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Abstract— Assistive robotic systems endeavour to support
those with movement disabilities, enabling them to move again
and regain functionality. Main issue with these systems is the
complexity of their low-level control, and how to translate this
to simpler, higher level commands that are easy and intuitive
for a human user to interact with. We have created a multi-
modal system, consisting of different sensing, decision making
and actuating modalities, to create intuitive, human-in-the-loop
assistive robotics. The system takes its cue from the user’s gaze,
to decode their intentions and implement lower-level motion
actions and achieve higher level tasks. This results in the user
simply having to look at the objects of interest, for the robotic
system to assist them in reaching for those objects, grasping
them, and using them to interact with other objects. We present
our method for 3D gaze estimation, and action grammars-based
implementation of sequences of action through the robotic
system. The 3D gaze estimation is evaluated with 8 subjects,
showing an overall accuracy of 4.68±0.14cm. The full system
is tested with 5 subjects, showing successful implementation of
100% of reach to gaze point actions and full implementation
of pick and place tasks in 96%, and pick and pour tasks in
76% of cases. Finally we present a discussion on our results
and what future work is needed to improve the system.

I. INTRODUCTION

Limitations in human upper limb movements can be a

result of spinal cord injuries, neurodegenerative diseases or

strokes. These adversely affect a person’s ability for basic

activities of daily life. Robotic solutions are being devised

as alternative actuators, to assist with these issues. Devices

are presented in the form of exoskeletons [1], [2], prosthetics

[3] and orthotics [4]. For such systems, the user’s control

interface is typically either residual motion (e.g. sip and puff

[5]) or neural interfaces (e.g. muscle activity [6] or brain-

computer interfaces [7]). These interfaces are not available

to all patients, and/or require invasive procedures and long

training times for the user to be adept with their use [7]–

[9]. The degrees of freedom tend to exceed the available

number of independent channels within the above interfaces,

and therefore result either in simplified device capabilities or

in difficulties in user control. We have previously presented

work on eye-tracking studies [10]–[12] and the use of eye-

tracking as a robot interface [13]. In this work, we present a

new method for 3D gaze point estimation, and its integration

with a robotic system architecture allowing real-time inten-

tion decoding, decision making, and robot-actuated reach
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Fig. 1: A user with our robotic reach and grasp support system.

and grasp restoration. The system implements complex tasks

by combining lower-level robotic actions, that are initiated

through the user’s gaze, and carried on through awareness

of the interaction context and human action grammars.

Gaze has been used successfully in the past as an interface

for machines, particularly in human-computer interfaces [14]

and social robotics to monitor human attention and engage-

ment [15]–[17]. It has been implemented as an interface for

robotic laparoscopic surgery [18] as well as emotion analysis

[19]. When it comes to patients with movement disabilities,

there is work on the use of gaze patterns in rehabilitation

[20], for the control of 2 degrees of freedom in upper limb

exoskeletons, where the patient uses gaze to direct the robot

on a 2D surface. There is also work In assistive robotics,

particularly wheelchairs controlled through gaze [21]–[24].

We aim to expand the research into 3D gaze monitoring

within assistive robotics for the restoration of reaching and

grasping. The use of gaze is of particular interest as it

is retained in most upper limb disabilities. Furthermore, it

allows for natural, easy to learn, and non-invasive interface

between the human and the robot. To achieve this we rely on

the idea of action grammars: our actions, like our sentences,

have rules regarding how to combine them and which order

to use to create a meaningful sequence.

In section II, we first present an overview of our system

architecture followed by details of its consisting parts. Sec-

tion III presents our evaluation experiments, with the results

reported and discussed in Section IV. Section V concludes

the paper, with proposals on future work.
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II. METHODS

A. System overview and architecture

We aim to create a robotic system which acts based on

human 3D gaze patterns and the context of the environment.

In order to track 3D human gaze patterns, we need to know

which direction the human’s eye pupils are pointed at. Com-

mercial eye-tracking glasses provide 2D gaze monitoring

without any information on depth. We use an RGBD camera

mounted on top of the eye-tracker glasses to gain the missing

depth information. Once this is obtained, we need the user’s

head position and orientation, so that we can transform the

3D gaze points obtained within the eye-tracker’s coordinate

system, to that of the world. This information, along with the

output of the object recognition module working on top of

the eye-tracking ego-centric camera images, are then to be

used to make decisions and implement actions using robotic

devices.

Our system consists of multiple modalities integrated and

working together through the Robot Operating System (ROS)

environment [25]. These include: 1. Eye-tracking glasses, 2.

RGB-D camera, 3. Convolutional Neural Network for object

recognition, 4. Optical head-tracking, 5. Robotic arm for

reaching support and 6. Robotic glove for grasping support.

The block diagram in Figure 2 depicts an overview of our

system. Individual modalities are described in detail in the

following.

B. Eye-tracking

For eye tracking, we use the SMI ETG 2W A (SensoMo-

toric Instruments Gesellschaft für innovative Sensorik mbH,

Teltow, Germany). Using the SMI Software Development Kit

(SDK), we are able to obtain 2D gaze positions superimposed

on the ego-centric RGB camera image. To calculate 3D gaze

points, we need depth information. We mounted an Intel

Realsesne D435 RGB-D camera (Intel Corporation, Santa

Clara, California, USA) on top of the eye-trackers, using a

3D printed frame. This can be seen in Figure 1.

Typically, eye-tracking devices should be calibrated with

the user’s eyes. During calibration a user has to look at sev-

eral points on a physical plane, and the researcher manually

marks them on the ego-centric video feed (see Figure 5). In

our setup, we use the depth picture from the RGBD camera

aligned to the camera’s RGB image, as an ego-centric frame

and map gaze points directly to it during the calibration

process. The Intel API for the depth camera provides the

depth of each pixel in metres.

Through this integration, we are able to obtain the Eu-

clidean distance, dg , between the depth camera lens, and the

surface in space over which the 3D gaze point of the user

sits. The camera image resolution is 1280× 720, let this be

referred to as Wc×Hc. The 2D gaze point is sumperimposed

on the same camera image, and can therefore also be referred

to in terms of pixels, let this be represented as (Px, Py),
where Px is the horizontal gaze pixel location, and Py is

the vertical one; with the centre of the image considered the

origin, i.e. (0, 0) (see Figure 3). We refer to the horizontal

Fig. 2: Block diagram showing the architecture of our system.

and vertical field of view (FOV) angles of the camera as

αcH and αcV , respectively. Let c be defined as the line

connecting the camera to the centre of its frame. The gaze

angle is then defined in two cases. Horizontal gaze angle,

αgH , is the angle between the projection of the Euclidean

distance line above (dg) on the horizontal (transverse) plane.

Similarly, the vertical gaze angle, αgV , is the angle between

the projection of dg on the vertical (sagittal) plane. The case

of the horizontal gaze angle is displayed in Figure 3. We

need to convert the gaze point values from pixels, to metres

in Cartesian space: (gx, gy, gz). Consider the case shown in

Figure 3:

tan(αgH) = Px/c, tan(αcH) = (Wc/2)/c (1)

Combining these we get:

αgH = arctan(
Px

Wc/2
tan(αcH)) (2)

We now know the angle between the Euclidian distance gaze

line, dg , and the centre line of the camera frame. As we have

the value of dg in metres, we are now able to calculate gx
as follows:

gx = dg sin(αgH) (3)

and similarly: gy = dg sin(αgV ). For the case of gz , we need

to consider the projection of dg onto one of the horizontal or

vertical planes, and use the outcome with the newly obtained

gx or gy , respectively, to obtain the z-distance of the gaze

point:

gz =
√

g2x + d2g cos
2(αgV ) (4)

We now have the 3D gaze point of the user, in Cartesian

coordinates, with respect to the defined eye-tracker coordi-

nate system. We then need to transform this to the robot

coordinate system. To do this, we need the position and

orientation of the user’s head.

Fig. 3: Geometric representation of the gaze angle and the camera
frame, used for the 3D gaze point estimation.
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C. Optical head tracking

We use the Optitrack Flex 13 cameras (NaturalPoint, Inc.

DBA OptiTrack, Corvallis, Oregon, USA) for optical head

tracking. To avoid occlusions due to the user’s head, we

created 3D printed extensions. This can be seen in Figure

1. The markers are then selected in the Optitrack software,

Motive; and a rigid body is defined. This method gives

us the position of the centre of the rigid body (i.e. the

camera depth lens position) with respect to the pre-defined

Optitrack origin, and the rotation of the rigid body, relative

to its initial position when selected and defined in Motive.

We use these values to form a transformation matrix which

is applied to the 3D gaze point coordinates transforming

them into the Optitrack coordinate system followed by an

extra transformation matrix to transform this into the robot

coordinate system.

D. Detection of objects and intention of action

We use a deep neural network approach coupled with naive

classification to classify multiple objects in the user’s field

of view. The development of this system is highlighted in

[26]. The output of this is real-time object recognition on

the depth camera images, with rectangular bounding boxes

drawn around the detected object. We can then use the

detected gaze position on the camera image frame, along

with these bounding boxes to detect: 1. which object and

2. which part of that object, is the user gazing upon. We

use this information to extract context and intention - i.e.

which objects is the user interested in, and whether there is

an intention of physical interaction with this object. To detect

the latter, we have defined the right-hand side of each object,

as the location for the user to gaze at (for 15 gaze points), to

indicate an intention of physical motion. This gives the user

executive control, allowing them to freely inspect objects

without causing robot movements.

E. Robotic system integration

Our robotic system consists of two commercial robots:

1. Universal Robots UR10 (Universal Robots A/S, Odense,

Denmark) and 2. BioServo Carbonhand (Bioservo Technolo-

gies AB, Kista, Sweden). The former is used for reaching and

the latter for grasping support. The user wears the robotic

glove on their hand, and attaches their arm to the UR10

through a 3D printed magnetic attachment on their wrist. The

magnetic setup is used to ensure our test subjects are able

to detach their arm by pulling it away if they sense a risk.

Strict workspaces, motion planning constraints including a

3D reconstruction of our lab environment and user bounding

boxes for collision avoidance are in place to ensure safety.

As we use ROS, the robot choice is irrelevant, as long as it

is ROS-compatible.

The ROS master receives the gaze point as pixel locations

within the camera frame, the object that the user’s gaze falls

upon and whether there is an intention of motion as well

as the user’s head position and orientation. The 3D gaze

point calculations described above are implemented within

our ROS package. We then have the user’s 3D gaze point,

TABLE I: Convention used for the categories of objects within
the finite state machine.

Graspable Pourable GP Comments

0 0 00 e.g. large container

0 1 01 undefined e.g. table

1 0 10 e.g. apples/oranges

1 1 11 e.g. small container

i.e. the location of the object they are looking at, as well as

knowledge on what that object is and whether the user wants

to physically interact with that object. We use these inputs

to make decisions and implement sequences of actions with

the robotic system, using lower-level actions and following

rules of action grammars. A finite state machine (FSM) is

applied to implement this.

As an example for our proof of concept, we are dealing

with a dining table scenario. We are therefore looking at

objects such as fruits (apples, oranges) and containers (cups,

bottles, bowls). We define the interaction between these

objects as 1. pick and place on the table, 2. pick and place

into containers and 3. pick and pour into larger containers.

Grammars are already visible here, i.e. you can pick and

place fruits on the table or into the bowl, but not into the

cup or bottle; similarly, you cannot pour fruits, but you can

pour the cup/bottle - and only into the bowl and not on

the table. We categorise our scenario objects considering

their graspability and pourability as defining parameters. For

example, apples and oranges are graspable but not pourable,

cups are graspable and pourable. We use a binary string

for notation of objects. See Table I for a description. Note

that a non-graspable but pourable object is undefined - this

category, i.e. GP = 01 is used to represent the dining table

itself.

The states of the FSM are defined to represent the user

state. The parameters used in this definition are whether the

user’s grip is open or closed, and what object is held in their

grip, if any. We represent this in a binary string format as

well, with the grip open being represented as 0 and grip

closed as 1. This is followed by the object held, using the

same notation as that of Table I, except that in this case,

GP = 01 is used to represent ”no object held”. This leads

to a total of 4 states for the FSM, which are listed in Table

II.

The full FSM, with the states, transitions, their conditions

and actions, is depicted in Figure 4. The black text on each

transition arrow defines the conditions for that particular

transition. Note that the intention of action as detected from

the user’s gaze patterns, is represented as a Boolean variable

here named Intent. The GP condition on the transition

arrows relate to the object gazed by the user, following the

convention of Table I. The red text on each transition arrow

TABLE II: Convention used to name the states within the finite
state machine.

Grip Object held Comments

0 01 001: Grip open, no object held.

1 01 101: Grip closed, no object (grasp failure)

1 10 110: Grip closed, graspable non-pourable

1 11 111: Grip closed, graspable pourable
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Fig. 4: The finite state machine used to implement the sequences
of action.

indicates the robotic action that is triggered by that transition,

i.e. Reach for 3DGP and Grasp means the UR10 robotic arm

will reach for the 3D gaze point of the user, and once this

is completed, the Carbonhand robotic glove will close the

user’s grip.

The user starts in state 001 (grip open, no object held)

and remains in this state as long as no intention of action

is detected. Note that self-transitions in case of unfulfilled

conditions are not displayed in the FSM figure for simplicity.

Once the user’s gaze pattern indicates an intention of action

(intent == 1), depending on the object the user is looking

at, one of the following will occur: Looking at a Graspable,

non-Pourable object (GP = 10, e.g. apple, orange), the

machine will transition to 110. The robotic system will

reach for the object and grasp - and similarly for looking

at GP = 11 (e.g. cup, bottle) it will transition to 111. If

the user is looking at a non-Graspable, non-Pourable object

(GP = 00, e.g. bowl) or the table (GP = 01), the machine

will not transition. Note that transitions will not execute if

the 3D gaze point of the user is not within the workspace,

or if it is not motion planable for the robot.

The ’grasp failure’ transition is to handle the potential

cases when the robotic glove closes the grip but a grasp of

the object of interest is not successful, or the case when a

grasp has been made, but it is not stable and the object is

dropped midway through the task. Failure of a grasp can only

initiate from a state which involves an object having been

grasped already i.e. 110 or 111. From these two states, if the

grasp is unsuccessful, a transition will be made to state 101.

Following the convention of Table II, 101 means that the grip

is closed but no object is held. This state will immediately

transition to 001 by releasing the grip. The ROS package

for the Carbonhand robotic glove publishes tendon tension

values, motor voltages and force sensor values from the glove

finger tips. Combining these data, we are able to detect 1.

whether the glove is closed or open and 2. if closed, whether

the user is holding an object, or an empty grip. This is used

to detect the user’s state and particularly grasp failures.

Note that in practical implementation, there is a clear offset

from the user’s grasp point, to the robot TCP, which depends

on the size and orientation of the magnetic attachment, as

well as each user’s particular wrist diameter, hand size and

finger length (Figure 1). To personalise the system to each

user, we created a calibration step: We move the robot with

the user’s arm attached to it to an arbitrary point on the table,

at a comfortable grasp height. We place a cup (can be any

object) within their grasp reach and ask them to gaze upon

it. The system records the calculated 3D gaze point, and the

real-time robot position, subtracting the two to find the offset

in all three axis. This is then stored and used throughout trials

for that user.

We have a fully functioning FSM that once activated

can lead to continuous action implementations by the user

without any interference by the system technicians. The grasp

failure state allows for even failed tasks to simply be repeated

until successful.

III. EXPERIMENTAL EVALUATION

A. Evalutation of the 3D gaze calculation method

To evaluate the accuracy of the 3D gaze estimation

method, we placed a target on the UR10 robot TCP,

and programmed the robot to move to 10 points obtained

randomly with uniform distribution, within the following

range: ([0.25, 0.80], [0.15, 0.75], [0.35, 0.75]). At each point,

50 gaze samples are obtained along with the real-time robot

position. Gaze values are published at a frequency of ≈

10Hz, this is therefore equivalent to about 5 seconds at

each point. The SMI eye-trackers require an initial period of

random eye movements to obtain the pupil positions followed

by a 3-point calibration, where the user fixates on three points

with the system operator clicking on the screen at the point

of fixation. The full experiment setup is shown in Figure

5. The 9-point board is placed at an 80cm distance from

the user. Each subject is first asked to randomly fixate on

the points for 1 minute. This is followed by the calibration

step which is performed on the bottom left, top centre, and

bottom right points on the board. The calibration is then

verified and the board removed before the actual experiment

starts. Errors in gaze estimation in x-axis, y-axis, z-axis and

as Euclidean distance are measured and recorded. Results of

the evaluation are provided and discussed in section IV.

B. Evaluation of the integrated robotic system

To evaluate the integrated system in an efficient manner,

we selected the cup, bowl and table as objects of interaction.

This is due to the cup having both ”pick and place” and ”pick

and pour” functionalities within it, showing the grammar and

context-based approach implemented in the form of the FSM.

Fig. 5: The eye-tracking evaluation test setup.
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Fig. 6: The full integrated robotic system test setup.

The system functions similarly with other objects discussed

before, e.g. apples, oranges - these are shown in our video

attachment.

A grid is drawn on the table in front of the user, creating

9 square boxes. The placement of the cup and bowl, and the

target point on the table to drop objects on is randomised

between these boxes for each trial. We chose to use the

grid setup so that we would have a measure of success for

object placement on the table, without indicating an exact

point to our participants that they can fixate on, as doing

so might help with the eye-tracking accuracy. The boxes are

of an approximate size of 13cm × 13cm; but this is not

an indication of the system resolution. That is instead, the

outcome of the eye-tracking evaluation above and is reported

in section IV. A schematic of the experiment setup can be

seen in Figure 6.

The experiment tasks are: 1. Pick up the cup and place it

back on the table at a different location and 2. Pick up the

cup, pour it into the bowl, and then place it at a different

location on the table. For pouring, small plastic balls are

used to simulate a liquid, while conserving health and safety.

Note that throughout the experiments, one of the researchers

is constantly in possession of the UR10’s emergency stop

button, for added safety. Tasks are to be performed 5 times

each. The users are asked not to contribute to the actuation

and allow actions to be performed by the robotic system.

As there is a learning curve involved with using the system,

3 attempts were allowed for each trial’s first reach action;

failures at later stages of a task are considered a task

failure. Tasks are broken down into their lower-level actions,

and the success/failure of these as well as the overall task

success/failure are recorded as outcomes. Each participant

completes a System Usability Scale (SUS) [27] subjective

questionnaire after their test. These results are presented and

discussed in section IV.

IV. RESULTS AND DISCUSSION

A. Gaze estimation results

For the evaluation of the 3D gaze estimation, 8 subjects

were invited to our study, 25-30 in age, 6 male and 2

female. All subjects had normal or corrected to normal vision

(wearing glasses which they were asked to remove). The first

10 gaze points from each trial are filtered out to avoid the

transient effect of the user’s gaze as the robot’s move to a

new point terminates. We use the 40 remaining gaze points

for analysis, a total of 3280 gaze points. Each point has

3D coordinates of gaze location and ground truth (i.e. robot

position). We average 3D coordinates of gaze data per trial

to filter the gaze noise resulting in 80 data points. We use

the Euclidean distance between the calculated gaze point and

ground truth as the measure of accuracy.

In average, our system performs with the Euclidean error

distance of 4.68 ± 0.014cm (mean±SD). The Euclidean

distance is normally distributed with 0.001 level (D’Agostino

and Pearson’s normality test: p = 0.029). To inspect

the possible human factor influence, we perform one-way

ANOVA. We found that the human factor does not affect

Euclidean distance significantly with 0.001 level (F (7, 72) =
2.345, p = 0.032). Figure 7 shows the mean and standard

deviation of the measure per subject. We can conclude that

all subjects perform similarly.

We also checked the accuracy with respect to individual

axes. We did not find significant correlation for X-axis

(Spearman rank: p = 0.085), or the Y-axis errors (Spearman

rank: p = 0.715), which correspond with the user’s depth

and horizontal axes directions respectively. The Z-axis or the

height from the user’s perspective, has significant correlation

(Spearman rank: correlation = −0.460; p << 0.01). We

believe this is due to the lower accuracy of pupil-tracking

in extreme vertical positions. When eye balls go up they

are less visible for the infrared cameras of the eye-tracker

glasses. Overall, the results are consistent and show good

performance of the system.

B. Full system results

For our full system tests, 5 participants joined the study.

These were all male, 25-35 of age. Each experiment task

consists of a number of lower-level actions. For task 1, pick

and place on table, the actions are: Reach1, Grasp, Reach2

and Drop. For task 2, pick, pour in bowl, drop on table, the

actions are: Reach1, Grasp, Reach2, Pour, Reach3, Drop.

Overall, for all participants and across all trials, task 1 was

performed successfully in full 96% of the time. There were

only two cases of failure: 1 instance of failing to grasp the

cup and 1 instance of dropping the object slightly outside the

indicated target box. Therefore, for task 1, across all trials

Fig. 7: The eye-tracking evaluation test results: Euclidean distance
error in millimetres for all 8 participants as mean and standard
deviation.
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and participants, Reach1 was successful 100% of the time,

Grasp 96%, Reach2 100% and Drop 96% of the time. Task 2

was performed successfully in full 76% of the time. Failures

were 3 instances of the final drop (was in the target area,

but not placed upright); 2 instances of pour failures (pouring

orientation change led to dropping the cup) and 1 instance

of failure in the initial grasp of the cup. Therefore, for task

2, across all trials and participants, Reach1 was successful

100% of the time, Grasp 96%, Reach2 100%, Pour 91.7%,

Reach3 100% and the final Drop, 87% of the time.

These results show mainly that the 3D gaze point es-

timation is well integrated with the system: all reaching

cases are 100% successful, which is fully dependent on the

3D gaze point estimation being accurate. The Finite State

Machine performed without errors throughout, making the

implementation of these complex tasks possible with a very

short training period (less than 5 minutes in all participants).

Observed issues in the results are mainly within the pouring

task, particularly at the pour action and its aftermath. The

pouring orientation change had the effect of slightly moving

the cup within the subjects’ grasp (the cup and its contents

are heavy), leading to either a premature drop of the cup, or

a badly placed drop later on. This is mainly due to the design

of the magnetic wrist attachment. We realised throughout the

experiments that it does not provide the best support for the

pouring action. This is an item that can be improved in the

future.

All 5 participants filled in the System Usability Scale

after their tests. Opinions on the system being ”unnecessarily

complex” are divided - 3 out of 5 choosing the borderline

option, 1 agreed and 1 disagreed. On system ”ease of use”,

3 agree, 1 borderline and 1 disagree. On the system being

”well integrated”, 4 out of 5 agree, and 1 is borderline. On

the system being ”unpredictable” opinions are very divided:

1 agreed, 2 borderline, 1 disagreed and 1 strongly disagreed.

On whether ”most people would learn to use the system

quickly”, 4 out of 5 agreed (2 strong agreements) and 1

is borderline. On whether the system is ”cumbersome to

use”, 3 disagreed and 2 are borderline. On whether they

felt ”confident using the system”, 2 agree (1 strongly), 2 are

borderline and 1 disagrees. On whether they ”needed to learn

a lot before they could use the system”, all users disagree -

2 of them strongly.

These results generally show that the system was easy

to learn for the users and not cumbersome. Most division

of opinions are on whether the system is unpredictable and

whether they felt confident using the system - though even in

these cases results are favouring the system. We believe these

two issues are related, however. As the users receive no direct

feedback on how and when decisions and actions are made,

the behaviour of the system might seem unpredictable, which

will result in the users feeling less confident in its behaviour.

This is an issue for us to look into as future work.

V. CONCLUSIONS

We presented a gaze-contingent robotic system for the

restoration of reach and grasp capabilities. The main focus

of our approach was to create a non-invasive, easy-to-learn

and easy-to-use interface that would allow implementation

of complex tasks made of sequences of several lower-level

actions while conserving the simplicity of the interface. We

follow the idea of action grammars: there are rules to our

actions and how they can be combined together to create

complex tasks. We implemented this, as a modelling of

human cognitive behaviour, in the form of a finite state

machine which monitors the human state, and implements

actions on the robotic system when the necessary conditions

are in place. This adds safety to the interaction, while making

the implementation of complex tasks easy.

The user’s gaze is monitored in high stability and accuracy

through a new 3D gaze estimation method presented within

this paper, fulfilled through integrating eye-tracker glasses

and a depth camera. The objects within the user’s environ-

ment are recognised using a convolutional neural network

running on ego-centric camera images, allowing us to under-

stand the context of the user’s environment and interaction.

Combining these, we are able to understand which object the

user is looking at, whether they are interested in interacting

with that object, and where that object is located in 3D space.

Once these are fed to the finite state machine, it can direct the

robotic system to implement complex sequences of actions

for the user. Example tasks of ”pick and place”, as well as

”pick, pour and place” were run with participants to test

the system’s performance and usabiltiy. Note that these are

indeed, examples, and that actions and tasks can be expanded

without issues. Results showed successful implementation

of 100% of reaching actions, as well as 96% success in

the ”pick and place” task, and 76% in the ”pick, pour and

place” task. Issues in task completion were not, however,

related to the performance of the 3D gaze estimation, object

recognition or finite state machine modules; but rather due to

physical and mechanical design choices within the system,

such as the magnetic wrist attachment which is not the best

support for pouring actions. Since then we have developed

new attachments which require further motion planning for

full implementation - an example of these is shown in our

video attachment.

The users also filled in subjective questionnaires which

showed they were content with ease of use and integration of

the system, but were not all feeling confident with the system,

with some feeling that it is unpredictable. We believe this is

due to lack of feedback to the users indicating an imminent

action, which results in lack of explainability and therefore

unpredictability. We will look into improved feedback to

the user as future work. We are also interested in making

further use of the RGBD camera, particularly to implement

SLAM for better understanding of the environment (e.g.

for obstacle avoidance when moving around the table), and

better tracking of the user’s head, to possibly remove the

Optitrack system entirely making the system more mobile,

e.g. through the use of a wheelchair mounted robotic arm

for reaching support. These will be pursued as future work.
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