
2 − 1 , (D8)

where we introduced the convenient parameter

Tk = −
(

1 +
2U

N

B

ε0

)(

2− εk
ε0

+
2U

N

A+B

ε0

)−1

. (D9)
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This expression for the solution depends on the final val- ues of the quantities A and B which have to be obtained
from the coupled equations

A =
1

2

∑

k

2BU +Nε0
√

(2U(A+ 2B) +N(3ε0 − εk)) (2AU +N(ε0 − εk))
, (D10)

B =
1

2

∑

k

N(εk − 2ε0)− 2(A+B)U
√

(2U(A+ 2B) +N(3ε0 − εk)) (2AU +N(ε0 − εk))
− N

2
, (D11)

which can be solved numerically efficiently independently
of the dimensionality of the system and with a linear
dependence on the system size.

We can similarly express the energy E and particle
density n of a Gaussian state |ψ〉 in terms of β0, uk, vk,
A =

∑

k ukvk and B =
∑

k v
2
k as

E =
∑

k

εkv
2
k −

Nε20
2U

− (A+ 2B)ε0 −
U

N
(2A+B)B ,

n =
〈N̂〉
N

= −ε0
U

− A+B

N
.

(D12)

In particular, we can use βg
0 , u

g
k and v

g
k to compute E|ψg〉.

Appendix E: Linearized equations of motion

For calculating the matrix K it is convenient to con-
sider the tangent plane as a real vector space of twice the
dimensions compared to the complex one, i.e., we have

T|ψ〉M =
{

U(x)b̂†k |0〉 ,U(x)b̂
†
k−q b̂

†
q |0〉 ,

iU(x)b̂†k |0〉 , iU(x)b̂
†
k−q b̂

†
q |0〉

} (E1)

with real linear combinations of N(N + 3) tangent vec-
tors. The generator of linearized time evolution is then

K = −iT−1ST (E2)

where the matrix T defined in (B5), taking the subdi-
vision into blocks to refer to the split between real and
imaginary vectors of (E1).

The matrix S is block diagonal with each block Sk
referring to a fixed total momentum. Each block can be
written as the sum of a diagonal matrix and a rank 5

matrix, that is Sk = E + CR, with

E =







Ek 0 0 0
0 ∆q,q̃ 0 0
0 0 −Ek 0
0 0 0 −∆q,q̃






, R =











1 0 0 0
0 0 1 0
0 ak,q̃ 0 ak,q̃
0 bk,q̃ 0 ck,q̃
0 ck,q̃ 0 bk,q̃











,

C =











0 Gk
2U
N
β0(uk + vk)

U
N
β0vk

U
N
β0uk

Fk F̄k
2U
N
ak,q

U
2N bk,q

U
2N ck,q

−Gk 0 − 2U
N
β0(uk + vk) − U

N
β0uk − U

N
β0vk

−F̄k −Fk − 2U
N
ak,q − U

2N ck,q − U
2N bk,q











with newly introduced parameters

Ek = (εk +
2U

N
(β2

0 +B))(u2k + v2k) +
2U

N
(β2

0 +A)ukvk,

∆q,q̃ = (δq,q̃ + δq,−q̃)(E k
2+q̃

+ E k
2−q̃),

Gk = 2(εk +
2U

N
(β2

0 +B))ukvk +
U

N
(β2

0 +A)(u2k + v2k),

Fk =
U

N
β0 [2ak,q(uk + vk) + bk,qvk + ck,quk] ,

F̄k =
U

N
β0 [2ak,q(uk + vk) + bk,quk + ck,qvk] ,

ak,q = u k
2+q

v k
2−q + u k

2−qv k
2+q̃

,

bk,q = 2v k
2+q

v k
2−q,

ck,q = 2u k
2+q

u k
2−q,

where uk and vk have to be evaluated at the solutions
corresponding to the ground state approximation defined
in Appendix D, i.e., at βg

0 , u
g
k and vgk from (D6-D8), and

εk is the dispersion relation in (A2).
Given the simple structure of the blocks Sk, it is easy

to diagonalize them numerically. Their eigenvalues are
the zeros of the function f(ω) := det[1 +R(E − ω)

−1
C].

Evaluation only scales linearly with the system size N
and moreover, we can characterize analytically some
properties of the spectrum in the thermodynamic limit.
More specifically, the function f(ω) presents a series

of poles, given by the diagonal elements of E. Its ze-
ros (i.e., the eigenvalues of the system) are positioned
one in between each pair of subsequent poles. One sub-
set of the poles, that is the diagonal elements of ∆, for
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N → ∞ come closer together, creating in the thermo-
dynamic limit a continuous line. The zeros that are in
between such poles will therefore also come together to
a continuum that represents the continuum in the spec-
trum of Sk. The boundaries of this continuum can thus
be inferred by computing the values of the minimal and
maximal diagonal elements of ∆. In particular, we can
identify the minimum, given by 2Ek, with the Higgs exci-
tation mode. In order to give an expression for the Higgs
gap at zero momentum, we need to evaluate 2E0.

We want to do this at constant filling n, which is equiv-
alent to imposing ε0 = −U

(

n+ A+B
N

)

, due to (D12).
Substituting this condition into equation (D11), we find
equations for A and B at fixed n. These equations admit
constant solutions in the limit U → 0. Inserting these so-
lutions in the expression for E0, we find the asymptotics
of the Higgs gap at constant density for U → 0

2E0 ∼ α(N,n)U as U → 0 . (E3)

The function α has a complicated analytical expression
that admits the large N asymptotics

α(N,n) ∼ 2
3
√
2n

2
3N− 1

3 as N → ∞ . (E4)

Appendix F: Linear response theory

We are interested in computing the linear variation
δV (t) = d

dλ
〈ψλ(t)| V̂ |ψλ(t)〉λ=0 due to the perturbation

λϕ(t)V̂ of the Hamiltonian. With respect to a set of
real coordinates xa of our variational manifold and the
corresponding basis |Va〉 = ∂

∂xa |ψ(xg)〉 (where xg are the
coordinates of the stationary point |ψg〉), e.g., the ones
of (5) and (E1), we find

δV (t) = dVa δψ
a(t) , (F1)

with dVa = ∂
∂xa 〈ψ(x)| V̂ |ψ(x)〉 and

δψa(t) |Va〉 = |δψ(t)〉 = d

dλ

∣

∣

∣

∣

∣

λ=0

|ψλ(t)〉 . (F2)

Put differently, δψa(t) is the component of the tangent
vector |δψ(t)〉 in the direction |Va〉. Note that in (F1) as
well as in the rest of this appendix we use the Einstein
convention for indices, whereby it is understood that all
repeated indices are summed over.
Furthermore, we can introduce the components va of

the tangent vector

va |Va〉 = P|ψg〉(−iV̂ ) |ψg〉 (F3)

representing the linear perturbation of |ψg〉 due to V̂ .
The key result of the following paragraph is

δψa(t) =

∫ t

−∞
dt′ ϕ(t′) (dΦt−t′)

a
b v

b , (F4)

where dΦt is the linearized flow around the stationary
point |ψg〉, often also referred to as push-forward map.
The linear response δψa(t) at time t can be understood as
functional δψa(t)[ϕ] of ϕ : [−∞, t] → R that modulates

the perturbation V̂ for previous times. We can therefore
write

δψa(t)[ϕ] =

∫ t

−∞
dt′ ϕ(t′)

δψa(t)

δϕ(t′)
, (F5)

which states that the δψa(t) is the superposition of all
linear responses

δψa(t)

δϕ(t′)
=

d

dλ

∣

∣

∣

∣

∣

λ=0

|ψλ(t)〉ϕ(t)=δ(t−t′) (F6)

due to a perturbation with ϕ(t) = δ(t−t′). This scenario
can be evaluated explicitly to be given by

|ψλ(t)〉ϕ(t)=δ(t−t′) = Φt−t′Φ
V̂
λ |ψg〉 . (F7)

Here, the state |ψg〉 is unaffected until time t′. At
this point, it instantaneously kicked to the new state

|ψλ(t′)〉 = ΦV̂λ |ψg〉 = λva |Va〉, where ΦV̂λ represents the
projected time evolution with respect to the Hamiltonian
λδ(t− t′)V̂ . After the kick, time evolution continuous to
be unperturbed and therefore given by Φt−t′ until the
time t that we are interested in. Evaluating the deriva-
tive with respect to λ in (F6) therefore gives

δψa(t)

δϕ(t′)
= (dΦt−t′)

a
bv
b , (F8)

where dΦt−t′ is the linearization of Φt−t′ and vb |Vb〉 =
d
dλ

|λ=0Φ
V̂
λ |ψg〉. Plugging (F8) into (F5) gives (F4).

By observing that

va = ΩabdVb(ψ), (F9)

we finally have the expression

δV (t) =

∫ t

−∞
dt′
[

dVa (dΦt−t′)
a
b Ω

bc dVc
]

ϕ(t′) , (F10)

where we represent the symplectic form as

Ω =

(

0 1

−1 0

)

. (F11)

Next, we consider the Fourier transformed response
function, that can be written as

δV (ω) ≡
∫

dt e−iωtδV (t)

= ϕ̃(ω)

∫

dω′ ZV (ω
′)

ω′ − ω + i0+
. (F12)

We define ZV (ω) as the spectral response function.
In order to obtain the expression (F12), it is useful

to give a spectral decomposition of the linear operator
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dΦt. As mentioned, if we consider as the initial state
of our evolution the approximate ground state |ψg〉, dΦt
becomes a linear map from the tangent plane T|ψg〉M
onto itself, given by the exponential of the generator K,
i.e., we have

dΦt = eKt . (F13)

The generator K was computed in Appendix E and, as
discussed before, its eigenvectors ea(ω) appear in com-
plex conjugate pairs satisfying

Ka
be
b(ω) = +iωea(ω) ,

Ka
be

∗b(ω) = −iωe∗a(ω) . (F14)

This means that K can be decomposed as

K = O
⊕

i

(

0 −ωi
ωi 0

)

O−1, (F15)

with

O =
(

Re e(ω1) −Im e(ω1) · · · Re e(ωn) −Im e(ωn)
)

,

(F16)

where the ωi are all taken to be positive.
Using this, the object in the square brackets in (F10)

can be written as

∑

i

(dV+(ωi), dV−(ωi))

(

cosωit − sinωit
sinωit cosωit

)

×
(

0 −δ(ωi)
δ(ωi) 0

)(

dV+(ωi)
dV−(ωi)

)

(F17)

= i

∫ ∞

0

dω
dV−(ω)2 + dV+(ω)

2

2
δ(ω)e−iωt

− i

∫ ∞

0

dω
dV−(ω)2 + dV+(ω)

2

2
δ(ω)eiωt ,

(F18)

where we introduced the terms

dV+(ω) = Re ea(ω) dVa , (F19)

dV−(ω) = −Im ea(ω) dVa (F20)

δ(ω) = [Im ea(ω)]Ωab[Re e
b(ω)] , (F21)

such that the vectors e(ω) are normalized to satisfy
δ(ω) = ±1.
Taking the Fourier transform as in (F12), we find

ZV (ω) = sign(ω)
dV−(|ω|)2 + dV+(|ω|)2

2
δ(|ω|)

= sign(ω)
|ea(ω) dVa|2

2
δ(|ω|). (F22)

The generator Ka
b is a linear map on the tangent

space, taken as real vector space. It is not complex-linear,
i.e., Ka

b does not commute with Jab, which is the linear
map representing multiplication with the imaginary unit

Jabv
b |Va〉 = iva |Va〉 . (F23)

In particular, this implies that K is not anti-Hermitian
with respect to the standard inner product, which means
that dΦt = etK is not unitary.

However, it is easy to find an alternative inner product
on the tangent space that turnsK into an anti-Hermitian
operator and is therefore preserved by the linearized flow
dΦt. Given two vectors |x〉 = xa |Va〉 and |y〉 = ya |Va〉,
we can define the inner product

〈x|y〉g̃ := x∗ag̃aby
b with g̃ab = Ω−1

ac K
c
b , (F24)

which is a well-defined Hermitian inner product. With
respect to this inner product, K is anti-Hermitian, i.e.,
K† = −K, which implies that dΦt = etK is unitary.

The modified inner product (F24) on the tangent plane
can be used to calculate overlaps between vectors, con-
sistent with the unitary time evolution. In particular,
the ovelaps between the evolving perturbation and the
1-particle subspace of the tangent plane shown in Fig-
ure 8 are calculated with this inner product.

Appendix G: Random phase approximation

In this section, we show the fluctuation spectrum from
the Gaussian state approach can also be obtained from
the standard random phase approximation (RPA) based
on the ladder diagram, similarly to what has been done
for fermions in [28].

Around any Gaussian variational state |ψ〉, character-
ized by the real numbers β0, uk and vk as described in
Appendix D, the Hamiltonian H = E +

∑4
j=1 hj is de-

composed into five normal ordered terms (with respect to
the given Gaussian state |ψ〉) via the Wick theorem. We
will here be interested in taking this reference state to be
our self-consistent Gaussian ground state approximation
|ψg〉 parametrized by real βg

0 , u
g
k and vgk from (D6-D8).

For this particular state, the energy E is given
by (D12). The linear term h1 vanishes. The
quadratic term, when written in terms of the Bogoliubov-
transformed operators

δB̂k = uk(b̂k − βk)− vk(b̂k − βk) , (G1)

takes the diagonal form

h2 =
∑

k

EkδB̂†
kδB̂k , (G2)

where the dispersion relation Ek =
√

U2
k − V 2

k with

Uk = εk +
2U

N
(|β0|2 +

∑

q

v2q ) , Vk =
U

N
(β2

0 +
∑

q

uqvq) ,

(G3)

coincides with (C8).
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ḡ∗ +

Π
G0

g∗

Π̄

=

Π Π0

Θ +

Π Π0

Θ̄ +

Π̄ Π0

g∗
G

+

Π0

ḡ
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FIG. 12. Feynman diagrams. Pictorial representation in terms of Feynman diagrams of the terms included in equations (G10-
G13) for the correlation functions

The cubic and quartic terms become

h3 =
U

N
β0
∑

kp

[(ukupuk+p + vkvpvk+p + 2ukvpuk+p + 2ukvpvk+p)δB̂
†
kδB̂

†
pδB̂k+p

+ (ukupvk+p + vkvpuk+p)δB̂
†
kδB

†
pδB̂

†
−k−p] + H.c.

(G4)

h4 =
U

N

∑

k,p,q

[(uk+qup−qupuk + vk+qvp−qvpvk + 4uk+qvp−qvpuk)δB̂
†
k+qδB̂

†
p−qδB̂pδB̂k

+ uk+qup−qvpvkδB̂
†
k+qδB̂

†
p−qδB̂

†
−pδB̂

†
−k + 2(uk+qup−qvkup + uk+qvp−qvkvp)δB̂

†
k+qδB̂

†
p−qδB̂

†
−kδB̂p +H.c.] .

(G5)

We calculate the time-ordered correlation functions

G(k, ω) = −i

∫

dteiωt
〈

T δB̂k(t)δB̂†
k

〉

, (G6)

F (k, ω) = −i

∫

dteiωt
〈

T δB̂k(t)δB̂−k
〉

, (G7)

Π(k, p, ω) = − i√
2

∫

dteiωt
〈

T δB̂k(t)(−iδB̂†
k+pδB̂

†
−p)
〉

, (G8)

Π̄(k, p, ω) = − i√
2

∫

dteiωt
〈

T δB̂k(t)(iδB̂−k−pδBp)
〉

, (G9)

by treating h3 and h4 as perturbations. To the 1-loop order, as shown in Figure 12, the correlation functions read

G(k, ω) = G0(k, ω) + iG0(k, ω)
∑

p

gkpΠ(k, p, ω)− iG0(k, ω)
∑

p

ḡkpΠ̄(k, p, ω) , (G10)

F (k, ω) = −iG0(k,−ω)
∑

p

gkpΠ̄(k, p, ω) + i
∑

p

ḡkpΠ(k, p, ω)G0(k,−ω) , (G11)

Π(k, p, ω) = Π0(k, p, ω)
∑

q

ΘkpqΠ(k, q, ω)−Π0(k, p, ω)
∑

q

Θ̄kpqΠ̄(k, q, ω)

− igkpΠ0(k, p, ω)G(k, ω)− iḡkpΠ0(k, p, ω)F (k, ω) ,

(G12)

Π̄(k, p, ω) = Π0(k, p,−ω)
∑

q

ΘkpqΠ̄(k, q, ω)−Π0(k, p,−ω)
∑

q

Θ̄kpqΠ(k, q, ω)

+ igkpΠ0(k, p,−ω)F (k, ω) + iḡkpΠ0(k, p,−ω)G(k, ω) ,
(G13)

where the free propagators for single and two excitations are G0(k, ω) = (ω − Ek + i0+)−1 and Π0(k, p, ω) = (ω −
Ek+p − Ep + i0+)−1.
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The coupling between single and two excitations is de-
scribed by interaction vertices

gkp =

√
2Uβ0
N

(uk+pupuk + vk+pvpvk + uk+pvpuk

+ upvk+puk + uk+pvpvk + upvk+pvk) , (G14)

ḡkp =

√
2Uβ0
N

(uk+pupvk + vk+pvpuk + vk+pukup

+ vpukuk+p +uk+pvkvp +upvkvk+p) (G15)

and the interaction vertices of two excitatations are

Θkpq =
U

N
(upuk+puk+quq + vk+qvqvpvk+p

+ 4uk+pvpuk+qvq) ,
(G16)

Θ̄kpq =
U

N
(uk+quqvpvk+p + vk+qvquk+pup

+ 4uk+pvpuk+qvq) .
(G17)

In the compact matrix form, we can read (G10-G13) as

(ω −M)G = V (G18)

in the basis G = (G(k), F (k),Π(k, p), Π̄(k, p))⊺, where
V = (1, 0, 0, 0)⊺, and the matrix

M =







Ek 0 0 0
0 −Ek 0 0
0 0 (Ek+p + Ep)δpq 0
0 0 0 −(Ek+p + Ep)δpq







+









0 0 igkp −iḡkp
0 0 −iḡkp igkp

−igkp −iḡkp Θkpq −Θ̄kpq
−iḡkp −igkp Θ̄kpq −Θkpq









. (G19)

It can be verified that, if we evaluate the parameters β0,
uk and vk to be the ones corresponding to the best Gaus-
sian state |ψg〉, the matrix M is exactly the linearized
time evolution generator matrix K transfromed into the
Bogoliubov basis, whose eigenvalues are the poles of the
Green function G thus determine the fluctuation spec-
trum.
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