
Gaze-Directed Volume Rendering

Marc Levay
Ross Whitaker

Computer Science Department

University of North Carolina

Chapel Hill, NC 27599

Abstract

We direct our gaze at an object by rotating our eyes or head

until the object's projection falls on the fovea, a small region of

enhanced spatial acuity near the center of the retina. In this

paper, we explore methods for encorporating gaze direction into

rendering algorithms. This approach permits generation of

images exhibiting continuously varying resolution, and allows

these images to be displayed on conventional television moni

tors. Specifically, we describe a ray tracer for volume data in

which the number of rays cast per unit area on the linage plane

and the number of samples drawn per unit length along each ray

arc ftmctions of local retinal acuity. We also describe an linplc

mcntation using 20 and 30 mip maps, an eye tracker, and the

Pixel-Planes 5 massively parallel raster display system. Pending

completion of Pixel-Planes 5 in the spring of 1990, we have

written a simulator on a Stellar graphics supercomputer. Pre!·

iminary results indicate that while users arc aware of the

variable-resolution structure of the in1agc, the high-resolution

sweet spot follows their gaze well and promises to be useful in

practice.

CR categories and subject descriptors: I.3.3 [Computer

Graphics]: PicLUre/lmage Generation - display algorithms; 1.3.6

[Computer Graphics]: Methodology and Techniques- !nlerac

lion techniques; E.l [Data structures): Trees

General terms: Algoritluns, Human Factors, Performance

Additional Key Words and Phrases: Volume rendering, ray

tracing, eye tracking, head-mounted display

1. Introduction

The spatial acuily of the human eye varies across the sur

face of the retina. It is highest in the fovea ccntralis, a region

occupying roughly 4 degrees of visual arc, and falls off gradu

ally toward the periphery of the visual field [22). Directing

one's gaze at an object consists of rotating either the eye within

its socket or the entire head until the object's retinal projection

falls on the fovea.

Permission to copy without fee all or pan of this material is granted provided

that the copies arc not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© t990 ACM 089791-351·5/90/0003/0217$1.50

217

Researchers in the flight simulator industry have con

structed a number of proprietary real-time image generation sys

tems that take advantage of this variation in retinal acuity to

reduce rendering costs [20, 7]. These systems track the gaze

direction of one or both eyes, generate a high-resolution inset

image or sweet spot corresponding to the detected direction, and

superimpose it using a servo-controlled mirror over the

appropriate portion of a low-resolution background linage.

Electronic blending of the two images is employed to soften the

visual impact of the transition between them. If the inset image

is large enough and is moved quickly enough in response to

changes in gaze direction, the illusion of a full-field high

resolution image is obtained [19].

This paper explores methods for encorporating gaze

direction directly into rendering algorithms. This approach has

two advantages over analog superimposition of a separately gen

erated inset image:

• An image of continuously varying resolution can be

generated, more closely approximating the falloff in

retinal acuity.

• The in1age can be displayed on a conventional

television monitor, obviating the need for special

ized display devices.

The algorithm we describe is a spatially adaptive ray

tracer for volume data. Previous volume rendering teclmiqucs

include the slice-by-slice method of Orebin et al. [5), the cell

by-cell method of Upson and Keeler [21), the voxel-by-voxcl

method of Westover [23), and the ray tracing methods of Levay

[12), Sabella [18), and Upson and Keeler [21]. Ray tracers that

modulate the number of rays cast per unit area on the image

plane have been reported by Whitted [24], Lee et al. [11), Oip1X:

and Wold [4], Cook [2], and Kajiya [9] for geometrically

defined scenes and Levay [14) for volume data. The modula

tion criteria in each case is local image complexity. In the

present algorithm, we modulate both the number of rays and the

number of samples per ray, and the modulation criteria is local

retinal acuity.

Spatially adaptive ray tracers yield a low-density nonuni

form distribution of samples across the image plane. Methods

for reconstructing images from such sampling patterns include

mip maps [25], sununed-area tables [3], multi-stage filtering

[16], and integration over a tiling of rectangular cells [17]. We

usc a method based on 20 mip maps and their extension into

three dimensions - 30 mip maps.

········

Polhemus_.-

3D tracker

L ~======~ Pixel-Planes 5 rendering engine

Figure 1: Hardware configuration

The goal of this research is to provide users of a planned

real-time volume rendering workstation with the illusion of a

full-screen high-resolution image at reduced computational cost.

Preliminary estimates suggest that for the proposed workstation,

tracking gaze direction may reduce image generation time by a

factor of up to 5.

2. Hardware configuration

Figure summarizes the proposed hardware

configuration. It consists of an NAC Eye Mark eye tracker, two
Polhemus 3SPACE trackers, the Pixel-Planes 5 rendering

engine, and a conventional 19" television monitor.

The NAC Eye Mark eye tracker is a see-tluough helmet

in which two infrared light emitting diodes have been mounted.

Reflections of the two infrared spots from the iris of each eye

are tracked in real-time by solid state cameras mounted on the
side of the he1met as shown in figure 2. If the helmet is firmly

attached to the user's head, this device measures gaze angle

relative to the helmet and is accurate to within 3 degrees of

visual arc. The position and orientation of the helmet relative to

the television monitor is given by mounting one of the

Polhemus trackers on the helmet. Combining the information

returned by the eye tracker and the Polhemus gives the X and Y

coordinates of the image pixel currently centered on the user's

fovea. The second Polhemus is held in the user's hand and

used to control position and orientation of a volumetrically

defined object, a cutting plane, or a light source.

Pixel-Planes 5 is a massively parallel raster display sys

tem currently under development at the University of North

Carolina [8] and scheduled for completion in the spring of 1990.

It consists of 16 independently programmable 40-MFLOP
graphics processors, 1/4 million pixel processors organized into

16 independently programmable renderers, a 1024 x 1280 pixel

color frame buffer, and a 640 Mb/see ring network. The imple

mentation on this machine of a near real-time ray tracer for

volume data has already been described [13]. The shading cal

culations for all voxels are performed in the pixel processors,

and the ray tracing required to generate an image is divided

among the graphics processors. In the present configuration, the

combined input of the eye tracker and the two Polhemus track

ers is used by Pixel-Planes 5 to generate a variable-resolution

volume rendered image for display on the television monitor.

218

Figure 2: Eye tracker

3. Variable-resolution volume rendering

The volume rendering method used in this paper is based

on [12]. We begin with a 3D array of voxel data. The array is

classifted and shaded to yield a color and an opacity for each

voxel. Viewing rays are tl1en traced into the array from an

observer position. For each ray, samples are drawn along the

ray, and a color and opacity is computed at each sample posi

tion by trilinearly interpolating from the colors and opacities of

the nearest eight voxels. The resampled colors and opacities are

then composited from front to back to yield a color for the ray.

To generate a variable-resolution image for a given gaze

direction, we modulate both the number of rays cast per unit

area on the image plane and the number of samples drawn per

unit length along each ray as functions of local retinal acuity.

Since less than one ray may be cast per pixel in the visual peri

phery, care must be taken to avoid undersampling artifacts. We

associate with each pixel a 2D convolution mask whose non

zero extent varies as a function of distance on the image plane

from the pixel center to the gaze direction as shown in figure 3.

A ftxed number of rays is cast from each mask and tl1c spacing

between samples along a ray is made proportional to the size of

the mask. A color is computed for the pixel by integrating the

colors returned by all rays cast in the mask weighted by a 2D

filter function. A discussion of suitable filter functions is con

tained in [6].

data sample and associated
3D convolution mask

image plane

observer
;}

image pixel and associated
2D convolution mask

viewing ray

data voxels

Figure 3: 2D and 3D convolution masks

Since the density of rays and hence of samples along rays

decreases as one moves away from the gaze direction, care must

also be taken to avoid undcrsampling the 3D data. Extending

the technique described above, we associate with each sample

along a ray a 3D convolution mask (sec figure 3) whose non

zero extent is proportional to the spacing between samples. A

color and opacity is computed for the sample by integrating the

colors and opacities of all voxcls falling inside the mask

weighted by a 3D filter f1mction.

4. Implementation using mip maps

An analysis of numerical error in above algoritlun sug

gests that the size and placement of 2D convolution masks can

be quantized to multiples of the pixel spacing witl10ut visibly

degrading tl1e image. This allows us to share rays among adja

cent pixels, substantially reducing the number of rays that must

be cast to generate an image. To realize tl1esc savings, we

dclinc a pyramid of 2D texture maps whose resolutions arc

binary fractions of the image resolution. Each texture map con

tains one-fourth as many pixels as the map beneath it in tl1c

pyramid. For each pixel, rays arc cast fTom the four comers of

each of two convolution masks that enclose the pixel and whose

quantized sizes fall just above and just below the desired mask

size. As rays are cast, their colors are stored in tllC pyramid. A

boolean flag array is used to insure that rays arc cast only once.

A single color is tl1en computed for the pixel by bilinearly inter

polating between the colors returned by tlle four rays cast in

each mask and linearly interpolating between the two resulting

values. In essence, the tracing of rays generates a partially

populated 2D mip map [25] fTOm which a variable-resolution

image is generated by setting the pyramid's vertical coordinate

for each pixel proportional to retinal acuity.

A second observation on the original algorithm is that tl1c

large 3D convolution masks required to draw samples of the 3D
data in the visual periphery tllrcatcns to destroy the computa

tional advantage of employing a lower sampling rate in these

areas. To overcome this difficulty, we employ a extension to

three dimensions of the quantization tcclmique described above.

Specifically, we precompute a hypcrpyramid of 3D texture

volumes whose resolutions arc binary fractions of the data reso

lution. Each texture volume contains one-eighth as many voxels

3Ddata 0
~

3D mip map O 0? Bl

~
2Dmipmap 0 0

0

~
image 0

viewpoint-independent
shading and filtering

ray tracing, resampling,
viewpoint-dependent shading,
and compositing

resan1pling

Figure 4: Rendering pipeline

219

as the volume beneath it in the hypcrpyramid. By placing only

viewpoint-independent shading components in this data struc

ture, the cost of computing it is amortized over the duration of

an animation sequence. A sample is drawn from the hypcrpy

ramid by selecting tl1c two volumes whose resolutions fall just

above and just below the resolution corresponding to the desired

30 convolution mask size, trilincarly interpolating between the

nearest eight voxcls in each volume, and linearly interpolating

between the two resulting values. The viewpoint-dependent

portion of the shading calculations arc tl1cn applied to yield a

color and opacity which arc composited into the ray. In

essence, tlle hyperpyramid is a 3D mip map that is resampled

using an extension to tllrce dimensions of tl1c method described

by Williams for 2D mip maps.

Figure 4 summarizes the rendering pipeline. It begins

with a 3D scalar or vector-valued array. In a preprocessing

step, viewpoint-independent shading calculations are performed

to yield a vector-valued volume of shading components. This

volume forms the base of a 3D mip map. Repeated filtering

and rcsampling is applied to tllc volume, producing successively

lower resolution volumes to fill the mip map. For each fTamc,

gaze-directed ray tracing, rcsampling, viewpoint-dependent shad

ing, and compositing arc performed to yield a 2D mip map.

This data structure is then rcsamplcd to generate an image at the

display resolution.

The processing required at each pixel is given by the fol

lowing pseudocode:

procedure RenderPixel(x,y) begin

(Loop through nearest two 2D mip map levels)

m/om == L2DLevel(x,y)J, mhiw = rwLevel(x,y)l;

form= (mlorwmhiml do begin

(Cast rays fTom four comers of mask)

fori= (0,1} do begin

for j = (0,1) do begin

if not F 2111 •
2
'" • then begin

xJ +1;yl +J,m

c z'" . "'" . = TraceRay(x!2'"+i,yl2'"+));
xi +l,yl£ +;,m

end

end

end

(Bilirp to obtain one color for mask}

Cm = flilirp(x,y,m);

end

{ Lirp between resulting values}

Cpix = Lirp(c'"lor.s'c"'hiw'2DLevel(x,y) mod 1);

rctum (cp;x);

end RcnderPixel.

procedure TraceRay(x,y) begin

Cray = 0, CXray = 0;

(Loop through all samples along ray)

for z from Near to Far by 3DLevel(x,y,z) do begin

(Loop through nearest two 30 mip map levels)

nlores = L3DLevel(x,y,z)J, nloires = r3DLevel(x,y,z)l;

for n = (nloresollhires) do begin

(Trilirp to obtain one value for level)

s. = Trilirp(x,y,z,n));

end

{Lirp between resulting values)

Svox = Lirp(S.
1

,S.,. ,3DLevel(x,y,z) mod 1);
orts nJres

{Perform viewpoint-dependent shading)

Cvox,CXvox = Shade(Svox);

(Composite into ray)

C omposjt e(CvoxofXvoxoCray,CXray);

end

retum (cray);

end TraceRay.

In this pseudocode, c denotes a scalar or vector color, ex
denotes an opacity, and S denotes a vector of shading com

ponents. The 20Level procedure accepts a pixel location, deter

mines the distance from the pixel to the gaze direction by

referencing a 20 lookup table indexed by X and Y offset, and

returns a floating point 2D mip map vertical coordinate by

referencing a 10 lookup table indexed by distance. The

3DLcvel procedure accepts a voxel location, computes the

volume in voxels of the 3D convolution mask whose non-zero

extent is proportional to the spacing between samples, and

retmns a floating point 30 mip map vertical coordinate by

referencing a 10 lookup table indexed by mask volume. For

parallel projections, the spacing between samples along a ray is

a constant; for pcrspecti ve projections, it rises with increasing

distance from the observer. The Bilirp and Trilirp procedures

accept pixel and voxcl coordinates respectively and an integer

2D or 3D mip map vertical coordinate and return a scalar or

vector interpolated from the appropriate texture map or volume.

The Lirp procedure interpolates between two scalars or vectors

based on a floating point interpolant lying between zero and

unity. The Shade procedure accepts a vector of voxel shading

components and performs viewpoint-depending shading to yield

a color and an opacity for the voxcl. The Composite procedure

composites a voxel color and opacity into the color and opacity

accumulated along a ray. Further details on compositing and

shading calculations arc given in [12].

On Pixel-Planes 5, viewpoint-independent shading and

filtering will be performed on the 16 graphics processors (GP's)

at the start of an animation sequence. The resulting 30 mip

map will be transferred across the ring network and distributed

among the 1/4 million pixel processors (PP's). For each frame,

viewpoint-dependent shading will be performed in parallel by

the PP's on the entire mip map, followed by gaze-directed ray

tracing, rcsampling, and compositing on the GP's. The resulting

20 mip map will then be resamplcd in sections by the GP's and

transmitted to the frame buffer for display.

220

5. Discussion

Shading issues. The values stored in the 3D mip map

depend on what shading model is employed and what rendering

parameters change from frame to frame. If a Lambcrtian

(diffuse) shading model is used and objects and light sources are

fixed and only the observer moves, then the entire shading cal

culation is viewpoint-independent. In this case, final voxcl color

and opacity may be computed and stored in the mip map. If

specular reflection is included in the shading model, then a

viewpoint-dependent component must be computed on every

frame and added to the values obtained from the mip map. If
the lighting and observer are fixed and the object moves, then

diffuse and specular components must be evaluated on every

frame. In this case, only normalized voxel gradients and voxcl

reflectance coefficients can be stored in the mip map. A gen

eralization of the distinction between viewpoint-independent and

viewpoint-dependent components for shading of volume data is

given by the tcxelmodcl of Kajiya [10].

Sampling issues. Since the 30 mip map is intended to

be independent of observer position, an isotropic convolution

filter is used during its construction. For perspective projec

tions, the convolution filter required at sample positions along a

ray arc generally nonisotropic as shown in figure 3. This

mismatch introduces errors into the resampled values. The

errors are minor for typical projections, and less severe than

errors arising when surfaces textured using a 2D mip map are

turned nearly on edge [25]. Since shading is a non-linear pro

cess, calculating colors from blurred normals stored in a 30 mip

map is not equivalent to calculating colors from high-resolution

normals and subsequently blurring them for storage in the mip

map. This introduces additional errors into the computed colors.

These errors are not visually objectionable, however, as noted

by Blinn [1] for the ca~e of bump mapping.

Rendering efficiency. Using a 30 mip map to represent

volume data, the cost of drawing a sample is independent of the

distance between samples. Using a 2D mip map to represent

ray colors, the cost of computing a pixel color is independent of

the distance between rays. Rendering cost per unit area on the

image plane is therefore linearly related to the density of rays

and samples and independent of the data resolution. If one of

the shading components stored in the 30 mip map is voxcl opa

city, and if the non-zero extent of the convolution filter used

during construction of the mip map measures 2 voxels on a side

(i.e. if each voxcl contains contributions made by exactly eight

voxels from the volume beneath it in the hyperpyramid), the

mip map can also be used as a hierarchical spatial occupancy

enumeration of the data - an octrce. Each voxel tells us

whether a particular region of space is occupied or empty. By

descending the mip map from top to bottom for each ray, occu

pied leaf voxels can be fmmd in approximately logaritlunic time

relative to the length of the ray. This tcclmique substantially

reduces rendering time for many useful datasets [15]. In sum

mary, a 3D mip map provides an efficient solution to both the

visibility problem and the resampling problem for volume datal

6. Simulation results

Pending the completion of Pixel-Planes 5, we have

implemented our rendering algorithm on a Dec 3100 worksta

tion. The figures in this paper were generated from a 256 x 256

x 109 voxcl magnetic resonance (MR) scan of a live human

subject. Using a diff11Se shading model and a 2 x 2 x 2 box

filter, we constructed a 3D mip map containing voxel color and

opacity at varying resolutions. This preprocessing step required

5 minutes.

We then cast rays into the 3D mip map using a parallel

viewing projection and a sweet spot whose structure is shown in

figure 5. We assume a 19" television monitor (measured diago

nally) viewed fTom a distance of 20". A horizontal line through

the middle of the displayed image subtends 37° of visual arc.

Our target resolution (shown as a bell-shaped curve in figure 5b)

falls off smoothly (a Gaussian was used) from one ray per pixel

(corresponding to one 3D sample per voxcl) inside a circle 4.2"

in diameter (12° of arc) to one ray per 16 pixels (one 3D sam

ple per 64 voxels) outside a circle 7" in diameter (20° of arc).

(For comparison, the high-resolution area-of-interest inset image

employed in the CAE-Link system has a diameter of 18° includ

ing a blending annulus 3° in radius [7].)

Our quantized implementation approxin1atcs the target

resolution by casting one ray per pixel inside a circle roughly 5"

in diameter (span [1] in figure 5b), one ray per 16 pixels outside

a circle 5" in diameter (spans [3]), and one ray per 4 pixels

within an annulus having an inner diameter of 4.2" and an outer

diameter of 7" (spans [2]). The resulting partially populated 2D

mip map is shown in figure 6.

Finally, we interpolate between the images in the 20 mip

map based on the target resolution at each pixel as described

earlier, producing the variable-resolution image shown in figure

7. For comparison, a full-resolution image is shown in figure 8.

1---37° of visual arc~ 13.4" -1

19, television monitor

viewed from a distance of 20"

(a)

foveal region
(7% of image area)

transition region
(14% additional)

[1] base level of2D mip map (left image in figure 6)
[2] 2nd level of 2D mip map (middle image in figure 6)

[3] 3rd level of 20 mip map (right image in figure 6)

ray density

(rays I pixel) l/2

s• ff' s• lff'

distance from gaze direction

(degree_• of visual arc)

(b)

30 sample density

liS (samples I voxel)

Figure 5: Structure of sweet spot

221

Figure 6: Partially populated 2D mip map

Figure 7: Variable-resolution image

Figure 8: Full-resolution image

fig. #of rays #of 3D samples rendering time

variable-resolution 7 9,657 55,438 13.0 sees

full-resolution 8 44,100 316,500 59.6 sees

Table I: Rendering performance

Table I compares rendering performance for the two images.

Timings include all per-frame processing. The opacily com

ponent of the 3D mip map was used as an octree to speed up

ray tracing of both images. As the table shows, the variable

resolution image required roughly 1/4 as many rays, 1/6 as

many voxels (this would be 1/8 for data of uniform complexity),

and 1/5 as much rendering time as the full-resolution image.

To obtain an early evaluation of the performance of our

eye tracker and the behavioral response of users to our

variable-resolution imagery, we have written a simulator on a

Stellar GS-1000 graphics supercomputer. In the simulator, we

precompute a fully populated 2D mip map for one view of a

volume dataset. The Stellar is fast enough to read gaze direc

tion from the eye tracker and generate variable-resolution

images from the precomputed mip map at 15 frames per second.

System latency is estimated at between 100 and 150 ms. To

eliminate the need for tracking head motion in the simulator,

users are mechanically constrained by a chin rest and immobili

zation strap. We have subjectively evaluated users in both

tracking mode (up to 200°/sec) by asking the user to follow the

motion of a cursor superimposed on the image and saccading

mode (may exceed 700°/sec). Users report that the high

resolution sweet spot follows their gaze flawlessly in tracking

mode and adequately although with a perceptible delay in sac

cading mode. Users are generally aware of the variable

resolution structure of the image.

Based on an expected speedup of 32:1 moving from a

Dec 3100 to Pixel-Planes 5 (as reported in [13]) and working

from a 128 x 128 X 109 voxel dataset, we expect to be capable

of generating variable-resolution images slightly cn1der than

figure 7 at about 10 frames per second. Once Pixel-Planes 5 is

operational, we intend to perform a series of formal psychophy

sical experiments to test the viability of our approach. Ideally,

we could simply measure the user's ability to detect the pres

ence of a low-resolution periphery in a forced-choice experiment

in which variable-resolution sequences are randomly inter

spersed with full-resolution sequences. Realistically, we will

probably be compelled to evaluate ease-of-use and utility for

performing specific tasks such as feature recognition or image

matching. We also intend to investigate the effect of varying

the size and shape of the high-resolution sweet spot, the relative

resolutions of the sweet spot and visual periphery, the structure

of the blending region between them, and the filter functions

employed at each stage of the rendering pipeline.

222

7. Conclusions

A hardware configuration and rendering algorithm have

been presented for generating and displaying sequences of

images whose resolution varies locally in response to changes in

the user's direction of gaze. Encorporation of gaze information

into the rendering algorithm allows images of continuously

varying resolution to be generated, and produces images that

can be displayed on conventional television monitors. Our

rendering algorithm is a spatially adaptive ray tracer in which

the number of rays and the number of samples per ray are

modulated by local retinal acuity. For a 19" television monitor

viewed at 20", a 7" high-resolution sweet spot, and a disparity

in sample spacing between the spot and the surround of about

4:1 in each of X,Y, and Z, we obtain a cost savings of a factor

of 5 over generating a full-screen high-resolution image.

The proposed system can be extended in a number of

ways. If lag time proves problematic, we can employ predictive

tracking. We expect such techniques to work well when the

user is following an object rotated under joystick control due to

the mechanical inertia of the joystick, but not as well when the

user's gaze is wandering over a static image. By modifying the

criteria for selecting 2D convolution mask sizes to encorporate

measures of local image complexity as well as retinal acuity,

images of subjectively equal quality can be generated up to an

order of magnitude faster [14]. In the context of our Pixel

Planes implcmentat,ion, this should allow us to render 256 x 256

x 128 voxel datasets at 30 frames per second. By not clearing

the 20 mip map between frames when the object is stationary,

progressive refinement can be supported. As the user's gaze

wanders across the image, a trail of sweet spots is left behind.

If the user fixates on one spot, the sweet spot grows in size until

it encompasses the entire image. In the Pixel-Planes 5 imple

mentation, progressive refinement should result in a full-screen

high-resolution image in less than 1 second.

By adding a Z-component to each pixel in a 2D mip

map, we create a variable-resolution Z-buffer. Preliminary

analysis suggests tl1at such a data structure could be used to

implement gaze-directed polygon rendering. Polygon scanlines

would be subdivided into segments corresponding to tl1e boun

daries of the populated portions of tl1e various resolution Z

buffers required for a particular gaze direction. Each segment

would then be scan-converted, Z-compared, and shaded. When

all polygons have been processed, the partially populated mip

map is converted into a variable-resolution image as described

earlier. This approach would reduce the per-pixel costs of

scan-conversion, hidden-surface removal, and shading.

In conclusion, we note that although our proposed

approach permits only one user per television monitor, it is

ideally suited for personal head-mounted displays. In that con

text, tl1e eye tracker constitutes a unintrusive addition to the

portable hardware and promises better rendering performance

for a given image generation system. Before tlus goal can be

realized, the resolution and angle of view of current head

mounted displays must be improved. Our approach may also

prove useful for reducing image generation costs in non-gaze

directed environments by having the user attach a 3D cursor

specifying an area-of-interest to some object in the scene.

Acknowledgements

The aulhors wish to thank Prof. Stephen M. Pizer of the

Computer Science Department and Profs. R. Eugene Johnston

and David Beard of the Radiology Department for their

encouragement and support. Thanks are also due to Ned

Greene of Apple Computer for an enlightening discussion con

cerning 3D mip maps. The MR scan used in this paper was

provided by Siemens AG and edited by Dr. Julian Rosenman

of the Radiation Oncology Department. This work was sup

ported by NCI grant P01-CA47982.

References

[1) Blinn, J.F., "Light Reflection Functions for Simulation of

Clouds and Dusty Surfaces," Computer Graphics, Vol.

16, No. 3, July, 1982, pp. 21-29.

[2] Cook, R.L., "Stochastic San1pling in Computer Graph

ics," ACM Transactions on Graphics, Vol. 5, No. 1,

January, 1986, pp. 51-72.

(3] Crow, F.C., "Summed-Area Tables for Texture Map

ping," Computer Graphics, Vol. 18, No. 3, July, 1984,

pp. 207-212.

[4] Dippe, M.A.Z. and Wold, E. H., "Anti aliasing Through

Stochastic Sampling," Computer Graphics, Vol. 19, No.

3, July, 1985, pp. 69-78.

[5] Drebin, R.A., Carpenter, L., and Hanrahan, P., "Volume

Rendering," Computer Graphics, Vol. 22, No. 4, August,

1988, pp. 65-74.

[6] Feibush, E., Levay, M., and Cook, R., "Synthetic Tex

turing using Digital Filters," Computer Graphics, Vol.

14, No. 3, July, 1980, pp. 294-301.

[7] Fisher, R.A. and Tong, H.M., "A Full-Field-of-View

Dome Visual Display for Tactical Combat Training,''

Proc. Image Conference N, Phoenix, Arizona, June,

1987.

(8] Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather,

J., Ellsworth, D., Molnar, S., Turk, G., Tebbs, B., and

Israel, L., "A Heterogeneous Multiprocessor Graphics

System Using Processor-Enhanced Memories," Computer

Graphics, Vol. 23, No.3, July, 1989, pp. 79-88.

[9] Kajiya, J.T., "The Rendering Equation," Computer

Graphics, Vol. 20, No.4, August, 1986, pp. 143-150.

[10) Kajiya, J.T., Kay, T.L., "Rendering Fur with Three

Dimensional Textmes," Computer Graphics, Vol. 23,

No.3, July, 1989, pp. 271-280.

223

(11] Lee, M.E., Redner, R.A., and Uselton, S.P., "Statistically

Optimized Sampling for Distributed Ray Tracing," Com

puter Graphics, Vol. 19, No.3, July, 1985, pp. 61-67.

[12] Levay, M., "Display of Surfaces from Volume Data,"

IEEE Computer Graphics and Applications, Vol. 8, No.

3, May, 1988, pp. 29-37.

[13] Levay, M., "Design for a Real-Time High-Quality

Volume Rendering Workstation," Proc. Chapel Hill
Workshop on Volume Visualization, ed> C. Upson,

University of North Carolina, 1989, pp. 85-92.

[14] Levay, M., "Volume Rendering by Adaptive

Refinement," The Visual Computer, Vol. 6, No. 1, Janu

ary, 1990. In press.

[15] Lcvoy, M., "Bftlclem Ray Tracing of Yolumtl Oa~u."

ACM Transactions on Graphics, 1990. In press.

[16) Mitchell, D.P., "Generating Anti-Aliased Images at Low

Sampling Densities," Computer Graphics, Vol. 21, No.

4, July, 1987, pp. 65-72.

(17] Painter, J. and Sloan, K., "Antialiased Ray Tracing by

Adaptive Progressive Refinement," Computer Graphics,

Vol. 23, No. 3, July, 1989, pp. 281-288.

[18] Sabella, P., "A Rendering Algorithm for Visualizing 3D

Scalar Fields," Computer Graphics, Vol. 22, No. 4,

August 1988, pp. 51-58.

(19] Peters, D., CAE-Link Corp., Personal communication,

September, 1989.

[20] Tong, H.M. and Fisher, R.A., "Progress Report on an

Eye-Slaved Area-of-Interest Visual Display," ?roc.

Image Conference /IJ, Phoenix, Arizona, May, 1984.

[21] Upson, C. and Keeler, M., "VI3UFFER: Visible Volume

Rendering," Computer Graphics, Vol. 22, No.4, August

1988, pp. 59-64.

[22] Uttal, W.R., The Psychobiology of Sensory Coding,

Harper & Row, 1973.

[23] Westover, L., "Interactive Volume Rendering," Chapel

Ilill Workshop on Volume Visualization, Chapel Hill,

North Carolina, May, 1989, pp. 9-16.

[24] Whitted, T., "An Improved Illumination Model for

Shaded Display," Communications of the ACM, Vol. 23.,

No. 6, June, 1980, pp. 343-349.

[25] WilliiUns, L., "Pyramidal Parmnetrics," Computer

Graphics, Vol. 17, No.3, July, 1983, pp. 1-11.

