
GAUT: An Architectural Synthesis Tool for Dedicated Signal Processors

E. Martin, 0. Sentieys, H. Dubois, J.L. Philippe

ENSSAT - LASTI, University of Rennes I
6 Rue de K6rampont 22300 Lannion, France

ABSTRACT
This paper attempts to describe a pipeline architecture

synthesis tool dedicated to signal processing applications.
This approach relies on the use of a design strategy and of
a generic architectural model, using optimized control of
resources. GAUTi takes a VHDL description of an
application as input, and generates the optimal structural
and functional VHDL description of a dedicated
architecture. The results obtained by GAUT are intended
for an application in acoustic echo cancellation

1 Introduction

Technological advances force today's designer to
consider a new work method. This method consists of
automating the materialization of the component, or of the
system which enables the execution of a software solution
to a particular problem. One may therefore, methodically
exploit the parallelism of the application in order to satisfy
the algorithm execution time constraints.

Architectural synthesis allows the search for the optimal
architectural solution relative to the specified constraints.
To be optimal, the synthesis must rely on a design method
which takes into account the specificity of the application
domain. We have focused on the domain of Signal
Processing in real time and we have formalised a specific
method of conception for this type of application. This
method is original on several points: - to avoid feddbacks
in the design strategy, the units which are not yet
synthesized are considered transparent: - to optimize the
use of the treatment units a multi-phase time clock is used;
- Data Flow Graph transformations dedicated to Signal
Processing Algorithms is done.

2 Architectural Synthesis in Signal
Processing

Dedicated architectural synthesis automates the different
algorithm materialization steps (figure 1). The loop which

GAUT is partially supported by CNET Meylan

0-81864350-1/93 $3.00 0 1993 lEEE
14

appears in this cycle is particularly critical in real time
applications 111. Generally, it is necessary to open this
loop either by adopting an appropriate strategy ('meet in
the middle' design [2]), or by defining, in minute detail,
the architecture which guarantees the validity of the
synthesis (top-down design). In the domain of Signal
Processing, numerous architectural synthesis tools are
described in a variety of publications: SPAID [3],
MIMOLA [41, HAL [51, EASY [6] , CADDY
[71, FIRST [81, SHEWA [91, YSC [lo] ,
AMICAL [111, OSYS [12] ...

These tools generally integrate a descending approach,
which is hierarchized into three primary steps: - -

exhibition of the parallelism;
materialization and optimization of a dedicated
architecture, via the definition of the different
functional units of which it is comprised. These tasks
process NP-complete problems, and necessitate the
definition of an architectural model, an ordering of
materialization tasks, thus defining a design strategy
of the architecture and the implementation of
optimization techniques;
generation of the description of the synthesized
architecture, which is adapted to logic synthesis tools,
and other logic CAD tools, that are currently
available.

Fig. 1 : Materialization Cycle of an Algorithm

Authorized licensed use limited to: UR Rennes. Downloaded on June 18,2010 at 00:48:47 UTC from IEEE Xplore. Restrictions apply.

3 GAUT: A Synthesis Tool Dedicated to
Signal Processing.

3.1 Introduction

GAUT is a pipeline architecture synthesis tool,
dedicated to Signal and Image Processing applications
under real time execution constraints. It works from the
behavioral domain to the structural domain. The constraint
which must be satisfied is the calculation frequency,
which may be linked to a sampling frequency. The
processing is described with the assistance of behavioral
VHDL. GAUT accepts the description of a formal library
of operators. The compilation phase, enables the
extraction of the parallelism of the application and some
transformations. The DFG obtained is synthesized
according to a generic model of core of Digital Signal
Processor. Finally, the synthesis leads to the generation of
a structural and functional VHDL description of the
designed architectures.

- Data life time
- Threshold capturation

- Cost Minimization

Flg. 2: Top-Down Design in GAUT

3.2 Design Strategy

The design stage which we follow is ‘top-down’, and our
main contribution consists in defining the conception
strategy. This strategy has to organise sequentially the
design of the different Functional Units (FU) which are to
be integrated in the architecture. When computing a
Functional Unit, the chosen strategy has to take into
account only the constraints of the application itself and of
the Functional Units which have already been computed.
The other units which are to be computed are considered
as totally transparent. That is to say, that these units are

supposed to satisfy the constraints of the unit currently
synthesiz8tred without disturbing its operation.

So this strategy organises the conception without any

Design of the most complex Functional Units: these
units undergo the strongest constraints of the
application and represent a preponderant complexity
of the architecture to be created. The quality of the
created architecture depends principally on their
optimization.
Design of the most autonomous Functional Units: the
suppression of the interaction constraints between
units involves a reduction of architecture
optimization. Thus, the first Functional Units to be
designed, are those which undergo the least
interaction constraints from the other units.

feedback on the functional units in this way:

First of all, GAUT synthesizes the Processing Unit, then
the Memorization Unit and the Communication Unit
(which has not yet been integrated into the tool). The
Control Unit is simply described in order to be
synthesized by a finite state machine design tool.

During the design of the Processing Unit, GAUT
initially processes arithmetic operators and targets their
maximum use. Then come the registers and memory
banks, which are part of the Memorization Unit. Because
of no feed-back in the conception, the registers
optimization, which is done before the memory
optimization, is based on prediction techniques. The
communication paths will then be optimized, followed by
the optimization of the address generators of the memory
banks dedicated to the application being considered (see
figure 3).

The optimal design of a processing unit integrates the
following tasks: resource allocation and selection,
operation scheduling, and the assignment of operations to
the various operators. First, GAUT executes the allocation
task, and then simultaneously executes the tasks of
scheduling and assignment.

Allocation consists of implementing the types and the
number of operators which satisfy the average parallelism
of the application extracted from the DFG dated by a As
Soon As Possible scheduling. The average parallelism is
calculated separately for each type of operation and for
each pipeline slice N of the DFG, comprising the set of
the date operations belonging to [N.Tr, (N+I).Tr]. Tr is
the time constraint.

During the scheduling phase, a supplementary pipeline
slice may be created if necessary, subsequent to operation

15

Authorized licensed use limited to: UR Rennes. Downloaded on June 18,2010 at 00:48:47 UTC from IEEE Xplore. Restrictions apply.

scheduling on the previously allocated operators.
Operation scheduling is a list scheduling with mobility

heuristic which also depends upon the availability of
allocated operators. The operations are scheduled as soon
as the operator is available (allocated for a pipeline slice
covering the considered date, free of all execution, and
free during the time clock period in progress). The optimal
assignment of a candidate operation on an available
operator responds to the minimization of inter-connections
between operators. The pipeline control of each operator
is managed by a complementary priority on assignment.
When an operator is allocated, but as yet not used, its use
is primarily inferior to that of an operator already utilized.
Furthermore, if a candidate operation has a positive
mobility, then the scheduling is delayed. Finally, if an
operator allocated from the beginning of the period is
never used during the entire period, its allocation interval
is delayed for one clock period.

Fig. 3: Design Strategy

3.3 Input and Compilation Language

A VHDL input language at a behavioral level was
retained. The total determinism in the DFG to be executed
lead to the code transformation and the optimization of the
description:

Fixed iteration loops (FOR or WHILE) are unrolled.
Variable propagation.
Conditonal assignments are resolved by creating
multiplexed values.

The description of the library used in the synthesis will
be performed with the assistance of a generic VHDL,
whose the grammar is shown in figure 4. A generic library
can be parameted by lime and cos1 to become a technolgy
driven library.

The Gaut library permits the use of multifunctional FUs
(such as ALU) and the use of pipeline operators. This
allows to a hierarchical design startegy by using operators
resulting from a previous synthesis.

The implemented operators may have the following

- multiplicity of operations for a given operator [141;
- multiplicity of operators for a given operation. This

case is typical of the equivalence of function for
different costs, or the equivalence of format;

- multiplicity of characteristics for a class of operators.

characteristics:

<library>:: PACKAGE eidenb IS (<generic>)*

<generic>:: COMPONENT coper>
END <ident>

GENERIC 'f <generic>)* ')' ;
END COMPONENT

<generic>:: ccharao: INTEGER := <integer> I
FUNCTION:<typex=dunction>(, <function>)*

<char&>:: AREA I PIPE-STAGE I DELAY I INPUTS I
N-BIT I LATENCY I ACCESS-TIME I <idenb

Coper>:: REGISTER I MULTIPLEXER I MEMORY I
DEMULTIPLEXER I BUS I <ident>

<function>:: ADD I SUB I MUL I DIV I LT I LE I
GT I GE I EQ I NE I MUX I AND I *-* I <ident>

Fig. 4: Grammar of the library

3.4 Modelizations of the Generic Architecture

GAUT is a pipeline architectural synthesis tool which
allows the full definition of the core of a DSP which is
dedicated to a specified application. The figure 5
illustrates the generic model of the structure of the
synthesized architectures.

The topology of the Processing Unit model is based on
an elementary cell which includes several multiplexers,
registers, and demultiplexers interconnected for the
requirements of the application around an operator. This
cell is dedicated to the processing to be executed. These
cells are attached to the operators implemented during the
allocation phase, in quantities sufficient to satisfy the
constraints. After the scheduling of the operations and
optimization of the registers, a cell may include several
registers or may share a register with other cells.

The various cells communicate via a parallel multi-bus
network. The topology of the parallel multi-bus network is
determined after the optimization of the data transfers,
which attempts to reduce the multiplexers implemented in
the network.

The control model integrates two features: the use of the
pipeline in order to control the operators and the registers;
and the use of a multi-phase timeclock for controlling the
events. The number of timeclock phases is not determined
in advance, and depends on the results of the scheduling
task, which dates the execution of the operations in order
to provide a maximum use of the operators. GAUT

16

Authorized licensed use limited to: UR Rennes. Downloaded on June 18,2010 at 00:48:47 UTC from IEEE Xplore. Restrictions apply.

Register mDemultiplexer Multiplexer
Fig. 5: Structural model of the generic architecture

integrates scheduling technique which enables the user to
control the number of timeclock phases to be
implemented.

We have to consider four types of duration:
- the timing of each cell: Tfunct
- the cycle time of the control clock: Tcycle
- the desired execution time for the algorithm, that is to

- the propagation time of the architecture: Tp.
Because of the pipeline, Tp can be greater than Tr.

Tfuncr I Tcycle I Tr 5 Tp.
Each cell works on a set of data of the algorithm during

a time interval n.Tcycle, (n+k).Tcycle, with k=TrlTcycle,
n depending on the allocation.

The use of the multi-phase time clock permits to
optimize the efficiency of each cell. The efficiency is
defined as the ratio between the time when the cell is
really active and the total duration of its allocation.

We now show by an example, the advantages of the
multi-phase clock by calculatiiig the efficiency of cells
controlled by a mono-phase clock and by a multi-phase
clock: let us consider two cells with two different timings:
T f l and T f 2 with T f l <Tf2 and T p I T f l = r (r is
truncated).

The use of the mono-phase clock leads us to choose
either one mono-cycle control clock with Tcycle=Tp or
the other multi-cycle control with Tcycle=Tfl.

The two efficiencies of the architecture are:

say the real time constraint: Tr

These times verify the following inequation:

2. Tr 2.Tr Tcycle
The use of a multi-phase clock permits us to drive the

first cell NI times per cycle and the second cell N2 times
per cycle. The optimum cycle time is eitherTcycledV1 .Tfl
or Tcycle=N2.Tp. The efficiency is:

k.(Nl.Tfoncl + N2.Tfonc2) whereN
2. Tr

This efficiency is always greater than the one with the
mono-phase clock. The maximum lost time is equal to the
GCD of the two function time.

The model for the generic Memorization Unit permits
us to take into account the functional constraints of the
application domains and also the functional constraints to
ensure the transparency of the data access for the
processing unit.

Registers are a particular case because they are both in
the model of processing unit to storage data during
processing as well as for the intermediate calculation data,
and in the model of the storage unit to store certain types
of variables.

The memory banks are used to store data, or constants,
which have a relatively long life time. Their number is
determined in order to respond specifically to each
application.

3.5 Registers and Busses Optimization

Because of no feed-back in the design, the registers
optimization has to be done during the conception of the
processing unit. The choice of the location of a variable in
a register or in memory, has to be done according to the
minimization of two contradictory cost criteria:

- the cost of a register is higher than the cost of a
memory point.

- the cost to access data in a register is lower than to
access data in memory (because of the necessity to
compute the address).

Two criteria are used to chose the location of

- A variable whose life time is inferior to a locality
threshold is stored in a register;

memorisation of the data:

17

Authorized licensed use limited to: UR Rennes. Downloaded on June 18,2010 at 00:48:47 UTC from IEEE Xplore. Restrictions apply.

(read-only); - recursive data (which serves to express the
recursivity of the algorithm to be synthesized, via their

both registers aund busses by adding multiplexers and 3-

ning. This is done with BranchlkBound techniques using
heuristic cost calculation.

The problem of xmtic echo cancellation is apparent in

telephony, which may be either fixed or radio mobile.
This issue implicates complex Signal Processing

state Or by time and 'pace bus partition- applications such as teleconference or hands free

Register I Multiplexer I Adder I Multiplier
~0s t=200 I ~ 0 ~ t = 8 0 I cmt=400 I ~ 0 ~ t = 2 4 0 0

3.6 Output Interfaces algorithms, which are generallyadaptative. Some adaptive
algorithms are particulary complex because they require
thousands of coefficients and a sampling period of 16
KHZ (62500 ns). The output interface describing the architecture

generates two files: one for the structural description of

declared in port (these belong to the Communication
Unit). An intermediate type of data is a result which does
not correspond to either a declared variable, signal, or

Adder time
Multiplier time

the processing part of the synthesized architecture;and the
other for the functional description of the control part of
the synthesized architecture [16]. These two files are in
the VHDL format. The processing unit is therefore
described by an entity describing the ports, which enable
its connection to the control part as well as to receive data
and supply the results: and by an architecture describing it
in the form of an instanciation of library components.

The control unit will be described by an entity
describing the ports which allows its connection to the
processing part as well as to receive a timeclock, and by
an architecture describing it in the form of a process with
the time clock in a sensitivity list.

Library 1 Library2 Library3
100 ns 100 ns 80 ns
200 ns 160ns 200ns

The results of the methodological approach using a
synthesis tool were compared with those of manual
design. We present the enhanced performance of the
mhitectural synthesis tool for the rapid prototyping of the
signal processing algorithms. Currently, specialists in the
domain estimate the complexity of their algorithms by a
simple count of the operations to be executed (primarily
multiplications and divisions). However, this estimation is
incomct once it becomes necessary to use the parallelism,
because a certain correlation may be noticed between
algorithm regularity and the usage rate of the different
resources implemented in the architecture.

Two signal processing algorithms have been retained for
use in acoustic echo cancellation. The first algorithm is a

4 Results of the Synthesis by GAUT

4.1 Results on a Benchmark for Synthesis 1000-point transverse filter adapted by the stochastic
gradient, or LMS filter. The second filter is a 1000-point
lattice filter adapted by a 30-cells.

Gaut generates the architecture of the figure 7 for the We synthesized an elliptic filter [15 3 and our results

18

Authorized licensed use limited to: UR Rennes. Downloaded on June 18,2010 at 00:48:47 UTC from IEEE Xplore. Restrictions apply.

LMS filter on 1000 points. The operators are used with a
rate of 87% and the registers with a rate of 70%.

I
I I 1 I I
I I I I I

Fig. 7: the Architecture for the LMS Filter

Finally, the interpretation of architectures, with the
assistance of the format described in paragraph 3.6, is
subsequently generated in order to interface with data path
generator type tools, and machine state synthesis tools.

A comparison can be done between results for different
sizes of filters (for the LMS and for the lattice filter). This
comparison permits us to know the real cost of the
processing unit i n each case; what is important is that
these costs are rather different than those calculate from
the number of operations [171.

Number of points ITRANSVERSAL I L A l T I C E (30 cells)
I3 Mult. I f . 12 Mult. 1 It.

I 800 19 Reg, 10 Mux 119 Reg, 16 Mux I
I I - 1 /0,8 I 1,62/2,55

12 Mult. 1 f. 13 Mult. l f , I 900 19 Reg. 1 0 Mux 125 Reg, 26 Mux I
I 1 l0 ,9 I 1,92/2,85
12 Mult, 1 k, 13 Mult, 2+,

I loo0 19 Reg, 10 Mux I33 Rea, 33 Mux I
I I 171 reference I <27/3,15 I

Fig. 8: Relative Cost to the LMS Filter
area complexity / operation complexity

In the preceding table, the synthesis resulis are noted, as
well as the comparative variations of architectural costs
and complexities estimated with the number of arithmetic
operations of these two filters, when the number of points
changes (text in bold type). The synthesis tool can also
help to chose the best algorithm for the particular
constraints of an application.

5 Conclusion and Perspective

The domain of architectural synthesis i n Signal
Processing is undergoing numerous developments. It
seemed vital to formalize no; only the optimization
techniques, but also the design strategies and generic

architecture models which were employed. GAUT
integrates an effective design strategy and an original
generic architecture model, which allows us to achieve the
optimal use of the resources implemented for a given
application. The acoustic echo cancellation application
illustrates the contribution made by a synthesis tool in the
framework of rapid algorithm prototyping.

Work is currently underway concerning the synthesis of
other functional units which are not as yet defined,
allowing the design of complete processors dedicated to
considered applications. Attention is also being focused
on the problem of optimal selection of resources to be
allocated, in the context of the utilization of full
component libraries.

H. De Man "Slccm Compilation for real Time Signal Processing
systems" Tutorial on high Level Synthesis", EDAC, Galsgow 12-
15 march 1990.
B. Bowen & W. Brown "systems Design" Edition Prentice Hall,
1985.
B. S. Haroun, M. I. Elmasly "Architectural synthesis for DSP
silicon compilers", IEEE Transactions on computer-aided design,
Vol8, No 4, April 1989.
P. Marwedel "Matching System and Component Behavoriour in
MIMOLA Synthesis Tools". EDAC, Glasgow 12-15 march 1990.

P. Paulin, J. P. Knight "Force-directed scheduling in automatic
data path synthesis", 24th ACMnEEE DAC. 1987.
L. Stock, R. Van Den Born "EASY : multiprocessor architecture
optimization", Workshop logic and architecture synthesis for
silicon compilers, May 1988, Grenoble. France.
P. Gutberlet & J. Muller & H. Kramer & W. Rosenstiel
"Automatic Module allocation in high level synthesis" , EURO-
DAC 92, Hamburg 7-10 September 1992.
P. Denyer & D. Renshaw "VLSI Processing: A Bit Serial
Approach" Edition Addison Wesley. 1982.
A. Parker "MAHA: aA program for Datapath Synthesis" 23th
A C W E E E Design automation conference, Las Vegas Jully 1986.
D. Gajski & all "Silicon compilation" Edition Addison-Wesley,
1988.
M. Israel, J. Benzakki, M. Francois "OSYS: Tools for behavioral
synthesis of ICs with V H D L VIUF Spring 92, Scdtsdale USA.
A. Jerraya "VHDL and Architectural Synthesis" Spring 93
Innsbruck, Austria.
E. Martin, 0. Sentieys & J.L. Philippe. "Traitement du signal et
architecture dediie: GAUT une approche mithodologique en
C A 0 de VLSI". Cong&s AFCET. Paris 8-10 june 1993.
R. Bergamaschi, R. Camosano & M. Payer " Area and
Performance Optimizations in Path-Based Scheduling". EDAC,
Amsterdam 25-28 Fev 1991.
S.Y. Kung & H.J. Whitehouse & T. Kailath "VLSI and Modern
signal processing". Prentice Hall.
J.L Philippe, E. Martin "Prototyping Digital Signal Processing
using VHDL and CAD Architectural Tool" Spring 93, Innsbruck,
Austria.
0. Sentieys "Analyse et synthese d'architectures en TDSI: vers la
conception darchitectures hCtirogtnes" Thesis Universisty of
Rennes 11993.

19

Authorized licensed use limited to: UR Rennes. Downloaded on June 18,2010 at 00:48:47 UTC from IEEE Xplore. Restrictions apply.

