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ABSTRACT 
This paper attempts to describe a pipeline architecture 

synthesis tool dedicated to signal processing applications. 
This approach relies on the use of a design strategy and of 
a generic architectural model, using optimized control of 
resources. GAUTi takes a VHDL description of an 
application as input, and generates the optimal structural 
and functional VHDL description of a dedicated 
architecture. The results obtained by GAUT are intended 
for an application in acoustic echo cancellation 

1 Introduction 

Technological advances force today's designer to 
consider a new work method. This method consists of 
automating the materialization of the component, or of the 
system which enables the execution of a software solution 
to a particular problem. One may therefore, methodically 
exploit the parallelism of the application in order to satisfy 
the algorithm execution time constraints. 

Architectural synthesis allows the search for the optimal 
architectural solution relative to the specified constraints. 
To be optimal, the synthesis must rely on a design method 
which takes into account the specificity of the application 
domain. We have focused on the domain of Signal 
Processing in real time and we have formalised a specific 
method of conception for this type of application. This 
method is original on several points: - to avoid feddbacks 
in the design strategy, the units which are not yet 
synthesized are considered transparent: - to optimize the 
use of the treatment units a multi-phase time clock is used; 
- Data Flow Graph transformations dedicated to Signal 
Processing Algorithms is done. 

2 Architectural Synthesis in Signal 
Processing 

Dedicated architectural synthesis automates the different 
algorithm materialization steps (figure 1). The loop which 
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appears in this cycle is particularly critical in real time 
applications 111. Generally, it is necessary to open this 
loop either by adopting an appropriate strategy ('meet in 
the middle' design [2]), or by defining, in minute detail, 
the architecture which guarantees the validity of the 
synthesis (top-down design). In the domain of Signal 
Processing, numerous architectural synthesis tools are 
described in a variety of publications: SPAID [3], 
MIMOLA [41, HAL [51, EASY [ 6 ] ,  CADDY 
[71, FIRST [81, SHEWA [91, YSC [ lo] ,  
AMICAL [ 111, OSYS [12] ... 

These tools generally integrate a descending approach, 
which is hierarchized into three primary steps: - -  

exhibition of the parallelism; 
materialization and optimization of a dedicated 
architecture, via the definition of the different 
functional units of which it is comprised. These tasks 
process NP-complete problems, and necessitate the 
definition of an architectural model, an ordering of 
materialization tasks, thus defining a design strategy 
of the architecture and the implementation of 
optimization techniques; 
generation of the description of the synthesized 
architecture, which is adapted to logic synthesis tools, 
and other logic CAD tools, that are currently 
available. 

Fig. 1 : Materialization Cycle of an Algorithm 
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3 GAUT: A Synthesis Tool Dedicated to 
Signal Processing. 

3.1 Introduction 

GAUT is a pipeline architecture synthesis tool, 
dedicated to Signal and Image Processing applications 
under real time execution constraints. It works from the 
behavioral domain to the structural domain. The constraint 
which must be satisfied is the calculation frequency, 
which may be linked to a sampling frequency. The 
processing is described with the assistance of behavioral 
VHDL. GAUT accepts the description of a formal library 
of operators. The compilation phase, enables the 
extraction of the parallelism of the application and some 
transformations. The DFG obtained is synthesized 
according to a generic model of core of Digital Signal 
Processor. Finally, the synthesis leads to the generation of 
a structural and functional VHDL description of the 
designed architectures. 

- Data life time 
- Threshold capturation 

- Cost Minimization 

Flg. 2: Top-Down Design in GAUT 

3.2 Design Strategy 

The design stage which we follow is ‘top-down’, and our 
main contribution consists in defining the conception 
strategy. This strategy has to organise sequentially the 
design of the different Functional Units (FU) which are to 
be integrated in the architecture. When computing a 
Functional Unit, the chosen strategy has to take into 
account only the constraints of the application itself and of 
the Functional Units which have already been computed. 
The other units which are to be computed are considered 
as totally transparent. That is to say, that these units are 

supposed to satisfy the constraints of the unit currently 
synthesiz8tred without disturbing its operation. 

So this strategy organises the conception without any 

Design of the most complex Functional Units: these 
units undergo the strongest constraints of the 
application and represent a preponderant complexity 
of the architecture to be created. The quality of the 
created architecture depends principally on their 
optimization. 
Design of the most autonomous Functional Units: the 
suppression of the interaction constraints between 
units involves a reduction of architecture 
optimization. Thus, the first Functional Units to be 
designed, are those which undergo the least 
interaction constraints from the other units. 

feedback on the functional units in this way: 

First of all, GAUT synthesizes the Processing Unit, then 
the Memorization Unit and the Communication Unit 
(which has not yet been integrated into the tool). The 
Control Unit is simply described in order to be 
synthesized by a finite state machine design tool. 

During the design of the Processing Unit, GAUT 
initially processes arithmetic operators and targets their 
maximum use. Then come the registers and memory 
banks, which are part of the Memorization Unit. Because 
of no feed-back in the conception, the registers 
optimization, which is done before the memory 
optimization, is based on prediction techniques. The 
communication paths will then be optimized, followed by 
the optimization of the address generators of the memory 
banks dedicated to the application being considered (see 
figure 3). 

The optimal design of a processing unit integrates the 
following tasks: resource allocation and selection, 
operation scheduling, and the assignment of operations to 
the various operators. First, GAUT executes the allocation 
task, and then simultaneously executes the tasks of 
scheduling and assignment. 

Allocation consists of implementing the types and the 
number of operators which satisfy the average parallelism 
of the application extracted from the DFG dated by a As 
Soon As Possible scheduling. The average parallelism is 
calculated separately for each type of operation and for 
each pipeline slice N of the DFG, comprising the set of 
the date operations belonging to [N.Tr, (N+I).Tr]. Tr is 
the time constraint. 

During the scheduling phase, a supplementary pipeline 
slice may be created if necessary, subsequent to operation 
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scheduling on the previously allocated operators. 
Operation scheduling is a list scheduling with mobility 

heuristic which also depends upon the availability of 
allocated operators. The operations are scheduled as soon 
as the operator is available (allocated for a pipeline slice 
covering the considered date, free of all execution, and 
free during the time clock period in progress). The optimal 
assignment of a candidate operation on an available 
operator responds to the minimization of inter-connections 
between operators. The pipeline control of each operator 
is managed by a complementary priority on assignment. 
When an operator is allocated, but as yet not used, its use 
is primarily inferior to that of an operator already utilized. 
Furthermore, if a candidate operation has a positive 
mobility, then the scheduling is delayed. Finally, if an 
operator allocated from the beginning of the period is 
never used during the entire period, its allocation interval 
is delayed for one clock period. 

Fig. 3: Design Strategy 

3.3 Input and Compilation Language 

A VHDL input language at a behavioral level was 
retained. The total determinism in the DFG to be executed 
lead to the code transformation and the optimization of the 
description: 

Fixed iteration loops (FOR or WHILE) are unrolled. 
Variable propagation. 
Conditonal assignments are resolved by creating 
multiplexed values. 

The description of the library used in the synthesis will 
be performed with the assistance of a generic VHDL, 
whose the grammar is shown in figure 4. A generic library 
can be parameted by lime and cos1 to become a technolgy 
driven library. 

The Gaut library permits the use of multifunctional FUs 
(such as ALU) and the use of pipeline operators. This 
allows to a hierarchical design startegy by using operators 
resulting from a previous synthesis. 

The implemented operators may have the following 

- multiplicity of operations for a given operator [ 141; 
- multiplicity of operators for a given operation. This 

case is typical of the equivalence of function for 
different costs, or the equivalence of format; 

- multiplicity of characteristics for a class of operators. 

characteristics: 

<library>:: PACKAGE eidenb IS ( <generic> )* 

<generic>:: COMPONENT coper> 
END <ident> 

GENERIC 'f <generic> )* ')' ; 
END COMPONENT 

<generic>:: ccharao: INTEGER := <integer> I 
FUNCTION:<typex=dunction>(, <function>)* 

<char&>:: AREA I PIPE-STAGE I DELAY I INPUTS I 
N-BIT I LATENCY I ACCESS-TIME I <idenb 

Coper>:: REGISTER I MULTIPLEXER I MEMORY I 
DEMULTIPLEXER I BUS I <ident> 

<function>:: ADD I SUB I MUL I DIV I LT I LE I 
GT I GE I EQ I NE I MUX I AND I *-* I <ident> 

Fig. 4: Grammar of the library 

3.4 Modelizations of the Generic Architecture 

GAUT is a pipeline architectural synthesis tool which 
allows the full definition of the core of a DSP which is 
dedicated to a specified application. The figure 5 
illustrates the generic model of the structure of the 
synthesized architectures. 

The topology of the Processing Unit model is based on 
an elementary cell which includes several multiplexers, 
registers, and demultiplexers interconnected for the 
requirements of the application around an operator. This 
cell is dedicated to the processing to be executed. These 
cells are attached to the operators implemented during the 
allocation phase, in quantities sufficient to satisfy the 
constraints. After the scheduling of the operations and 
optimization of the registers, a cell may include several 
registers or may share a register with other cells. 

The various cells communicate via a parallel multi-bus 
network. The topology of the parallel multi-bus network is 
determined after the optimization of the data transfers, 
which attempts to reduce the multiplexers implemented in 
the network. 

The control model integrates two features: the use of the 
pipeline in order to control the operators and the registers; 
and the use of a multi-phase timeclock for controlling the 
events. The number of timeclock phases is not determined 
in advance, and depends on the results of the scheduling 
task, which dates the execution of the operations in order 
to provide a maximum use of the operators. GAUT 
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Register mDemultiplexer Multiplexer 
Fig. 5: Structural model of the generic architecture 

integrates scheduling technique which enables the user to 
control the number of timeclock phases to be 
implemented. 

We have to consider four types of duration: 
- the timing of each cell: Tfunct 
- the cycle time of the control clock: Tcycle 
- the desired execution time for the algorithm, that is to 

- the propagation time of the architecture: Tp. 
Because of the pipeline, Tp can be greater than Tr. 

Tfuncr I Tcycle I Tr 5 Tp. 
Each cell works on a set of data of the algorithm during 

a time interval n.Tcycle, (n+k).Tcycle, with k=TrlTcycle, 
n depending on the allocation. 

The use of the multi-phase time clock permits to 
optimize the efficiency of each cell. The efficiency is 
defined as the ratio between the time when the cell is 
really active and the total duration of its allocation. 

We now show by an example, the advantages of the 
multi-phase clock by calculatiiig the efficiency of cells 
controlled by a mono-phase clock and by a multi-phase 
clock: let us consider two cells with two different timings: 
T f l  and T f 2  with T f l  <Tf2 and T p  I T f l  = r ( r  is 
truncated). 

The use of the mono-phase clock leads us to choose 
either one mono-cycle control clock with Tcycle=Tp or 
the other multi-cycle control with Tcycle=Tfl. 

The two efficiencies of the architecture are: 

say the real time constraint: Tr 

These times verify the following inequation: 

2. Tr 2.Tr Tcycle 
The use of a multi-phase clock permits us to drive the 

first cell NI times per cycle and the second cell N2 times 
per cycle. The optimum cycle time is eitherTcycledV1 .Tfl 
or Tcycle=N2.Tp. The efficiency is: 

k.(Nl.Tfoncl + N2.Tfonc2) whereN 
2. Tr 

This efficiency is always greater than the one with the 
mono-phase clock. The maximum lost time is equal to the 
GCD of the two function time. 

The model for the generic Memorization Unit permits 
us to take into account the functional constraints of the 
application domains and also the functional constraints to 
ensure the transparency of the data access for the 
processing unit. 

Registers are a particular case because they are both in 
the model of processing unit to storage data during 
processing as well as for the intermediate calculation data, 
and in the model of the storage unit to store certain types 
of variables. 

The memory banks are used to store data, or constants, 
which have a relatively long life time. Their number is 
determined in order to respond specifically to each 
application. 

3.5 Registers and Busses Optimization 

Because of no feed-back in the design, the registers 
optimization has to be done during the conception of the 
processing unit. The choice of the location of a variable in 
a register or in memory, has to be done according to the 
minimization of two contradictory cost criteria: 

- the cost of a register is higher than the cost of a 
memory point. 

- the cost to access data in a register is lower than to 
access data in memory (because of the necessity to 
compute the address). 

Two criteria are used to chose the location of 

- A variable whose life time is inferior to a locality 
threshold is stored in a register; 

memorisation of the data: 
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(read-only); - recursive data (which serves to express the 
recursivity of the algorithm to be synthesized, via their 

both registers aund busses by adding multiplexers and 3- 

ning. This is done with BranchlkBound techniques using 
heuristic cost calculation. 

The problem of xmtic echo cancellation is apparent in 

telephony, which may be either fixed or radio mobile. 
This issue implicates complex Signal Processing 

state Or by time and 'pace bus partition- applications such as teleconference or hands free 

Register I Multiplexer I Adder I Multiplier 
~0s t=200 I ~ 0 ~ t = 8 0  I cmt=400 I ~ 0 ~ t = 2 4 0 0  

3.6 Output Interfaces algorithms, which are generallyadaptative. Some adaptive 
algorithms are particulary complex because they require 
thousands of coefficients and a sampling period of 16 
KHZ (62500 ns). The output interface describing the architecture 

generates two files: one for the structural description of 

declared in port (these belong to the Communication 
Unit). An intermediate type of data is a result which does 
not correspond to either a declared variable, signal, or 

Adder time 
Multiplier time 

the processing part of the synthesized architecture;and the 
other for the functional description of the control part of 
the synthesized architecture [16]. These two files are in 
the VHDL format. The processing unit is therefore 
described by an entity describing the ports, which enable 
its connection to the control part as well as to receive data 
and supply the results: and by an architecture describing it 
in the form of an instanciation of library components. 

The control unit will be described by an entity 
describing the ports which allows its connection to the 
processing part as well as to receive a timeclock, and by 
an architecture describing it in the form of a process with 
the time clock in a sensitivity list. 

Library 1 Library2 Library3 
100 ns 100 ns 80 ns 
200 ns 160ns 200ns 

The results of the methodological approach using a 
synthesis tool were compared with those of manual 
design. We present the enhanced performance of the 
mhitectural synthesis tool for the rapid prototyping of the 
signal processing algorithms. Currently, specialists in the 
domain estimate the complexity of their algorithms by a 
simple count of the operations to be executed (primarily 
multiplications and divisions). However, this estimation is 
incomct once it becomes necessary to use the parallelism, 
because a certain correlation may be noticed between 
algorithm regularity and the usage rate of the different 
resources implemented in the architecture. 

Two signal processing algorithms have been retained for 
use in acoustic echo cancellation. The first algorithm is a 

4 Results of the Synthesis by GAUT 

4.1 Results on a Benchmark for Synthesis 1000-point transverse filter adapted by the stochastic 
gradient, or LMS filter. The second filter is a 1000-point 
lattice filter adapted by a 30-cells. 

Gaut generates the architecture of the figure 7 for the We synthesized an elliptic filter [ 15 3 and our results 
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LMS filter on 1000 points. The operators are used with a 
rate of 87% and the registers with a rate of 70%. 

I 
I I 1  I I 
I I I  I I 

Fig. 7: the Architecture for the LMS Filter 

Finally, the interpretation of architectures, with the 
assistance of the format described in paragraph 3.6, is 
subsequently generated in order to interface with data path 
generator type tools, and machine state synthesis tools. 

A comparison can be done between results for different 
sizes of filters (for the LMS and for the lattice filter). This 
comparison permits us to know the real cost of the 
processing unit i n  each case; what  is important is that 
these costs are rather different than those calculate from 
the number of operations [ 171. 

Number of points ITRANSVERSAL I L A l T I C E  (30 cells) 
I3 Mult. I f .  12 Mult. 1 It. 

I 800 19 Reg, 10 Mux 119 Reg, 16 Mux I 
I I -  1 /0,8 I 1,62/2,55 

12 Mult. 1 f. 13 Mult. l f ,  I 900 19 Reg. 1 0  Mux 125 Reg, 26 Mux I 
I 1 l0 ,9  I 1,92/2,85 
12 Mult, 1 k, 13 Mult, 2+, 

I loo0 19 Reg, 10 Mux I33 Rea,  33 Mux I 
I I 171 reference I <27/3,15 I 

Fig. 8: Relative Cost to the LMS Filter 
area complexity / operation complexity 

In the preceding table, the synthesis resulis are noted, as 
well as the comparative variations of architectural costs 
and complexities estimated with the number of arithmetic 
operations of these two filters, when the number of points 
changes (text in bold type). The synthesis tool can also 
help to chose the best algorithm for the particular 
constraints of an application. 

5 Conclusion and Perspective 

The domain of architectural synthesis i n  Signal 
Processing is undergoing numerous developments. It  
seemed vital to formalize no; only the optimization 
techniques, but also the design strategies and generic 

architecture models which were employed. GAUT 
integrates an effective design strategy and an original 
generic architecture model, which allows us to achieve the 
optimal use of the resources implemented for a given 
application. The acoustic echo cancellation application 
illustrates the contribution made by a synthesis tool in the 
framework of rapid algorithm prototyping. 

Work is currently underway concerning the synthesis of 
other functional units which are not as yet defined, 
allowing the design of complete processors dedicated to 
considered applications. Attention is also being focused 
on the problem of optimal selection of resources to be 
allocated, in the context of the utilization of full 
component libraries. 
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