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ABSTRACT 

We developed an Intelligent Tutoring System (ITS) that aims to promote engagement 

and learning by dynamically detecting and responding to students’ boredom and 

disengagement. The tutor uses a commercial eye tracker to monitor a student’s gaze 
patterns and identify when the student is bored, disengaged, and has zoned out. The 

tutor then attempts to reengage the student with dialogue moves that direct the student 

to reorient his or her attentional patterns towards the animated pedagogical agent 

embodying the tutor. We evaluated the efficacy of the gaze-reactive tutor in promoting 

learning, motivation, and engagement in a controlled experiment where 48 students 

were tutored on four biology topics with both gaze-reactive and non gaze-reactive 

(control condition) versions of the tutor. The results indicated that: (a) gaze-sensitive 

dialogues were successful in dynamically reorienting students’ attentional patterns to 

the important areas of the interface, (b) gaze-reactivity was effective in promoting 

learning gains for questions that required deep reasoning, (c) gaze-reactivity had 

minimal impact on students’ state motivation and on self-reported engagement, and (d) 

individual differences in scholastic aptitude moderated the impact of gaze-reactivity on 

overall learning gains. We discuss the implications of our findings, limitations, future 

work, and consider the possibility of using gaze-reactive ITSs in classrooms. 

 

Keywords—affective computing, affect-sensitive ITS, boredom, disengagement, eye 

tracking, gaze-sensitive dialogues, Intelligent Tutoring Systems (ITSs), zoning out   
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1. INTRODUCTION

Intelligent Tutoring Systems (ITSs) have emerged as effective tools to promote active 

knowledge construction by capitalizing on the merits of one-on-one human tutoring in 

an automated fashion (Graesser, Conley, & Olney, in press; Psotka, Massey, & Mutter, 

1988; Sleeman & Brown, 1982; Woolf, 2009). ITSs are increasingly being used in 

classrooms all over the United States, and the ones that have been successfully imple-

mented and tested have produced learning gains with average effect sizes ranging from 

0.79 to 1 sigma1 (Corbett, 2001; Koedinger, Anderson, Hadley, & Mark, 1997; 

VanLehn, 2011; VanLehn et al., 2007). When compared to classroom instruction and 

other naturalistic controls, the 1.0 effect sizes obtained by ITSs is superior to the .39 

sigma effect for computer-based training, the .50 sigma effect for multimedia, and the 

.40 sigma effect obtained by novice human tutors (Cohen, Kulik, & Kulik, 1982; Cor-

bett, 2001; Dodds & Fletcher, 2004; Wisher & Fletcher, 2004).  

Despite their impressive successes, it is important to note that ITSs are not the pan-

acea for all the problems associated with learning. Although most ITSs are effective at 

supporting students’ cognitive needs, until recently, they have made less of an effort to 

promote student engagement, motivation, and interest in learning. This is a serious limi-

tation that reduces the efficacy of these systems because engagement, motivation, and 

interest are precursors to learning, effortful problem solving, and deep thinking (Ber-

lyne, 1978; Craig, Graesser, Sullins, & Gholson, 2004; Csikszentmihalyi, 1990).  Stu-

dents might begin a learning session with an ITS with some level of interest and enthu-

siasm, but boredom inevitably creeps in as the session progresses, when the novelty of 

the system and content fades, and when they have difficulty comprehending the materi-

al (Csikszentmihalyi, 1990; D’Mello & Graesser, in press; Larson & Richards, 1991; 
Mann & Robinson, 2009; Moss et al., 2008; Pekrun, 2010; Pekrun, Goetz, Daniels, 

Stupnisky, & Raymond, 2010). When boredom strikes, students’ interest wanes to a 
point where they give up and eventually disengage from the learning session. At this 

point, any further instruction is essentially futile.  

Recent work, albeit outside of learning contexts, has investigated how engagement 

can be maintained in computer based interventions over extended periods of time (e.g., 

months) (Bickmore, Schulman, & Yin, 2010; Bickmore & Picard, 2005). For example, 

in a series of studies measuring long term engagement with an animated agent for a 

health intervention, Bickmore and colleagues (2010) demonstrated that increasing the 

variability of the agent’s behavior and adding a backstory to the agent increased the 
amount of time users spent with the system. Some research has also examined whether 

polite or direct strategies are more effective at maintaining engagement. When users are 

switching tasks, polite interruptions, as measured by the annoyingness of computer 

 

1 An effect-size measures the strength of a relationship between two variables. Cohen’s d (see below) is 

a common measure of effect size in standard deviation units between two samples with means  and 

 and standard deviations  and . According to (Cohen, 1992), effect sizes approximately equal to .3, 

.5, and .8 represent small, medium, and large effects, respectively.  . In 

learning contexts, an effect size of 1.0 sigma is roughly equivalent to an improvement of one letter grade. 
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beep/alert sounds, has been shown to increase user compliance in a health care inter-

vention, whereas impolite interruptions had the opposite effect (Bickmore, Mauer, Cre-

spo, & Brown, 2007). However, in negotiation settings, angry/threatening statements 

such as “This is a ridiculous offer, it really pisses me off” were found to lead to greater 
user concessions than neutral or happy/non-threatening statements (de Melo, Carnevale, 

& Gratch, 2010). The different effects suggest that task-specific factors, e.g. multi-

tasking vs. single-tasking, may strongly influence whether polite/non-threatening agent 

behaviors enhance successful outcomes more than annoying/threatening behaviors.  

One perspective on this recent work is to consider the problem of engagement as 

two complimentary subproblems operating on different timescales. The first is disen-

gagement repair. Disengagement occurs within a session and prevents the user from 

completing that session successfully. Disengagement repair requires refocusing the us-

er’s attention and increasing his or her motivation to complete the task at hand. The 

second engagement subproblem is maintaining sustained engagement across multiple 

sessions. Sustained engagement requires making the sessions compelling enough so 

that the risk of disengagement is minimized within a session and attrition across ses-

sions is low. These two subproblems are related, since a user who becomes disengaged 

during a single session may be less likely to engage in a future session. However, work 

on sustained engagement in computer-based interventions has not directly addressed 

disengagement repair. 

The present paper focuses on disengagement repair strategies within the context of 

learning environments. Before articulating the specific disengagement-repair strategy 

we have implemented, we review some findings on the prevalence, antecedents, and 

consequences of boredom and disengagement during learning. 

1.1. Boredom and Disengagement during Learning 

When compared to cognitive constructs such as attention and memory, or basic emo-

tions such as anger and disgust (Ekman, 1992), the scientific research on boredom dur-

ing complex learning is relatively sparse and scattered. For example, the number of 

studies on boredom and engagement in educational contexts is negligible when com-

pared to the approximately 1,000 studies on test anxiety (Hembree, 1988; Pekrun et al., 

2010; Zeidner, 2007). Nevertheless, some theoretical models of the cognitive and affec-

tive processes that underlie boredom have emerged (Larson & Richards, 1991; Mann & 

Robinson, 2009). The understimulation model (Perkins & Hill, 1985) posits that bore-

dom arises when the student is physiologically and cognitively underaroused, presuma-

bly due to the monotony of repetitive tasks that have been habituated (e.g., solving nu-

merous algebraic problems once the basic concepts have been mastered). The forced-

effort model (Larson & Richards, 1991; Robinson, 1975) claims that students will expe-

rience more boredom when they are required to invest considerable mental effort in 

tasks that are beyond their control (e.g., forced to suffer through a lecture when there is 

no intrinsic motivation to learn). 

According to Pekrun’s control-value theory of emotions, subjective appraisals of 

control and value of a learning activity are the critical predictors of engagement 

(Hulleman, Durik, Schweigert, & Harackiewicz, 2008; Pekrun, 2010; Pekrun, Elliot, & 
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Maier, 2006). Subjective control pertains to the perceived influence that a student has 

over the activity, while subjective value represents the perceived value of the outcomes 

of the activity. Boredom occurs when perceived value or control are low, as would be 

the case when an unmotivated student (low value) is attempting to solve math problems 

that far exceed his or her ability (low control) (Csikszentmihalyi, 1975). Boredom has 

also been hypothesized to occur when control is too high, as is the case when skills 

greatly outweigh challenges and the student is understimulated (Pekrun et al., 2010). 

In addition to these theoretical perspectives, boredom has recently been gaining 

some attention in studies that investigate the links between affect and cognition during 

learning (Baker, D'Mello, Rodrigo, & Graesser, 2010; Beck, 2005; Cocea & Weibel-

zahl, 2009; D’Mello & Graesser, in press; Drummond & Litman, 2010; Moss et al., 
2008; Pekrun et al., 2010). Available data suggest a number of conclusions pertaining to 

the incidence and effects of boredom during learning. These conclusions are summa-

rized below.  

1.1.1. Prevalence of boredom. Boredom is one of the most frequent affective states 

that students experience during learning, irrespective of the learning context, content 

area,  task, student population, and method used to track affect (see D'Mello (in review) 

for a meta-analyses). Boredom is not only prevalent with computer learning environ-

ments, but is also observed in human-human tutoring sessions. For example, an analysis 

of several tutoring sessions with expert human tutors indicated that students spent a 

fourth of the time merely socially attending to the tutor instead of actively learning the 

material (Lehman, Matthews, D'Mello, & Person, 2008).  

1.1.2. Hindrance to learning and performance. As could be expected, boredom 

negatively correlates with learning gains (Craig et al., 2004; D’Mello & Graesser, 2011; 
Forbes-Riley & Litman, 2011; Schutz & Pekrun, 2007), presumably because bored stu-

dents have trouble focusing attention (Fisher, 1993; Thackray, 1981) or are simply not 

willing to process the material at deeper levels of comprehension.  

1.1.3. Persistent temporal quality. Boredom adopts a persistent temporal quality 

upon activation (D’Mello & Graesser, 2011), where students wallow in their ennui and 

are less likely to be reengage in the material. This form of persistent boredom is a nega-

tive predictor of learning gains. More importantly, the typical tutorial interventions 

(e.g., feedback, hints) are not very effective in alleviating boredom, indicating that nov-

el pedagogical and motivational strategies are required to increase task persistence. 

1.1.4. Gateway into negative affect. Consistent with predictions of the forced-

effort model (Larson & Richards, 1991), bored students are more likely to transition 

into frustration (D'Mello & Graesser, 2010a). Frustration is another affective state that 

is harmful to learning (Linnenbrink & Pintrich, 2002). Persistent frustration can also 

transition into boredom if the student is stuck and simply gives up.  

1.1.5. Catalyst for harmful behaviors. Bored students also engage in problematic 

behaviors such as going off-task, zoning out, intentionally misusing the learning envi-

ronment (i.e., gaming the system), or simply becoming careless. These behaviors, and 

boredom in general, lead to lower self-efficacy, diminished interest in educational activ-

ities, increased attrition and dropout, and eventually lead to poorer learning (Baker et 

al., 2010; Cocea, Hershkovitz, & Baker, 2009; Craig et al., 2004; Drummond & Lit-

man, 2010; Moss et al., 2008).  
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1.1.6. Long-term effects of boredom. In addition to the short-term effects of negli-

gible or even negative learning gains, boredom in educational activities is diagnostic of 

lower self-efficacy, lack of motivation in learning, hostility and dissatisfaction towards 

school, abnormal behavior in school, lower work satisfaction, and diminished work 

output (Fogelman, 1976; McGiboney & Carter, 1988; Perkins & Hill, 1985; Robinson, 

1975; Wasson, 1981).  

Given this sketch of the harmful effects of boredom on learning, it is important for 

ITSs to be more than mere cognitive machines, because preventing waning attention, 

zoning out, disengagement, and boredom are critically important for learning (Calvo & 

D’Mello, 2010; del Soldato & du Boulay, 1995; Woolf, 2009). Fortunately, as high-

lighted in the next section, there has been a recent emergence of research along this 

front. 

1.2 Disengagement Diagnosis and Repair 

A number of research groups have been addressing the problem of building learning 

environments that detect and respond to affective states such as boredom, confusion, 

frustration, and anxiety (Afzal & Robinson, 2009; Burleson & Picard, 2007; Chaffar, 

Derbali, & Frasson, 2009; Conati & Maclaren, 2009; D'Mello & Graesser, 2010b; 

D'Mello, Lehman, Sullins et al., 2010; Forbes-Riley, Rotaru, & Litman, 2008; Robison, 

McQuiggan, & Lester, 2009; Woolf et al., 2010). These systems use state-of-the art 

sensing technologies  and machine learning techniques to automatically detect student 

affect by monitoring facial features, speech contours, body language, interaction logs, 

language, and peripheral physiology (e.g., electromyography, galvanic skin response) 

(see (Calvo & D’Mello, 2010) for an overview). These affect-sensitive systems then 

alter their pedagogical and motivational strategies in a manner that is dynamically re-

sponsive to the sensed affective states. Some of the implemented responses to student 

affect include affect mirroring (Burleson & Picard, 2007), empathetic responses (Woolf 

et al., 2010), and a combination of politeness, empathy, encouragement, and incremen-

tal challenge (D'Mello, Lehman, Sullins et al., 2010). 

Although these affective-response strategies have the potential of alleviating certain 

negative emotions (e.g., frustration), an effective response to boredom must address 

attention due to the inextricable link between attention and engagement (Fisher, 1993; 

Pekrun et al., 2010; Thackray, 1981). That is, engagement can be conceptualized as a 

state of involvement with a task such that concentration is intense, attention is focused, 

and involvement is moderate to complete (Baker et al., 2010; Csikszentmihalyi, 1975; 

Csikszentmihalyi, 1990). Engagement is a multifaceted construct encompassing both 

cognitive and affective components. Some of the cognitive aspects of engagement in-

clude attention and concentration, while the affective components consist of modula-

tions in arousal and valence (D’Mello, Chipman, & Graesser, 2007; Mandler, 1984; 
Pekrun et al., 2010). 

Attention, which is one important cognitive component of engagement, is the focus 

of the present paper. Attention is critical because maintaining engagement in a learning 

activity requires attentional resources. Therefore, developing interventions that monitor 

periods of waning attention and attempt to encourage more productive use of attention-
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al resources might be one promising way to increase engagement and promote learning. 

This paper tests this claim by using eye tracking to track periods of disengagement and 

uses gaze-sensitive dialogues in an attempt to reorient students’ attention towards an 

animated pedagogical agent that embodies the tutor (as will be described below).  

While eye tracking has historically been used in reading research (Rayner, 1998), it 

has been finding increased use in the context of learning and problem solving (van Gog 

& Scheiter, 2010). For example, eye tracking has been used to obtain novel insights in-

to: (a) the split-attention effect (Schmidt-Weigand, Kohnert, & Glowalla), (b) saliency-

based cueing (de Koning, Tabbers, Rikers, & Paas), (c) expertise-novice differences in 

attentional deployment during problem solving (Graesser, Lu, Olde, Cooper-Pye, & 

Whitten, 2005), (d) text-diagram integration during comprehension (Hegarty & Just, 

1993; Holsanova, Holmberg, & Holmqvist, 2009), and (e) meta-cognitive processes 

during learning (Conati & Merten, 2007).  

These examples clearly illustrate the importance of eye tracking towards obtaining a 

low-level mechanistic account of the cognitive processes during learning. However, eye 

tracking can be more than a mere research tool. It can also be used as a means of im-

proving learning gains. For example, in Attention Aware Systems (Roda & Thomas, 

2006), eye tracking can be used to detect and alter user’s attention to improve outcomes 

(Hyrskykari, 2006). Possible attention-sensitive responses include the modulation of 

information pacing (e.g., halting or slowing down the presentation of new information 

when the user is overwhelmed) and selection of modality style (e.g., present infor-

mation auditorily when visual channel is busy) (Roda & Thomas, 2006; Toet, 2006). 

Other examples include real-time eye tracking: (a) to guide the behaviors of an animat-

ed pedagogical agent (Wang, Chignell, & Ishizuka, 2006), (b) for attentional guidance 

during problem solving (van Gog, Jarodzka, Scheiter, Gerjets, & Paas, 2009), and (c) 

for student modeling (Conati & Merten, 2007). In a somewhat different vein, of present 

interest is the use of eye tracking to detect and alleviate disengagement during learning.  

1.3 Overview of Present Research 

Maintaining engagement in a learning activity requires attentional resources, hence, we 

explored the possibility of using students’ eye gaze patterns to track attentional de-
ployment, identify attentional failures (i.e., zoning out), and reorient attention to facili-

tate learning. As articulated above, engagement is a complex construct that encom-

passes both the mind and body. There might be aspects of engagement that might be 

manifested in physiology, facial expressions, and posture (D'Mello & Graesser, 2010b; 

Mota & Picard, 2003), and the present focus on gaze patterns risks overlooking these 

alternate manifestations of engagement. However, eye tracking has a long history as a 

tool to monitor patterns of attentional deployment or even a lack of attention (Asteriad-

is, Karpouzis, & Kollias, 2009; Asteriadis, Tzouveli, Karpouzis, & Kollias, 2009; 

Rayner & Fischer, 1996; Reichle, Reineberg, & Schooler, 2010; van Gog et al., 2009). 

For example, a lack of fixations on the text and an increased number of blinks have 

been associated with “mind wandering” (Smilek, Carriere, & Cheyne, 2010). Therefore, 

we have some confidence that using eye tracking to monitor attentional patterns will 

provide some insights into students’ levels of engagement. 
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We developed a computer tutor that tracked engagement by monitoring students’ 
eye gaze patterns while the tutor and the student engaged in a collaborative lecture (de-

scribed in Section 2). The tutor assumed that the student was disengaged when he or 

she looked away from the screen for an extended period of time. It then attempted to 

reengage the student by providing messages that directly instructed the student to focus 

on the animated pedagogical agent that embodied the tutor. Our prediction was that 

monitoring and responding to disengagement with a gaze-sensitive (or gaze-reactive) 

tutor would yield superior learning gains compared to a non gaze-sensitive (non gaze-

reactive) tutor.  

We tested this prediction in an experiment where students were tutored on biology 

topics and the tutor either responded (experimental condition) or ignored (control con-

dition) students’ disengagement (tracked via their gaze patterns as described in Section 

3). In addition to measuring learning gains, which is the primary dependent variable of 

interest, we also assessed whether responding to gaze patterns impacted students’ moti-

vation to learn and their self-reported engagement levels. Finally, we tested whether 

individual differences in prior knowledge, aptitude, and perceptions of learning biology 

from computer tutors moderated the effects of gaze-reactivity on learning, motivation, 

and engagement.  

To our knowledge, the efficacy of gaze-reactive dialogues as an intervention to 

promoting learning, engagement, and motivation has not yet been systematically inves-

tigated. Therefore, the novelty of this work emerges from the development and evalua-

tion of the first gaze-reactive ITS to diagnose and alleviate boredom. 

We begin with a description of the gaze-reactive ITS, which we developed (Section 

2), followed by the experimental protocol (Section 3), and the results of the experiment 

(Section 4). We conclude by taking stock of our findings, discussing limitations, and 

addressing the practical implications of this research for computer tutors deployed in 

real-world settings (i.e., classrooms and computer labs in schools). 

2. GAZE-REACTIVE DIALOGUE-BASED BIOLOGY TUTOR (GURU) 

The ITS we implemented (Guru) is designed to tutor students on high school biology 

topics (e.g., cellular respiration, mitosis, ecological succession) via natural language 

dialogues. Guru was designed to mirror the tactics, actions, and dialogue of expert hu-

man tutors. The pedagogical and motivational strategies of Guru are informed by a de-

tailed computational model of expert human tutoring. The model is developed from an 

analysis of 50 naturalistic tutoring sessions between students and expert human tutors 

(Cade, Copeland, Person, & D'Mello, 2008). The computational model transcends vari-

ous levels of granularity from (a) tutorial modes (i.e., pedagogically distinct phases in a 

session such as lecturing and scaffolding that last for several minutes and encompass 

multiple speech acts), to (b) collaborative patterns of dialogue moves within individual 

modes (i.e., repetitive sequences of dialogue moves that have particular pedagogical 

functions), to (c) individual dialogue moves or speech acts (e.g. direct instruction, posi-

tive feedback, solidarity statement), and to (d) the language and gestures of tutors 

(D'Mello, Olney, & Person, 2010). Understanding how elements (e.g., moves, modes) 

interact within and across levels is the essence of the computational model. 



 

8 

 

This paper focuses on one component of the Guru system, namely the collaborative 

lecturing module. This decision was motivated by two important factors. First, to our 

surprise, lectures were abundant in the expert tutoring sessions. In particular, when we 

segmented the tutoring sessions into eight dialogue modes, lecturing was the second 

most frequent mode. Lectures comprised 22.1% of the modes and 30.2% of the dia-

logue turns. Lectures were only surpassed by the scaffolding mode, which comprised 

27.8% of the modes and 46.4% of the turns (Cade et al., 2008). Although there are a 

number of factors governing this high incidence of lectures (see (D'Mello, Hays et al., 

2010) for a discussion on this issue), what is important is the fact that an ITS that as-

pires to model expert human tutors (such as Guru) should implement the lecturing 

styles of these tutors to some extent. 

Second, although these lectures serve an important pedagogical goal, disengage-

ment is expected to be higher when tutors lecture because lecturing is much less inter-

active than other dialogue modes such as scaffolded problem solving. Matters can only 

get worse when a computer, instead of an expert tutor, is delivering the lecture, so dis-

engagement repair is critically relevant during lecturing. 

A detailed description of the computational model and the implementation of Guru 

are beyond the scope of this paper. Instead, we focus on the components that are partic-

ularly relevant to our immediate goal of developing a tutor that is sensitive to students’ 
gaze-patterns. These include: (a) a brief overview of the computational model of expert 

tutor lectures, (b) the implementation of the lectures in Guru, and (c) the implementa-

tion of the gaze-reactive component in Guru. 

2.1. Modeling Expert Tutor’s Lectures2 

An extensive analysis of the collaborative lecture strategies observed in our sample of 

50 expert tutoring sessions is discussed in D’Mello et al. (2010), so, we will focus on 

the major points here. In particular, there are two major clusters of dialogue moves as 

illustrated in Figure 1. The first cluster (information-transmission) is primarily con-

cerned with the tutor delivering information to student (solid lines in Figure 1). The tu-

tor may assert some information through direct instruction and explanation (die), to 

which the student provides backchannel feedback via an acknowledgment (ack), and 

the tutor asserts more information (die). Alternatively, the tutor transmits some infor-

mation (die), asks a comprehension gauging question (cgq) (e.g., “Do you under-
stand?”). The student replies with an acknowledgement (ack) (e.g., “Yes sir.”) or a met-
acomment (meta) (e.g., “No. I don’t quite get it.”), and more information is transmitted. 

These basic patterns associated with information-transmission account for 70.2% of the 

dialogue moves during the lecture mode. 

Insert Figure 1 about here 

The second cluster, or the information-elicitation cluster (dotted links in Figure 1), 

consists of moves associated with attempts by the tutor to elicit information from the 

 

2 Sections 2.1 and 2.2 are adapted from (D'Mello, Hays et al., 2010) 

. 
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student. These moves are variations of the Initiate Respond Evaluate (IRE) sequence 

(Mehan, 1979). The sequence begins by the tutor asking the student a question (ques) 

with prompts, pumps, forced choices, or simplified problems. The student responds 

with an answer (ans). The tutor evaluates the student’s response and provides feedback 
(fdb) followed by more direct instruction (die). This cluster accounts for 18.6% of the 

moves during lectures. 

In addition to these primary clusters that account for 88.6% of the dialogue moves 

during lecturing, there is also an off-topic conversation cluster (9%), and a student-

initiated question cluster (2.2%). These clusters were not implemented in the current 

version of the computer tutor. 

To summarize, our analysis of lectures during expert tutoring sessions was not con-

sistent with boring, extended, and long-winded explanations. Instead, we found that ex-

pert tutor lectures were highly collaborative, presumably because the expert tutors 

acknowledge that active participation, even during lectures, is key to learning and en-

gagement (Chi, Roy, & Hausmann, 2008; VanLehn et al., 2007). 

It is important to mention one critical point pertaining to the above discussion of the 

computational model of the expert tutor lectures. The present discussion was pitched at 

a very high level of granularity in the interest of brevity and because a detailed descrip-

tion of the model is available in an earlier publication (D'Mello, Olney et al., 2010). 

Therefore, it is important to emphasize that although the model presented here captures 

the major patterns in the data, the actual model is an order of a magnitude more com-

plex. For example, the tutor question node (ques) in Figure 1 is actually an abstract cat-

egory that represents six concrete tutor question moves: hints, prompts, pumps, forced-

choice responses, new problems, and simplified problems. The student answer node 

(ans) is also an abstract category with concrete members including correct answers, par-

tially-correct answers, vague answers, error-ridden answers, and no answers. Expand-

ing these abstract categories into concrete dialogue moves yields the more detailed 

model with 29 nodes and 34 links (D'Mello, Olney et al., 2010). 

2.2. Implementing the Collaborative Lecture in Guru 

We developed a lecture module in Guru for eight biology topics (e.g., cellular respira-

tion, amino acids and RNA). As previously stated, Guru’s lecturing strategies were de-

signed to closely mirror the expert tutor lectures from our corpus. This was accom-

plished in two ways. First, the content of the lectures was obtained from transcripts of 

actual expert tutoring sessions. This made the lecture delivery style more conversation-

al, informal, and presumably more engaging. Using expert tutoring transcripts also cap-

tured the sense of time pressure and urgency that comes with naturalistic tutoring. 

These tutors were tutoring students who had failed exams or who were preparing for 

one. Our expert tutors were direct, kept a steady pace, and put the students to work.  

It should be noted that this form of content mirroring was only implemented in the 

prototype tested in this study. The prototype used a sequential script and did not adapt 

instruction to individual students, other than providing localized feedback. In contrast, 

the actual Guru system uses a semi-automated algorithm to extract its content from bi-

ology textbooks and other sources (Olney, 2010) and dynamically tailors instruction 
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based on its model of the student’s knowledge and abilities. 
Second, the tutor closely modeled the collaborative lecturing tactics that were ob-

served from our analysis of the human tutors (see Figure 1). In particular, Guru primari-

ly transmitted information (68% of the time) but occasionally provided cues for 

acknowledgements (e.g., “Right?,” “ok?”), asked comprehension gauging questions, 
and prompted the student for answers (e.g., “X is a type of what?”). On average, the 
lectures contained 32% opportunities for student involvement, thereby yielding a 1:3 

student to tutor dialogue move ratio. We computed the tutor:student dialogue move ra-

tio from eight expert tutor lectures and correlated these with tutor:student dialogue 

move ratio from Guru’s implementation of these same lectures. The correlation was 
very high (r = .97), so we are quite confident that Guru does indeed model the collabo-

rative lecturing styles of the expert human tutors. 

Sample dialogues from the human tutors and Guru are presented in Table 1. In the 

actual lecture, the tutor introduces the topic (T1), uses a discourse marker (T2), asserts 

some information (T3), and then gives the student an opportunity to chime in (T4). The 

student provides an acknowledgment (S1), the tutor responds with a conversational OK 

(T5), asserts some more information (T6), and then prompts the student (T7). The stu-

dent responds (S2), to which the tutor provides some feedback (T8), followed by an 

assertion, and so on (T9 and S3). 

When Guru delivers a lecture, it preserves most of the conversational style from the 

actual lectures, asserts the same content, and gives the student an opportunity to type a 

response (see Table 1). The student has three different opportunities to type in a re-

sponse, which is consistent with the 1:3 student to tutor dialogue move ratio discussed 

above. On average, the expert human tutors articulated 790 words in each lecture, while 

Guru articulated an average of 718 words. 

Insert Table 1 about here 

The lectures were delivered via a simple conversational interface that consisted of 

an animated conversational agent that delivered the content of the lectures via synthe-

sized speech, a media panel that displayed images relevant to the lectures, and an input 

box for students to type their responses (see Figure 2).  The animated agent was created 

by video recording an actor speaking and then analyzing the video to extract frames of 

visemes, the visual correlates of phonemes. During agent speech, lip sync was achieved 

by quickly switching the current image of the agent to viseme frames when viseme 

events were thrown by the speech engine (using Microsoft’s Speech Application Pro-

gramming Interface). To reduce jitter created by slight posture movements while the 

actor was producing various visemes, the mouth region of a “silent” agent image was 

identified, and subsequent visemes were bit-blitted onto that region. This had the effect 

of localizing viseme changes to the mouth region only. Additional blinking animations 

were created using the same technique.  

A high quality speech engine, NeoSpeech© Kate, was used to produce speech. This 

speech engine automatically produces reasonable intonation for longer sentences and 

questions. Complex scientific words that were not in the speech engine’s dictionary 
were manually added and checked for proper pronunciation. The resulting agent was 
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very humanlike in appearance and speech. However the jitter-removal process de-

scribed above had the consequence that the agent had no side to side body movement 

and could not perform non-speech-related facial expressions. Additionally no blending 

was performed between the current viseme and the next, so the agent’s speaking ap-

pearance was exaggerated compared to normal human speech. 

Insert Figure 2 about here 

2.3. Gaze-Reactive Component 

The gaze-reactive tutoring system can be considered to be the normal tutoring system 

augmented with gaze-sensitive user input. Gaze behavior, as measured by the Tobii 

T60™ eye tracker, has a maximal spatial resolution of 1024 × 768 pixels for the Guru 

interface. It is not clear whether this high degree of spatial resolution is meaningful 

when measuring a user's attention to a simple interface. Hence, to lower the dimension-

ality of the input, the 1024 × 728 screen (see Figure 2) was divided  into zones for the 

tutor (zone 0), the image (zone 1), the text box (zone 2), and the blank areas (zones 3 

and 4). There was also an off-screen zone for gaze patterns that were not classified as 

falling into any of these five zones. 

Interpreting user gaze behavior with respect to the Guru ITS requires a high-level 

user interface model that specifies Guru's interface states, the gaze behavior categories, 

and a set of gaze-sensitive responses. The Guru interface can be viewed as a finite state 

machine with three high-level states: tutor speaking, waiting for student response, and 

student typing response. Potentially each category of gaze behavior could lead to a dif-

ferent gaze-sensitive response in any of these three states, thereby yielding fifteen pos-

sible responses from the system.  

Although the number of meaningful tutor responses can be significantly reduced if 

the goal is to retain the student's attention, it is difficult, if not impossible, to create pre-

cise rules for every state. For example, in the state of waiting for a student response, 

acceptable gaze behaviors might include focusing on the text entry box, the image, or 

the agent. Likewise, in the state of student response, requiring the student to look at the 

text entry box may be overly restrictive for touch-typists. 

The gaze-reactive system was designed to accommodate variability in attentive be-

havior. As argued above, two of the three states admit a good deal of variability and 

appear to be less attractive states for triggering a gaze-reactive intervention. However, 

the state of tutor speaking is much less flexible, since an attentive student should be 

looking at either the agent or the image when the tutor is speaking. Moreover, one 

could argue that the state of tutor speaking is the most important state for maintaining 

student attention because the tutor introduces the bulk of new information and controls 

the conversation. 

In light of these constraints, the gaze-reactive intervention was triggered when the 

following conditions were met: 

• Tutor was speaking 

• Tutor was not in the middle of a gaze-reactive statement 

• The student had continuously not looked at the agent or image for more than 
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five seconds 

• It had been more than ten seconds since the last gaze-reactive statement 

For the present version of the tutor, the time parameters were fixed based on feed-

back during piloting; however, dynamically setting these parameters based on a particu-

lar student may offer additional adaptive advantages.  

The gaze-reactive intervention was presented to the student in the following man-

ner. The tutor stopped speaking in mid-sentence, paused for 1 second, and then deliv-

ered a gaze-reactive statement to refocus the student's attention, e.g., "Please pay atten-

tion." The tutor then repeated the interrupted sentence from the beginning. Each gaze-

sensitive response was randomly selected from a set of four predefined responses that 

are designed to reorient students’ attention towards the tutor. We piloted with a number 

of gaze-sensitive responses but narrowed the final set to the following four responses: 

“Please pay attention,” “I'm over here you know,” “You might want to focus on me for 

a change,” and “Snap out of it. Let's keep going.”  
As highlighted in Section 5, the present set of responses was selected to test the ef-

fect of direct statements that attempt to capture and reorient student’s attention. It 
should be noted that the expert tutors we studied provided direct and immediate feed-

back to student responses and actions (D'Mello, Lehman, & Person, 2010), because 

there might be certain advantages to this form of feedback as discussed in the literature 

(Person, Kreuz, Zwaan, & Graesser, 1995). Nevertheless, other more indirect response 

options and alternate attentional reorientation strategies are discussed in Section 5. 

It is important to make one final point regarding the use of eye tracking as a meas-

ure of attention.  As evident from the description of the interface (Section 2.2), the tutor 

had an auditory component (i.e., it speaks its dialogue moves) and a visual component 

(i.e., the image and the text box). Gaze-sensitive dialogues were triggered when the 

student did not fixate on the visual component (i.e., the image and the text box) for an 

extended period of time (i.e., more than 5 seconds). A student might have closed his or 

her eyes in order to tune out the visual component and could have directed all attention-

al resources towards the auditory component. In these instances, the system would 

make the incorrect inference that the student was disengaged because it only tracks vis-

ual attention. Although this is a limitation of our system, it should be noted that a sig-

nificant portion of the dialogues occur within the context of an image. Therefore, both 

auditory and visual attention was required in order to fully engage with the Guru sys-

tem. 

2.4. System Architecture 

The system architecture of tutor is presented in Figure 3. Some details, such as the dis-

play of images, have been omitted for clarity. The two loops of information transmis-

sion and information elicitation can be traced to Direct Instruction and Tutor Question, 

respectively. Tutor questions cause the system to pause, allowing for student keyboard 

input. Student input is assessed for correctness (Answer Assessments), and then the ap-

propriate feedback is delivered (Feedback) is generated by consulting the Script. Direct 

instruction statements do not cause the system to pause, so multiple tutor statements 

may be delivered before a tutor question is asked. Tutor text for both transmission and 
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elicitation loops is maintained in the Script database, which also specifies the order of 

delivery. 

Insert Figure 3 about here 

The most complex aspect of the system is the monitoring of gaze position and the 

decision to fire a gaze statement. Gaze position is continuously monitored and assessed 

via the Gaze Assessments module. In order to fire a gaze statement the tutor must be 

speaking (either a statement or a question) and the student must continuously not be 

looking on screen for an extended period of time. Thus a student who looks back on 

screen, even briefly, will reset a timer and prevent a gaze statement. When the system 

decides to fire a Gaze Statement and the appropriate text is obtained from the Script. 

3. METHOD 

3. 1. Participants 

Participants were 48 undergraduates from a southern university in the U.S. who partici-

pated for course credit. There were 30 females and 18 males. There were 14 African-

Americans, 27 Caucasians, 4 Hispanics, 2 Asians, and one Native Hawaiian/other Pa-

cific Islander. Participants were between 18 to 36 years old, with a mean age of 20.6 

years old (SD = 3.8). 

3. 2. Design 

The experiment utilized a within-subjects design where participants completed four bi-

ology lectures on the topics of: the Golgi body, cytoskeleton, phases of mitosis, and 

ecological succession. Two of these lectures were completed with the gaze-reactive tu-

tor (GR) and the remaining two with the non gaze-reactive (NGR) version of the tutor. 

Assignment of lecture topic to tutor version and order of lecture topic was counterbal-

anced across participants with a 4 × 4 Latin Square.  

The order of tutor version followed two predefined sequences. Half of the partici-

pants interacted with the GR tutor for the first lecture, the NGR tutor for the second, the 

GR for the third, and the NGR tutor for the last lecture (GR-NGR-GR-NGR pattern for 

the gaze-first group). The remaining 24 participants utilized a NGR-GR-NGR-GR pat-

tern (gaze-second group). 

3.3. Materials 

3.3.1. Knowledge tests. The knowledge tests (used to measure learning gains) were 

12-item multiple-choice tests with four alternative answers for each item. There were 

alternate test versions for pretest and posttest that were counterbalanced across partici-

pants. Specifically, half the participants received Test A as pretest and Test B as post-

test, while the other half received Test B for the pretest and Test A for the posttest. 

There were three questions for each lecture. Prompt questions tested participants on 

content for which the tutor explicitly prompted the student for a response.  Assertion 
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questions tested participants on content that the tutor explicitly asserted to the student 

via direct instruction but not with an explicit prompt. Finally, there were deep reason-

ing questions that required causal reasoning and inference rather than recall of shallow 

facts (e.g., prompt and assertion questions). When possible, the questions were de-

signed to target different knowledge units within the same topic, so it would not be nec-

essary for a student to answer an assertion question correctly before he or she could an-

swer a deep reasoning question. Examples of prompt, assertion, and deep reasoning 

questions are presented in Appendix A.  

3.3.2. Engagement measures. Participants’ engagement levels were tracked after 

each lecture with the Affect Grid (Russell, Weiss, & Mendelsohn, 1989) and through a 

locally created Post-Lecture Engagement Scale. The Affect Grid is a validated single 

item affect measurement instrument consisting of a 9 × 9 (valence × arousal) grid, 

which are the primary dimensions that underlie affective experiences (Barrett, 2009). 

The arousal dimension ranges from sleepiness to high arousal, while the valence di-

mension ranges from unpleasant feelings to pleasant feelings. After completing each 

lecture, participants indicated their affective state by marking an X at the appropriate 

location on the grid. 

The Post-Lecture Engagement Questionnaire required participants to self-report 

their engagement levels after each lecture. There were three questions which asked par-

ticipants to rate their engagement at the beginning, middle, and end of each lecture. For 

example, the question, “How engaged were you during the start of this session?” was 

used to track engagement at the start of the lecture (participants were instructed that 

session pertained to the lecture they just completed). Participants indicated their ratings 

on a six-point scale ranging from (1) very bored to (6) very engaged. 

3.3.3. Subjective impressions measures. The Subjective-Impressions Question-

naire asked participants to evaluate the tutorial session on measures of perceived per-

formance, user satisfaction, and task difficulty. Each participant completed the ques-

tionnaire once after each lecture. The questionnaire required participants to answer the 

following five questions: (1) Importance: “How important was it for you to understand 
the material?”, (2) Usefulness: “How useful did you find the material covered?”, (3) 

Interest: “How interesting did you find the material covered?”, (4) Challenge: “How 

challenging did you find the material?”, (5) Effort. “How much effort did you put into 

this section?”. Participants responded to each question via a six-point scale. For exam-

ple, the scale for importance ranged from (1) very unimportant to (6) very important 

while the scale for effort ranged from (1) very easy to (6) very difficult. 

3.3.4. Individual difference measures. There were three individual difference 

measures. First, participants’ scores on the pretest were used to track prior knowledge 

pertaining to the biology topics covered in the tutorial session. Second, self-reported 

ACT or SAT scores served as a measure of aptitude. The ACT (American College Test-

ing) and SAT (Scholastic Aptitude Test) are standardized tests required for college ad-

missions in the United States. SAT scores were converted to ACT scores using the 

ACT-SAT concordance chart ("ACT–SAT Concordance Chart," 2009). Self-reported 

ACT and SAT scores have been found to strongly correlate with actual test scores (Cole 

& Gonyea, 2010), so we have some confidence in this measure. 

Participants also completed a locally created Perceptions of Learning Biology Ques-
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tionnaire (PLB). The PLB consisted of three questions that were designed to gauge par-

ticipants’ interest in learning biology, their perceived usefulness of learning biology, 

and their confidence that they could learn biology from a computer tutor. Participants 

used a six-point scale to provide their responses to these questions. 

3.4. Apparatus (Eye tracker) 

Eye movements were recorded with a Tobii T60™ eye tracker. The eye tracking infra-

red sensors and cameras are integrated into a 17-inch computer monitor so there was no 

need for any special mounts or head gear. The participants were calibrated before they 

started the tutorial session. The calibration process consisted of the participant tracking 

a moving circle around the screen. The calibration process typically took about 15 sec-

onds to a minute depending on individual differences. Eye tracking data was recorded 

at 60Hz (approximately once every 17 msec).  

3.5. Data Streams Recorded 

Five streams of information were recorded during the tutorial session. First, partici-

pants’ gaze-patterns were recorded with the Tobii T60™ eye tracker. Second, videos of 

their faces were recorded with a camera that was integrated with the eye tracker system. 

Third, videos of their computer screens were also recorded with the eye tracker soft-

ware, Tobii Studio™. The screen video also included the audio generated by the ani-

mated pedagogical agent (see Figure 2). Fourth, log files consisting of the tutor’s re-
sponses, students’ responses, response times, and other interaction parameters were 

recorded for offline analysis. Fifth, participants’ body movements (not relevant to the 

present paper) were recorded with a custom body posture measurement system (Olney 

& D'Mello, 2010). Data from the eye tracker, log files, and body movements were syn-

chronized with each other and with the face and screen videos. 

3.6. Procedure 

Participants were individually tested in a 1.5-hour session. Participants first signed an 

informed consent form and underwent the eye tracking calibration procedure3. They 

then completed a demographics questionnaire which assessed their age, sex, and ethnic-

ity. Next, they self-reported their ACT or SAT scores, completed the Perceptions of 

Learning Biology Questionnaire, and answered the multiple-choice pretest.  

The tutorial session commenced after the pretesting and calibration procedures. It 

consisted of three phases for each of the four topics. In Phase 1, participants interacted 

with the tutor for one of the four biology topics.  They immediately evaluated this lec-

ture with the Subjective Impressions Questionnaire (Phase 2). Next, they self-reported 

their engagement levels with the Post-Lecture Engagement Questionnaire and the Af-

fect Grid (Phase 3). Phases 1-3 were repeated for each of the four topics.  

As mentioned in the Section 3.2, each participant alternated between gaze-reactive 

 

3 The experimenter verified that the participant’s gaze could be reliably tracked. Data from participants 

with tracking difficulties were discarded and not counted in the sample of 48 students. 
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and non-gaze reactive versions of the tutor with equal exposure to both. On average, the 

participants took 6.75 minutes (SD = .965) to complete one topic in the non gaze-

reactive condition and 6.95 minutes (SD = 1.29) in the gaze-reactive condition. The dif-

ference was not statistically significant (p = .385). 

Participants completed the multiple-choice posttest after the tutorial session. They 

were subsequently debriefed. 

4. RESULTS AND DISCUSSION 

Our analyses focused on five questions pertaining to the impact of gaze-reactivity on 

learning, motivation, and engagement. First, were the gaze-sensitive interventions suc-

cessful in reorienting students’ attention towards the tutor? Second, was the gaze-

reactive tutor more effective in promoting learning gains compared to the non gaze-

reactive tutor? Third, did participants evaluate the tutorial sessions more favorably 

when interacting with a tutor that was sensitive to their gaze-patterns, or did they find 

the gaze-sensitivity intrusive and possibly annoying? Fourth, did gaze-reactivity in-

crease student engagement? Fifth, did individual differences in prior knowledge, apti-

tude, and perceptions towards learning biology moderate the effects of gaze-reactivity 

on learning, motivation, and engagement? 

4.1. Gaze-Patterns Associated with Gaze-Sensitive Dialogues 

An analysis of the dialogue moves delivered by the gaze-sensitive tutor indicated that 

16 out of the 48 students never received a gaze-sensitive move. This suggests that a 

third of the participants never zoned out sufficiently to warrant corrective action via a 

gaze-reactive statement. It should be noted that the lack of gaze-reactive statements as-

sociated with these participants cannot be attributed to eye tracking failures because we 

verified that their gaze was being accurately tracked. Since our primary goal was to 

compare the effects of gaze-reactive dialogues, the subsequent analysis focuses on the 

remaining 32 students who received at least one gaze-reactive statement.  

On average, these students received 5.31 (SD = 5.75) gaze-reactive statements. The 

distribution was highly skewed with the number of statements ranging from 1 to 20. 

Nineteen of the students (59.4%) received less than four statements, while the remain-

ing 13 students received four or more statements, so there were some individual differ-

ences with respect to the efficacy of the gaze-reactive tutor in reorienting students’ at-

tention. 

There is the important question of how students adapt their gaze patterns in re-

sponse to the gaze-reactive statements. We addressed this question by contrasting stu-

dents’ gaze patterns before and after receiving gaze-reactive statements. We identified 

the start  and end  of gaze-reactive utterances from the stream of tutor dialogue 

moves extracted from the log files. Turning to the stream of student gaze patterns (i.e., 

focus on one of the five zones as described in Section 2.3), we examined the probability 

distribution of gaze events  seconds before (  and after  the gaze-reactive 

utterances. This process was repeated for window sizes ranging from 7.5 seconds to 30 

seconds with increments of 7.5 seconds. Separate probability distributions were com-

puted for each of the 32 students who received at least one gaze-reactive statement. If a 
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student received more than one gaze-reactive statement, then the probability distribu-

tion for that student was the average of the distributions associated with each gaze-

reactive statement. 

The mean probability distributions (averaged across students) across all windows is 

presented in Figure 4. Gaze patterns associated with the text box and blank areas of the 

screen are not included in Figure 4 because students rarely focused on these zones.  

The actual text of a gaze-reactive dialogue move is randomly selected, so the 

lengths of these utterances vary. Hence, for simplicity, the time interval associated with 

the synthesis of the gaze-reactive statement is not factored into Figure 4 (i.e., ). 

This is a valid simplification because we are primarily interested in the change in gaze-

patterns after the delivery of gaze-reactive statements, instead of gaze-patterns during 

the delivery of these statements. 

Insert Figure 4 about here 

As Figure 4 illustrates, prior to receiving a gaze-reactive statement, the probability 

that students are off-screen steadily increases until it peaks at . Focus on the tutor 

and image steadily decreases until the gaze-reactive statement is launched. A drastic 

change in gaze-patterns follows the incidence of the gaze-reactive statement. Now off-

screen gaze behaviors rapidly decrease, while focus on the tutor steadily increase, until 

these peak at secs. 

It is important to mention three additional insights that can be gleaned from Figure 

4. First, it takes some time (approximately 7.5 seconds following the end of the gaze-

reactive utterance) for students to drastically reorient their attention towards the inter-

face. Second, although off-screen gaze behaviors were reduced, they did not completely 

dissipate upon receipt of a gaze-reactive statement. Third, and more importantly, atten-

tional reorientation after the gaze-reactive statement was primarily directed to the tutor 

(i.e., the source) rather than randomly scattered across the interface (note the drastic 

increase in tutor-oriented gazes compared to the increase in image-oriented gazes after 

the delivery of the gaze-statement; the difference is considerably more subtle before the 

gaze-statement). 

As a compliment to the descriptive analyses described above, we also performed a 

series of paired-samples t-tests (at the subject level) comparing gaze patterns before and 

after the gaze-reactive statements. There were statistically significant patterns (p < 

.001) associated with an increased focus on the tutor and a corresponding decrease in 

off-screen gaze behaviors. The mean effect sizes (across windows) associated with 

these significant patterns were 1.31 and -1.29 sigma for tutor-focused and off-screen 

gaze-shifts, respectively. There were not statistical differences associated with the other 

zones, thereby confirming our initial claim that the gaze statements explicitly reorient 

attention towards the tutor. 

Finally, we investigated whether the number of gaze-reactive statements received 

was related to students’ attentional reorientation patterns. It might be the case that stu-

dents rapidly redirect their attention towards the tutor when the first few gaze-reactive 

statements are received, but their attentional reorientation responses might be slower as 

more statements are encountered.  They might also eventually begin to tune these mes-
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sages out and not reorient attention at all.  We investigated this issue by correlating the 

number of gaze-statements received to the change in probability that students attended 

to the key areas (tutor, image, off-screen) after receiving a gaze-statement compared to 

before receiving the statement ( . Data from the four participants who re-

ceived more than 10 gaze-statements were identified as outliers and were discarded 

from the analyses.  

The results for the 7.5 second window indicated that the number of gaze-statements 

was positively correlated with off-screen behaviors (r = .403, p =.033), negatively cor-

related with focus on the tutor (r = -.351, p = .067), and not correlated with focus on the 

image (r = -.123, p = .533). Number of gaze-statements marginally4 correlated with off-

screen behaviors (r = .319, p = .098) and focus on the tutor (r = -.329, p = .088), but not 

with focus on the image (r = .045, p = .820), for the 15-second window. There were no 

significant or marginally significant correlations for the 22.5 and 30 second windows. 

The patterns of these correlations indicate that students were slower to reorient atten-

tion on the tutor as the number of gaze-reactive message increases. However, they do 

not completely tune out these messages as reorientation patterns were not correlated 

with the number of gaze-statements for the longer window sizes. 

4.2. Learning Gains 

The gaze-reactive statements did have their desired effect of directing students’ atten-

tion towards the tutor, but did this attentional reorientation have an impact on learning? 

We answered this question by examining students’ responses to the multiple-choice 

knowledge tests that were administered before and after the tutorial session. The pretest 

and posttest were scored for the proportion of questions that students answered correct-

ly. The measure of learning consisted of proportional learning gains, computed as:  

(posttest scores – pretest scores) / (1 - pretest scores). Proportional learning gains repre-

sent the degree of improvement at posttest above and beyond pretest performance. 

Proportional learning gains scores were separately computed for prompt questions, 

assertion questions, and deep reasoning questions (see Section 3.3). There was also an  

overall proportional learning gains score, which made no distinction for question type. 

Proportional learning gains for the three question types were not significantly correlated 

(p > .10) for either condition, thereby indicating that the different question types were 

assessing different levels of understanding. 

Paired-samples t-tests comparing learning gains across conditions resulted in a sig-

nificant difference for the assertion and deep reasoning questions; these differences 

were consistent with medium sized effects (see Table 2 and Figure 5). There was an in-

teresting interaction between learning gains for these two question types. Learning 

gains for assertion questions, which tap into knowledge of surface level facts, were 

higher with the non gaze-reactive tutor. In contrast, students provided more accurate 

responses to deep reasoning questions when they interacted with the gaze-reactive tutor. 

These questions are the gold standard for learning and comprehension, so this pattern 

highlights the benefits of gaze-reactivity. 

 

4 It should be noted that these marginally significant effects are likely to be significant with a larger sample. 
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Insert Table 2 and Figure 5 about here 

There are three additional points associated with the patterns in learning gains that 

are worth mentioning. First, the lack of an effect for prompt questions might be at-

tributed to the fact that the tutor’s prompts explicitly command students’ attention. 
Hence, gaze-reactivity does not play a substantial role when students’ are tested on con-
tent covered with a prompt. 

Second, although there was no significant difference associated with overall learn-

ing gains, there was a small effect (d = .26 sigma) in favor of the gaze-reactive tutor. A 

post-hoc power analysis indicated that our sample size of 32 participants yielded a 

power value of .42 for a one-tailed paired-samples t-test with an alpha value of .05. 

This achieved power is substantially less than the recommended power of .8 (Cohen, 

1992), so this difference might be significant with a larger sample. 

Third, although the zero mean for deep reasoning questions in the non gaze-reactive 

condition might appear to be odd, there was considerable variability associated with 

this mean. This implies that some students demonstrated some learning in this condi-

tion, while other students showed negative learning gains. There is the question of iden-

tifying the individual differences associated with these two groups of students, an issue 

that we address in Section 4.5.   

4.3. Subjective Impressions of the Session 

We addressed the question of whether gaze-reactivity influenced students’ perceptions 

of the tutor by examining their responses to the five questions on the Subjective-

Impressions Questionnaire (importance, usefulness, interest, challenge, effort; see Sec-

tion 3.3). An analysis of these five measures yielded some interesting patterns of corre-

lations among the measures. In particular, importance was correlated with usefulness (r 

= .372), interest (r = .493), effort (r = .254), but not with challenge (r = .020). In gen-

eral, importance, interest, effort, and usefulness were correlated with one another, but 

were not correlated with challenge. This pattern suggests that the individuals’ measures 

can be reduced to two underlying components. It is advantageous to extract and focus 

on these components instead of examining each measure independently because this 

reduces the number of subsequent statistical tests, thereby alleviating the discovery of 

spurious effects. Furthermore, it might be the case that the underlying components 

might have more explanatory power than the individual measures because they provide 

a composite measure of the underlying constructs. 

One simple possibility to extract the components is to consider challenge as one 

measure and take the average of the importance, usefulness, interest, and effort scores 

as the second measure. However, this solution does not model the pattern of correla-

tions among these variables. Therefore, latent components were extracted with an ex-

ploratory factor analysis (see Appendix B for a brief overview of factor analyses). We 

used a principal components analysis with varimax rotation and Kaiser normalization. 

Several indicators of factorability indicated that the data were in fact factorable (i.e., 

the assumptions of the factor analysis were satisfied). In particular: (a) 4 out of the 5 

included items had a correlation of at least .3 with at least one other item, suggesting 

reasonable factorability, (b) the Kaiser-Meyer-Olkin measure of sampling adequacy 
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was .673, which exceeds the recommended value of 0.6, (c) Bartlett’s test of sphericity 
was significant, 2(10) = 127, p < .001,  (d) the diagonals of the anti-image correlation 

matrix were above .5 for four of the items, and above .27 for the one remaining item 

(this supports the inclusion of each item in the factor analysis), and (e) the commonali-

ties were all above .4, indicating that each item shared a degree of common variance 

with the other items. 

The analysis yielded two components with eigenvalues greater than 1. These collec-

tively accounted for 69.2% of the variance. Component 1, which accounted for 48.1% 

of the variance, consisted of four out of the five measures (interest, useful, effort, and 

importance). Loadings of items onto components are presented in Table 3. One inter-

pretation of these loadings is that Component 1 aligns with state motivation. The fifth 

measure (perceived challenge) loaded on Component 2, which explained 21.0% of the 

variance.  

We considered Component 1 to be an assessment of motivation because it involves: 

(a) expressed interest in the material, (b) perceived importance and usefulness of the 

material, and (c) an evaluation of effort exerted towards learning the material. It is con-

sidered to be a measure of state motivation because the items on the questionnaire were 

specific to learning the material covered in the session that was just completed. This 

measure is expected to be unstable and malleable compared to trait motivation, which 

is a more stable and rigid motivation to learn biology in general.  

Insert Table 3 about here 

Descriptive statistics on the component scores associated with the two conditions 

are presented in Table 4 (the engagement row is described in section 4.4). It should be 

noted that the scores can be negative as they are standardized scores. Paired-samples t-

tests did not yield any significant (p > .05) differences in perceptions of either tutor, alt-

hough there was a small effect of -.21 sigma, which is in favor of the non gaze-reactive 

tutor. 

Insert Table 4 about here 

4.4. Engagement 

Gaze-reactivity had minimal impact on students’ state motivation and perceptions of 

challenge, but did it facilitate or hinder their engagement levels? This question was ad-

dressed by examining students’ responses to the Post-Lecture Engagement Question-

naire and the Affect Grid (see Section 3.3). The measures included valence, arousal, 

and self-reported engagement at the beginning, middle, and end of each lecture. There 

were strong correlations among these measures, so we proceeded by conducting an ex-

ploratory factor analysis on the five engagement measures. All requirements of factora-

bility were satisfied, so we proceeded by examining components with eigenvalues 

greater than one. There was one such component, which explained a robust 72.0% of 

the variance. Since all engagement related variables loaded onto this component5, we 
 

5 Engagement Component = .202 Valence + .211 Arousal + .240 Beginning Engagement + .253 Middle 
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subsequently refer to this component as engagement. 

Paired-samples t-tests comparing engagement across tutors did not yield a signifi-

cant (p > .05) difference (see Table 4), although there was a small effect suggesting that 

students reported more engagement with the non gaze-reactive tutor. Taken together, 

the results associated with learning, state motivation, incremental challenges, and en-

gagement suggest that gaze-reactivity has a positive impact on objective measures of 

learning (deep learning gains), but does not appear to have an impact on the subjective 

measures. 

4.5. Individual Differences 

We investigated if individual differences in prior knowledge, aptitude, interest in learn-

ing biology, perceived usefulness of learning biology, and confidence in learning biolo-

gy from a computer tutor influenced the impact of gaze-reactivity on learning, state mo-

tivation, perceived challenge, and engagement. There were interesting patterns of corre-

lation among these measures so our analyses proceeded by conducting an exploratory 

factor analysis on the five individual difference measures. All requirements of factora-

bility were satisfied, so we proceeded by examining the two components with eigenval-

ues greater than one. These components explained 71.1% of the variance. 

The coefficients of these two individual difference components are presented in Ta-

ble 5. Component 1 (trait motivation), which explained 48.1% of the variance, is con-

sistent with motivated students who considered learning biology to be motivating and 

useful. This component is referred to as trait motivation because it represents more sta-

ble and dispositional attitude towards learning biology rather than unstable and situa-

tional state motivation. Aptitude negatively loaded onto this component, but was the 

major factor for Component 2. This component accounted for 23.0% of the variance. 

The coefficients of confidence and prior knowledge were in the same direction for both 

components, but the magnitude of these coefficients was higher for the aptitude com-

ponent (Component 2). 

Our analysis proceeded by identifying whether the individual differences associated 

with trait motivation and aptitude moderated the effects of gaze-reactivity on our de-

pendent variables. These included overall learning gains, state motivation, perceived 

challenge, and engagement. We focused on overall learning gains in order to reduce the 

number of analyses. A moderation analysis investigates whether a moderating variable 

alters the strength of the causal influence of an independent variable on a dependent 

variable (Aguinis, 2004). For the present analyses, the two individual difference 

measures were the moderator variables, an indicator variable for gaze-reactivity (non 

gaze-reactive = 0, gaze-reactive = 1) was the independent variable, and the four 

measures listed above were the dependent variables. 

Insert Table 5 about here 

The effect of moderator M on the relationship between independent variable X and 

                                                                                                                                                                                  

Engagement + .256 End Engagement. All variables are standardized prior to computing the component 

scores. 
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dependent variable Y is obtained from the interaction term (X × M) of a linear regres-

sion model. In particular, we would obtain a moderation effect if coefficient c in the 

following regression model was statistically significant: Y = aX + bM + c (XM) + e.  

We tested for individual difference moderation effects by performing eight multiple 

regression analyses (4 dependent variables × 2 moderator variables). All interaction 

terms were mean-centered prior to computing the analyses (Cohen, Cohen, West, & Ai-

ken, 2002). Of primary interest is the interaction term, which was not statistically sig-

nificant (p > .05) in any of the analyses with trait motivation as the moderating variable. 

Trait motivation apparently did not moderate the influence of gaze-reactivity on learn-

ing, state motivation, perceived challenge, and engagement. 

One out of the four models that tested the influence of aptitude as a moderator 

yielded a significant (p = .012) interaction term, as well as an overall significant model 

F(2, 60) = 2.78, p = .049. The dependent variable in this model was overall learning 

gains, which is a key variable of interest. The model explained 12.2% of the variance, 

with an impressive 9.9% of the variance being explained by the interaction term.  

We performed a simple slopes analysis in order to identify how aptitude moderates 

the effect of gaze-reactivity on overall learning. In this context, the simple slopes analy-

sis consists of investigating the nature of the relationship between gaze-reactivity and 

overall learning gains for different values of aptitude (typically one standard deviation 

above and below the mean). 

Figure 6 presents the relationship between gaze-reactivity and overall learning one 

standard deviation below, above, and at the aptitude mean. We note that there is a 

(small) positive but non-significant slope for mean aptitude (B = .18, p = .281). This 

implies that gaze-reactive dialogues have a very small impact on overall learning for 

the average student. More importantly, these dialogues were very successful at facilitat-

ing learning for students with aptitudes one standard deviation above the mean (B = .63, 

p = .011). The impact is even more pronounced for the gifted students with aptitude 

levels two standard deviations above the mean (B = 1.07, p = .007; not shown in Figure 

6). 

Insert Figure 6 about here 

On the other hand, there is a negative relationship between gaze-reactivity and 

overall learning gains for the less gifted students (i.e., lower aptitude). The simple slope 

one standard deviation below the aptitude mean failed to reach significance (B = -.26, p 

= .284), but the slope two standard deviations below was marginally significant (B = -

.70, p = .070).  

These patterns indicate that the positive relationship between gaze-reactivity and 

learning observed for students with high aptitude is stronger than the negative relation-

ship for the less gifted students (simple slopes were .63 and -.26 +1 and -1 SD below 

the aptitude mean, respectively). 

Finally, we investigated whether individual differences in trait motivation and apti-

tude interacted with each other to predict the seven dependent variables of interest (i.e., 

state motivation, perceived challenge, engagement, and the four measures of learning). 

There were, however, no significant interactions, so these analyses are not reported 
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here. 

5. GENERAL DISCUSSION 

The present paper described the design and evaluation of a novel ITS that dynamically 

monitored and responded to student disengagement via eye tracking. The results sup-

port a number of conclusions pertaining to the efficacy of gaze-reactivity in promoting 

learning, motivation, and engagement. The subsequent discussion focuses on some of 

the most significant findings, followed by an analysis of some of the limitations, possi-

ble avenues for future work, and some concluding remarks. 

5.1. Overview of Major Findings 

The results support three major conclusions pertaining to the gaze-reactivity with re-

spect to (a) attentional reorientation patterns, (b) learning gains, state motivation, per-

ceived challenge, and engagement, and (c) individual differences. These are addressed 

below. 

5.1.1. Attentional reorientation patterns. There was some uncertainty as to the 

exact effect of the gaze-sensitive statements prior to testing its effects on students. 

Would students pay attention to the gaze-sensitive statement and productively change 

their behavior? Or would they simply consider the statement to be an intrusive annoy-

ance and continue to disengage? If behavior was changed, and students did in fact pay 

more attention to the tutor, was this a lasting change? Or would they quickly revert to 

their previous state of disengagement? Another possibility is that students could have 

zoned out to a point where they have essentially tuned the tutor out and did not even 

actively comprehend the gaze-reactive statement. Yet another possibility is that students 

consciously looked away after receiving the gaze-reactive statement as an act of defi-

ance. 

The results from Section 4.1 indicated that in general just-in-time gaze-reactivity 

was quite effective in reorienting students’ attention towards the tutor. However, off-

screen gaze-behaviors still persisted even after students were explicitly instructed to 

pay attention to the tutor. There were also individual differences in the efficacy of the 

gaze-reactive dialogues. Some students rapidly corrected their behaviors with a single 

cue, others required more than one cue, and a few never adapted their behavior. The 

task of identifying the individual differences that are associated with these different 

classes of students warrants further research. 

5.1.2. Learning gains, state motivation, perceived challenge, and engagement. 

Our second important finding was that gaze-reactivity positively influenced learning 

gains, particularly at deeper levels of comprehension. This discovery of a medium-sized 

deep-learning effect with gaze-reactive dialogues represents a major advantage to this 

form of direct disengagement repair. Although this finding warrants replication in other 

learning environments and with different student populations, there is the important 

question of why simply directing students to reorient their attention had such a signifi-

cant effect? 

One possibility is that students are presumably not expecting a computer tutor to 

monitor their gaze-patterns and explicitly instruct them to focus on the material. This 
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unexpected level of intelligence from a computer might have motivated them to focus 

on the tutor and process the material more deeply. If this is the case, then increased at-

tention on the tutor should positively predict learning. This prediction was confirmed in 

a follow-up analysis that yielded a significant correlation between proportional focus on 

the tutor and deep learning gains (r = .362, p = .042) as well as overall learning gains (r 

= .465, p = .007). Focus on the image and text box were not statistically related to 

learning gains. Taken together, the data suggest that just-in-time gaze-reactivity directs 

students’ attention towards the tutor and this attentional reorientation is what correlates 

with learning. 

While the discussion above seems to extol the virtues of the gaze-reactive tutor, 

there are some caveats to direct gaze-reactive statements as well. In particular, students’ 
performance on assertion questions was lower with the gaze-reactive tutor. There was 

also a small non-significant trend towards students reporting more state motivation and 

engagement after interacting with the non gaze-reactive tutor. Although, state motiva-

tion and engagement did not correlate with deep learning gains, it appears that some 

students might not be amenable to the directness of the gaze-sensitive dialogues. Per-

haps an alternate strategy that politely encourages students to focus on the tutor might 

be warranted. Indeed, politeness has been found to be effective in facilitating learning 

(Brown & Levinson, 1987; Wang et al., 2008), however, it is an open question as to 

whether polite alternatives will be as effective as the more direct gaze-sensitive state-

ments. 

5.1.3. Individual differences. Our third important finding pertained to the discov-

ery of a significant aptitude × treatment interaction with respect to the impact of gaze-

reactivity on overall learning gains. This interaction suggests that while gaze-reactivity 

was associated with a small improvement in overall learning for students with average 

aptitude, learning gains were statistically significant and substantially higher for stu-

dents with high aptitude, and slightly lower for their counterparts, although this effect 

was marginally significant.  

It is important to note that aptitude did not moderate the influence of gaze-reactivity 

on any of the other variables. Therefore, it would be inappropriate to claim that students 

with high aptitude learned more from the gaze-reactive tutor because they preferred this 

tutor or experienced higher engagement with this tutor. Aptitude was also not correlated 

with the number of gaze statements (r = .001, p = .996). Since gaze-reactive statements 

were provided in response to disengagement behaviors, aptitude does not appear to ex-

plain students’ tendencies to disengage from the tutor. 

There is also the possibility that aptitude might influence how students process the 

gaze-reactive statement. That is, are there aptitude differences associated with gaze pat-

terns following gaze-reactive statements? We addressed this question with a follow-up-

analysis which first involved assigning students to a low or high aptitude group (based 

on a median split on aptitude scores). Independent-samples t-tests were used to test for 

aptitude differences in gaze patterns 7.5 seconds after the gaze-reactive statement. 

There were no aptitude related differences pertaining to focus on the tutor, the text box, 

the blank area, and off-screen,  

There was, however, a marginally significant effect for attention on the image. It 

appears that the high aptitude students were more likely to focus on the image than the 
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low aptitude students soon after receiving a gaze-reactive statement (M = .123, SD = 

.199 for high aptitude and M = .032, SD = .050 for low aptitude; t(30) = -1.88, p = .069, 

d = .63). Integrating the spoken content of the lecture with the image on the screen is an 

essential element of learning biology. The fact that gaze-reactivity was more effective 

in promoting speech-content (text-diagram) integration for the high aptitude students is 

one potential explanation of this aptitude × treatment effect. 

5.2. Limitations and Future Work 

There are four primary limitations with the present research. These, along with potential 

solutions, are discussed here. 

5.2.1. Indirect inference of boredom. The first limitation pertains to the fact that 

boredom, disengagement, and zoning out were not directly measured but were inferred 

from students’ gaze-patterns. More specifically, we assumed that students were not en-

gaged in the learning session if they were looking away from the screen for an extended 

and contiguous block of time. We considered this to be an appropriate assumption be-

cause most would agree that a noticeable lack of eye contact with a conversational 

partner (computer tutor in this case) is a defensible sign of disengagement unless one is 

trying to be covert or deceptive. Nevertheless, future research should explicitly verify 

this assumption with measures of boredom, engagement, interest, and other relevant 

emotions.  

This can be accomplished in a number of ways. One option is for the tutor to simply 

ask students if they are bored before providing gaze-reactive statements. This approach, 

however, relies on the honesty of the students, has the potential of interrupting the pri-

mary task of learning, and cues students to the fact that the tutor is explicitly monitor-

ing their boredom levels. Alternatively, sensors that track facial features, physiology, 

reaction time, and other informational channels could be used to corroborate the gaze-

based diagnosis of boredom (Beck, 2005; Cocea & Weibelzahl, 2009; D'Mello & 

Graesser, 2010b; Drummond & Litman, 2010; Jacobs et al., 2009).  

Perhaps a simpler approach would involve a posthoc verification of the assumption 

that persistent off-screen gaze-patterns correlate with disengagement. This could be 

achieved via a retrospective affect judgment protocol (D'Mello & Graesser, 2010b), 

where videos of students’ faces captured during the learning session are replayed after 

the session. Students make boredom judgments over the course of viewing these vide-

os. These offline boredom judgments can then be compared to the tutor’s online gaze-

based predictions of boredom. 

5.2.2. Within-subjects experimental design. The second limitation with this re-

search can be linked to the within-subjects methodology used to test the causal link be-

tween gaze-reactivity and learning. The value of the repeated measures (within-

subjects) design is that it controls for participant variability and allows us to assess how 

particular individuals differ with respect to treatment and control. However, practice 

effects and carry-over effects are common disadvantages of within-subjects designs. 

These problems might be applicable to the current experiment as well.  

A carry-over effect might have occurred for students who first interacted with the 

gaze-sensitive tutor (Session 1) followed by the non gaze-sensitive tutor (Session 2). 
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Since students were blind to condition (i.e., they did not know that there were two tu-

tors until the debriefing), a gaze-sensitive statement during Session 1 might have im-

pacted behavior and performance in Session 2.  

Similarly, a practice effect might have caused performance to improve from Session 

1 to Session 2. Performance might have improved as knowledge of biology accrued, but 

it might also have worsened due to fatigue and burnout. 

Although the use of a counterbalancing scheme to determine the ordering of tutors 

(see Section 3.2) somewhat reduces the impact of these effects, we performed a follow-

up analysis to explicitly assess if there were any carry-over or practice-effects. Each 

participant was assigned to either a gaze-first or gaze-second group, with respect to 

whether they first interacted with the gaze-reactive tutor followed by the non gaze-

reactive tutor, or vice versa. An independent-samples t-test yielded a significant group-

difference associated with tutor-directed gaze patterns. In particular, students in the 

gaze-first group were more likely to focus on the tutor during both conditions; this sug-

gests that there were some carry-over effects.  

Fortunately, tests for group-differences (gaze-first vs. gaze-second) across the seven 

dependent variables did not yield any significant effects (p > .05), so we have some 

confidence that our major findings cannot be simply attributed to methodological com-

plications. Nevertheless, it would be desirable if the major patterns were replicated in 

an experiment that implemented a between-subjects design, where students are random-

ly assigned to a tutor that is gaze-reactive or to one that is not. 

5.2.3. Scalability concerns. One disadvantage of commercially available eye track-

ers is that they are expensive, need expensive hardware and software, and require some 

expertise to correctly operate. This raises some practical concerns for those who want to 

extend this program of research into classrooms.  

Fortunately, recent advances in cost-effective eye tracking address this concern in a 

significant way. Opengazer (Zieliński, 2010) and TrackEye (Zafer, 2010) are two freely 

available software programs for eye tracking. These systems perform lower-precision 

eye tracking by utilizing inexpensive commercially available web cameras, which are 

integrated into most laptops. The lower-precision is not a major concern for the gaze-

sensitive tutor because it only needs to infer whether the student is gazing at large re-

gions of the screen or is looking elsewhere. Developing a version of the tutor that uses 

one of these freely-available eye trackers is the next step forward. 

5.2.4. Lack of sensitivity to all students. One limitation of the experiment is that 

16 of the 48 participants (33.3%) were excluded from the analyses because they did not 

receive a single gaze-reactive statement. This could have occurred because these partic-

ipants were never sufficiently boredom to trigger a gaze-reactive statement. Alternative-

ly, they could have been bored, but their disengagement behaviors in terms f gaze pat-

terns were not captured by the gaze-sensitive system. Although further research is 

needed to decide among these two alternatives, the fact that a third of the participants 

had to be excluded from the analyses is an important limitation of the experiment. It 

might also be a limitation of the current version of the gaze-reactive system, because it 

implies that though there is evidence in favor of the system, the system itself might not 

be applicable to all students. 

5.2.5. Unanswered questions and new opportunities. In addition to yielding some 
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important insights into the feasibility of gaze-reactivity as a mechanism to diagnose and 

alleviate boredom, the present study also generated some important questions that war-

rant further research. One question pertains to understanding why performance on the 

assertion questions was higher when students interacted with version of the tutor that 

was not sensitive to their gaze patterns?  

There is also the issue of identifying specific areas of the content that triggered 

boredom and the resultant gaze-reactive dialogues. It would also be informative to iden-

tify how students’ attentional reorientation behaviors at these critical junctures were 

related to learning. Unfortunately, the small number of questions on the knowledge 

tests (3 for each topic) makes such an analysis unfeasible with the currently available 

data. Indeed, a more content-focused fine-grained analysis of the tutorial session with 

respect to disengagement tendencies, gaze-reactivity, attentional reorientation, and 

learning is an important item for future work. 

The small nonsignificant state motivation effect also warrants further consideration. 

One possibility is that the items included on the questionnaire did not tap into the rele-

vant dimensions of their impressions of the session. One potential way to alleviate this 

concern is to include free response questions as well as expanding the scope of ques-

tions on the Subjective-Impressions Questionnaire. It might also be useful to implement 

think-aloud protocols (Ericsson & Simon, 1993) in order to tap into students’ moment-
by-moment cognitive processes while they interact with the gaze-reactive tutor.  

Our results also indicated that the gaze-reactive dialogues were more effective for 

high aptitude students. This effect might be attributed to the fact that the gaze-reactive 

statements only instructed students to pay attention but did not provide any instructions 

on how to focus attentional resources. High ability students might have been able to 

interpret this general instruction more effectively because they might be more skilled in 

allocating attentional resources. Low ability students might need greater individual ad-

aptation, perhaps in the form of explicit instructions on what specifically to focus on. 

For example, the tutor might have said: “Please pay attention. It’s important that you 
understand how chromatids work in mitosis. I’m going to tell you about how they 
form”.  

It is also possible that gaze sensitivity might have to be tailored to address differ-

ences in motivation as well as interactions between aptitude and motivation. For exam-

ple, it is unlikely that the same set of gaze-reactive dialogues that are effective for high 

aptitude students who lack intrinsic motivation (i.e., gifted but lazy students) might also 

be effective for motivated by low aptitude students. Hence, further research is needed to 

address the general question of how to adapt gaze-reactive statements so they tailored 

to individual student’s abilities and needs. 

5.3. Concluding Remarks 

As most people in the field of education will attest, the task of keeping students en-

gaged in educational activities is extremely challenging. Establishing and maintaining 

student engagement is especially critical with ITSs and other computer-based learning 

environments because students can end the session at will when they are outside of the 

laboratory and are no longer under the watchful eye of an experimenter. The engage-
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ment problem is undoubtedly more severe in situations where the computer tutor does 

most of the talking as is the case when collaborative lectures are delivered to remedial 

students. Keeping students engaged so they become actively involved in their own 

learning instead of being passive information receivers is an important challenge for 

next-generation ITSs that aspire to impact motivation and emotion in addition to cogni-

tive states. 

The research community is taking heed of this challenge by developing affect-

sensitive ITSs that detect and respond to the negative emotions that are inextricably 

bound to learning (Afzal & Robinson, 2009; Burleson & Picard, 2007; Calvo & 

D'Mello, 2011; Conati & Maclaren, 2009; D'Mello & Graesser, 2010b; D'Mello, Leh-

man, Sullins et al., 2010; Forbes-Riley et al., 2008; Robison et al., 2009; Woolf et al., 

2010). Our gaze-sensitive ITS complements the emerging research in this area by 

providing one possible solution to the disengagement problem. The next step is to im-

prove the system so that students’ perceptions of the session improve in conjunction 

with advances in learning gains. This is a critical step because although state motivation 

may not be linked to learning in the short-term, it will undoubtedly influence long-term 

use and acceptance of the tutor, and consequently impact learning as well. 

Finally, it is important to emphasize that while the present research tested one po-

tential intervention to increase engagement, there are several alternate strategies that 

can be implemented. In lieu of the rather direct gaze-reactive dialogue, the tutor could 

have used less direct and more polite statements (Brown & Levinson, 1987; Wang et 

al., 2008). While the direct statements were effective for the high aptitude students, 

perhaps polite statements might be more effective for students with lower scholastic 

aptitude scores. Indeed, there is some evidence that students with low prior knowledge 

or students who make the most errors learn best from tutors that use polite compared to 

direct language (McLaren, DeLeeuw, & Mayer, 2011a;2011b). 

Importantly, disengagement-repair interventions do not have to be restricted to 

gaze-reactive statements. The tutor could have highlighted relevant areas in the image, 

asked the student a question, provided a domain-relevant puzzle or challenge, or 

launched an alternate task that would increase cognitive arousal such as an engaging 

animation or a simulation (Dickey, 2005; Gee, 2003). On a somewhat different front, 

another strategy is to provide students with just-in-time training on emotion regulation 

strategies (e.g., cognitive reappraisal) to help them manage their boredom (Gross, 2008; 

Strain & D'Mello, 2011).  

Some of the emerging theories on emotions and learning also provide some useful 

recommendations. According to the control-value theory of academic emotions, en-

gagement is positively influenced by students’ perceived control of and value in the 
learning activity (Pekrun, 2006; Pekrun, 2010). Interventions that increase control, such 

as freedom of choice on the learning tasks (Cordova & Lepper, 1996), and increase per-

ceived value such as aligning topics with interests to increase intrinsic motivation (Hidi 

& Renninger, 2006; Hulleman et al., 2008) might also be effective in promoting en-

gagement.  

According to flow theory (Csikszentmihalyi, 1975; Csikszentmihalyi, 1990), a bal-

ance between challenge and skill is the key to keeping students engaged. More specifi-

cally, engagement is high when challenge slightly exceeds skills but boredom is promi-
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nent when skill greatly exceeds challenge. Therefore, dynamically selecting learning 

tasks that are sensitive to individual students zone of proximal development is yet an-

other strategy to enhance engagement (Brown, Ellery, & Campione, 1998; Vygotsky, 

1986).  

In summary, there appear to be a number of strategies that attempt to proactively in-

crease engagement as well as interventions that reactively respond to boredom when it 

inevitably occurs. Although future research is needed to comparatively evaluate the ef-

ficacy of these strategies, it is likely that a combination of both proactive as well as re-

active interventions might be needed to have a lasting impact on both short- and long- 

term engagement. 
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APPENDIX A 

Sample Test Questions from Mitosis Lecture (Correct answers are bolded) 

1. (Prompt Question) What kind of hormone would be responsible for telling a cell to 

grow? 

a. An enzymatic hormone 

b. A growth hormone 

c. A receptor hormone 

d. A signal hormone  

2. (Assertion Question) Mitosis is the splitting of a cell’s: 
a. Cytoplasm 

b. Organelles 

c. Nucleus 

d. Membrane 

3. (Deep Question) Which of the following does not occur in mitosis? 

a. Condensation of the chromosomes 

b. Replication of the DNA 

c. Separation of sister chromatids 

d. Separation of the centrosomes
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APPENDIX B 

Brief Description of Factor Analysis 

A factor analysis is a widely used statistical method to identify a small number of latent 

unobserved variables that model the variability associated with a larger number of ob-

served variables. For example, a researcher interested in identifying an individual’s 
mood state (i.e., positive or negative) might ask the person to rate the extent to which 

they feel delighted, cheerful, excited, blue, downhearted, and lonely. If these adjectives 

are selected correctly, then ratings for delighted, cheerful, and excited (adjectives de-

scribing positive affect) are expected to moderately to strongly correlate with each other 

but not correlate with ratings for blue, downhearted, and lonely (adjective describing 

negative affect). Much like coefficients of a linear regression, the latent factor for posi-

tive affect will be modeled as a linear combination of the observed variables (i.e., large 

positive coefficients for cheerful, excited, and delighted but negative or negligible coef-

ficients for blue, downhearted, and lonely). A reverse pattern of coefficients will be ob-

tained for the factor describing negative affect. Thus, the set of six observed emotional 

adjectives has been reduced to two latent factors (or components). 

There are seven main steps involved in a factor analysis. These are listed below 

1. Collect data. Collect measures for factor analysis. 

2. Obtain correlational matrix. This step involves computing a correlation 

matrix between the measures that will be included in the factor analysis. 

3. Assess factorability of data. This step involves ensuring that the data does 

not violate any of the requirements of a factor analysis. For example, there 

needs to be a modest correlation among variables for a factor analysis to be 

successful. 

4. Determine number of factors. Specify the number of factors to be extract-

ed using some criteria (e.g., eigenvalues of extracted factors should be 

greater than 1). 

5. Extract initial factors. Extract factors using one of several methods such as 

principal components analysis or maximum likelihood extraction.  

6. Rotate factors. This step is important to help with the interpretation of the 

factors. It involves rotating the extracted factors using one or more rotation 

methods to yield a final solution. Examples of rotation methods include 

varimax for orthogonal factors and direct quartimin for oblique rotations 

(i.e., correlated factors). 

7. Interpret factors. The measures used to generate the factor analysis are lin-

early related to the extracted factors. Examining the patterns in the relation-

ships between measures and factors is used to interpret the factors.
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Table 1. Excerpts from human and computer lectures 

N Actual Lecture Guru Dialogue 

T1 Let's talk about mitosis. Let's talk about mitosis. 

T2 Ok. Ok. 

T3 Now, let’s say here’s a skin cell, he’s 
just sitting around, and he needs to di-

vide. 

Now, let’s say here’s a skin cell, it's just 
sitting around, and it needs to divide. 

T4 Someone’s got to tell him, right? Someone’s got to tell him to divide, 

right? 

S1 Mm hmm. <student response> 

T5 Ok Ok 

T6 I mean, let’s say a skin, skin cell is sit-
ting around. 

I mean, let’s say a skin cell is sitting 
around. 

T7 Do you think somebody needs to tell 

him to split, or do you think he can just 

say, oh, I think I’ll split? 

Do you think somebody needs to tell 

him to split, or do you think he can just 

say, oh, I think I’ll split? 

S2 Tell him it’s time? <student response> 

T8 Yeah!  

T9 Because, see, now folks need to get in-

structions, right? 

Someone must tell him to split because 

he needs to get instructions, ok? 

S3 Mm hmm. <student response> 
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Table 2. Descriptive statistics and paired-samples t-tests on proportional learning 

gains 

 Descriptives  Paired-Samples t-test 

 Non GR GR     

Learning Measure M (SD) M (SD)  t(31) p d 

Prompt .547 (.481) .484 (.466)  -.626 .268 -.13 

Assertion .531 (.457) .281 (.621)  -1.72 .048 **-.46 

Deep .000 (.741) .313 (.632)  1.88 .035 **.45 

         

Overall .185 (.840) .369 (.534)  -.939 .178 .26 

Note. GR = Gaze-reactive. **p < .05 on a one-tailed test. 
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Table 3. Coefficients (factor loadings) of items from the Subjective-Impressions 

Questionnaire 

Measure Component 1 

(State Motivation) 

Component 2 

(Perceived Challenge) 

Importance .284 .117 

Usefulness .335 -.082 

Interest .361 -.143 

Effort .305 .180 

   

Challenge .054 .942 
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Table 4. Descriptive statistics and paired-samples t-tests on subjective measures 

 Descriptives  Paired-Samples t-test 

 Non GR GR     

Measure M (SD) M (SD)  t(31) p d 

State Motivation -.215 (.990) -.402 (.909)  -1.39 .173 -.21 

Perceived Challenge .002 (1.04) .001 (.956)  -.009 .993 .00 

         

Engagement -.264 (.861) -.474 (.930)  -1.35 .187 -.19 

Note. GR = Gaze-reactive. 
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Table 5. Coefficients (factor loadings) of individual difference items 

Measure Component 1 

(Trait Motivation) 

Component 2 

(Aptitude) 

Useful .500 -.267 

Interest .404 .000 

   

Aptitude -.219 .713 

   

Confidence .143 .349 

Prior Knowledge .192 .255 
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Figure 1. Information-transmission and information-elicitation clusters. die - di-

rect instruction by tutor, ack - acknowledgment by student, cgq - comprehension gaug-

ing question by tutor, meta – metacomment by student, ques – tutor poses question, 

ans – student answers question, fdb – tutor provides feedback. 
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Figure 2. Screen shot of interface 
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Figure 3. System architecture 
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Figure 4. Probability distribution of gaze-patterns before and after gaze-reactive 

statements. 
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Figure 5. Proportional learning gains with standard error 
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Figure 6. Aptitude × gaze-reactivity interaction 

 

 
 

 
 




