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Abstract 

We direct our gaze at an object by rotating our eyes or head 

until the object's projection falls on the fovea, a small region of 

enhanced spatial acuity near the center of the retina. In this 

paper, we explore methods for encorporating gaze direction into 

rendering algorithms. This approach permits generation of 

images exhibiting continuously varying resolution, and allows 

these images to be displayed on conventional television moni

tors. Specifically, we describe a ray tracer for volume data in 

which the number of rays cast per unit area on the linage plane 

and the number of samples drawn per unit length along each ray 

arc ftmctions of local retinal acuity. We also describe an linplc

mcntation using 20 and 30 mip maps, an eye tracker, and the 

Pixel-Planes 5 massively parallel raster display system. Pending 

completion of Pixel-Planes 5 in the spring of 1990, we have 

written a simulator on a Stellar graphics supercomputer. Pre!· 

iminary results indicate that while users arc aware of the 

variable-resolution structure of the in1agc, the high-resolution 

sweet spot follows their gaze well and promises to be useful in 

practice. 

CR categories and subject descriptors: I.3.3 [Computer 

Graphics]: PicLUre/lmage Generation - display algorithms; 1.3.6 

[Computer Graphics]: Methodology and Techniques- !nlerac

lion techniques; E.l [Data structures): Trees 

General terms: Algoritluns, Human Factors, Performance 

Additional Key Words and Phrases: Volume rendering, ray 

tracing, eye tracking, head-mounted display 

1. Introduction 

The spatial acuily of the human eye varies across the sur

face of the retina. It is highest in the fovea ccntralis, a region 

occupying roughly 4 degrees of visual arc, and falls off gradu

ally toward the periphery of the visual field [22). Directing 

one's gaze at an object consists of rotating either the eye within 

its socket or the entire head until the object's retinal projection 

falls on the fovea. 
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Researchers in the flight simulator industry have con

structed a number of proprietary real-time image generation sys

tems that take advantage of this variation in retinal acuity to 

reduce rendering costs [20, 7]. These systems track the gaze 

direction of one or both eyes, generate a high-resolution inset 

image or sweet spot corresponding to the detected direction, and 

superimpose it using a servo-controlled mirror over the 

appropriate portion of a low-resolution background linage. 

Electronic blending of the two images is employed to soften the 

visual impact of the transition between them. If the inset image 

is large enough and is moved quickly enough in response to 

changes in gaze direction, the illusion of a full-field high

resolution image is obtained [19]. 

This paper explores methods for encorporating gaze 

direction directly into rendering algorithms. This approach has 

two advantages over analog superimposition of a separately gen

erated inset image: 

• An image of continuously varying resolution can be 

generated, more closely approximating the falloff in 

retinal acuity. 

• The in1age can be displayed on a conventional 

television monitor, obviating the need for special

ized display devices. 

The algorithm we describe is a spatially adaptive ray 

tracer for volume data. Previous volume rendering teclmiqucs 

include the slice-by-slice method of Orebin et al. [5), the cell

by-cell method of Upson and Keeler [21), the voxel-by-voxcl 

method of Westover [23), and the ray tracing methods of Levay 

[ 12), Sabella [ 18), and Upson and Keeler [21]. Ray tracers that 

modulate the number of rays cast per unit area on the image 

plane have been reported by Whitted [24], Lee et al. [11), Oip1X: 

and Wold [4], Cook [2], and Kajiya [9] for geometrically 

defined scenes and Levay [ 14) for volume data. The modula

tion criteria in each case is local image complexity. In the 

present algorithm, we modulate both the number of rays and the 

number of samples per ray, and the modulation criteria is local 

retinal acuity. 

Spatially adaptive ray tracers yield a low-density nonuni

form distribution of samples across the image plane. Methods 

for reconstructing images from such sampling patterns include 

mip maps [25], sununed-area tables [3], multi-stage filtering 

[16], and integration over a tiling of rectangular cells [17]. We 

usc a method based on 20 mip maps and their extension into 

three dimensions - 30 mip maps. 



········ 

Polhemus_.-

3D tracker 

L ~======~ Pixel-Planes 5 rendering engine 

Figure 1: Hardware configuration 

The goal of this research is to provide users of a planned 

real-time volume rendering workstation with the illusion of a 

full-screen high-resolution image at reduced computational cost. 

Preliminary estimates suggest that for the proposed workstation, 

tracking gaze direction may reduce image generation time by a 

factor of up to 5. 

2. Hardware configuration 

Figure summarizes the proposed hardware 

configuration. It consists of an NAC Eye Mark eye tracker, two 
Polhemus 3SPACE trackers, the Pixel-Planes 5 rendering 

engine, and a conventional 19" television monitor. 

The NAC Eye Mark eye tracker is a see-tluough helmet 

in which two infrared light emitting diodes have been mounted. 

Reflections of the two infrared spots from the iris of each eye 

are tracked in real-time by solid state cameras mounted on the 
side of the he1met as shown in figure 2. If the helmet is firmly 

attached to the user's head, this device measures gaze angle 

relative to the helmet and is accurate to within 3 degrees of 

visual arc. The position and orientation of the helmet relative to 

the television monitor is given by mounting one of the 

Polhemus trackers on the helmet. Combining the information 

returned by the eye tracker and the Polhemus gives the X and Y 

coordinates of the image pixel currently centered on the user's 

fovea. The second Polhemus is held in the user's hand and 

used to control position and orientation of a volumetrically 

defined object, a cutting plane, or a light source. 

Pixel-Planes 5 is a massively parallel raster display sys

tem currently under development at the University of North 

Carolina [8] and scheduled for completion in the spring of 1990. 

It consists of 16 independently programmable 40-MFLOP 
graphics processors, 1/4 million pixel processors organized into 

16 independently programmable renderers, a 1024 x 1280 pixel 

color frame buffer, and a 640 Mb/see ring network. The imple

mentation on this machine of a near real-time ray tracer for 

volume data has already been described [13]. The shading cal

culations for all voxels are performed in the pixel processors, 

and the ray tracing required to generate an image is divided 

among the graphics processors. In the present configuration, the 

combined input of the eye tracker and the two Polhemus track

ers is used by Pixel-Planes 5 to generate a variable-resolution 

volume rendered image for display on the television monitor. 
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Figure 2: Eye tracker 

3. Variable-resolution volume rendering 

The volume rendering method used in this paper is based 

on [12]. We begin with a 3D array of voxel data. The array is 

classifted and shaded to yield a color and an opacity for each 

voxel. Viewing rays are tl1en traced into the array from an 

observer position. For each ray, samples are drawn along the 

ray, and a color and opacity is computed at each sample posi

tion by trilinearly interpolating from the colors and opacities of 

the nearest eight voxels. The resampled colors and opacities are 

then composited from front to back to yield a color for the ray. 

To generate a variable-resolution image for a given gaze 

direction, we modulate both the number of rays cast per unit 

area on the image plane and the number of samples drawn per 

unit length along each ray as functions of local retinal acuity. 

Since less than one ray may be cast per pixel in the visual peri

phery, care must be taken to avoid undersampling artifacts. We 

associate with each pixel a 2D convolution mask whose non

zero extent varies as a function of distance on the image plane 

from the pixel center to the gaze direction as shown in figure 3. 

A ftxed number of rays is cast from each mask and tl1c spacing 

between samples along a ray is made proportional to the size of 

the mask. A color is computed for the pixel by integrating the 

colors returned by all rays cast in the mask weighted by a 2D 

filter function. A discussion of suitable filter functions is con

tained in [ 6]. 

data sample and associated 
3D convolution mask 

image plane 

observer 
;} 

image pixel and associated 
2D convolution mask 

viewing ray 

data voxels 

Figure 3: 2D and 3D convolution masks 



Since the density of rays and hence of samples along rays 

decreases as one moves away from the gaze direction, care must 

also be taken to avoid undcrsampling the 3D data. Extending 

the technique described above, we associate with each sample 

along a ray a 3D convolution mask (sec figure 3) whose non

zero extent is proportional to the spacing between samples. A 

color and opacity is computed for the sample by integrating the 

colors and opacities of all voxcls falling inside the mask 

weighted by a 3D filter f1mction. 

4. Implementation using mip maps 

An analysis of numerical error in above algoritlun sug

gests that the size and placement of 2D convolution masks can 

be quantized to multiples of the pixel spacing witl10ut visibly 

degrading tl1e image. This allows us to share rays among adja

cent pixels, substantially reducing the number of rays that must 

be cast to generate an image. To realize tl1esc savings, we 

dclinc a pyramid of 2D texture maps whose resolutions arc 

binary fractions of the image resolution. Each texture map con

tains one-fourth as many pixels as the map beneath it in tl1c 

pyramid. For each pixel, rays arc cast fTom the four comers of 

each of two convolution masks that enclose the pixel and whose 

quantized sizes fall just above and just below the desired mask 

size. As rays are cast, their colors are stored in tllC pyramid. A 

boolean flag array is used to insure that rays arc cast only once. 

A single color is tl1en computed for the pixel by bilinearly inter

polating between the colors returned by tlle four rays cast in 

each mask and linearly interpolating between the two resulting 

values. In essence, the tracing of rays generates a partially 

populated 2D mip map [25] fTOm which a variable-resolution 

image is generated by setting the pyramid's vertical coordinate 

for each pixel proportional to retinal acuity. 

A second observation on the original algorithm is that tl1c 

large 3D convolution masks required to draw samples of the 3D 
data in the visual periphery tllrcatcns to destroy the computa

tional advantage of employing a lower sampling rate in these 

areas. To overcome this difficulty, we employ a extension to 

three dimensions of the quantization tcclmique described above. 

Specifically, we precompute a hypcrpyramid of 3D texture 

volumes whose resolutions arc binary fractions of the data reso

lution. Each texture volume contains one-eighth as many voxels 

3Ddata 0 
~ 

3D mip map O 0? Bl 

~ 
2Dmipmap 0 0 

0 

~ 
image 0 

viewpoint-independent 
shading and filtering 

ray tracing, resampling, 
viewpoint-dependent shading, 
and compositing 

resan1pling 

Figure 4: Rendering pipeline 
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as the volume beneath it in the hypcrpyramid. By placing only 

viewpoint-independent shading components in this data struc

ture, the cost of computing it is amortized over the duration of 

an animation sequence. A sample is drawn from the hypcrpy

ramid by selecting tl1c two volumes whose resolutions fall just 

above and just below the resolution corresponding to the desired 

30 convolution mask size, trilincarly interpolating between the 

nearest eight voxcls in each volume, and linearly interpolating 

between the two resulting values. The viewpoint-dependent 

portion of the shading calculations arc tl1cn applied to yield a 

color and opacity which arc composited into the ray. In 

essence, tlle hyperpyramid is a 3D mip map that is resampled 

using an extension to tllrce dimensions of tl1c method described 

by Williams for 2D mip maps. 

Figure 4 summarizes the rendering pipeline. It begins 

with a 3D scalar or vector-valued array. In a preprocessing 

step, viewpoint-independent shading calculations are performed 

to yield a vector-valued volume of shading components. This 

volume forms the base of a 3D mip map. Repeated filtering 

and rcsampling is applied to tllc volume, producing successively 

lower resolution volumes to fill the mip map. For each fTamc, 

gaze-directed ray tracing, rcsampling, viewpoint-dependent shad

ing, and compositing arc performed to yield a 2D mip map. 

This data structure is then rcsamplcd to generate an image at the 

display resolution. 

The processing required at each pixel is given by the fol

lowing pseudocode: 

procedure RenderPixel(x,y) begin 

(Loop through nearest two 2D mip map levels) 

m/om == L2DLevel(x,y)J, mhiw = rwLevel(x,y)l; 

form= (mlorwmhiml do begin 

(Cast rays fTom four comers of mask) 

fori= (0,1} do begin 

for j = (0,1) do begin 

if not F 2111 • 
2
'" • then begin 

xJ +1;yl +J,m 

c z'" . "'" . = TraceRay(x!2'"+i,yl2'"+)); 
xi +l,yl£ +;,m 

end 

end 

end 

(Bilirp to obtain one color for mask} 

Cm = flilirp(x,y,m); 

end 

{ Lirp between resulting values} 

Cpix = Lirp(c'"lor.s'c"'hiw'2DLevel(x,y) mod 1); 

rctum (cp;x); 

end RcnderPixel. 



procedure TraceRay(x,y) begin 

Cray = 0, CXray = 0; 

(Loop through all samples along ray) 

for z from Near to Far by 3DLevel(x,y,z) do begin 

(Loop through nearest two 30 mip map levels) 

nlores = L3DLevel(x,y,z)J, nloires = r3DLevel(x,y,z)l; 

for n = ( nloresollhires) do begin 

(Trilirp to obtain one value for level) 

s. = Trilirp(x,y,z,n)); 

end 

{Lirp between resulting values) 

Svox = Lirp(S.
1 

,S.,. ,3DLevel(x,y,z) mod 1); 
orts nJres 

{Perform viewpoint-dependent shading) 

Cvox,CXvox = Shade(Svox); 

(Composite into ray) 

C omposjt e(CvoxofXvoxoCray,CXray); 

end 

retum (cray); 

end TraceRay. 

In this pseudocode, c denotes a scalar or vector color, ex 
denotes an opacity, and S denotes a vector of shading com

ponents. The 20Level procedure accepts a pixel location, deter

mines the distance from the pixel to the gaze direction by 

referencing a 20 lookup table indexed by X and Y offset, and 

returns a floating point 2D mip map vertical coordinate by 

referencing a 10 lookup table indexed by distance. The 

3DLcvel procedure accepts a voxel location, computes the 

volume in voxels of the 3D convolution mask whose non-zero 

extent is proportional to the spacing between samples, and 

retmns a floating point 30 mip map vertical coordinate by 

referencing a 10 lookup table indexed by mask volume. For 

parallel projections, the spacing between samples along a ray is 

a constant; for pcrspecti ve projections, it rises with increasing 

distance from the observer. The Bilirp and Trilirp procedures 

accept pixel and voxcl coordinates respectively and an integer 

2D or 3D mip map vertical coordinate and return a scalar or 

vector interpolated from the appropriate texture map or volume. 

The Lirp procedure interpolates between two scalars or vectors 

based on a floating point interpolant lying between zero and 

unity. The Shade procedure accepts a vector of voxel shading 

components and performs viewpoint-depending shading to yield 

a color and an opacity for the voxcl. The Composite procedure 

composites a voxel color and opacity into the color and opacity 

accumulated along a ray. Further details on compositing and 

shading calculations arc given in [12]. 

On Pixel-Planes 5, viewpoint-independent shading and 

filtering will be performed on the 16 graphics processors (GP's) 

at the start of an animation sequence. The resulting 30 mip 

map will be transferred across the ring network and distributed 

among the 1/4 million pixel processors (PP's). For each frame, 

viewpoint-dependent shading will be performed in parallel by 

the PP's on the entire mip map, followed by gaze-directed ray 

tracing, rcsampling, and compositing on the GP's. The resulting 

20 mip map will then be resamplcd in sections by the GP's and 

transmitted to the frame buffer for display. 
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5. Discussion 

Shading issues. The values stored in the 3D mip map 

depend on what shading model is employed and what rendering 

parameters change from frame to frame. If a Lambcrtian 

(diffuse) shading model is used and objects and light sources are 

fixed and only the observer moves, then the entire shading cal

culation is viewpoint-independent. In this case, final voxcl color 

and opacity may be computed and stored in the mip map. If 

specular reflection is included in the shading model, then a 

viewpoint-dependent component must be computed on every 

frame and added to the values obtained from the mip map. If 
the lighting and observer are fixed and the object moves, then 

diffuse and specular components must be evaluated on every 

frame. In this case, only normalized voxel gradients and voxcl 

reflectance coefficients can be stored in the mip map. A gen

eralization of the distinction between viewpoint-independent and 

viewpoint-dependent components for shading of volume data is 

given by the tcxelmodcl of Kajiya [10]. 

Sampling issues. Since the 30 mip map is intended to 

be independent of observer position, an isotropic convolution 

filter is used during its construction. For perspective projec

tions, the convolution filter required at sample positions along a 

ray arc generally nonisotropic as shown in figure 3. This 

mismatch introduces errors into the resampled values. The 

errors are minor for typical projections, and less severe than 

errors arising when surfaces textured using a 2D mip map are 

turned nearly on edge [25]. Since shading is a non-linear pro

cess, calculating colors from blurred normals stored in a 30 mip 

map is not equivalent to calculating colors from high-resolution 

normals and subsequently blurring them for storage in the mip 

map. This introduces additional errors into the computed colors. 

These errors are not visually objectionable, however, as noted 

by Blinn [1] for the ca~e of bump mapping. 

Rendering efficiency. Using a 30 mip map to represent 

volume data, the cost of drawing a sample is independent of the 

distance between samples. Using a 2D mip map to represent 

ray colors, the cost of computing a pixel color is independent of 

the distance between rays. Rendering cost per unit area on the 

image plane is therefore linearly related to the density of rays 

and samples and independent of the data resolution. If one of 

the shading components stored in the 30 mip map is voxcl opa

city, and if the non-zero extent of the convolution filter used 

during construction of the mip map measures 2 voxels on a side 

(i.e. if each voxcl contains contributions made by exactly eight 

voxels from the volume beneath it in the hyperpyramid), the 

mip map can also be used as a hierarchical spatial occupancy 

enumeration of the data - an octrce. Each voxel tells us 

whether a particular region of space is occupied or empty. By 

descending the mip map from top to bottom for each ray, occu

pied leaf voxels can be fmmd in approximately logaritlunic time 

relative to the length of the ray. This tcclmique substantially 

reduces rendering time for many useful datasets [15]. In sum

mary, a 3D mip map provides an efficient solution to both the 

visibility problem and the resampling problem for volume datal 

6. Simulation results 

Pending the completion of Pixel-Planes 5, we have 

implemented our rendering algorithm on a Dec 3100 worksta

tion. The figures in this paper were generated from a 256 x 256 

x 109 voxcl magnetic resonance (MR) scan of a live human 

subject. Using a diff11Se shading model and a 2 x 2 x 2 box 



filter, we constructed a 3D mip map containing voxel color and 

opacity at varying resolutions. This preprocessing step required 

5 minutes. 

We then cast rays into the 3D mip map using a parallel 

viewing projection and a sweet spot whose structure is shown in 

figure 5. We assume a 19" television monitor (measured diago

nally) viewed fTom a distance of 20". A horizontal line through 

the middle of the displayed image subtends 37° of visual arc. 

Our target resolution (shown as a bell-shaped curve in figure 5b) 

falls off smoothly (a Gaussian was used) from one ray per pixel 

(corresponding to one 3D sample per voxcl) inside a circle 4.2" 

in diameter (12° of arc) to one ray per 16 pixels (one 3D sam

ple per 64 voxels) outside a circle 7" in diameter (20° of arc). 

(For comparison, the high-resolution area-of-interest inset image 

employed in the CAE-Link system has a diameter of 18° includ

ing a blending annulus 3° in radius [7].) 

Our quantized implementation approxin1atcs the target 

resolution by casting one ray per pixel inside a circle roughly 5" 

in diameter (span [1] in figure 5b), one ray per 16 pixels outside 

a circle 5" in diameter (spans [3]), and one ray per 4 pixels 

within an annulus having an inner diameter of 4.2" and an outer 

diameter of 7" (spans [2]). The resulting partially populated 2D 

mip map is shown in figure 6. 

Finally, we interpolate between the images in the 20 mip 

map based on the target resolution at each pixel as described 

earlier, producing the variable-resolution image shown in figure 

7. For comparison, a full-resolution image is shown in figure 8. 

1---37° of visual arc~ 13.4" -1 

19, television monitor 

viewed from a distance of 20" 

(a) 

foveal region 
(7% of image area) 

transition region 
(14% additional) 

[1] base level of2D mip map (left image in figure 6) 
[2] 2nd level of 2D mip map (middle image in figure 6) 

[3] 3rd level of 20 mip map (right image in figure 6) 

ray density 

(rays I pixel) l/2 

s• ff' s• lff' 

distance from gaze direction 

(degree_• of visual arc) 

(b) 

30 sample density 

liS (samples I voxel) 

Figure 5: Structure of sweet spot 
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Figure 6: Partially populated 2D mip map 

Figure 7: Variable-resolution image 

Figure 8: Full-resolution image 



fig. #of rays #of 3D samples rendering time 

variable-resolution 7 9,657 55,438 13.0 sees 

full-resolution 8 44,100 316,500 59.6 sees 

Table I: Rendering performance 

Table I compares rendering performance for the two images. 

Timings include all per-frame processing. The opacily com

ponent of the 3D mip map was used as an octree to speed up 

ray tracing of both images. As the table shows, the variable

resolution image required roughly 1/4 as many rays, 1/6 as 

many voxels (this would be 1/8 for data of uniform complexity), 

and 1/5 as much rendering time as the full-resolution image. 

To obtain an early evaluation of the performance of our 

eye tracker and the behavioral response of users to our 

variable-resolution imagery, we have written a simulator on a 

Stellar GS-1000 graphics supercomputer. In the simulator, we 

precompute a fully populated 2D mip map for one view of a 

volume dataset. The Stellar is fast enough to read gaze direc

tion from the eye tracker and generate variable-resolution 

images from the precomputed mip map at 15 frames per second. 

System latency is estimated at between 100 and 150 ms. To 

eliminate the need for tracking head motion in the simulator, 

users are mechanically constrained by a chin rest and immobili

zation strap. We have subjectively evaluated users in both 

tracking mode (up to 200°/sec) by asking the user to follow the 

motion of a cursor superimposed on the image and saccading 

mode (may exceed 700°/sec). Users report that the high

resolution sweet spot follows their gaze flawlessly in tracking 

mode and adequately although with a perceptible delay in sac

cading mode. Users are generally aware of the variable

resolution structure of the image. 

Based on an expected speedup of 32:1 moving from a 

Dec 3100 to Pixel-Planes 5 (as reported in [13]) and working 

from a 128 x 128 X 109 voxel dataset, we expect to be capable 

of generating variable-resolution images slightly cn1der than 

figure 7 at about 10 frames per second. Once Pixel-Planes 5 is 

operational, we intend to perform a series of formal psychophy

sical experiments to test the viability of our approach. Ideally, 

we could simply measure the user's ability to detect the pres

ence of a low-resolution periphery in a forced-choice experiment 

in which variable-resolution sequences are randomly inter

spersed with full-resolution sequences. Realistically, we will 

probably be compelled to evaluate ease-of-use and utility for 

performing specific tasks such as feature recognition or image 

matching. We also intend to investigate the effect of varying 

the size and shape of the high-resolution sweet spot, the relative 

resolutions of the sweet spot and visual periphery, the structure 

of the blending region between them, and the filter functions 

employed at each stage of the rendering pipeline. 
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7. Conclusions 

A hardware configuration and rendering algorithm have 

been presented for generating and displaying sequences of 

images whose resolution varies locally in response to changes in 

the user's direction of gaze. Encorporation of gaze information 

into the rendering algorithm allows images of continuously 

varying resolution to be generated, and produces images that 

can be displayed on conventional television monitors. Our 

rendering algorithm is a spatially adaptive ray tracer in which 

the number of rays and the number of samples per ray are 

modulated by local retinal acuity. For a 19" television monitor 

viewed at 20", a 7" high-resolution sweet spot, and a disparity 

in sample spacing between the spot and the surround of about 

4:1 in each of X,Y, and Z, we obtain a cost savings of a factor 

of 5 over generating a full-screen high-resolution image. 

The proposed system can be extended in a number of 

ways. If lag time proves problematic, we can employ predictive 

tracking. We expect such techniques to work well when the 

user is following an object rotated under joystick control due to 

the mechanical inertia of the joystick, but not as well when the 

user's gaze is wandering over a static image. By modifying the 

criteria for selecting 2D convolution mask sizes to encorporate 

measures of local image complexity as well as retinal acuity, 

images of subjectively equal quality can be generated up to an 

order of magnitude faster [14]. In the context of our Pixel

Planes implcmentat,ion, this should allow us to render 256 x 256 

x 128 voxel datasets at 30 frames per second. By not clearing 

the 20 mip map between frames when the object is stationary, 

progressive refinement can be supported. As the user's gaze 

wanders across the image, a trail of sweet spots is left behind. 

If the user fixates on one spot, the sweet spot grows in size until 

it encompasses the entire image. In the Pixel-Planes 5 imple

mentation, progressive refinement should result in a full-screen 

high-resolution image in less than 1 second. 

By adding a Z-component to each pixel in a 2D mip 

map, we create a variable-resolution Z-buffer. Preliminary 

analysis suggests tl1at such a data structure could be used to 

implement gaze-directed polygon rendering. Polygon scanlines 

would be subdivided into segments corresponding to tl1e boun

daries of the populated portions of tl1e various resolution Z

buffers required for a particular gaze direction. Each segment 

would then be scan-converted, Z-compared, and shaded. When 

all polygons have been processed, the partially populated mip 

map is converted into a variable-resolution image as described 

earlier. This approach would reduce the per-pixel costs of 

scan-conversion, hidden-surface removal, and shading. 

In conclusion, we note that although our proposed 

approach permits only one user per television monitor, it is 

ideally suited for personal head-mounted displays. In that con

text, tl1e eye tracker constitutes a unintrusive addition to the 

portable hardware and promises better rendering performance 

for a given image generation system. Before tlus goal can be 

realized, the resolution and angle of view of current head

mounted displays must be improved. Our approach may also 

prove useful for reducing image generation costs in non-gaze

directed environments by having the user attach a 3D cursor 

specifying an area-of-interest to some object in the scene. 
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