
Open access to the Proceedings of the 

27th USENIX Security Symposium 

is sponsored by USENIX.

GAZELLE: A Low Latency Framework for  
Secure Neural Network Inference

Chiraag Juvekar, MIT MTL; Vinod Vaikuntanathan, MIT CSAIL;  

Anantha Chandrakasan, MIT MTL

https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar

This paper is included in the Proceedings of the 

27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

978-1-939133-04-5



GAZELLE: A Low Latency Framework
for Secure Neural Network Inference

Chiraag Juvekar

MIT MTL

Vinod Vaikuntanathan

MIT CSAIL

Anantha Chandrakasan

MIT MTL

Abstract

The growing popularity of cloud-based machine learning

raises natural questions about the privacy guarantees that

can be provided in such settings. Our work tackles this

problem in the context of prediction-as-a-service wherein

a server has a convolutional neural network (CNN) trained

on its private data and wishes to provide classifications on

clients’ private images. Our goal is to build efficient secure

computation protocols which allow a client to obtain the

classification result without revealing their input to the

server, while at the same preserving the privacy of the

server’s neural network.

To this end, we design Gazelle, a scalable and low-

latency system for secure neural network inference, using

an intricate combination of homomorphic encryption and

traditional two-party computation techniques (such as gar-

bled circuits). Gazelle makes three contributions. First, we

design a homomorphic encryption library which provides

fast implementations of basic homomorphic operations

such as SIMD (single instruction multiple data) addition,

SIMD multiplication and ciphertext slot permutation. Sec-

ond, we implement homomorphic linear algebra kernels

which provide fast algorithms that map neural network lay-

ers to optimized homomorphic matrix-vector multiplica-

tion and convolution routines. Third, we design optimized

encryption switching protocols which seamlessly convert

between homomorphic and garbled circuit encodings to en-

able implementation of complete neural network inference.

We evaluate our protocols on benchmark neural net-

works trained on the MNIST and CIFAR-10 datasets and

show that Gazelle outperforms the best existing systems

such as MiniONN (ACM CCS 2017) and Chameleon

(Crypto Eprint 2017/1164) by 20–30× in online runtime.

When compared with fully homomorphic approaches like

CryptoNets (ICML 2016), we demonstrate three orders

of magnitude faster online run-time.

1 Introduction

Fueled by the massive influx of data, sophisticated algo-

rithms and extensive computational resources, modern

machine learning has found surprising applications in

such diverse domains as medical diagnosis [43, 13],

facial recognition [38] and credit risk assessment [2].

We consider the setting of supervised machine learning

which proceeds in two phases: a training phase where a

labeled dataset is turned into a model, and an inference or

classification or prediction phase where the model is used

to predict the label of a new unlabelled data point. Our

work tackles a class of complex and powerful machine

learning models, namely convolutional neural networks

(CNN) which have demonstrated better-than-human

accuracy across a variety of image classification tasks [28].

One important use-case for machine learning models

(including CNNs) comes up in the setting of predictions-as-

a-service (PaaS). In the PaaS setting, a large organization

trains a machine learning model using its proprietary data.

The organization now wants to monetize the model by

deploying a service that allows clients to upload their

inputs and receive predictions for a price.

The first solution that comes to mind is for the organi-

zation to make the model (in our setting, the architecture

and parameters of the CNN) freely available for public

consumption. This is undesirable for at least two reasons:

first, once the model is given away, there is clearly no

opportunity for the organization to monetize it, potentially

removing its incentives to undergo the expensive data

curating, cleaning and training phases; and secondly, the

model, which has been trained on private organizational

data, may reveal information about users that contributed

to the dataset, violating their privacy and perhaps even

regulations such as HIPAA.

A second solution that comes to mind is for the orga-

nization to build a web service that hosts the model and

provides predictions for a small fee. However, this is also

undesirable for at least two reasons: first, the users of such a

service will rightfully be concerned about the privacy of the

inputs they are providing to the web service; and secondly,

the organization may not even want to know the user inputs

for reasons of legal liability in case of a future data breach.

The goal of our work is to provide practical solutions

to this conundrum of secure neural network inference.

More concretely, we aim to enable the organization and

its users to interact in such a way that the user eventually

obtains the prediction (without learning the model) and the

organization obtains no information about the user’s input.

Modern cryptography provides us with many tools, such

as fully homomorphic encryption and garbled circuits, that

can help us solve this problem. A key take-away from our

work is that both techniques have their limitations; under-

standing their precise trade-offs and using a combination

of them judiciously in an application-specific manner

helps us overcome the individual limitations and achieve

substantial gains in performance. Indeed, several recent

works [30, 36, 29, 18, 32] have built systems that address

the problem of secure neural network inference using these

cryptographic tools, and our work improves on all of them.
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Let us begin by discussing these two techniques and

their relative merits and shortcomings.

Homomorphic Encryption. Fully Homomorphic

Encryption (FHE), is an encryption method that allows

anyone to compute an arbitrary function f on an encryption

of x, without decrypting it and without knowledge of the

private key [34, 15, 6]. Using just the encryption of x, one

can obtain an encryption of f (x). Weaker versions of FHE,

collectively called partially homomorphic encryption,

permit the computation of a subset of all functions,

typically functions that perform only additions (AHE) [31]

or functions that can be computed by depth-bounded

arithmetic circuits (LHE) [5, 4, 14]. Recent efforts,

both in theory and in practice have given us large gains

in the performance of several types of homomorphic

schemes [5, 16, 7, 21, 35, 8] allowing us to implement a

larger class of applications with better security guarantees.

The major bottleneck for these techniques, notwith-

standing these recent developments, is their computational

complexity. The computational cost of LHE, for example,

grows dramatically with the depth of the circuit that the

scheme needs to support. Indeed, the recent CryptoNets

system gives us a protocol for secure neural network

inference using LHE [18]. Largely due to its use of LHE,

CryptoNets has two shortcomings. First, they need to

change the structure of neural networks and retrain them

with special LHE-friendly non-linear activation functions

such as the square function. This has a potentially negative

effect on the accuracy of these models. Secondly, and

perhaps more importantly, even with these changes, the

computational cost is prohibitively large. For example,

on a neural network trained on the MNIST dataset, the

end-to-end latency of CryptoNets is 297.5 seconds, in

stark contrast to the 30 milliseconds end-to-end latency

of Gazelle. In spite of the use of interaction, our online

bandwidth per inference for this network is a mere 0.05MB

as opposed to the 372MB required by CryptoNets.

In contrast to the LHE scheme in CryptoNets, Gazelle

employs a much simpler packed additively homomorphic

encryption (PAHE) scheme, which we show can support

very fast matrix-vector multiplications and convolutions.

Lattice-based AHE schemes come with powerful features

such as SIMD evaluation and automorphisms (described

in detail in Section 3) which make them the ideal tools for

common linear-algebraic computations.

Secret Sharing and Garbled Circuits. Yao’s garbled

circuits [44] and the secret-sharing based Goldreich-

Micali-Wigderson (GMW) protocol [19] are two leading

methods for the task of two-party secure computation

(2PC). After three decades of theoretical and applied work

improving and optimizing these protocols, we now have

very efficient implementations, e.g., [10, 9, 12, 33]. The

modern versions of these techniques have the advantage

of being computationally inexpensive, partly because they

rely on symmetric-key cryptographic primitives such as

AES and SHA and use them in a clever way [3], because

of hardware support in the form of the Intel AES-NI

instruction set, and because of techniques such as oblivious

transfer extension [27, 3] which limit the use of public-key

cryptography to an offline reusable pre-processing phase.

The major bottleneck for these techniques is their

communication complexity. Indeed, three recent works

followed the garbled circuits paradigm and designed sys-

tems for secure neural network inference: the SecureML

system [30], the MiniONN system [29], the DeepSecure

system [36].

DeepSecure uses garbled circuits alone; SecureML

uses Paillier’s AHE scheme to speed up some operations;

and MiniONN uses a weak form of lattice-based AHE

to generate “multiplication triples” similar to the SPDZ

multiparty computation framework [9]. Our key claim

is that understanding the precise trade-off point between

AHE and garbled circuit-type techniques allows us

to make optimal use of both and achieve large net

computational and communication gains. In particular, in

Gazelle, we use optimized AHE schemes in a completely

different way from MiniONN: while they employ AHE as

a pre-processing tool for generating triples, we use AHE

to dramatically speed up linear algebra directly.

For example, on a neural network trained on the CIFAR-

10 dataset, the most efficient of these three protocols,

namely MiniONN, has an online bandwidth cost of 6.2GB

whereas Gazelle has an online bandwidth cost of 0.3GB. In

fact, we observe across the board a reduction of 20-80× in

the online bandwidth per inference which gets better as the

networks grow in size. In the LAN setting, this translates to

an end-to-end latency of 3.6s versus the 72s for MiniONN.

Even when comparing to systems such as Chameleon

[32] that rely on trusted third-party dealers, we observe

a 30× reduction in online run-time and 2.5× reduction in

online bandwidth, while simultaneously providing a pure

two-party solution. A more detailed performance com-

parison with all these systems, is presented in Section 8.

(F)HE or Garbled Circuits? To use (F)HE and garbled

circuits optimally, we need to understand the precise com-

putational and communication trade-offs between them.

Roughly speaking, homomorphic encryption performs

better than garbled circuits when (a) the computation has

small multiplicative depth, (ideally multiplicative depth

0 meaning that we are computing a linear function) and

(b) the boolean circuit that performs the computation has

large size, say quadratic in the input size. Matrix-vector

multiplication (namely, the operation of multiplying a

plaintext matrix with an encrypted vector) provides us

with exactly such a scenario. Furthermore, the most

time-consuming computations in a convolutional neural

network are indeed the convolutional layers (which are
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nothing but a special type of matrix-vector multiplication).

The non-linear computations in a CNN such as the ReLU

or MaxPool functions can be written as simple linear-size

circuits which are best computed using garbled circuits.

This analysis is the guiding philosophy that enables

the design of Gazelle (A more detailed description of

convolutional neural networks, is presented in Section 2).

Our System: The main contribution of this work is

Gazelle, a framework for secure evaluation of convolu-

tional neural networks. It consists of three components:

The first component is the Gazelle Homomorphic

Layer which consists of very fast implementations of

three basic homomorphic operations: SIMD addition,

SIMD scalar multiplication, and automorphisms (For a

detailed description of these operations, see Section 3).

Our innovations in this part consist of techniques for

division-free arithmetic and techniques for lazy modular

reductions. In fact, our implementation of the first two

of these homomorphic operations is only 10-20× slower

than the corresponding operations on plaintext.

The second component is the Gazelle Linear Algebra

kernels which consists of very fast algorithms for homo-

morphic matrix-vector multiplications and homomorphic

convolutions, accompanied by matching implementations.

In terms of the basic homomorphic operations, SIMD

additions and multiplications turn out to be relatively

cheap whereas automorphisms are very expensive. At

a very high level, our innovations in this part consists of

several new algorithms for homomorphic matrix-vector

multiplication and convolutions that minimize the

expensive automorphism operations.

The third and final component is Gazelle Network

Inference which uses a judicious combination of garbled

circuits together with our linear algebra kernels to

construct a protocol for secure neural network inference.

Our innovations in this part consist of efficient protocols

that switch between secret-sharing and homomorphic

representations of the intermediate results and a novel

protocol to ensure circuit privacy.

Our protocol also hides strictly more information about

the neural network than other recent works such as the

MiniONN protocol. We refer the reader to Section 2 for

more details.

2 Secure Neural Network Inference

The goal of this section is to describe a clean abstraction

of convolutional neural networks (CNN) and set up the

secure neural inference problem that we will tackle in the

rest of the paper. A CNN takes an input and processes

it through a sequence of linear and non-linear layers in

order to classify it into one of the potential classes. An

example CNN is shown is Figure 1.

2.1 Linear Layers

The linear layers, shown in Figure 1 in red, can be of two

types: convolutional (Conv) layers or fully-connected

(FC) layers.

Convolutional Layers. We represent the input to aConv

layer by the tuple (wi,hi,ci) where wi is the image width, hi

is the image height, and ci is the number of input channels.

In other words, the input consists of ci many wi×hi images.

The convolutional layer is then parameterized by co filter

banks each consisting of ci many fw × fh filters. This is

represented in short by the tuple ( fw, fh,ci,co). The com-

putation in a Conv layer can be better understood in terms

of simpler single-input single-output (SISO) convolutions.

Every pixel in the output of a SISO convolution is com-

puted by stepping a single fw× fh filter across the input im-

age as shown in Figure 2. The output of the full Conv layer

can then be parameterized by the tuple (wo,ho,co) which

represents co many wo×ho output images. Each of these

images is associated with a unique filter bank and is com-

puted by the following two-step process shown in Figure 2:

(i) For each of the ci filters in the associated filter bank, com-

pute a SISO convolution with the corresponding channel in

the input image, resulting in ci many intermediate images;

and (ii) summing up all these ci intermediate images.

There are two commonly used padding schemes when

performing convolutions. In the valid scheme, no input

padding is used, resulting in an output image that is smaller

than the initial input. In particular we have wo=wi− fw+1

and ho=hi− fh+1. In the same scheme, the input is zero

padded such that output image size is the same as the input.

In practice, the Conv layers sometimes also specify

an additional pair of stride parameters (sw, sh) which

denotes the granularity at which the filter is stepped. After

accounting for the strides, the output image size (wo,ho),
is given by (⌊(wi − fw + 1)/sw⌋,⌊(hi − fh + 1)/sh⌋) for

valid style convolutions and (⌊wi/sw⌋,⌊hi/sh⌋) for same

style convolutions.

Fully-Connected Layers. The input to a FC layer is a

vector vi of length ni and its output is a vector vo of length

no. A fully connected layer is specified by the tuple (W, b)

where W is (no×ni) weight matrix and b is an no element

bias vector. The output is specified by the following

transformation: vo=W·vi+b.

The key observation that we wish to make is that the

number of multiplications in the Conv and FC layers are

given by (wo · ho · co · fw · fh · ci) and ni · no, respectively.

This makes both the Conv and FC layer computations

quadratic in the input size. This fact guides us to use

homomorphic encryption rather than garbled circuit-based

techniques to compute the convolution and fully connected

layers, and indeed, this insight is at the heart of the much

of the speedup achieved by Gazelle.
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Figure 1: A CNN with two Conv layers and one FC layer. ReLU is used as the activation function and a MaxPooling layer

is added after the first Conv layer.

Figure 2: SISO convolutions and multi-channel Conv lay-

ers

2.2 Non-Linear Layers

The non-linear layers, shown in Figure 1 in blue, consist

of an activation function that acts on each element of

the input separately or a pooling function that reduces

the output size. Typical non-linear functions can be one

of several types: the most common in the convolutional

setting are max-pooling functions and ReLU functions.

The key observation that we wish to make in this context

is that all these functions can be implemented by circuits

that have size linear in the input size and thus, evaluating

them using conventional 2PC approaches does not impose

any additional asymptotic communication penalty.

For more details on CNNs, we refer the reader to [40].

2.3 Secure Inference: Problem Description

In our setting, there are two parties A and B where A holds a

convolutional neural network (CNN) and B holds an input

to the network, typically an image. We make a distinction

between the structure of the CNN which includes the

number of layers, the size of each layer, and the activation

functions applied in layer, versus the parameters of the

CNN which includes all the weights and biases that

describe the convolution and the fully connected layers.

We wish to design a protocol that A and B engage in at the

end of which B obtains the classification result (and poten-

tially the network structure), namely the output of the final

layer of the neural network, whereas A obtains nothing.

The Threat Model. Our threat model is the same as in

previous works, namely the SecureML, MiniONN and

DeepSecure systems and our techniques, as we argue

below, leak even less information than in these works.

To be more precise, we consider semi-honest cor-

ruptions as in [36, 29, 30], i.e., A and B adhere to the

software that describes the protocol, but attempt to infer

information about the other party’s input (the network

parameters or the image, respectively) from the protocol

transcript. We ask for the cryptographic standard of

ideal/real security [20, 19]. Two comments are in order

about this ideal functionality.

The first is an issue specific to the ideal functionality

instantiated in this and past work, i.e., the ideal function-

ality does not completely hide the network structure. We

argue, however, that it does hide the important aspects

which are likely to be proprietary. In particular, the ideal

functionality and our realization hides all the weights and

biases in the convolution and the fully connected layers.

Secondly, we also hide the filter and stride size in the con-

volution layers, as well as information as to which layers

are convolutional layers and which are fully connected.

We do reveal the number of layers and the size1 (the

1One can potentially hide this information by padding the network

with dummy operation at a proportional computational expense
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number of hidden nodes) of each layer. In contrast, other

protocols for secure neural network inference such as the

MiniONN protocol [29] reveal strictly more information,

e.g., they reveal the filter size. As for party B’s security,

we hide the entire image, but not its size, from party A.

A second, more subtle, issue is with the definition

of the ideal functionality which implements secure

network inference. Since such functionality, must at a

bare minimum, give B access to the classification output,

B maybe be able to train a new classifier to mimic these

classification results. This attack is called model stealing

[42]. Note that model stealing with limited queries is

essentially equivalent to a supervised learning task with

access to a limited training dataset. Thus a potential model

stealing adversary could train such classifier without

access to B by simply asking a domain expert to classify

his limited set of test-images. One potential solution is to

limit the number of classification queries that A is allowed

to make of the model. This can be a practical solution in

a try-before-buy scenario where B only needs access to

limited set of classifications to test the performance of the

network before it buy the network parameters from A. We

remark that designing (potentially-noisy) classifiers which

are intrinsically resilient to model stealing is an interesting

open machine learning problem.

Paper Organization. The rest of the paper is organized

as follows. We first describe our abstraction of a packed

additively homomorphic encryption (PAHE) that we use

through the rest of the paper. We then provide an overview

of the entire Gazelle protocol in section 4. In the next two

sections, Section 5 and 6, we elucidate the most important

technical contributions of the paper, namely the linear

algebra kernels for fast matrix-vector multiplication and

convolution. We then present detailed benchmarks on

the implementation of the homomorphic encryption layer

and the linear algebra kernels in Section 7. Finally, we

describe the evaluation of neural networks such as ones

trained on the MNIST or CIFAR-10 datasets and compare

Gazelle’s performance to prior work in Section 8.

3 Packed Additively Homomorphic Encryption

In this section, we describe a clean abstraction of packed

additively homomorphic encryption (PAHE) schemes that

we will use through the rest of the paper. As suggested

by the name, the abstraction will support packing multiple

plaintexts into a single ciphertext, performing SIMD homo-

morphic additions (SIMDAdd) and scalar multiplications

(SIMDScMult), and permuting the plaintext slots (Perm).

In particular, we will never need or use homomorphic

multiplication of two ciphertexts. This abstraction can

be instantiated with essentially all modern lattice-based

homomorphic encryption schemes, e.g., [5, 16, 4, 14].

For the purposes of this paper, a private-key PAHE suf-

fices. In such an encryption scheme, we have a (random-

ized) encryption algorithm (PAHE.Enc) that takes a plain-

text message vector u from some message space and en-

crypts it using a key sk into a ciphertext denoted as [u], and

a (deterministic) decryption algorithm (PAHE.Dec) that

takes the ciphertext [u] and the key sk and recovers the mes-

sage u. Finally, we also have a homomorphic evaluation

algorithm (PAHE.Eval) that takes as input one or more ci-

phertexts that encrypt messages M0,M1,..., and outputs an-

other ciphertext that encrypts a message M= f (M0,M1,...)
for some function f constructed using the SIMDAdd,

SIMDScMult and Perm operations. We require IND-CPA

security, which requires that ciphertexts of any two mes-

sages u and u′ be computationally indistinguishable.

The lattice-based PAHE constructions that we consider

in this paper are parameterized by four constants: (1) the

cyclotomic order m, (2) the ciphertext modulus q, (3) the

plaintext modulus p and (4) the standard deviation σ of

a symmetric discrete Gaussian noise distribution (χ).

The number of slots in a packed PAHE ciphertext

is given by n = φ(m) where φ is the Euler Totient

function. Thus, plaintexts can be viewed as length-n

vectors over Zp and ciphertexts are viewed as length-n

vectors over Zq. All fresh ciphertexts start with an

inherent noise η sampled from the noise distribution χ .

As homomorphic computations are performed η grows

continually. Correctness of PAHE.Dec is predicated on

the fact that |η |<q/(2p), thus setting an upper bound on

the complexity of the possible computations.

In order to guarantee security we require a minimum

value of σ (based on q and n), q ≡ 1 mod m and p is

co-prime to q. Additionally, in order to minimize noise

growth in the homomorphic operations we require that the

magnitude of r ≡ q mod p be as small as possible. This

when combined with the security constraint results in an

optimal value of r=±1.

In the sequel, we describe in detail the three basic

operations supported by the homomorphic encryption

schemes together with their associated asymptotic cost in

terms of (a) the run-time, and (b) the noise growth. Later,

in Section 7, we will provide concrete micro-benchmarks

for each of these operations implemented in the GAZELLE

library.

3.1 Addition: SIMDAdd

Given ciphertexts [u] and [v], SIMDAdd outputs an

encryption of their component-wise sum, namely [u+v].
The asymptotic run-time for homomorphic addition

is n ·CostAdd(q), where CostAdd(q) is the run-time for

adding two numbers in Zq = {0,1,...,q−1}. The noise

growth is at most ηu + ηv where ηu (resp. ηv) is the

amount of noise in [u] (resp. in [v]).

3.2 Scalar Multiplication: SIMDScMult

If the plaintext modulus is chosen such that p≡1 mod m,

we can also support a SIMD compenentwise product.
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Thus given a ciphertext [u] and a plaintext v, we can output

an encryption [u ◦ v] (where ◦ denotes component-wise

multiplication of vectors).

The asymptotic run-time for homomorphic scalar

multiplication is n ·CostMult(q), where CostMult(q) is

the run-time for multiplying two numbers in Zq. The

noise growth is at most ηmult ·ηu where ηmult≈||v||′∞ ·
√

n

is the multiplicative noise growth of the SIMD scalar

multiplication operation.

For a reader familiar with homomorphic encryption

schemes, we note that ||v||′∞ is the largest value in the

coefficient representation of the packed plaintext vector

v, and thus, even a binary plaintext vector can result in

ηmult as high as p · √n. In practice, we alleviate this

large multiplicative noise growth by bit-decomposing

the coefficient representation of v into log(p/2wpt) many

wpt-sized chunks vk such that v=∑2wpt·k ·vk. We refer to

wpt as the plaintext window size.

We can now represent the product [u◦v] as ∑[uk ◦vk]
where uk =[2wpt·k ·u]. Since ||vk||′∞ ≤2wpt the total noise

in the multiplication is bounded by 2wpt · k
√

n · ηuk
as

opposed to p ·√n ·ηu. The only caveat is that we need

access to low noise encryptions [uk] as opposed to just [u]
as in the direct approach.

3.3 Slot Permutation: Perm

Given a ciphertext [u] and one of a set of primitive per-

mutations π defined by the scheme, the Perm opera-

tion outputs a ciphertext [uπ ], where uπ is defined as

(uπ(1),uπ(2),...,uπ(n)), namely the vector u whose slots are

permuted according to the permutation π . The set of per-

mutations that can be supported depends on the structure

of the multiplicative group mod m i.e. (Z/mZ)×. When

m is prime, we have n (=m−1) slots and the permutation

group supports all cyclic rotations of the slots, i.e. it is

isomorphic to Cn (the cyclic group of order n). When m is

a sufficiently large power of two (m=2k, m≥8), we have

n=2k−1 and the set of permutations is isomorphic to the

set of half-rotations i.e. Cn/2×C2, as illustrated in Figure 4.

Permutations are by far the most expensive operations

in a homomorphic encryption scheme. At a high-level

the PAHE ciphertext vectors represent polynomials.

The permutation operation requires transforming these

polynomials from evaluation to coefficient representations

and back. These transformations can be efficiently

computed using the number theoretic transform (NTT)

and its inverse, both of which are finite-field analogues of

their real valued Discrete Fourier Transform counterparts.

Both the NTT and NTT−1 have an asymptotic cost of

Θ(nlogn). As shown in [6], we need to perform Θ(log q)
NTT−1 to control Perm noise growth. The total cost of

Perm is therefore Θ(n logn logq) operations. The noise

growth is additive, namely, ηuπ =ηu+ηrot where ηrot is

the additive noise growth of a permutation operation.

Figure 3: Ciphertext Structure and Operations. Here, n

is the number of slots, q is the size of ciphertext space

(so a ciphertext required ⌈log2 q⌉ bits to represent), p is

the size of the plaintext space (so a plaintext can have at

most ⌊log2 p⌋ bits), and η is the amount of noise in the

ciphertext.

Figure 4: A Plaintext Permutation in action. The permu-

tation π in this example swaps the first and the second

slots, and also the third and fourth slots. The operation

incurs a noise growth from η to η ′ ≈ η + ηrot. Here,

ηrot≈nlogq·η0 where η0 is some small “base noise”.

3.4 Paillier vs. Lattice-based PAHE

The PAHE scheme used in Gazelle is dramatically more

efficient than conventional Paillier based AHE. Homomor-

phic addition of two Paillier ciphertexts corresponds to a

modular multiplication modulo a large RSA-like modulus

(3072bits) as opposed to a simple addition mod q as seen

in SIMDAdd. Similarly multiplication by a plaintext turns

into a modular exponentiation for Paillier. Furthermore the

large sizes of the Paillier ciphertexts makes encryption of

single small integers extremely bandwidth-inefficient. In

contrast, the notion of packing provided by lattice-based

schemes provides us with a SIMD way of packing many

integers into one ciphertext, as well as SIMD evaluation

algorithms. We are aware of one system [37] that tries to

use Paillier in a SIMD fashion; however, this lacks two

crucial components of lattice-based AHE, namely the

facility to multiply each slot with a separate scalar, and

the facility to permute the slots. We are also aware of a

method of mitigating the first of these shortcomings [26],

but not the second. Our fast homomorphic implementation

of linear algebra uses both these features of lattice-based

AHE, making Paillier an inefficient substitute.
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3.5 Parameter Selection for PAHE

Parameter selection for PAHE requires a delicate balance

between the homomorphic evaluation capabilities and the

target security level. We detail our procedure for parameter

selection to meet a target security level of 128 bits. We

first set our plaintext modulus to be 20 bits to represent the

fixed point inputs (the bit-length of each pixel in an image)

and partial sums generated during the neural network

evaluation. Next, we require that the ciphertext modulus

be close to, but less than, 64 bits in order to ensure that

each ciphertext slot fits in a single machine word while

maximizing the potential noise margin available during

homomorphic computation.

The Perm operation in particular presents an interesting

tradeoff between the simplicity of possible rotations

and the computational efficiency of the NTT. A prime

m results in a (simpler) cyclic permutation group but

necessitates the use of an expensive Bluestein transform.

Conversely, the use of m= 2k allows for a 8× more effi-

cient Cooley-Tukey style NTT at the cost of an awkward

permutation group that only allows half-rotations. In this

work, we opt for the latter and adapt our linear algebra

kernels to deal with the structure of the permutation group.

Based on the analysis of [1], we set m= 4096 and σ = 4

to obtain our desired security level.

Our chosen bit-width for q (60 bits), allows for lazy re-

duction, i.e. multiple additions may be performed without

overflowing a machine word before a reduction is neces-

sary. Additionally, even when q is close to the machine

word-size, we can replace modular reduction with a simple

sequence of addition, subtraction and multiplications. This

is done by choosing q to be a pseudo-Mersenne number.

Next, we detail a technique to generate prime moduli

that satisfy the above correctness and efficiency properties,

namely:

1. q≡1 mod m

2. p≡1 mod m

3. |q mod p|= |r|≈1

4. q is pseudo-Mersenne, i.e. q=260−δ ,(δ <
√

q)
Since we have chosen m to be a power of two, we

observe that δ ≡ −1 mod m. Moreover, r ≡ q mod p

implies that δ ≡ (260 − r) mod p. These two CRT

expressions for δ imply that given a prime p and residue

r, there exists a unique minimal value of δ mod (p·m).
Based on this insight our prime selection procedure can

be broken down into three steps:

1. Sample for p ≡ 1 mod m and sieve the prime

candidates.

2. For each candidate p, compute the potential 2|r|
candidates for δ (and thus q).

3. If q is prime and δ is sufficiently small accept the pair

(p,q).
Heuristically, this procedure needs log(q)(p ·

m)/(2|r|√q) candidate primes p to sieve out a suitable q.

Table 1: Prime Selection for PAHE

⌊log(p)⌋ p q |r|
18 307201 260−212 ·63549+1 1

22 5324801 260−212 ·122130+1 1

26 115351553 260−212 ·9259+1 1

30 1316638721 260−212 ·54778+1 2

Since p ≈ 220 and q ≈ 264 in our setting, this procedure

is very fast. A list of reduction-friendly primes generated

by this approach is tabulated in Table 1. Finally note that

when ⌊log(p)⌋ · 3 < 64 we can use Barrett reduction to

speed-up reduction mod p.

The impact of the selection of reduction-friendly primes

on the performance of the PAHE scheme is described in

section 7.

4 Our Protocol at a High Level

Our protocol for secure neural network inference is based

on the alternating use of PAHE and garbled circuits (GC).

We will next explain the flow of the protocol and show

how one can efficiently and securely convert between the

data representations required for the two cryptographic

primitives.

The main invariant that the protocol maintains is that at

the start of thePAHE phase the server and the client posses

an additive share cy, sy of the client’s input y. At the very

beginning of the computation this can be accomplished

by the trivial share (cy, sy)=(y, 0).

In order to evaluate a linear layer, we start with the client

B first encrypting their share using the PAHE scheme and

sending it to the server A. A in turn homomorphically

adds her share sy to obtain an encryption of cy+sy = [y].
The security of the homomorphic encryption scheme

guarantees that B cannot recover y from this encryption.

The server A then uses a homomorphic linear algebra

kernel to evaluate linear layer (which is either convolution

or fully connected). The result is a packed ciphertext that

contains the input to the first non-linear (ReLU) layer. The

homomorphic scheme ensures that A learns nothing about

B’s input. B has not received any input from A yet and thus

has no way of learning the model parameters.

In preparation for the evaluation of the subsequent non-

linear activation layer A must transform her PAHE cipher-

text into additive shares. At the start of this step A holds a

ciphertext [x] (where x is a vector) and B holds the private

key. The first step is to transform this ciphertext such that

both A and B hold an additive secret sharing of x. This is

accomplished by the server A adding a random vector r to

her ciphertext homomorphically to obtain an encryption

[x+ r] and sending it to the client B. The client B then

decrypts this message to get his share. Thus the server A

sets her share sx=r and B sets his share cx=x+r mod p.
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Since A chooses r uniformly at random sx does not contain

any information about either the model or B’s input. Since

B does not know r, cx has a uniform random distribution

from B’s perspective. Moreover the security of the PAHE

scheme ensures that A has no way of figuring out what cx is.

We next evaluate the non-linear activation using Yao’s

GC protocol. At the start of this step both parties posses

additive shares (cx, sx) of the secret value of x and want to

compute y=ReLU(x) without revealing it completely to

either party. We evaluate the non-linear activation function

ReLU (in parallel for each component of x) to get a secret

sharing of the output y = ReLU(x). This is done using

our circuit from Figure 5, described in more detail below.

The output of the garbled circuit evaluation is a pair of

shares sy (for the server) and cy (for the client) such that

sy +cy = y mod p. The security argument is exactly the

same as after the first step, i.e. neither party has complete

information and both shares appear uniformly random to

their respective owners.

Once this is done, we are back where we started and we

can repeat these steps until we evaluate the full network.

We make the following two observations about our

proposed protocol:

1. By using AHE for the linear layers, we ensure that the

communication complexity of protocol is linear in the

number of layers and the size of inputs for each layer.

2. At the end of the garbled circuit protocol we have an

additive share that can be encrypted afresh. As such,

we can view the re-encryption as an interactive boot-

strapping procedure that clears the noise introduced

by any previous homomorphic operation.

For the second step of the outline above, we employ the

boolean circuit described in Figure 5. The circuit takes as

input three vectors: sx =r and sy =r′ (chosen at random)

from the server, and cx from the client. The first block of

the circuit computes the arithmetic sum of sx and cx over

the integers and subtracts p from to obtain the result mod

p. (The decision of whether to subtract p or not is made by

the multiplexer). The second block of the circuit computes

a ReLU function. The third block adds the result to sy to

obtain the client’s share of y, namely cy. For more detailed

benchmarks on the ReLU and MaxPool garbled circuit

implementations, we refer the reader to Section 8. We

note that this conversion strategy is broadly similar to the

one developed in [25].

In our evaluations, we consider ReLU, Max-Pool and

the square activation functions, the first two are by far

the most commonly used ones in convolutional neural

network design [28, 41, 39, 24]. Note that the square

activation function popularized for secure neural network

evaluation in [18] can be efficiently implemented by a

simple interactive protocol that uses the PAHE scheme

to generate the cross-terms.

The use of an IND-CPA-securePAHE scheme for evalu-

Figure 5: Our combined circuit for steps (a), (b) and (c)

for the non-linear layers. The “+” gates refer to an integer

addition circuit, “-” refers to an integer subtraction circuit

and the “>” refers to the circuit refers to a greater than

comparison. Note that the borrow of the subtraction gates

is used as the select for the first and last multiplexer

ating the linear layers guarantees the privacy of the client’s

inputs. However the PAHE scheme must also guarantee

the confidentiality of the server’s input, in other words, it

should be circuit-private. Prior work addresses this prob-

lem in two ways. The first approach called noise-flooding

adds a large amount of noise to the final ciphertext [15]

to obscure any information leaked through the ciphertext

noise. The second technique relies on bootstrapping, either

using garbled circuits [17] or using the full power of an

FHE scheme [11]. Noise-flooding causes an undesirable

blow-up in the parameters of the underlyingPAHE scheme,

while the FHE-bootstrapping based solution is well be-

yond the scope of the simple PAHE schemes we employ.

Thus, our solution builds a low-overhead circuit-private

interactive decryption protocol (Appendix B) to improve

the concrete efficiency of the garbled circuit approach (as

in [17]) as applied to the BFV scheme [4, 14].

5 Fast Homomorphic Matrix-Vector Multiplication

We next describe the homomorphic linear algebra kernels

that compute matrix-vector products (for FC layers) and

2D convolutions (for Conv layers). In this section, we

focus on matrix-vector product kernels which multiply

a plaintext matrix with an encrypted vector. We start

with the easiest to explain (but the slowest and most

communication-inefficient) methods and move on to

describing optimizations that make matrix-vector mul-

tiplication much faster. In particular, our hybrid method

(see Table 4 and the description below) gives us the best

performance among all our homomorphic matrix-vector

multiplication methods. For example, multiplying a

128 × 1024 matrix with a length-1024 vector using our

hybrid scheme takes about 16ms(̇For detailed benchmarks,

we refer the reader to Section 7.3). In all the subsequent

examples, we will use an FC layer with ni inputs and

1658    27th USENIX Security Symposium USENIX Association



Table 2: Comparing matrix-vector product algorithms by operation count, noise growth and number of output ciphertexts

Perm (Hoisted)a Perm SIMDScMult SIMDAdd Noise #out ctb

Naı̈ve 0 no ·logni no no ·logni
ηnaive :=η0 ·ηmult ·ni

no+ηrot ·(ni−1)

Naı̈ve
0 no ·logni+no−1 2·no no ·logni+no

ηnaive ·ηmult ·no 1
(Output packed) +ηrot ·(no−1)

Naı̈ve
0 no·ni

n
·logni

no·ni
n

no·ni
n

·logni
η0 ·ηmult ·ni no·ni

n(Input packed) +ηrot ·(ni−1)

Diagonal ni−1 0 ni ni (η0+ηrot)·ηmult ·ni 1

Hybrid no·ni
n

−1 log n
no

no·ni
n

no·ni
n

+log n
no

(η0+ηrot)·ηmult ·ni 1
+ηrot ·( ni

no
−1)

a Rotations of the input with a common PermDecomp b Number of output ciphertexts
c All logarithms are to base 2

no outputs as a running example. For simplicity of

presentation, unless stated otherwise we assume that n, ni

and no are powers of two. Similarly we assume that no and

ni are smaller than n. If not, we can split the original matrix

into n×n sized blocks that are processed independently.

The Naı̈ve Method. In the naı̈ve method, each row of

the no × ni plaintext weight matrix W is encoded into

a separate plaintext vectors (see Figure 6). Each such

vector is of length n; where the first ni entries contain

the corresponding row of the matrix and the other entries

are padded with 0. These plaintext vectors are denoted

w0,w1,...,w(no−1). We then use SIMDScMult to compute

the component-wise product of with the encrypted input

vector [v] to get [ui] = [wi ◦ v]. In order to compute the

inner-product what we need is actually the sum of the

entries in each of these vectors ui.

This can be achieved by a “rotate-and-sum” approach,

where we first rotate the entries of [ui] by ni/2 positions.

The result is a ciphertext whose first ni/2 entries contain

the sum of the first and second halves of ui. One can then

repeat this process for log2ni iterations, rotating by half

the previous rotation on each iteration, to get a ciphertext

whose first slot contains the first component of Wv. By

repeating this procedure for each of the no rows we get

no ciphertexts, each containing one element of the result.

Based on this description, we can derive the following

performance characteristics for the naı̈ve method:

• The total cost is no SIMD scalar multiplications,

no · log2 n rotations (automorphisms) and no · log2 n

SIMD additions.

• The noise grows from η to η ·ηmult ·n+ηrot · (n−1)
where ηmult is the multiplicative noise growth factor

for SIMD multiplication and ηrot is the additive noise

growth for a rotation. This is because the one SIMD

multiplication turns the noise from η 7→η ·ηmult, and

the sequence of rotations and additions grows the noise

as follows:

η ·ηmult 7→(η ·ηmult)·2+ηrot 7→(η ·ηmult)·4+ηrot ·3 7→ ...
which gives us the above result.

• Finally, this process produces no many ciphertexts each

one containing just one component of the result.

This last fact turns out to be an unacceptable efficiency

barrier. In particular, the total network bandwidth becomes

quadratic in the input size and thus contradicts the entire

rationale of using PAHE for linear algebra. Ideally, we

want the entire result to come out in packed form in a

single ciphertext (assuming, of course, that no≤n).

A final subtle point that needs to noted is that if n is

not a power of two, then we can continue to use the same

rotations as before, but all slots except the first slot leak

information about partial sums. We therefore must add

a random number to these slots to destroy this extraneous

information about the partial sums.

5.1 Output Packing

The very first thought to mitigate the ciphertext blowup

issue we just encountered is to take the many output

ciphertexts and somehow pack the results into one. Indeed,

this can be done by (a) doing a SIMD scalar multiplication

which zeroes out all but the first coordinate of each of

the out ciphertexts; (b) rotating each of them by the

appropriate amount so that the numbers are lined up in

different slots; and (c) adding all of them together.

Unfortunately, this results in unacceptable noise growth.

The underlying reason is that we need to perform two

serial SIMD scalar multiplications (resulting in an η2
mult

factor; see Table 4). For most practical settings, this

noise growth forces us to use ciphertext moduli that are

larger 64 bits, thus overflowing the machine word. This

necessitates the use of a Double Chinese Remainder

Theorem (DCRT) representation similar to [16] which

substantially slows down computation. Instead we use an

algorithmic approach to control noise growth allowing the

use of smaller moduli and avoiding the need for DCRT.
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Figure 6: The naı̈ve method is illustrated on the left and the

diagonal method of Halevi and Shoup [22] is illustrated

on the right. The entries in a single color live in the same

ciphertext. The key feature of the diagonal method is that

no two elements of the matrix that influence the same

output element appear with the same color.

5.2 Input Packing

Before moving on to more complex techniques we describe

an orthogonal approach to improve the naı̈ve method when

ni ≪ n. The idea is to pack multiple copies of the input

into a single ciphertext. This allows us better utilization

of the slots by computing multiple outputs in parallel.

In detail we can (a) pack n/ni many different rows into

a single plaintext vector; (b) pack n/ni copies of the input

vector into a single ciphertext; and (c) perform the rest

of the naı̈ve method as-is except that the rotations are not

applied to the whole ciphertext but block-by-block (thus

requiring log(ni) many rotations). Roughly speaking, this

achieves communication and computation as if the number

of rows of the matrix were n′o =(no×ni)/n instead of no.

When ni≪n, we have n′o≪no.

The Diagonal Method. The diagonal method as

described in the work of Halevi and Shoup [22] (and

implemented in [21]) provides another potential solution

to the problem of a large number of output ciphertexts.

The key high-level idea is to arrange the matrix elements

in such a way that after the SIMD scalar multiplications,

“interacting elements” of the matrix-vector product never

appear in a single ciphertext. Here, “interacting elements”

are the numbers that need to be added together to obtain

the final result. The rationale is that if this happens, we

never need to add two numbers that live in different slots

of the same ciphertexts, thus avoiding ciphertext rotation.

To do this, we encode the diagonal of the matrix into

a vector which is then SIMD scalar multiplied with the

input vector. The second diagonal (namely, the elements

W0,1,W1,2, ... ,Wno−1,0) is encoded into another vector

which is then SIMD scalar multiplied with a rotation (by

one) of the input vector, and so on. Finally, all these vectors

are added together to obtain the output vector in one shot.

The cost of the diagonal method is:

• The total cost is ni SIMD scalar multiplications, ni−1

rotations (automorphisms), and ni−1 SIMD additions.

• The noise grows from η to (η+ηrot)·ηmult×ni which,

for the parameters we use, is larger than that of the naı̈ve

method, but much better than the naı̈ve method with

output packing. Roughly speaking, the reason is that

in the diagonal method, since rotations are performed

before scalar multiplication, the noise growth has a

ηrot ·ηmult factor whereas in the naı̈ve method, the order

is reversed resulting in a ηmult+ηrot factor.

• Finally, this process produces a single ciphertext that

has the entire output vector in packed form already.

In our setting (and we believe in most reasonable set-

tings), the additional noise growth is an acceptable compro-

mise given the large gain in the output length and the cor-

responding gain in the bandwidth and the overall run-time.

Furthermore, the fact that all rotations happen on the input

ciphertexts prove to be very important for an optimiza-

tion of [23] we describe in Appendix A, called “hoisting”,

which lets us amortize the cost of many input rotations.

A Hybrid Approach. One issue with the diagonal

approach is that the number of Perm is equal to ni. In the

context of FC layers no is often much lower than ni and

hence it is desirable to have a method where the Perm is

close to no. Our hybrid scheme achieves this by combining

the best aspects of the naı̈ve and diagonal schemes. We

first extended the idea of diagonals for a square matrix to

squat rectangular weight matrices as shown in Figure 6

and then pack the weights along these extended diagonals

into plaintext vectors. These plaintext vectors are then

multiplied with no rotations of the input ciphertext similar

to the diagonal method. Once this is done we are left

with a single ciphertext that contains n/no chunks each

contains a partial sum of the no outputs. We can proceed

similar to the naı̈ve method to accumulate these using a

“rotate-and-sum” algorithm.

We implement an input packed variant of the hybrid

method and the performance and noise growth characteris-
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Figure 7: Four example extended digaonals after account-

ing for the rotation group structure

tics (following a straightforward derivation) are described

in Table 4. We note that hybrid method trades off hoistable

input rotations in the Diagonal method for output rotations

on distinct ciphertexts (which cannot be “hoisted out”).

However, the decrease in the number of input rotations

is multiplicative while the corresponding increase in the

number of output rotations is the logarithm of the same

multiplicative factor. As such, the hybrid method almost

always outperforms the Naive and Diagonal methods. We

present detailed benchmarks over a selection of matrix

sizes in Table 8.

We close this section with two important implemen-

tation details. First, recall that in order to enable faster

NTT, our parameter selection requires n to be a power of

two. As a result the permutation group we have access to

is the group of half rotations (Cn/2×C2), i.e. the possible

permutations are compositions of rotations by up to

n/2 for the two n/2-sized segments, and swapping the

two segments. The packing and diagonal selection in

the hybrid approach are modified to account for this by

adapting the definition of the extended diagonal to be those

entries of W that would be multiplied by the corresponding

entries of the ciphertext when the above Perm operations

are performed as shown in Figure 7. Finally, as described

in section 3 we control the noise growth in SIMDScMult

using plaintext windows for the weight matrix W.

6 Fast Homomorphic Convolutions

We now move on to the implementation of homomorphic

kernels for Conv layers. Analogous to the description of

FC layers we will start with simpler (and correspondingly

less efficient) techniques before moving on to our final opti-

mized implementation. In our setting, the server has access

to a plaintext filter and it is then provided encrypted input

images, which it must homomorphically convolve with its

filter to produce encrypted output images. As a running

Figure 8: Padded SISO Convolution

example for this section we will consider a ( fw, fh, ci, co)-
Conv layer with the same padding scheme, where the input

is specified by the tuple (wi, hi, ci). In order to better

emphasize the key ideas, we will split our presentation into

two parts: first we will describe the single input single out-

put (SISO) case, i.e. (ci=1, co=1) followed by the more

general case where we have multiple input and output chan-

nels, a subset of which may fit within a single ciphertext.

Padded SISO. As seen in section 2, same style

convolutions require that the input be zero-padded. As

such, in this approach, we start with a zero-padded

version of the input with ( fw − 1)/2 zeros on the left

and right edges and ( fh − 1)/2 zeros on the top and

bottom edges. We assume for now that this padded input

image is small enough to fit within a single ciphertext

i.e. (wi + fw − 1) · (hi + fh − 1) ≤ n and is mapped to

the ciphertext slots in a raster scan fashion. We then

compute fw · fh rotations of the input and scale them by the

corresponding filter coefficient as shown in Figure 8. Since

all the rotations are performed on a common input image,

they can benefit from the hoisting optimization. Note that

similar to the naı̈ve matrix-vector product algorithm, the

values on the periphery of the output image leak partial

products and must be obscured by adding random values.

Packed SISO. While the above the technique com-

putes the correct 2D-convolution it ends up wasting

(wi+ fw−1) · (hi+ fh−1)−wi ·hi slots in zero padding.

If either the input image is small or if the filter size is large,

this can amount to a significant overhead. We resolve this

issue by using the ability of our PAHE scheme to multiply

different slots with different scalars when performing

SIMDScMult. As a result, we can pack the input tightly

and generate fw · fh rotations. We then multiply these

rotated ciphertexts with punctured plaintexts which have

zeros in the appropriate locations as shown in Figure 9.

Accumulating these products gives us a single ciphertext

that, as a bonus, contains the convolution result without

any leakage of partial information.

Finally, we note that the construction of the punctured
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Figure 9: Packed SISO Convolution. (Zeros in the punc-

tured plaintext shown in white.)

Table 3: Comparing SISO 2D-convolutions

Perm # slots

Padded fw fh−1 (wi+ fw−1)(hi+ fh−1)
Packed fw fh−1 wihi

Figure 10: Decomposing a strided convolutions into simple

convolutions ( fw= fh=3 and sx=sy=2)

plaintexts does not depend on either the encrypted image

or the client key information and as such, the server can

precompute these values once for multiple clients. We

summarize these results in Table 3.

6.1 Strided Convolutions

We handle strided convolutions by decomposing the

strided convolution into a sum of simple convolutions

each of which can be handled as above. We illustrate this

case for fw= fh=3 and sx=sy=2 in Figure 10.

6.2 Low-noise Batched Convolutions

We make one final remark on a potential application for

padded SISO convolutions. Padded SISO convolutions

are computed as a sum of rotated versions of the input

images multiplied by corresponding constants fx,y. The

coefficient domain representation of these plaintext

vectors is ( fx,y,0,...,0). As a result, the noise growth factor

is ηmult= fx,y ·
√

n as opposed to p·√n, consequently noise

growth depends only on the value of the filter coefficients

and not on the size of the plaintext space p. The direct

use of this technique precludes the use of channel packing

since the filter coefficients are channel dependent. One

potential application that can mitigate this issue is when

we want to classify a batch of multiple images. In this

context, we can pack the same channel from multiple

classifications allowing us to use a simple constant filter.

This allows us to trade-off classification latency for higher

throughput. Note however that similar to padded SISO

convolutions, this has two problems: (a) it results in lower

slot utilization compare to packed approaches, and (b) the

padding scheme reveals the size of the filter.

Now that we have seen how to compute a single 2D-

convolution we will look at the more general multi-channel

case.

Single Channel per Ciphertext. The straightforward

approach for handling the multi-channel case is to encrypt

the various channels into distinct ciphertexts. We can

then SISO convolve these ci-ciphertexts with each of

the co sets of filters to generate co output ciphertexts.

Note that although we need co ·ci · fh · fw SIMDAdd and

SIMDScMult calls, just ci · fh · fw many Perm operations

on the input suffice, since the rotated inputs can be reused

to generate each of the co outputs. Furthermore, each these

rotation can be hoisted and hence we require just ci many

PermDecomp calls and ci · fh · fw many PermAuto calls.

Channel Packing Similar to input-packed matrix-

vector products, the computation of multi-channel convo-

lutions can be further sped up by packing multiple channels

in a single ciphertext. We represent the number of channels

that fit in a single ciphertext by cn. Channel packing allows

us to perform cn-SISO convolutions in parallel in a SIMD

fashion. We maximize this parallelism by using Packed

SISO convolutions which enable us to tightly pack the in-

put channels without the need for any additional padding.

For simplicity of presentation, we assume that both ci

and co are integral multiples of cn. Our high level goal is

to then start with ci/cn input ciphertexts and end up with

co/cn output ciphertexts where each of the input and output

ciphertexts contains cn distinct channels. We achieve this

in two steps: (a) convolve the input ciphertexts in a SISO

fashion to generate (co ·ci)/cn intermediate ciphertexts that

contain all the co ·ci-SISO convolutions and (b) accumulate

these intermediate ciphertexts into output ciphertexts.

Since none of the input ciphertexts repeat an input chan-

nel, none of the intermediate ciphertexts can contain SISO

convolutions corresponding to the same input channel. A

similar constraint on the output ciphertexts implies that

none of the intermediate ciphertexts contain SISO convo-

lutions corresponding to the same output. In particular, a

potential grouping of SISO convolutions that satisfies these

constraints is the diagonal grouping. More formally the kth

intermediate ciphertext in the diagonal grouping contains

the following ordered set of cn-SISO convolutions:

{ (⌊k/ci⌋·cn+l,

⌊(k mod ci)/cn⌋·cn+((k+l) mod cn)) | l∈ [0,cn) }
where each tuple (xo, xi) represents the SISO convolution
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Figure 11: Diagonal Grouping for Intermediate Cipher-

texts (ci=co=8 and cn=4)

corresponding to the output channel xo and input channel

xi. Given these intermediate ciphertexts, one can generate

the output ciphertexts by simply accumulating the co/cn-

partitions of ci consecutive ciphertexts. We illustrate this

grouping and accumulation when ci=co=8 and cn=4 in

Figure 11. Note that this grouping is very similar to the di-

agonal style of computing matrix vector products, with sin-

gle slots now being replaced by entire SISO convolutions.

Since the second step is just a simple accumulation of

ciphertexts, the major computational complexity of the

convolution arise in the computation of the intermediate

ciphertexts. If we partition the set of intermediate

ciphertexts into cn-sized rotation sets (shown in grey in

Figure 11), we see that each of the intermediate ciphertexts

is generated by different rotations of the same input. This

observation leads to two natural approaches to compute

these intermediate ciphertexts.

Input Rotations. In the first approach, we generate

cn rotations of every input ciphertext and then perform

Packed SISO convolutions on each of these rotations to

compute all the intermediate rotations required by co/cn

rotation sets. Since each of the SISO convolutions requires

fw · fh rotations, we require a total of (cn · fw · fh − 1)
rotations (excluding the trivial rotation by zero) for each

of the ci/cn inputs. Finally we remark that by using the

hoisting optimization we compute all these rotations by

performing just ci/cn PermDecomp operations.

Output Rotations. The second approach is based on

the realization that instead of generating (cn · fw · fh −1)
input rotations, we can reuse ( fw · fh−1) rotations in each

rotation-set to generate cn convolutions and then simply

rotate (cn−1) of these to generate all the intermediate ci-

phertexts. This approach then reduces the number of input

rotations by factor of cn while requiring (cn−1) rotations

for each of the (ci · co)/c2
n rotation sets. Note that while

( fw · fh−1) input rotations per input ciphertext can share a

common PermDecomp each of the output rotations occur

on a distinct ciphertext and cannot benefit from hoisting.

We summarize these numbers in Table 4. The choice

between the input and output rotation variants is an

interesting trade-off that is governed by the size of the

2D filter. This trade-off is illustrated in more detail with

concrete benchmarks in section 7. Finally, we remark

that similar to the matrix-vector product computation,

the convolution algorithms are also tweaked to work with

the half-rotation permutation group and use plaintext

windows to control the scalar multiplication noise growth.

7 Implementation and Micro-benchmarks

Next we describe the implementation of the Gazelle

framework starting with the chosen cryptographic

primitives (7.1). We then describe our evaluation test-bed

(7.2) and finally conclude this section with detailed

micro-benchmarks (7.3) for all the operations to highlight

the individual contributions of the techniques described

in the previous sections.

7.1 Cryptographic Primitives

Gazelle needs two main cryptographic primitives for

neural network inference: a packed additive homomorphic

encryption (PAHE) scheme and a two-party secure

computation (2PC) scheme. Parameters for both schemes

are selected for a 128-bit security level. For the PAHE

scheme we instantiate the Brakerski-Fan-Vercauteren

(BFV) scheme [4, 14], with n = 2048, 20-bit plaintext

modulus, 60-bit ciphertext modulus and σ =4 according

to the analysis of Section 3.5.

For the 2PC framework, we use Yao’s Garbled

circuits [44]. The main reason for choosing Yao over

Boolean secret sharing schemes (such as the Goldreich-

Micali-Wigderson protocol [19] and its derivatives)

is that the constant number of rounds results in good

performance over long latency links. Our garbling scheme

is an extension of the one presented in JustGarble [3]

which we modify to also incorporate the Half-Gates

optimization [45]. We base our oblivious transfer (OT) im-

plementation on the classic Ishai-Kilian-Nissim-Petrank

(IKNP) [27] protocol from libOTe [33]. Since we use 2PC

for implementing the ReLU, MaxPool and FHE-2PC trans-

formation gadget, our circuit garbling phase only depends

on the neural network topology and is independent of the

client input. As such, we move it to the offline phase of the

computation while the OT Extension and circuit evaluation

is run during the online phase of the computation.

7.2 Evaluation Setup

All benchmarks were generated using c4.xlarge AWS in-

stances which provide a 4-threaded execution environment

(on an Intel Xeon E5-2666 v3 2.90GHz CPU) with 7.5GB

of system memory. Our experiments were conducted

using Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-1041-aws)
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Table 4: Comparing multi-channel 2D-convolutions

PermDecomp Perm #in ct #out ct

One Channel per CT ci ( fw fh−1)·ci ci co

Input Rotations ci
cn

(cn fw fh−1)· ci
cn

ci
cn

co
cn

Output Rotations
(

1+ (cn−1)·co

cn

)

ci
cn

(

fw fh−1+ (cn−1)·co

cn

)

ci
cn

ci
cn

co
cn

Table 5: Fast Reduction for NTT and Inv. NTT

Operation
Fast Reduction Naive Reduction

Speedup
t (µs) cyc/bfly t (µs) cyc/bfly

NTT (q) 57 14.68 393 101.18 6.9

Inv. NTT (q) 54 13.90 388 99.89 7.2

NTT (p) 43 11.07 240 61.79 5.6

Inv. NTT (p) 38 9.78 194 49.95 5.1

Table 6: FHE Microbenchmarks

Operation
Fast Reduction Naive Reduction

Speedup
t (µs) cyc/slot t (µs) cyc/slot

KeyGen 232 328.5 952 1348.1 4.1

Encrypt 186 263.4 621 879.4 3.3

Decrypt 125 177.0 513 726.4 4.1

SIMDAdd 5 8.1 393 49.7 6.1

SIMDScMult 10 14.7 388 167.1 11.3

PermKeyGen 466 659.9 1814 2568.7 3.9

Perm 268 379.5 1740 2463.9 6.5

PermDecomp 231 327.1 1595 2258.5 6.9

PermAuto 35 49.6 141 199.7 4.0

and our library was compiled using GCC 5.4.0 using the

‘-O3’ optimization setting and enabling support for the

AES-NI instruction set. Our schemes are evaluated in the

LAN setting similar to previous work with both instances

in the us-east-1a availability zone.

7.3 Micro-benchmarks

In order to isolate the impact of the various techniques

and identify potential optimization opportunities, we first

present micro-benchmarks for the individual operations.

Arithmetic and PAHE Benchmarks. We first bench-

mark the impact of the faster modular arithmetic on the

NTT and the homomorphic evaluation run-times. Table

5 shows that the use of a pseudo-Mersenne ciphertext

modulus coupled with lazy modular reduction improves

the NTT and inverse NTT by roughly 7×. Similarly

Barrett reduction for the plaintext modulus improves the

plaintext NTT runtimes by more than 5×. These run-time

improvements are also reflected in the performance of the

primitive homomorphic operations as shown in Table 6.

Table 7 demonstrates the noise performance trade-off

Table 7: Permutation Microbenchmarks

# windows
PermKeyGen Key Size PermAuto Noise

t (µs) kB t (µs) bits

3 466 49.15 35 29.3

6 925 98.30 57 19.3

12 1849 196.61 100 14.8

inherent in the permutation operation. Note that an

individual permutation after the initial decomposition

is roughly 8-9× faster than a permutation without any

pre-computation. Finally we observe a linear growth in

the run-time of the permutation operation with an increase

in the number of windows, allowing us to trade off noise

performance for run-time if few future operations are

desired on the permuted ciphertext.

Linear Algebra Benchmarks. Next we present micro-

benchmarks for the linear algebra kernels. In particular we

focus on matrix-vector products and 2D convolutions since

these are the operations most frequently used in neural

network inference. Before performing these operations,

the server must perform a one-time client-independent

setup that pre-processes the matrix and filter coefficients.

In contrast with the offline phase of 2PC, this computation

is NOT repeated per classification or per client and can

be performed without any knowledge of the client keys.

In the following results, we represent the time spent in this

amortizable setup operation as tsetup. Note that toffline for

both these protocols is zero.

The matrix-vector product that we are interested in

corresponds to the multiplication of a plaintext matrix with

a packed ciphertext vector. We first start with a comparison

of three matrix-vector multiplication techniques:

1. Naive: Every slot of the output is generated indepen-

dently by computing an inner-product of a row of the

matrix with ciphertext column vector.

2. Diagonal: Rotations of the input are multiplied by the

generalized diagonals from the plaintext matrix and

added to generate a packed output.

3. Hybrid: Use the diagonal approach to generate a

single output ciphertext with copies of the output

partial sums. Use the naive approach to generate the

final output from this single ciphertext
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Table 8: Matrix Multiplication Microbenchmarks

#in rot #out rot #mac tonline tsetup

2048×1

N 0 11 1 7.9 16.1

D 2047 0 2048 383.3 3326.8

H 0 11 1 8.0 16.2

1024×128

N 0 1280 128 880.0 1849.2

D 1023 1024 2048 192.4 1662.8

H 63 4 64 16.2 108.5

1024×16

N 0 160 16 110.3 231.4

D 1023 1024 2048 192.4 1662.8

H 7 7 8 7.8 21.8

128×16

N 0 112 16 77.4 162.5

D 127 128 2048 25.4 206.8

H 0 7 1 5.3 10.5

Table 9: Convolution Microbenchmarks

Input Filter Algorithm tonline tsetup
(W×H, C) (W×H, C) (ms) (ms)

(28×28,1) (5×5,5)
I 14.4 11.7

O 9.2 11.4

(16×16,128) (1×1,128)
I 107 334

O 110 226

(32×32,32) (3×3,32)
I 208 704

O 195 704

(16×16,128) (3×3,128)
I 767 3202

O 704 3312

We compare these techniques for the following matrix

sizes: 2048 × 1, 1024 × 128, 128 × 16. For all these

methods we report the online computation time and the

time required to setup the scheme in milliseconds. Note

that this setup needs to be done exactly once per network

and need not be repeated per inference. The naive scheme

uses a 20bit plaintext window (wpt) while the diagonal and

hybrid schemes use 10bit plaintext windows. All schemes

use a 7bit relinearization window (wrelin).

Finally we remark that our matrix multiplication scheme

is extremely parsimonious in the online bandwidth. The

two-way online message sizes for all the matrices are

given by (w+ 1) ∗ ctsz where ctsz is the size of a single

ciphertext (32 kB for our parameters).

Next we compare the two techniques we presented for

2D convolution: input rotation (I) and output rotation

(O) in Table 9. We present results for four convolution

sizes with increasing complexity. Note that the 5 × 5

convolution is strided convolution with a stride of 2. All

results are presented with a 10bit wpt and a 8bit wrelin.

As seen from Table 9, the output rotation variant is

Table 10: Activation and Pooling Microbenchmarks

Algorithm Outputs
toffline tonline BWoffline BWonline

(ms) (ms) (MB) (MB)

Square 2048 0.5 1.4 0 0.093

ReLU
1000 89 15 5.43 1.68

10000 551 136 54.3 16.8

MaxPool
1000 164 58 15.6 8.39

10000 1413 513 156.0 83.9

usually the faster variant since it reuses the same input

multiple times. Larger filter sizes allow us to save more

rotations and hence experience a higher speed-up, while

for the 1×1 case the input rotation variant is faster. Finally,

we note that in all cases we pack both the input and output

activations using the minimal number of ciphertexts.

Square, ReLU and MaxPool Benchmarks. We round

our discussion of the operation micro-benchmarks with the

various activation functions we consider. In the networks

of interest, we come across two major activation functions:

Square and ReLU. Additionally we also benchmark the

MaxPool layer with (2×2)-sized windows.

For square pooling, we implement a simple interactive

protocol using our additively homomorphic encryption

scheme. For ReLU and MaxPool, we implement a garbled

circuit based interactive protocol. The results for both are

presented in Table 10.

8 Network Benchmarks and Comparison

Next we compose the individual layers from the previous

sections and evaluate complete networks. For ease of

comparison with previous approaches, we report runtimes

and network bandwidth for MNIST and CIFAR-10 image

classification tasks. We segment our comparison based on

the CNN topology. This allows us to clearly demonstrate

the speedup achieved by Gazelle as opposed to gains

through network redesign.

The MNIST Dataset. MNIST is a basic image classi-

fication task where we are provided with a set of 28×28

grayscale images of handwritten digits in the range [0−9].
Given an input image our goal is to predict the correct

handwritten digit it represents. We evaluate this task

using four published network topologies which use a

combination of FC and Conv layers:

A 3-FC with square activation from [30].

B 1-Conv and 2-FC with square activation from [18].

C 1-Conv and 2-FC with ReLU activation from [36].

D 2-Conv and 2-FC with ReLU and MaxPool from [29].

Runtime and the communication required for classify-

ing a single image for these four networks are presented

in table 11.

For all four networks we use a 10bit wpt and a 9bit wrelin.
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Table 11: MNIST Benchmark

Framework
Runtime (s) Communication (MB)

Offline Online Total Offline Online Total

A

SecureML 4.7 0.18 4.88 - - -

MiniONN 0.9 0.14 1.04 3.8 12 47.6

Gazelle 0 0.03 0.03 0 0.5 0.5

B

CryptoNets - - 297.5 - - 372.2

MiniONN 0.88 0.4 1.28 3.6 44 15.8

Gazelle 0 0.03 0.03 0 0.5 0.5

C

DeepSecure - - 9.67 - - 791

Chameleon 1.34 1.36 2.7 7.8 5.1 12.9

Gazelle 0.15 0.05 0.20 5.9 2.1 8.0

D

MiniONN 3.58 5.74 9.32 20.9 636.6 657.5

ExPC - - 5.1 - - 501

Gazelle 0.481 0.33 0.81 47.5 22.5 70.0

Table 12: CIFAR-10 Benchmark

Framework
Runtime (s) Communication (MB)

Offline Online Total Offline Online Total

A
MiniONN 472 72 544 3046 6226 9272

Gazelle 9.34 3.56 12.9 940 296 1236

Networks A and B use only the square activation

function allowing us to use a much simpler AHE base inter-

active protocol, thus avoiding any use of GC’s. As such we

only need to transmit short ciphertexts in the online phase.

Similarly our use of the AHE based FC and Conv layers

as opposed to multiplications triples results in 5-6× lower

latency compared to [29] and [30] for network A. The com-

parison with [18] is even more the stark. The use of AHE

with interaction acting as an implicit bootstraping stage

allows for aggressive parameter selection for the lattice

based scheme. This results in over 3 orders of magnitude

savings in both the latency and the network bandwidth.

Networks C and D use ReLU and MaxPool functions

which we implement using GC. However even for these

the network our efficient FC and Conv implementation

allows us roughly 30× and 17× lower runtime when

compared with [32] and [29] respectively. Furthermore

we note that unlike [32] our solution does not rely on a

trusted third party.

The CIFAR-10 Dataset. The CIFAR-10 task is a

second commonly used image classification benchmark

that is substantially more complicated than the MNIST

classification task. The task consists of classifying

32×32 color with 3 color channels into 10 classes such

as automobiles, birds, cats, etc. For this task we replicate

the network topology from [29] to offer a fair comparison.

We use a 10bit wpt and a 8bit wrelin.

We note that the complexity of this network when

measured by the number of multiplications is 500× that

used in the MNIST network from [36], [32]. By avoiding

the need for multiplication triples Gazelle offers a 50×

faster offline phase and a 20× lower latency per inference

showing that our results from the smaller MNIST networks

scale to larger networks.

9 Conclusions and Future Work

In conclusion, this work presents Gazelle, a low-latency

framework for secure neural network inference. Gazelle

uses a judicious combination of packed additively

homomorphic encryption (PAHE) and garbled circuit

based two-party computation (2PC) to obtain 20−30×
lower latency and 2.5−88× lower online bandwidth when

compared with multiple recent 2PC-based state-of-art

secure network inference solutions [29, 30, 32, 36], and

more than 3 orders of magnitude lower latency and 2 orders

of magnitude lower bandwidth than purely homomorphic

approaches [18]. We briefly recap the key contributions

of our work that enable this improved performance:

1. Selection of prime moduli that simultaneously allow

SIMD operations, low noise growth and division-free

and lazy modular reduction.

2. Avoidance of ciphertext-ciphertext multiplications to

reduce noise growth.

3. Use of secret-sharing and interaction to emulate a

lightweight bootstrapping procedure allowing us to

evaluate deep networks composed of many layers.

4. Homomorphic linear algebra kernels that make

efficient use of the automorphism structure enabled by

a power-of-two slot-size.

5. Sparing use of garbled circuits limited to ReLU and

MaxPool functions with linear-size Boolean circuits.

6. A compact garbled circuit-based transformation gadget

that allows us to securely compose the PAHE-based

and garbled circuit based layers.

There are a large number of natural avenues to build on

our work including handling neural networks with larger

input sizes and building a framework to automatically

compile neural networks into secure inference protocols.
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A The Halevi-Shoup Hoisting Optimization

The hoisting optimization reduces the cost of the ciphertext

rotation when the same ciphertext must be rotated by

multiple shift amounts. The idea, roughly speaking, is to

“look inside” the ciphertext rotation operation, and hoist

out the part of the computation that would be common to

these rotations and then compute it only once thus amor-

tizing it over many rotations. It turns out that this common

computation involves computing theNTT−1 (taking the ci-

phertext to the coefficient domain), followed by a wrelin-bit

decomposition that splits the ciphertext ⌈(log2q)/wrelin⌉
ciphertexts and finally takes these ciphertexts back to the

evaluation domain using separate applications of NTT.

The parameter wrelin is called the relinearization window

and represents a tradeoff between the speed and noise

growth of the Perm operation. This computation, which

we denote as PermDecomp, has Θ (nlogn) complexity

because of the number theoretic transforms. In contrast,

the independent computation in each rotation, denoted by

PermAuto, is a simple Θ(n) multiply and accumulate op-

eration. As such, hoisting can provide substantial savings

in contrast with direct applications of the Perm operation

and this is also borne out by the benchmarks in Table 7.

B Circuit Privacy

We next provide some details on our light-weight circuit

privacy solution. At a high level BFV ciphertexts look

like a tuple of ring elements (a, b) where a is chosen

uniformly at random and b encapsulates the plaintext and

the ciphertext noise. Both a and the ciphertext noise are

modified in a circuit dependent fashion during the process

of homomorphic computation and thus may violate

circuit privacy. We address the former by simply adding

a fresh public-key encryption of zero to the ciphertext to

re-randomize a. Information leakage through the noise is

handled through interactive decryption. The BFV decryp-

tion circuit is given by ⌈(a·s+b)/∆⌋ where s is the secret

key and ∆=⌊(p/q)⌋. Our approach splits the interactive

computation of this circuit into 2 phases. First we send

the re-randomized a back to the client who multiplies it

with s to a · s. We then use a garbled circuit to add this

to b. We leverage the fact that ∆ is public to avoid an

expensive division inside the garbled circuit. In particular

both parties can compute the quotients and remainders

modulo ∆ of their respective inputs and then interactively

evaluate a garbled circuit whose size is Ω(n·q). Note that

in contrast the naive decryption circuit is Ω(n2 ·q) sized

even without accounting for the division by ∆.
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