usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

GAZELLE: A Low Latency Framework for
Secure Neural Network Inference

Chiraag Juvekar, MIT MTL; Vinod Vaikuntanathan, MIT CSAIL;
Anantha Chandrakasan, MIT MTL

https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar

This paper is included in the Proceedings of the

27th USENIX Security Symposium.
August 15-17, 2018 - Baltimore, MD, USA
978-1-939133-04-5

Open access to the Proceedings of the
27th USENIX Security Symposium
is sponsored by USENIX.

GAZELLE: A Low Latency Framework
for Secure Neural Network Inference

Chiraag Juvekar
MIT MTL

Abstract

The growing popularity of cloud-based machine learning
raises natural questions about the privacy guarantees that
can be provided in such settings. Our work tackles this
problem in the context of prediction-as-a-service wherein
a server has a convolutional neural network (CNN) trained
on its private data and wishes to provide classifications on
clients’ private images. Our goal is to build efficient secure
computation protocols which allow a client to obtain the
classification result without revealing their input to the
server, while at the same preserving the privacy of the
server’s neural network.

To this end, we design Gazelle, a scalable and low-
latency system for secure neural network inference, using
an intricate combination of homomorphic encryption and
traditional two-party computation techniques (such as gar-
bled circuits). Gazelle makes three contributions. First, we
design a homomorphic encryption library which provides
fast implementations of basic homomorphic operations
such as SIMD (single instruction multiple data) addition,
SIMD multiplication and ciphertext slot permutation. Sec-
ond, we implement homomorphic linear algebra kernels
which provide fast algorithms that map neural network lay-
ers to optimized homomorphic matrix-vector multiplica-
tion and convolution routines. Third, we design optimized
encryption switching protocols which seamlessly convert
between homomorphic and garbled circuit encodings to en-
able implementation of complete neural network inference.

We evaluate our protocols on benchmark neural net-
works trained on the MNIST and CIFAR-10 datasets and
show that Gazelle outperforms the best existing systems
such as MiniONN (ACM CCS 2017) and Chameleon
(Crypto Eprint 2017/1164) by 20-30 % in online runtime.
When compared with fully homomorphic approaches like
CryptoNets (ICML 2016), we demonstrate three orders
of magnitude faster online run-time.

1 Introduction

Fueled by the massive influx of data, sophisticated algo-
rithms and extensive computational resources, modern
machine learning has found surprising applications in
such diverse domains as medical diagnosis [43, 13],
facial recognition [38] and credit risk assessment [2].
We consider the setting of supervised machine learning
which proceeds in two phases: a training phase where a
labeled dataset is turned into a model, and an inference or
classification or prediction phase where the model is used
to predict the label of a new unlabelled data point. Our

Vinod Vaikuntanathan
MIT CSAIL

Anantha Chandrakasan
MIT MTL

work tackles a class of complex and powerful machine
learning models, namely convolutional neural networks
(CNN) which have demonstrated better-than-human
accuracy across a variety of image classification tasks [28].

One important use-case for machine learning models
(including CNNs) comes up in the setting of predictions-as-
a-service (PaaS). In the PaaS setting, a large organization
trains a machine learning model using its proprietary data.
The organization now wants to monetize the model by
deploying a service that allows clients to upload their
inputs and receive predictions for a price.

The first solution that comes to mind is for the organi-
zation to make the model (in our setting, the architecture
and parameters of the CNN) freely available for public
consumption. This is undesirable for at least two reasons:
first, once the model is given away, there is clearly no
opportunity for the organization to monetize it, potentially
removing its incentives to undergo the expensive data
curating, cleaning and training phases; and secondly, the
model, which has been trained on private organizational
data, may reveal information about users that contributed
to the dataset, violating their privacy and perhaps even
regulations such as HIPAA.

A second solution that comes to mind is for the orga-
nization to build a web service that hosts the model and
provides predictions for a small fee. However, this is also
undesirable for at least two reasons: first, the users of such a
service will rightfully be concerned about the privacy of the
inputs they are providing to the web service; and secondly,
the organization may not even want to know the user inputs
for reasons of legal liability in case of a future data breach.

The goal of our work is to provide practical solutions
to this conundrum of secure neural network inference.
More concretely, we aim to enable the organization and
its users to interact in such a way that the user eventually
obtains the prediction (without learning the model) and the
organization obtains no information about the user’s input.

Modern cryptography provides us with many tools, such
as fully homomorphic encryption and garbled circuits, that
can help us solve this problem. A key take-away from our
work is that both techniques have their limitations; under-
standing their precise trade-offs and using a combination
of them judiciously in an application-specific manner
helps us overcome the individual limitations and achieve
substantial gains in performance. Indeed, several recent
works [30, 36, 29, 18, 32] have built systems that address
the problem of secure neural network inference using these
cryptographic tools, and our work improves on all of them.

USENIX Association

27th USENIX Security Symposium 1651

Let us begin by discussing these two techniques and
their relative merits and shortcomings.

Homomorphic Encryption. Fully Homomorphic
Encryption (FHE), is an encryption method that allows
anyone to compute an arbitrary function f on an encryption
of x, without decrypting it and without knowledge of the
private key [34, 15, 6]. Using just the encryption of x, one
can obtain an encryption of f(x). Weaker versions of FHE,
collectively called partially homomorphic encryption,
permit the computation of a subset of all functions,
typically functions that perform only additions (AHE) [31]
or functions that can be computed by depth-bounded
arithmetic circuits (LHE) [5, 4, 14]. Recent efforts,
both in theory and in practice have given us large gains
in the performance of several types of homomorphic
schemes [5, 16, 7, 21, 35, 8] allowing us to implement a
larger class of applications with better security guarantees.

The major bottleneck for these techniques, notwith-
standing these recent developments, is their computational
complexity. The computational cost of LHE, for example,
grows dramatically with the depth of the circuit that the
scheme needs to support. Indeed, the recent CryptoNets
system gives us a protocol for secure neural network
inference using LHE [18]. Largely due to its use of LHE,
CryptoNets has two shortcomings. First, they need to
change the structure of neural networks and retrain them
with special LHE-friendly non-linear activation functions
such as the square function. This has a potentially negative
effect on the accuracy of these models. Secondly, and
perhaps more importantly, even with these changes, the
computational cost is prohibitively large. For example,
on a neural network trained on the MNIST dataset, the
end-to-end latency of CryptoNets is 297.5 seconds, in
stark contrast to the 30 milliseconds end-to-end latency
of Gazelle. In spite of the use of interaction, our online
bandwidth per inference for this network is a mere 0.05MB
as opposed to the 372MB required by CryptoNets.

In contrast to the LHE scheme in CryptoNets, Gazelle
employs a much simpler packed additively homomorphic
encryption (PAHE) scheme, which we show can support
very fast matrix-vector multiplications and convolutions.
Lattice-based AHE schemes come with powerful features
such as SIMD evaluation and automorphisms (described
in detail in Section 3) which make them the ideal tools for
common linear-algebraic computations.

Secret Sharing and Garbled Circuits. Yao’s garbled
circuits [44] and the secret-sharing based Goldreich-
Micali-Wigderson (GMW) protocol [19] are two leading
methods for the task of two-party secure computation
(2PC). After three decades of theoretical and applied work
improving and optimizing these protocols, we now have
very efficient implementations, e.g., [10, 9, 12, 33]. The
modern versions of these techniques have the advantage

of being computationally inexpensive, partly because they
rely on symmetric-key cryptographic primitives such as
AES and SHA and use them in a clever way [3], because
of hardware support in the form of the Intel AES-NI
instruction set, and because of techniques such as oblivious
transfer extension [27, 3] which limit the use of public-key
cryptography to an offline reusable pre-processing phase.

The major bottleneck for these techniques is their
communication complexity. Indeed, three recent works
followed the garbled circuits paradigm and designed sys-
tems for secure neural network inference: the SecureML
system [30], the MiniONN system [29], the DeepSecure
system [36].

DeepSecure uses garbled circuits alone; SecureML
uses Paillier’s AHE scheme to speed up some operations;
and MiniONN uses a weak form of lattice-based AHE
to generate “multiplication triples” similar to the SPDZ
multiparty computation framework [9]. Our key claim
is that understanding the precise trade-off point between
AHE and garbled circuit-type techniques allows us
to make optimal use of both and achieve large net
computational and communication gains. In particular, in
Gazelle, we use optimized AHE schemes in a completely
different way from MiniONN: while they employ AHE as
a pre-processing tool for generating triples, we use AHE
to dramatically speed up linear algebra directly.

For example, on a neural network trained on the CIFAR-
10 dataset, the most efficient of these three protocols,
namely MiniONN, has an online bandwidth cost of 6.2GB
whereas Gazelle has an online bandwidth cost of 0.3GB. In
fact, we observe across the board a reduction of 20-80x in
the online bandwidth per inference which gets better as the
networks grow in size. In the LAN setting, this translates to
an end-to-end latency of 3.6s versus the 72s for MiniONN.

Even when comparing to systems such as Chameleon
[32] that rely on trusted third-party dealers, we observe
a30x reduction in online run-time and 2.5 x reduction in
online bandwidth, while simultaneously providing a pure
two-party solution. A more detailed performance com-
parison with all these systems, is presented in Section 8.

(F)HE or Garbled Circuits? To use (F)HE and garbled
circuits optimally, we need to understand the precise com-
putational and communication trade-offs between them.
Roughly speaking, homomorphic encryption performs
better than garbled circuits when (a) the computation has
small multiplicative depth, (ideally multiplicative depth
0 meaning that we are computing a linear function) and
(b) the boolean circuit that performs the computation has
large size, say quadratic in the input size. Matrix-vector
multiplication (namely, the operation of multiplying a
plaintext matrix with an encrypted vector) provides us
with exactly such a scenario. Furthermore, the most
time-consuming computations in a convolutional neural
network are indeed the convolutional layers (which are

1652 27th USENIX Security Symposium

USENIX Association

nothing but a special type of matrix-vector multiplication).
The non-linear computations in a CNN such as the ReL.U
or MaxPool functions can be written as simple linear-size
circuits which are best computed using garbled circuits.
This analysis is the guiding philosophy that enables
the design of Gazelle (A more detailed description of
convolutional neural networks, is presented in Section 2).

QOur System: The main contribution of this work is
Gazelle, a framework for secure evaluation of convolu-
tional neural networks. It consists of three components:
The first component is the Gazelle Homomorphic
Layer which consists of very fast implementations of
three basic homomorphic operations: SIMD addition,
SIMD scalar multiplication, and automorphisms (For a
detailed description of these operations, see Section 3).
Our innovations in this part consist of techniques for
division-free arithmetic and techniques for lazy modular
reductions. In fact, our implementation of the first two
of these homomorphic operations is only 10-20x slower
than the corresponding operations on plaintext.

The second component is the Gazelle Linear Algebra
kernels which consists of very fast algorithms for homo-
morphic matrix-vector multiplications and homomorphic
convolutions, accompanied by matching implementations.
In terms of the basic homomorphic operations, SIMD
additions and multiplications turn out to be relatively
cheap whereas automorphisms are very expensive. At
a very high level, our innovations in this part consists of
several new algorithms for homomorphic matrix-vector
multiplication and convolutions that minimize the
expensive automorphism operations.

The third and final component is Gazelle Network
Inference which uses a judicious combination of garbled
circuits together with our linear algebra kernels to
construct a protocol for secure neural network inference.
Our innovations in this part consist of efficient protocols
that switch between secret-sharing and homomorphic
representations of the intermediate results and a novel
protocol to ensure circuit privacy.

Our protocol also hides strictly more information about
the neural network than other recent works such as the
MiniONN protocol. We refer the reader to Section 2 for
more details.

2 Secure Neural Network Inference

The goal of this section is to describe a clean abstraction
of convolutional neural networks (CNN) and set up the
secure neural inference problem that we will tackle in the
rest of the paper. A CNN takes an input and processes
it through a sequence of linear and non-linear layers in
order to classify it into one of the potential classes. An
example CNN is shown is Figure 1.

2.1 Linear Layers

The linear layers, shown in Figure 1 in red, can be of two
types: convolutional (Conv) layers or fully-connected
(FO) layers.

Convolutional Layers. Werepresent the inputtoa Conv
layer by the tuple (w;,h;,c;) where w; is the image width, &;
is the image height, and c; is the number of input channels.
In other words, the input consists of ¢; many w; X h; images.
The convolutional layer is then parameterized by ¢, filter
banks each consisting of ¢; many f,, X f, filters. This is
represented in short by the tuple (f,, fi,¢i,¢,). The com-
putation in a Conv layer can be better understood in terms
of simpler single-input single-output (SISO) convolutions.
Every pixel in the output of a SISO convolution is com-
puted by stepping a single f,, X fj, filter across the input im-
age as shown in Figure 2. The output of the full Conv layer
can then be parameterized by the tuple (w,,h,,c,) which
represents ¢, many w, X h, output images. Each of these
images is associated with a unique filter bank and is com-
puted by the following two-step process shown in Figure 2:
(i) For each of the ¢; filters in the associated filter bank, com-
pute a SISO convolution with the corresponding channel in
the input image, resulting in ¢; many intermediate images;
and (ii) summing up all these ¢; intermediate images.
There are two commonly used padding schemes when
performing convolutions. In the valid scheme, no input
padding is used, resulting in an output image that is smaller
than the initial input. In particular we have w, =w; — f,, +1
and h, =h;— f+1. In the same scheme, the input is zero
padded such that output image size is the same as the input.

In practice, the Conv layers sometimes also specify
an additional pair of stride parameters (s, sy) wWhich
denotes the granularity at which the filter is stepped. After
accounting for the strides, the output image size (w,,h,),
is given by (|(wi — fiw + 1) /sw], | (hi — fu + 1) /si]) for
valid style convolutions and (|w;/sy |, | hi/sy]) for same
style convolutions.

Fully-Connected Layers. The input to a FC layer is a
vector v; of length n; and its output is a vector v,, of length
n,. A fully connected layer is specified by the tuple (W, b)
where W is (n, X n;) weight matrix and b is an n, element
bias vector. The output is specified by the following
transformation: v,=W-v;+b.

The key observation that we wish to make is that the
number of multiplications in the Conv and FC layers are
given by (w, - hy - ¢, - fiw - - ¢i) and n; - n,, respectively.
This makes both the Conv and FC layer computations
quadratic in the input size. This fact guides us to use
homomorphic encryption rather than garbled circuit-based
techniques to compute the convolution and fully connected
layers, and indeed, this insight is at the heart of the much
of the speedup achieved by Gazelle.

USENIX Association

27th USENIX Security Symposium 1653

Input Image
=
7 - Layer 1 - # - -
" Conv o
(wi, by, ¢;)

(fW'J fh! Cis co)

Convolution Neural Networks

(fm fhs Ci Co)

Output Classes
Input flattened -\
. airplane

- = N Layers (R _
K EC . automobile

. truck

[Non-Linear Layers

(ni: no)

B Linear Layers

Figure 1: A CNN with two Conv layers and one FC layer. ReLU is used as the activation function and a MaxPooling layer

is added after the first Conv layer.

f, [i24) =
h h
fu
Filter
W W,
Input Image Qutput Image
(a) SISO Convolution
i
rn
€ f
sels
<
fh - Wi - Wo
0 Input Channels Output Channels
Filter

(a) Multi-Channel Convolution

Figure 2: SISO convolutions and multi-channel Conv lay-
ers

2.2 Non-Linear Layers

The non-linear layers, shown in Figure 1 in blue, consist
of an activation function that acts on each element of
the input separately or a pooling function that reduces
the output size. Typical non-linear functions can be one
of several types: the most common in the convolutional
setting are max-pooling functions and ReLU functions.

The key observation that we wish to make in this context
is that all these functions can be implemented by circuits
that have size linear in the input size and thus, evaluating
them using conventional 2PC approaches does not impose
any additional asymptotic communication penalty.

For more details on CNNs, we refer the reader to [40].

2.3 Secure Inference: Problem Description

In our setting, there are two parties A and B where A holds a
convolutional neural network (CNN) and B holds an input
to the network, typically an image. We make a distinction
between the structure of the CNN which includes the
number of layers, the size of each layer, and the activation
functions applied in layer, versus the parameters of the
CNN which includes all the weights and biases that
describe the convolution and the fully connected layers.
We wish to design a protocol that A and B engage in at the
end of which B obtains the classification result (and poten-
tially the network structure), namely the output of the final
layer of the neural network, whereas A obtains nothing.

The Threat Model. Our threat model is the same as in
previous works, namely the SecureML, MiniONN and
DeepSecure systems and our techniques, as we argue
below, leak even less information than in these works.

To be more precise, we consider semi-honest cor-
ruptions as in [36, 29, 30], i.e., A and B adhere to the
software that describes the protocol, but attempt to infer
information about the other party’s input (the network
parameters or the image, respectively) from the protocol
transcript. We ask for the cryptographic standard of
ideal/real security [20, 19]. Two comments are in order
about this ideal functionality.

The first is an issue specific to the ideal functionality
instantiated in this and past work, i.e., the ideal function-
ality does not completely hide the network structure. We
argue, however, that it does hide the important aspects
which are likely to be proprietary. In particular, the ideal
functionality and our realization hides all the weights and
biases in the convolution and the fully connected layers.
Secondly, we also hide the filter and stride size in the con-
volution layers, as well as information as to which layers
are convolutional layers and which are fully connected.
We do reveal the number of layers and the size! (the

One can potentially hide this information by padding the network
with dummy operation at a proportional computational expense

1654 27th USENIX Security Symposium

USENIX Association

number of hidden nodes) of each layer. In contrast, other
protocols for secure neural network inference such as the
MiniONN protocol [29] reveal strictly more information,
e.g., they reveal the filter size. As for party B’s security,
we hide the entire image, but not its size, from party A.

A second, more subtle, issue is with the definition
of the ideal functionality which implements secure
network inference. Since such functionality, must at a
bare minimum, give B access to the classification output,
B maybe be able to train a new classifier to mimic these
classification results. This attack is called model stealing
[42]. Note that model stealing with limited queries is
essentially equivalent to a supervised learning task with
access to a limited training dataset. Thus a potential model
stealing adversary could train such classifier without
access to B by simply asking a domain expert to classify
his limited set of test-images. One potential solution is to
limit the number of classification queries that A is allowed
to make of the model. This can be a practical solution in
a try-before-buy scenario where B only needs access to
limited set of classifications to test the performance of the
network before it buy the network parameters from A. We
remark that designing (potentially-noisy) classifiers which
are intrinsically resilient to model stealing is an interesting
open machine learning problem.

Paper Organization. The rest of the paper is organized
as follows. We first describe our abstraction of a packed
additively homomorphic encryption (PAHE) that we use
through the rest of the paper. We then provide an overview
of the entire Gazelle protocol in section 4. In the next two
sections, Section 5 and 6, we elucidate the most important
technical contributions of the paper, namely the linear
algebra kernels for fast matrix-vector multiplication and
convolution. We then present detailed benchmarks on
the implementation of the homomorphic encryption layer
and the linear algebra kernels in Section 7. Finally, we
describe the evaluation of neural networks such as ones
trained on the MNIST or CIFAR-10 datasets and compare
Gazelle’s performance to prior work in Section 8.

3 Packed Additively Homomorphic Encryption

In this section, we describe a clean abstraction of packed
additively homomorphic encryption (PAHE) schemes that
we will use through the rest of the paper. As suggested
by the name, the abstraction will support packing multiple
plaintexts into a single ciphertext, performing SIMD homo-
morphic additions (SIMDAdd) and scalar multiplications
(SIMDScMult), and permuting the plaintext slots (Perm).
In particular, we will never need or use homomorphic
multiplication of two ciphertexts. This abstraction can
be instantiated with essentially all modern lattice-based
homomorphic encryption schemes, e.g., [5, 16, 4, 14].
For the purposes of this paper, a private-key PAHE suf-
fices. In such an encryption scheme, we have a (random-

ized) encryption algorithm (PAHE.Enc) that takes a plain-
text message vector u from some message space and en-
crypts it using a key sk into a ciphertext denoted as [u], and
a (deterministic) decryption algorithm (PAHE.Dec) that
takes the ciphertext [u] and the key sk and recovers the mes-
sage u. Finally, we also have a homomorphic evaluation
algorithm (PAHE.Eval) that takes as input one or more ci-
phertexts that encrypt messages My, Mj,..., and outputs an-
other ciphertext that encrypts a message M = f(My,Mj,...)
for some function f constructed using the SIMDAdd,
SIMDScMult and Perm operations. We require IND-CPA
security, which requires that ciphertexts of any two mes-
sages u and u’ be computationally indistinguishable.

The lattice-based PAHE constructions that we consider
in this paper are parameterized by four constants: (1) the
cyclotomic order m, (2) the ciphertext modulus ¢, (3) the
plaintext modulus p and (4) the standard deviation ¢ of
a symmetric discrete Gaussian noise distribution ().

The number of slots in a packed PAHE ciphertext
is given by n = ¢(m) where ¢ is the Euler Totient
function. Thus, plaintexts can be viewed as length-n
vectors over Z, and ciphertexts are viewed as length-n
vectors over Z,. All fresh ciphertexts start with an
inherent noise 11 sampled from the noise distribution ¥ .
As homomorphic computations are performed 1 grows
continually. Correctness of PAHE.Dec is predicated on
the fact that || <¢/(2p), thus setting an upper bound on
the complexity of the possible computations.

In order to guarantee security we require a minimum
value of o (based on ¢ and n), ¢ = 1 mod m and p is
co-prime to g. Additionally, in order to minimize noise
growth in the homomorphic operations we require that the
magnitude of r = ¢ mod p be as small as possible. This
when combined with the security constraint results in an
optimal value of r==+1.

In the sequel, we describe in detail the three basic
operations supported by the homomorphic encryption
schemes together with their associated asymptotic cost in
terms of (a) the run-time, and (b) the noise growth. Later,
in Section 7, we will provide concrete micro-benchmarks
for each of these operations implemented in the GAZELLE
library.

3.1 Addition: SIMDAdd

Given ciphertexts [u] and [v], SIMDAdd outputs an
encryption of their component-wise sum, namely [u+v].

The asymptotic run-time for homomorphic addition
is n- CostAdd(q), where CostAdd(g) is the run-time for
adding two numbers in Z, = {0,1,...,g — 1}. The noise
growth is at most 1, + 1My where 1y (resp. 7y) is the
amount of noise in [u] (resp. in [v]).

3.2 Scalar Multiplication: SIMDScMult

If the plaintext modulus is chosen such that p=1 mod m,
we can also support a SIMD compenentwise product.

USENIX Association

27th USENIX Security Symposium 1655

Thus given a ciphertext [u] and a plaintext v, we can output
an encryption [uo v] (where o denotes component-wise
multiplication of vectors).

The asymptotic run-time for homomorphic scalar
multiplication is n - CostMult(g), where CostMult(g) is
the run-time for multiplying two numbers in Z,. The
noise growth is at most Nyt - Mu Where Nnuie 2 ||V] L - /7
is the multiplicative noise growth of the SIMD scalar
multiplication operation.

For a reader familiar with homomorphic encryption
schemes, we note that ||v||,, is the largest value in the
coefficient representation of the packed plaintext vector
v, and thus, even a binary plaintext vector can result in
Nmule s high as p - \/n. In practice, we alleviate this
large multiplicative noise growth by bit-decomposing
the coefficient representation of v into log(p/2"rt) many
wpe-sized chunks v such that v= Yy 2%tk .y, . We refer to
Wy as the plaintext window size.

We can now represent the product [uov] as Y. [ug o v¢]
where uy = [2"»t%.u]. Since ||vi||., < 2"t the total noise
in the multiplication is bounded by 2“7t - ky/n - 1y, as
opposed to p-y/n- 1y. The only caveat is that we need
access to low noise encryptions [uy| as opposed to just [u]
as in the direct approach.

3.3 Slot Permutation: Perm

Given a ciphertext [u] and one of a set of primitive per-
mutations © defined by the scheme, the Perm opera-
tion outputs a ciphertext [u;], where uy is defined as
(U (1)t (2)s-->tr(n)), Namely the vector u whose slots are
permuted according to the permutation 7. The set of per-
mutations that can be supported depends on the structure
of the multiplicative group mod mi.e. (Z/mZ)*. When
m is prime, we have n (=m— 1) slots and the permutation
group supports all cyclic rotations of the slots, i.e. itis
isomorphic to G, (the cyclic group of order n). When m is
a sufficiently large power of two (m =2k, m>8), we have
n="2%"1 and the set of permutations is isomorphic to the
setof half-rotations i.e. G, 5 X C, as illustrated in Figure 4.

Permutations are by far the most expensive operations
in a homomorphic encryption scheme. At a high-level
the PAHE ciphertext vectors represent polynomials.
The permutation operation requires transforming these
polynomials from evaluation to coefficient representations
and back. These transformations can be efficiently
computed using the number theoretic transform (NTT)
and its inverse, both of which are finite-field analogues of
their real valued Discrete Fourier Transform counterparts.
Both the NTT and NTT~! have an asymptotic cost of
©®(nlogn). As shown in [6], we need to perform @(log q)
NTT~! to control Perm noise growth. The total cost of
Perm is therefore ®(nlognlogg) operations. The noise
growth is additive, namely, 1y, = Ny + Nrot Where Nyot 1S
the additive noise growth of a permutation operation.

LR

Figure 3: Ciphertext Structure and Operations. Here, n
is the number of slots, g is the size of ciphertext space
(so a ciphertext required [log, ¢] bits to represent), p is
the size of the plaintext space (so a plaintext can have at
most |log, p| bits), and 7 is the amount of noise in the
ciphertext.

(12)(34} g
4 1

Figure 4: A Plaintext Permutation in action. The permu-
tation 7 in this example swaps the first and the second
slots, and also the third and fourth slots. The operation
incurs a noise growth from) to ' ~ 1N + Nyor. Here,
Nrot = nlogg- Mo where 1 is some small “base noise”.

N [F]

w F

~[F
pn
=

3.4 Paillier vs. Lattice-based PAHE

The PAHE scheme used in Gazelle is dramatically more
efficient than conventional Paillier based AHE. Homomor-
phic addition of two Paillier ciphertexts corresponds to a
modular multiplication modulo a large RSA-like modulus
(3072bits) as opposed to a simple addition mod g as seen
in SIMDAdd. Similarly multiplication by a plaintext turns
into a modular exponentiation for Paillier. Furthermore the
large sizes of the Paillier ciphertexts makes encryption of
single small integers extremely bandwidth-inefficient. In
contrast, the notion of packing provided by lattice-based
schemes provides us with a SIMD way of packing many
integers into one ciphertext, as well as SIMD evaluation
algorithms. We are aware of one system [37] that tries to
use Paillier in a SIMD fashion; however, this lacks two
crucial components of lattice-based AHE, namely the
facility to multiply each slot with a separate scalar, and
the facility to permute the slots. We are also aware of a
method of mitigating the first of these shortcomings [26],
but not the second. Our fast homomorphic implementation
of linear algebra uses both these features of lattice-based
AHE, making Paillier an inefficient substitute.

1656 27th USENIX Security Symposium

USENIX Association

3.5 Parameter Selection for PAHE

Parameter selection for PAHE requires a delicate balance
between the homomorphic evaluation capabilities and the
target security level. We detail our procedure for parameter
selection to meet a target security level of 128 bits. We
first set our plaintext modulus to be 20 bits to represent the
fixed point inputs (the bit-length of each pixel in an image)
and partial sums generated during the neural network
evaluation. Next, we require that the ciphertext modulus
be close to, but less than, 64 bits in order to ensure that
each ciphertext slot fits in a single machine word while
maximizing the potential noise margin available during
homomorphic computation.

The Perm operation in particular presents an interesting
tradeoff between the simplicity of possible rotations
and the computational efficiency of the NTT. A prime
m results in a (simpler) cyclic permutation group but
necessitates the use of an expensive Bluestein transform.
Conversely, the use of m = 2k allows fora 8x more effi-
cient Cooley-Tukey style NTT at the cost of an awkward
permutation group that only allows half-rotations. In this
work, we opt for the latter and adapt our linear algebra
kernels to deal with the structure of the permutation group.
Based on the analysis of [1], we set m =4096 and 0 =4
to obtain our desired security level.

Our chosen bit-width for g (60 bits), allows for lazy re-
duction, i.e. multiple additions may be performed without
overflowing a machine word before a reduction is neces-
sary. Additionally, even when q is close to the machine
word-size, we can replace modular reduction with a simple
sequence of addition, subtraction and multiplications. This
is done by choosing g to be a pseudo-Mersenne number.

Next, we detail a technique to generate prime moduli
that satisfy the above correctness and efficiency properties,
namely:

1. g=1 mod m

2. p=1mod m

3. |g mod p|=|r|~1

4. gis pseudo-Mersenne, i.e. g=2%—§ (8 < Va)

Since we have chosen m to be a power of two, we
observe that &6 = —1 mod m. Moreover, r = g mod p
implies that § = (2% — r) mod p. These two CRT
expressions for 6 imply that given a prime p and residue
r, there exists a unique minimal value of 6 mod (p-m).

Based on this insight our prime selection procedure can
be broken down into three steps:

1. Sample for p = 1 modm and sieve the prime
candidates.

2. For each candidate p, compute the potential 2|r|
candidates for 6 (and thus g).

3. If g is prime and 9 is sufficiently small accept the pair
(p.q)-

Heuristically, this procedure needs log(q)(p
m)/(2|r|,/q) candidate primes p to sieve out a suitable g.

Table 1: Prime Selection for PAHE
[log(p)] p q 7|

18 307201 200_212.635494+1 1
22 5324801 200-212.1221304+1 1
26 115351553 260-212.92594 1 1
30 1316638721 200_212.547784+1 2

Since p ~ 2%° and ¢ ~ 2% in our setting, this procedure
is very fast. A list of reduction-friendly primes generated
by this approach is tabulated in Table 1. Finally note that
when [log(p)] -3 < 64 we can use Barrett reduction to
speed-up reduction mod p.

The impact of the selection of reduction-friendly primes
on the performance of the PAHE scheme is described in
section 7.

4 Our Protocol at a High Level

Our protocol for secure neural network inference is based
on the alternating use of PAHE and garbled circuits (GC).
We will next explain the flow of the protocol and show
how one can efficiently and securely convert between the
data representations required for the two cryptographic
primitives.

The main invariant that the protocol maintains is that at
the start of the PAHE phase the server and the client posses
an additive share cy, s, of the client’s input y. At the very
beginning of the computation this can be accomplished
by the trivial share (cy, sy) =(y, 0).

In order to evaluate a linear layer, we start with the client
B first encrypting their share using the PAHE scheme and
sending it to the server A. A in turn homomorphically
adds her share s, to obtain an encryption of ¢, + s, = [y].
The security of the homomorphic encryption scheme
guarantees that B cannot recover y from this encryption.
The server A then uses a homomorphic linear algebra
kernel to evaluate linear layer (which is either convolution
or fully connected). The result is a packed ciphertext that
contains the input to the first non-linear (ReLU) layer. The
homomorphic scheme ensures that A learns nothing about
B’s input. B has not received any input from A yet and thus
has no way of learning the model parameters.

In preparation for the evaluation of the subsequent non-
linear activation layer A must transform her PAHE cipher-
text into additive shares. At the start of this step A holds a
ciphertext [x] (where X is a vector) and B holds the private
key. The first step is to transform this ciphertext such that
both A and B hold an additive secret sharing of x. This is
accomplished by the server A adding a random vector r to
her ciphertext homomorphically to obtain an encryption
[x + r] and sending it to the client B. The client B then
decrypts this message to get his share. Thus the server A
sets her share s, =r and B sets his share ¢, =x+r mod p.

USENIX Association

27th USENIX Security Symposium 1657

Since A chooses r uniformly at random s, does not contain
any information about either the model or B’s input. Since
B does not know r, ¢, has a uniform random distribution
from B’s perspective. Moreover the security of the PAHE
scheme ensures that A has no way of figuring out what c, is.

We next evaluate the non-linear activation using Yao’s
GC protocol. At the start of this step both parties posses
additive shares (cy, sy) of the secret value of x and want to
compute y = ReLU(x) without revealing it completely to
either party. We evaluate the non-linear activation function
ReLU (in parallel for each component of x) to get a secret
sharing of the output y = ReLU(x). This is done using
our circuit from Figure 5, described in more detail below.
The output of the garbled circuit evaluation is a pair of
shares s, (for the server) and c, (for the client) such that
sy+cy =y mod p. The security argument is exactly the
same as after the first step, i.e. neither party has complete
information and both shares appear uniformly random to
their respective owners.

Once this is done, we are back where we started and we
can repeat these steps until we evaluate the full network.
We make the following two observations about our
proposed protocol:

1. By using AHE for the linear layers, we ensure that the
communication complexity of protocol is linear in the
number of layers and the size of inputs for each layer.

2. Atthe end of the garbled circuit protocol we have an
additive share that can be encrypted afresh. As such,
we can view the re-encryption as an interactive boot-
strapping procedure that clears the noise introduced
by any previous homomorphic operation.

For the second step of the outline above, we employ the
boolean circuit described in Figure 5. The circuit takes as
input three vectors: s, =r and s, = r’ (chosen at random)
from the server, and ¢, from the client. The first block of
the circuit computes the arithmetic sum of s, and c, over
the integers and subtracts p from to obtain the result mod
p- (The decision of whether to subtract p or not is made by
the multiplexer). The second block of the circuit computes
aReLU function. The third block adds the result to sy to
obtain the client’s share of y, namely c,. For more detailed
benchmarks on the ReLLU and MaxPool garbled circuit
implementations, we refer the reader to Section 8. We
note that this conversion strategy is broadly similar to the
one developed in [25].

In our evaluations, we consider ReLU, Max-Pool and
the square activation functions, the first two are by far
the most commonly used ones in convolutional neural
network design [28, 41, 39, 24]. Note that the square
activation function popularized for secure neural network
evaluation in [18] can be efficiently implemented by a
simple interactive protocol that uses the PAHE scheme
to generate the cross-terms.

The use of an IND-CPA-secure PAHE scheme for evalu-

& \ 4
|SVI i
I
1
[H J —
B pl2 — I
S o | =
1
C |— — I —
- ! ' |
I
> |
1
I
|
p p/2 L p
- > - - \\.,, -"

Figure 5: Our combined circuit for steps (a), (b) and (c)
for the non-linear layers. The “+” gates refer to an integer
addition circuit, “-” refers to an integer subtraction circuit
and the “>” refers to the circuit refers to a greater than
comparison. Note that the borrow of the subtraction gates
is used as the select for the first and last multiplexer

ating the linear layers guarantees the privacy of the client’s
inputs. However the PAHE scheme must also guarantee
the confidentiality of the server’s input, in other words, it
should be circuit-private. Prior work addresses this prob-
lem in two ways. The first approach called noise-flooding
adds a large amount of noise to the final ciphertext [15]
to obscure any information leaked through the ciphertext
noise. The second technique relies on bootstrapping, either
using garbled circuits [17] or using the full power of an
FHE scheme [11]. Noise-flooding causes an undesirable
blow-up in the parameters of the underlying PAHE scheme,
while the FHE-bootstrapping based solution is well be-
yond the scope of the simple PAHE schemes we employ.
Thus, our solution builds a low-overhead circuit-private
interactive decryption protocol (Appendix B) to improve
the concrete efficiency of the garbled circuit approach (as
in [17]) as applied to the BFV scheme [4, 14].

5 Fast Homomorphic Matrix-Vector Multiplication

We next describe the homomorphic linear algebra kernels
that compute matrix-vector products (for FC layers) and
2D convolutions (for Conv layers). In this section, we
focus on matrix-vector product kernels which multiply
a plaintext matrix with an encrypted vector. We start
with the easiest to explain (but the slowest and most
communication-inefficient) methods and move on to
describing optimizations that make matrix-vector mul-
tiplication much faster. In particular, our hybrid method
(see Table 4 and the description below) gives us the best
performance among all our homomorphic matrix-vector
multiplication methods. For example, multiplying a
128 x 1024 matrix with a length-1024 vector using our
hybrid scheme takes about l6ms(F0r detailed benchmarks,
we refer the reader to Section 7.3). In all the subsequent
examples, we will use an FC layer with n; inputs and

1658 27th USENIX Security Symposium

USENIX Association

Table 2: Comparing matrix-vector product algorithms by operation count, noise growth and number of output ciphertexts

Perm (Hoisted)? Perm SIMDScMult SIMDAdd Noise #out_ct?
.. MNnaive := 10 Nmult "7
Naive 0 n,-logn; n n,-logn; n
0 an; 0 0 an; +nrot'(ni_1) 0
Naive) N . nnaive'nmult'no
(Output packed) 0 ny-logni+n,—1 2-n, ny-logn;+n, - (10— 1) 1
Naive no°n; , no°n; noen; . N0 Mmule 7% no°n;
(Input packed) 0 w logn " wologn (= 1) "
Diagonal ni—1 0 n; n; (110—|—Tlmt) “Nmult "N 1
. . N -n; +nrot)'nmu|t'ni
Hybrid ol g log no; B0 4 |og L (10 _ 1
yori n gn,7 n n gn(, +nrot'(%_l)
2 Rotations of the input with a common PermDecomp ® Number of output ciphertexts
¢ All logarithms are to base 2
n, outputs as a running example. For simplicity of as follows:

presentation, unless stated otherwise we assume that n, n;
and n,, are powers of two. Similarly we assume that n, and
n; are smaller than n. If not, we can split the original matrix
into n X n sized blocks that are processed independently.

The Naive Method. In the naive method, each row of
the n, X n; plaintext weight matrix W is encoded into
a separate plaintext vectors (see Figure 6). Each such
vector is of length n; where the first n; entries contain
the corresponding row of the matrix and the other entries
are padded with 0. These plaintext vectors are denoted
W0,W1,..., W, _1). We then use SIMDScMult to compute
the component-wise product of with the encrypted input
vector [v] to get [w;] = [w; ov]. In order to compute the
inner-product what we need is actually the sum of the
entries in each of these vectors u;.

This can be achieved by a “rotate-and-sum” approach,

where we first rotate the entries of [u;] by n;/2 positions.

The result is a ciphertext whose first n; /2 entries contain
the sum of the first and second halves of u;. One can then
repeat this process for log, n; iterations, rotating by half
the previous rotation on each iteration, to get a ciphertext
whose first slot contains the first component of Wv. By
repeating this procedure for each of the n, rows we get
n, ciphertexts, each containing one element of the result.
Based on this description, we can derive the following
performance characteristics for the naive method:

e The total cost is n, SIMD scalar multiplications,
n, - log, n rotations (automorphisms) and n, - log, n
SIMD additions.

e The noise grows from 1 to 1N * Nmult B+ Nrot - (1 — 1)
where 7y 1S the multiplicative noise growth factor
for SIMD multiplication and 1), is the additive noise
growth for a rotation. This is because the one SIMD
multiplication turns the noise from 17 — 1 - Nmuit, and
the sequence of rotations and additions grows the noise

1 Nmute = (M Mmute) - 24 Mrot = (M- Nmuie) -4+ Mrot -3+

which gives us the above result.

o Finally, this process produces n, many ciphertexts each
one containing just one component of the result.

This last fact turns out to be an unacceptable efficiency
barrier. In particular, the total network bandwidth becomes
quadratic in the input size and thus contradicts the entire
rationale of using PAHE for linear algebra. Ideally, we
want the entire result to come out in packed form in a
single ciphertext (assuming, of course, that n, <n).

A final subtle point that needs to noted is that if n is
not a power of two, then we can continue to use the same
rotations as before, but all slots except the first slot leak
information about partial sums. We therefore must add
arandom number to these slots to destroy this extraneous
information about the partial sums.

5.1 Output Packing

The very first thought to mitigate the ciphertext blowup
issue we just encountered is to take the many output
ciphertexts and somehow pack the results into one. Indeed,
this can be done by (a) doing a SIMD scalar multiplication
which zeroes out all but the first coordinate of each of
the out ciphertexts; (b) rotating each of them by the
appropriate amount so that the numbers are lined up in
different slots; and (c) adding all of them together.
Unfortunately, this results in unacceptable noise growth.
The underlying reason is that we need to perform two
serial SIMD scalar multiplications (resulting in an nr%“”t
factor; see Table 4). For most practical settings, this
noise growth forces us to use ciphertext moduli that are
larger 64 bits, thus overflowing the machine word. This
necessitates the use of a Double Chinese Remainder
Theorem (DCRT) representation similar to [16] which
substantially slows down computation. Instead we use an
algorithmic approach to control noise growth allowing the
use of smaller moduli and avoiding the need for DCRT.

USENIX Association

27th USENIX Security Symposium 1659

w v
®
(a) Naive
W v
Wv
® [T
(b) Diagonal
W v
®
[ITT]
(c) Hybrid Wy

Figure 6: The naive method is illustrated on the left and the
diagonal method of Halevi and Shoup [22] is illustrated
on the right. The entries in a single color live in the same
ciphertext. The key feature of the diagonal method is that
no two elements of the matrix that influence the same
output element appear with the same color.

5.2 Input Packing

Before moving on to more complex techniques we describe
an orthogonal approach to improve the naive method when
n; < n. The idea is to pack multiple copies of the input
into a single ciphertext. This allows us better utilization
of the slots by computing multiple outputs in parallel.

In detail we can (a) pack n/n; many different rows into
a single plaintext vector; (b) pack n/n; copies of the input
vector into a single ciphertext; and (c) perform the rest
of the naive method as-is except that the rotations are not
applied to the whole ciphertext but block-by-block (thus
requiring log(n;) many rotations). Roughly speaking, this
achieves communication and computation as if the number

of rows of the matrix were n/, = (n, x n;) /n instead of n,,.

When n; < n, we have n), < n,.

The Diagonal Method. The diagonal method as
described in the work of Halevi and Shoup [22] (and
implemented in [21]) provides another potential solution

to the problem of a large number of output ciphertexts.

The key high-level idea is to arrange the matrix elements
in such a way that after the SIMD scalar multiplications,
“interacting elements” of the matrix-vector product never
appear in a single ciphertext. Here, “interacting elements”
are the numbers that need to be added together to obtain
the final result. The rationale is that if this happens, we
never need to add two numbers that live in different slots
of the same ciphertexts, thus avoiding ciphertext rotation.

To do this, we encode the diagonal of the matrix into
a vector which is then SIMD scalar multiplied with the
input vector. The second diagonal (namely, the elements
Wo.1,Wio,...,W,,_10) is encoded into another vector
which is then SIMD scalar multiplied with a rotation (by
one) of the input vector, and so on. Finally, all these vectors
are added together to obtain the output vector in one shot.

The cost of the diagonal method is:

e The total cost is n; SIMD scalar multiplications, n; — 1
rotations (automorphisms), and n; — 1 SIMD additions.
e The noise grows from 1 to (1 + Mot) - Nmuir X 1; Which,
for the parameters we use, is larger than that of the naive
method, but much better than the naive method with
output packing. Roughly speaking, the reason is that
in the diagonal method, since rotations are performed

before scalar multiplication, the noise growth has a

Nrot - NMmult factor whereas in the naive method, the order

is reversed resulting in a Nyt + Nrot factor.

e Finally, this process produces a single ciphertext that
has the entire output vector in packed form already.

In our setting (and we believe in most reasonable set-
tings), the additional noise growth is an acceptable compro-
mise given the large gain in the output length and the cor-
responding gain in the bandwidth and the overall run-time.
Furthermore, the fact that all rotations happen on the input
ciphertexts prove to be very important for an optimiza-
tion of [23] we describe in Appendix A, called “hoisting”,
which lets us amortize the cost of many input rotations.

A Hybrid Approach. One issue with the diagonal
approach is that the number of Perm is equal to n;. In the
context of FC layers n, is often much lower than n; and
hence it is desirable to have a method where the Perm is
close to n,. Our hybrid scheme achieves this by combining
the best aspects of the naive and diagonal schemes. We
first extended the idea of diagonals for a square matrix to
squat rectangular weight matrices as shown in Figure 6
and then pack the weights along these extended diagonals
into plaintext vectors. These plaintext vectors are then
multiplied with n, rotations of the input ciphertext similar
to the diagonal method. Once this is done we are left
with a single ciphertext that contains n/n, chunks each
contains a partial sum of the n, outputs. We can proceed
similar to the naive method to accumulate these using a
“rotate-and-sum” algorithm.

We implement an input packed variant of the hybrid
method and the performance and noise growth characteris-

1660 27th USENIX Security Symposium

USENIX Association

Figure 7: Four example extended digaonals after account-
ing for the rotation group structure

tics (following a straightforward derivation) are described
in Table 4. We note that hybrid method trades off hoistable
input rotations in the Diagonal method for output rotations
on distinct ciphertexts (which cannot be “hoisted out”).
However, the decrease in the number of input rotations
is multiplicative while the corresponding increase in the
number of output rotations is the logarithm of the same
multiplicative factor. As such, the hybrid method almost
always outperforms the Naive and Diagonal methods. We
present detailed benchmarks over a selection of matrix
sizes in Table 8.

We close this section with two important implemen-
tation details. First, recall that in order to enable faster
NTT, our parameter selection requires n to be a power of
two. As aresult the permutation group we have access to
is the group of half rotations (C, , X (2), i.e. the possible
permutations are compositions of rotations by up to
n/2 for the two n/2-sized segments, and swapping the
two segments. The packing and diagonal selection in
the hybrid approach are modified to account for this by
adapting the definition of the extended diagonal to be those
entries of W that would be multiplied by the corresponding
entries of the ciphertext when the above Perm operations
are performed as shown in Figure 7. Finally, as described
in section 3 we control the noise growth in SIMDScMult
using plaintext windows for the weight matrix W.

6 Fast Homomorphic Convolutions

‘We now move on to the implementation of homomorphic
kernels for Conv layers. Analogous to the description of
FC layers we will start with simpler (and correspondingly
less efficient) techniques before moving on to our final opti-
mized implementation. In our setting, the server has access
to a plaintext filter and it is then provided encrypted input
images, which it must homomorphically convolve with its
filter to produce encrypted output images. As a running

E3 + ®f .+
HAE 1 3|a]s J 3fa]s * *
B[7|8 8|7|8 g|7|8
m_,(in) 1, (in my (in)
[0 o[1]z2 [E0E
3[4|6 34|56 34|68 . _ of1)2
sl <0t 5|78 |~ vt [EF[e =T = 348
B[T|B
. (in) s(in) s lin) out

Figure 8: Padded SISO Convolution

example for this section we will consider a (f,, fi, ¢i, Co)-
Conv layer with the same padding scheme, where the input
is specified by the tuple (w;, h;, ¢;). In order to better
emphasize the key ideas, we will split our presentation into
two parts: first we will describe the single input single out-
put (SISO) case, i.e. (c;=1, ¢, = 1) followed by the more
general case where we have multiple input and output chan-
nels, a subset of which may fit within a single ciphertext.

Padded SISO. As seen in section 2, same style
convolutions require that the input be zero-padded. As
such, in this approach, we start with a zero-padded
version of the input with (f,, — 1)/2 zeros on the left
and right edges and (f;, — 1)/2 zeros on the top and
bottom edges. We assume for now that this padded input
image is small enough to fit within a single ciphertext
ie. (wi+ fw—1) (hi+ fu—1) < n and is mapped to
the ciphertext slots in a raster scan fashion. We then
compute f,, - fj, rotations of the input and scale them by the
corresponding filter coefficient as shown in Figure 8. Since
all the rotations are performed on a common input image,
they can benefit from the hoisting optimization. Note that
similar to the naive matrix-vector product algorithm, the
values on the periphery of the output image leak partial
products and must be obscured by adding random values.

Packed SISO. While the above the technique com-
putes the correct 2D-convolution it ends up wasting
(wi+ fiw—1)-(hi+ fn — 1) —w; - ; slots in zero padding.
If either the input image is small or if the filter size is large,
this can amount to a significant overhead. We resolve this
issue by using the ability of our PAHE scheme to multiply
different slots with different scalars when performing
SIMDScMult. As a result, we can pack the input tightly
and generate f,, - f; rotations. We then multiply these
rotated ciphertexts with punctured plaintexts which have
zeros in the appropriate locations as shown in Figure 9.
Accumulating these products gives us a single ciphertext
that, as a bonus, contains the convolution result without
any leakage of partial information.

Finally, we note that the construction of the punctured

USENIX Association

27th USENIX Security Symposium 1661

S5[6|T 6|7[8 T|8(0

slo[1]x + [o]1]z] = + [1]2[3] = +
2(3fa ifals 4|56

m_,(in) f T_5(in) \ T_,(in) Ty

g[0[1 o[1]2 1]2]3

2[a[a]x + [3]a]8] = + [4]6[8] = +
5[6[7 6[7[8 780

T_4(in) Ty lin) T (in) fiio

2[3]4 3[a[6 4]6]6 0[1]z
5[6[7]x + [6]7[8] = + [7]8]0] x = [3]4[6
B(0f1 of1[2 1123 6|7|8
m,(in) ! m,(in) m,(in) fer 1y out

Figure 9: Packed SISO Convolution. (Zeros in the punc-
tured plaintext shown in white.)

Table 3: Comparing SISO 2D-convolutions

Perm # slots
Padded fi,.fi—1 (Wit fu—1)(hi+fi—1)
Packed f,fr—1 wih;

@ o
-

Figure 10: Decomposing a strided convolutions into simple
convolutions (f,,= f, =3 and sy =s,=2)

plaintexts does not depend on either the encrypted image
or the client key information and as such, the server can
precompute these values once for multiple clients. We
summarize these results in Table 3.

6.1 Strided Convolutions

We handle strided convolutions by decomposing the
strided convolution into a sum of simple convolutions
each of which can be handled as above. We illustrate this
case for f,, = f, =3 and sy = s, =2 in Figure 10.

6.2 Low-noise Batched Convolutions

We make one final remark on a potential application for
padded SISO convolutions. Padded SISO convolutions
are computed as a sum of rotated versions of the input
images multiplied by corresponding constants f ,. The
coefficient domain representation of these plaintext
vectors is (f,,0,...,0). As aresult, the noise growth factor
iS Mmuit = fr.y - /1 as opposed to p- /n, consequently noise
growth depends only on the value of the filter coefficients
and not on the size of the plaintext space p. The direct
use of this technique precludes the use of channel packing
since the filter coefficients are channel dependent. One
potential application that can mitigate this issue is when

we want to classify a batch of multiple images. In this
context, we can pack the same channel from multiple
classifications allowing us to use a simple constant filter.
This allows us to trade-off classification latency for higher
throughput. Note however that similar to padded SISO
convolutions, this has two problems: (a) it results in lower
slot utilization compare to packed approaches, and (b) the
padding scheme reveals the size of the filter.

Now that we have seen how to compute a single 2D-
convolution we will look at the more general multi-channel
case.

Single Channel per Ciphertext. The straightforward
approach for handling the multi-channel case is to encrypt
the various channels into distinct ciphertexts. We can
then SISO convolve these c;-ciphertexts with each of
the ¢, sets of filters to generate c, output ciphertexts.
Note that although we need ¢, - ¢; - f, - f,, SIMDAdd and
SIMDScMult calls, just ¢; - fj, - f,, many Perm operations
on the input suffice, since the rotated inputs can be reused
to generate each of the ¢, outputs. Furthermore, each these
rotation can be hoisted and hence we require just ¢; many
PermDecomp calls and ¢;- f;, - f,, many PermAuto calls.

Channel Packing Similar to input-packed matrix-
vector products, the computation of multi-channel convo-
lutions can be further sped up by packing multiple channels
in a single ciphertext. We represent the number of channels
that fit in a single ciphertext by c¢,. Channel packing allows
us to perform c,-SISO convolutions in parallel in a SIMD
fashion. We maximize this parallelism by using Packed
SISO convolutions which enable us to tightly pack the in-
put channels without the need for any additional padding.

For simplicity of presentation, we assume that both ¢;
and ¢, are integral multiples of ¢,. Our high level goal is
to then start with ¢; /¢, input ciphertexts and end up with
¢,/ cn output ciphertexts where each of the input and output
ciphertexts contains ¢, distinct channels. We achieve this
in two steps: (a) convolve the input ciphertexts in a SISO
fashion to generate (¢, -¢;) /¢, intermediate ciphertexts that
contain all the ¢, - ¢;-SISO convolutions and (b) accumulate
these intermediate ciphertexts into output ciphertexts.

Since none of the input ciphertexts repeat an input chan-
nel, none of the intermediate ciphertexts can contain SISO
convolutions corresponding to the same input channel. A
similar constraint on the output ciphertexts implies that
none of the intermediate ciphertexts contain SISO convo-
lutions corresponding to the same output. In particular, a
potential grouping of SISO convolutions that satisfies these
constraints is the diagonal grouping. More formally the k'
intermediate ciphertext in the diagonal grouping contains
the following ordered set of ¢,-SISO convolutions:

{(k/ci]-ent
| (k mod ¢;)/cp]-cp+((k+1) mod c,))| [€[0,c,) }
where each tuple (x,, x;) represents the SISO convolution

1662 27th USENIX Security Symposium

USENIX Association

L oo [om [@a [@y | [@wa [sn [wa [73 |
+ +

[y [03 [@y [oo | [@ [&2 [w3 [7o |
+ +

[[na [eo [en | [w2 [63 [w0 [a1 |
+ +

L oa [0w [@y [@a | [w3 [s [wn [[|
+ +

[[085 [@8 [an | [wa | &5 [w8 [@7 |
+ +

[(os [& [@0 [w@a | [@s | &6 [w1 [@4 |
+ +

[[os [wnm [& [o6& | [@& | 6n | w4 | 08 |
+ +

[en [v& [@89 [o8 | [@n | G4 [w5 [08 |

Ce T+ T2 T &][¢ [5 [& [7 |

Figure 11: Diagonal Grouping for Intermediate Cipher-
texts (c;=c,=8 and ¢, =4)

corresponding to the output channel x, and input channel
x;. Given these intermediate ciphertexts, one can generate
the output ciphertexts by simply accumulating the ¢, /c;,-
partitions of ¢; consecutive ciphertexts. We illustrate this
grouping and accumulation when ¢;=c,=8 and ¢, =4 in
Figure 11. Note that this grouping is very similar to the di-
agonal style of computing matrix vector products, with sin-
gle slots now being replaced by entire SISO convolutions.

Since the second step is just a simple accumulation of
ciphertexts, the major computational complexity of the
convolution arise in the computation of the intermediate
ciphertexts. If we partition the set of intermediate
ciphertexts into c¢,-sized rotation sets (shown in grey in
Figure 11), we see that each of the intermediate ciphertexts
is generated by different rotations of the same input. This
observation leads to two natural approaches to compute
these intermediate ciphertexts.

Input Rotations. In the first approach, we generate
¢y, rotations of every input ciphertext and then perform
Packed SISO convolutions on each of these rotations to
compute all the intermediate rotations required by ¢, /¢,
rotation sets. Since each of the SISO convolutions requires
fw - fn rotations, we require a total of (¢, - fi - fr — 1)
rotations (excluding the trivial rotation by zero) for each
of the ¢;/c, inputs. Finally we remark that by using the
hoisting optimization we compute all these rotations by
performing just ¢;/c, PermDecomp operations.

Output Rotations. The second approach is based on
the realization that instead of generating (¢, - fiv - f — 1)
input rotations, we can reuse (f,,- f, — 1) rotations in each
rotation-set to generate ¢, convolutions and then simply
rotate (¢, — 1) of these to generate all the intermediate ci-
phertexts. This approach then reduces the number of input
rotations by factor of ¢, while requiring (¢, — 1) rotations
for each of the (c; - ¢,)/c2 rotation sets. Note that while
(fw+fun—1) input rotations per input ciphertext can share a

common PermDecomp each of the output rotations occur
on a distinct ciphertext and cannot benefit from hoisting.
We summarize these numbers in Table 4. The choice
between the input and output rotation variants is an
interesting trade-off that is governed by the size of the
2D filter. This trade-off is illustrated in more detail with
concrete benchmarks in section 7. Finally, we remark
that similar to the matrix-vector product computation,
the convolution algorithms are also tweaked to work with
the half-rotation permutation group and use plaintext
windows to control the scalar multiplication noise growth.

7 Implementation and Micro-benchmarks

Next we describe the implementation of the Gazelle
framework starting with the chosen cryptographic
primitives (7.1). We then describe our evaluation test-bed
(7.2) and finally conclude this section with detailed
micro-benchmarks (7.3) for all the operations to highlight
the individual contributions of the techniques described
in the previous sections.

7.1 Cryptographic Primitives

Gazelle needs two main cryptographic primitives for
neural network inference: a packed additive homomorphic
encryption (PAHE) scheme and a two-party secure
computation (2PC) scheme. Parameters for both schemes
are selected for a 128-bit security level. For the PAHE
scheme we instantiate the Brakerski-Fan-Vercauteren
(BFV) scheme [4, 14], with n = 2048, 20-bit plaintext
modulus, 60-bit ciphertext modulus and 6 =4 according
to the analysis of Section 3.5.

For the 2PC framework, we use Yao’s Garbled
circuits [44]. The main reason for choosing Yao over
Boolean secret sharing schemes (such as the Goldreich-
Micali-Wigderson protocol [19] and its derivatives)
is that the constant number of rounds results in good
performance over long latency links. Our garbling scheme
is an extension of the one presented in JustGarble [3]
which we modify to also incorporate the Half-Gates
optimization [45]. We base our oblivious transfer (OT) im-
plementation on the classic Ishai-Kilian-Nissim-Petrank
(IKNP) [27] protocol from libOTe [33]. Since we use 2PC
for implementing the ReLU, MaxPool and FHE-2PC trans-
formation gadget, our circuit garbling phase only depends
on the neural network topology and is independent of the
client input. As such, we move it to the offline phase of the
computation while the OT Extension and circuit evaluation
is run during the online phase of the computation.

7.2 Evaluation Setup

All benchmarks were generated using c4.xlarge AWS in-
stances which provide a 4-threaded execution environment
(on an Intel Xeon E5-2666 v3 2.90GHz CPU) with 7.5GB
of system memory. Our experiments were conducted
using Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-1041-aws)

USENIX Association

27th USENIX Security Symposium 1663

Table 4: Comparing multi-channel 2D-convolutions

PermDecomp Perm #in_ct #out_ct
One Channel per CT ¢ (fwfn—1)-ci I Co
Input Rotations o (Cnfwfn—1)- ¢ o &
Output Rotations (1 —&—(C%:)C") o (fwfh— 1 -i-%) o o o

Table 5: Fast Reduction for NTT and Inv. NTT

Table 7: Permutation Microbenchmarks

. Fast Reduction ~ Naive Reduction . PermKeyGen Key Size PermAuto Noise
Operation Speedup # windows
t(us) cyc/bfly t(us) cyc/bfly t(us) kB t(us) bits
NTT (q) 57 14.68 393 101.18 6.9 3 466 49.15 35 29.3
Inv. NTT (q) 54 13.90 388 99.89 7.2 6 925 98.30 57 19.3
NTT (p) 43 1107 240 61.79 56 12 1849 196.61 100 14.8
Inv. NTT (p) 38 9.78 194 49.95 5.1
inherent in the permutation operation. Note that an
Table 6: FHE Microbenchmarks individual permutation after the initial decomposition
Operation Fast Reduction Naive Reduction Speedup is roughly 8-9x faster than a permutation without any
t(us) cyc/slot t(us) cyc/slot pre-computation. Finally we observe a linear growth in
KeyGen 232 3285 952 1348.1 4.1 the run-time of the permutation operation with an increase
Encrypt 186 263.4 621 879.4 33 in the number of windows, allowing us to trade off noise
Decrypt 125 1770 513 7264 4.1 performance for run-time if few future operations are
SIMDAdd 5 8.1 393 49.7 6.1 desired on the permuted ciphertext.
SIMDScMult 10 14.7 388 167.1 11.3 Li Algebra Bench K .
inear ra Benchmarks. resent micro-
PermKeyGen 466 659.9 1814 2568.7 3.9 b e;l kgef ah el ¢ al ; EGthweIp ese. t 1 cro
Perm 268 3795 1740 24639 6.5 enchmarks grt e linear algebra kernels. nparpcu ar we
PermDecomp 231 327.1 1595 2258.5 6.9 focus on matrix-vector products and 2D convolutions since
PermAuto 35 49.6 141 199.7 4.0 these are the operations most frequently used in neural

and our library was compiled using GCC 5.4.0 using the
-O3’ optimization setting and enabling support for the
AES-NI instruction set. Our schemes are evaluated in the
LAN setting similar to previous work with both instances
in the us-east-1a availability zone.

7.3 Micro-benchmarks

In order to isolate the impact of the various techniques
and identify potential optimization opportunities, we first
present micro-benchmarks for the individual operations.

Arithmetic and PAHE Benchmarks. We first bench-
mark the impact of the faster modular arithmetic on the
NTT and the homomorphic evaluation run-times. Table
5 shows that the use of a pseudo-Mersenne ciphertext
modulus coupled with lazy modular reduction improves
the NTT and inverse NTT by roughly 7x. Similarly
Barrett reduction for the plaintext modulus improves the
plaintext NTT runtimes by more than 5x. These run-time
improvements are also reflected in the performance of the
primitive homomorphic operations as shown in Table 6.
Table 7 demonstrates the noise performance trade-off

network inference. Before performing these operations,
the server must perform a one-time client-independent
setup that pre-processes the matrix and filter coefficients.
In contrast with the offline phase of 2PC, this computation
is NOT repeated per classification or per client and can
be performed without any knowledge of the client keys.
In the following results, we represent the time spent in this
amortizable setup operation as tset,p. Note that tofrine for
both these protocols is zero.

The matrix-vector product that we are interested in
corresponds to the multiplication of a plaintext matrix with
apacked ciphertext vector. We first start with a comparison
of three matrix-vector multiplication techniques:

1. Naive: Every slot of the output is generated indepen-
dently by computing an inner-product of a row of the
matrix with ciphertext column vector.

2. Diagonal: Rotations of the input are multiplied by the
generalized diagonals from the plaintext matrix and
added to generate a packed output.

3. Hybrid: Use the diagonal approach to generate a
single output ciphertext with copies of the output
partial sums. Use the naive approach to generate the
final output from this single ciphertext

1664 27th USENIX Security Symposium

USENIX Association

Table 8: Matrix Multiplication Microbenchmarks

Table 10: Activation and Pooling Microbenchmarks

#in_rot #outrot #mac tonline tsetup
N 0 11 1 79 161
2048x1 o047 0 2048 3833 33268
H 0 11 1 80 162
N 0 1280 128 880.0 18492
1024128 " 1023 1024 2048 1924 16628
H 63 4 64 162 1085
N 0 160 16 1103 2314
102616 " 1023 1024 2048 1924 16628
H 7 7 8 78 218
N 0 112 16 774 1625
128x16 ' yp7 128 2048 254 2068
H 0 7 1 53 105
Table 9: Convolution Microbenchmarks
Input Filter Algorithm topline tsetup
(WxH,C) (WxH,C) (ms) (ms)
I 144 117
(28%28,1) (5x5.,5) o 95 114
I 107 334
(16x16,128) (1x1,128) o o 6
I 208 704
(32x32,32) (3x3,32) o 195 704
I 767 3202
(16x16,128) (3x3,128) o 704 3312

We compare these techniques for the following matrix
sizes: 2048 x 1, 1024 x 128, 128 x 16. For all these
methods we report the online computation time and the
time required to setup the scheme in milliseconds. Note
that this setup needs to be done exactly once per network
and need not be repeated per inference. The naive scheme
uses a 20bit plaintext window (wp) while the diagonal and
hybrid schemes use 10bit plaintext windows. All schemes
use a 7bit relinearization window (Wejin)-

Finally we remark that our matrix multiplication scheme
is extremely parsimonious in the online bandwidth. The
two-way online message sizes for all the matrices are
given by (w+ 1) * cts, where ctg, is the size of a single
ciphertext (32 kB for our parameters).

Next we compare the two techniques we presented for
2D convolution: input rotation (I) and output rotation
(O) in Table 9. We present results for four convolution
sizes with increasing complexity. Note that the 5 x 5
convolution is strided convolution with a stride of 2. All
results are presented with a 10bit wy,; and a 8bit wyejj,.

As seen from Table 9, the output rotation variant is

. toﬂline tonline BWoffline Bvvonline
Algorithm Outputs (ms) (ms) (MB) (MB)
Square 2048 0.5 1.4 0 0.093
1000 89 15 5.43 1.68
Rel.U 10000 551 136 54.3 16.8
1000 164 58 15.6 8.39
MaxPool 15000 1413 513 1560 83.9

usually the faster variant since it reuses the same input
multiple times. Larger filter sizes allow us to save more
rotations and hence experience a higher speed-up, while
for the 1 x 1 case the input rotation variant is faster. Finally,
we note that in all cases we pack both the input and output
activations using the minimal number of ciphertexts.

Square, ReL.U and MaxPool Benchmarks. We round
our discussion of the operation micro-benchmarks with the
various activation functions we consider. In the networks
of interest, we come across two major activation functions:
Square and ReLU. Additionally we also benchmark the
MaxPool layer with (2 x 2)-sized windows.

For square pooling, we implement a simple interactive
protocol using our additively homomorphic encryption
scheme. For ReLU and MaxPool, we implement a garbled
circuit based interactive protocol. The results for both are
presented in Table 10.

8 Network Benchmarks and Comparison

Next we compose the individual layers from the previous
sections and evaluate complete networks. For ease of
comparison with previous approaches, we report runtimes
and network bandwidth for MNIST and CIFAR-10 image
classification tasks. We segment our comparison based on
the CNN topology. This allows us to clearly demonstrate
the speedup achieved by Gazelle as opposed to gains
through network redesign.

The MNIST Dataset. MNIST is a basic image classi-
fication task where we are provided with a set of 28 x 28
grayscale images of handwritten digits in the range [0—9].
Given an input image our goal is to predict the correct
handwritten digit it represents. We evaluate this task
using four published network topologies which use a
combination of FC and Conv layers:

A 3-FC with square activation from [30].

B 1-Conv and 2-FC with square activation from [18].

C 1-Conv and 2-FC with ReLLU activation from [36].

D 2-Conv and 2-FC with ReLLU and MaxPool from [29].

Runtime and the communication required for classify-
ing a single image for these four networks are presented
in table 11.

For all four networks we use a 10bit wy,; and a 9bit wejin.

USENIX Association

27th USENIX Security Symposium 1665

Table 11: MNIST Benchmark

Runtime (s) Communication (MB)

Framework
Offline Online Total Offline Online Total
SecureML 4.7 0.18 4.88 - - -
A MiniONN 0.9 0.14 1.04 3.8 12 47.6
Gazelle 0 0.03 0.03 0 0.5 0.5
CryptoNets - - 297.5 - - 372.2
B MiniONN 0.88 0.4 1.28 3.6 44 15.8
Gazelle 0 0.03 0.03 0 0.5 0.5
DeepSecure - - 9.67 - - 791
C Chameleon 1.34 1.36 2.7 7.8 5.1 12.9
Gazelle 0.15 0.05 0.20 5.9 2.1 8.0
MiniONN 3.58 5.74 9.32 20.9 636.6 657.5
D ExPC 5.1 - - 501

Gazelle 0.481 0.33 0.81 47.5 22.5 70.0

Table 12: CIFAR-10 Benchmark
Runtime (s) Communication (MB)
Offline Offline

MiniONN 472 72 544 3046 6226 9272
Gazelle 9.34 3.56 12.9 940 296 1236

Framework

Online Total Online Total

Networks A and B use only the square activation
function allowing us to use a much simpler AHE base inter-
active protocol, thus avoiding any use of GC’s. As such we
only need to transmit short ciphertexts in the online phase.
Similarly our use of the AHE based FC and Conv layers
as opposed to multiplications triples results in 5-6 x lower
latency compared to [29] and [30] for network A. The com-
parison with [18] is even more the stark. The use of AHE
with interaction acting as an implicit bootstraping stage
allows for aggressive parameter selection for the lattice
based scheme. This results in over 3 orders of magnitude
savings in both the latency and the network bandwidth.

Networks C and D use ReLU and MaxPool functions
which we implement using GC. However even for these
the network our efficient FC and Conv implementation
allows us roughly 30x and 17x lower runtime when
compared with [32] and [29] respectively. Furthermore
we note that unlike [32] our solution does not rely on a
trusted third party.

The CIFAR-10 Dataset. The CIFAR-10 task is a
second commonly used image classification benchmark
that is substantially more complicated than the MNIST
classification task. The task consists of classifying
32 x 32 color with 3 color channels into 10 classes such
as automobiles, birds, cats, etc. For this task we replicate
the network topology from [29] to offer a fair comparison.
We use a 10bit wp and a 8bit Wyejin.

We note that the complexity of this network when
measured by the number of multiplications is 500 that
used in the MNIST network from [36], [32]. By avoiding
the need for multiplication triples Gazelle offers a 50

faster offline phase and a 20x lower latency per inference
showing that our results from the smaller MNIST networks
scale to larger networks.

9 Conclusions and Future Work

In conclusion, this work presents Gazelle, a low-latency
framework for secure neural network inference. Gazelle
uses a judicious combination of packed additively
homomorphic encryption (PAHE) and garbled circuit
based two-party computation (2PC) to obtain 20 — 30x
lower latency and 2.5 — 88 x lower online bandwidth when
compared with multiple recent 2PC-based state-of-art
secure network inference solutions [29, 30, 32, 36], and
more than 3 orders of magnitude lower latency and 2 orders
of magnitude lower bandwidth than purely homomorphic
approaches [18]. We briefly recap the key contributions
of our work that enable this improved performance:

1. Selection of prime moduli that simultaneously allow
SIMD operations, low noise growth and division-free
and lazy modular reduction.

2. Avoidance of ciphertext-ciphertext multiplications to
reduce noise growth.

3. Use of secret-sharing and interaction to emulate a
lightweight bootstrapping procedure allowing us to
evaluate deep networks composed of many layers.

4. Homomorphic linear algebra kernels that make
efficient use of the automorphism structure enabled by
a power-of-two slot-size.

5. Sparing use of garbled circuits limited to ReL.U and
MaxPool functions with linear-size Boolean circuits.

6. A compact garbled circuit-based transformation gadget
that allows us to securely compose the PAHE-based
and garbled circuit based layers.

There are a large number of natural avenues to build on
our work including handling neural networks with larger
input sizes and building a framework to automatically
compile neural networks into secure inference protocols.

Acknowledgments

We thank Kurt Rohloff, Yuriy Polyakov and the
PALISADE team for providing us with access to the
PALISADE library. We thank Shafi Goldwasser, Rina
Shainski and Alon Kaufman for delightful discussions. We
thank our sponsors, the Qualcomm Innovation Fellowship
and Delta Electronics for supporting this work.

References

[1] ALBRECHT, M. R., PLAYER, R., AND SCOTT, S. On
the concrete hardness of learning with errors. Journal of
Mathematical Cryptology 9, 3 (2015), 169-203.

[2] ANGELINI, E., DI TOLLO, G., AND ROLI, A. A neural
network approach for credit risk evaluation. The Quarterly
Review of Economics and Finance 48, 4 (2008), 733 —755.

[3] BELLARE, M., HOANG, V. T., KEELVEEDHI, S., AND RO-
GAWAY, P. Efficient garbling from a fixed-key blockcipher.

1666 27th USENIX Security Symposium

USENIX Association

In 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013 (2013), pp. 478-492.

[4] BRAKERSKI, Z. Fully homomorphic encryption without
modulus switching from classical gapsvp. In Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings (2012), pp. 868—-886.

[5] BRAKERSKI, Z., GENTRY, C., AND VAIKUNTANATHAN,
V. (leveled) fully homomorphic encryption without boot-
strapping. In ITCS (2012).

[6] BRAKERSKI, Z., AND VAIKUNTANATHAN, V. Efficient
fully homomorphic encryption from (standard) Iwe. In
FOCS (2011).

[7] CHILLOTTL I., GAMA, N., GEORGIEVA, M., AND 1z-
ABACHENE, M. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In Advances in
Cryptology - ASIACRYPT 2016 - 22nd International Con-
ference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I (2016), pp. 3-33.

[8] CHILLOTTI, I., GAMA, N., GEORGIEVA, M., AND Iz-
ABACHENE, M. Tthe: Fast fully homomorphic encryption
over the torus, 2017. https://tfhe.github.io/
tfhe/.

[9] DAMGARD, I., PASTRO, V., SMART, N., AND
ZACHARIAS, S. The spdz and mascot secure com-
putation protocols, 2016. https://github.com/
bristolcrypto/SPDZ-2.

[10] DEMMLER, D., SCHNEIDER, T., AND ZOHNER, M. ABY
- A framework for efficient mixed-protocol secure two-party
computation. In 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, Cal-
ifornia, USA, February 8-11, 2015 (2015), The Internet
Society.

[11] Ducas, L., AND STEHLE, D. Sanitization of FHE cipher-
texts. In Advances in Cryptology - EUROCRYPT 2016 -
35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part I (2016), pp. 294-310.

[12] EJGENBERG, Y., FARBSTEIN, M., LEVY, M., AND LIN-
DELL, Y. Scapi: Secure computation api, 2014. https:
//github.com/cryptobiu/scapi.

[13] ESTEVA, A., KUPREL, B., Novoa, R. A., Ko, J., SWET-
TER, S. M., BLAU, H. M., AND THRUN, S. Dermatologist-
level classification of skin cancer with deep neural networks.
Nature 542,7639 (2017), 115-118.

[14] FAN, J., AND VERCAUTEREN, F. Somewhat practical
fully homomorphic encryption. JACR Cryptology ePrint
Archive 2012 (2012), 144.

[15] GENTRY, C. A fully homomorphic encryption scheme.
PhD Thesis, Stanford University, 2009.

[16] GENTRY, C., HALEVI, S., AND SMART, N. P. Fully
homomorphic encryption with polylog overhead. In Ad-
vances in Cryptology - EUROCRYPT 2012 - 31st Annual
International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings (2012), pp. 465—482.

[17] GENTRY, C., HALEVI, S., AND VAIKUNTANATHAN, V.

A simple BGN-type cryptosystem from LWE. In EURO-
CRYPT (2010).

[18] GILAD-BACHRACH, R., DOWLIN, N., LAINE, K.,
LAUTER, K. E., NAEHRIG, M., AND WERNSING, J. Cryp-
tonets: Applying neural networks to encrypted data with
high throughput and accuracy. In Proceedings of the 33nd In-
ternational Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016 (2016), pp. 201-
210.

[19] GOLDREICH, O., MICALI, S., AND WIGDERSON, A.
How to play any mental game or a completeness theorem
for protocols with honest majority. In STOC (1987).

[20] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The
knowledge complexity of interactive proof systems. SIAM
J. Comput. 18,1 (1989), 186-208.

[21] HALEVI, S., AND SHOUP, V. An implementation of ho-
momorphic encryption, 2013. https://github.com/
shaih/HElib.

[22] HALEVI, S., AND SHOUP, V. Algorithms in HElib. In
Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2014, Proceedings, Part I (2014), pp. 554-571.

[23] HALEVI, S., AND SHOUP, V., 2017. Presentation at the
Homomorphic Encryption Standardization Workshop, Red-
mond, WA, July 2017.

[24] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual
learning for image recognition. CoRR abs/1512.03385
(2015).

[25] HENECKA, W., SADEGHI, A.-R., SCHNEIDER, T.,
WEHRENBERG, I., ET AL. Tasty: tool for automating
secure two-party computations. In Proceedings of the 17th
ACM conference on Computer and communications security
(2010), ACM, pp. 451-462.

[26] INDYK, P., AND WOODRUFF, D. P. Polylogarithmic pri-
vate approximations and efficient matching. In Theory of
Cryptography, Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006, Proceed-
ings (2006), pp. 245-264.

[27] ISHAL Y., KILIAN, J., NISSIM, K., AND PETRANK, E.
Extending oblivious transfers efficiently. In Advances in
Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings (2003), pp. 145-161.

[28] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States.
(2012), pp. 1106-1114.

[29] Liu,J.,JuuTi, M., LU, Y., AND ASOKAN, N. Oblivious
neural network predictions via minionn transformations.
In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017 (2017), pp. 619—
631.

[30] MOHASSEL, P., AND ZHANG, Y. Secureml: A system
for scalable privacy-preserving machine learning. In 2017

USENIX Association

27th USENIX Security Symposium 1667

https://tfhe.github.io/tfhe/
https://tfhe.github.io/tfhe/
https://github.com/bristolcrypto/SPDZ-2
https://github.com/bristolcrypto/SPDZ-2
https://github.com/cryptobiu/scapi
https://github.com/cryptobiu/scapi
https://github.com/shaih/HElib
https://github.com/shaih/HElib

IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017 (2017), pp. 19-38.

[31] PAILLIER, P. Public-key cryptosystems based on compos-
ite degree residuosity classes. In Advances in Cryptology —
EUROCRYPT 99 (1999), pp. 223-238.

[32] Riazi, M. S., WEINERT, C., TKACHENKO, O.,
SONGHORI, E. M., SCHNEIDER, T., AND KOUSHAN-
FAR, F. Chameleon: A hybrid secure computation frame-
work for machine learning applications. Cryptology ePrint

Archive, Report 2017/1164, 2017. https://eprint.

iacr.org/2017/1164.

[33] RINDAL, P. Fast and portable oblivious transfer exten-
sion, 2016. https://github.com/osu-crypto/
1ibOTe.

[34] RIVEST, R. L., ADLEMAN, L., AND DERTOUZOS, M. L.
On data banks and privacy homomorphisms. Foundations
of Secure Computation (1978).

[35] ROHLOFF, K., AND POLYAKOV, Y. The PALISADE Lattice
Cryptography Library, 1.0 ed., 2017. Library available at
https://git.njit.edu/palisade/PALISADE.

[36] ROUHANI, B. D., R1AZI, M. S., AND KOUSHANFAR, F.
Deepsecure: Scalable provably-secure deep learning. CoRR
abs/1705.08963 (2017).

[37] SADEGHI, A., SCHNEIDER, T., AND WEHRENBERG, 1.
Efficient privacy-preserving face recognition. In Informa-
tion, Security and Cryptology - ICISC 2009, 12th Inter-
national Conference, Seoul, Korea, December 2-4, 2009,
Revised Selected Papers (2009), pp. 229-244.

[38] SCHROFF, F., KALENICHENKO, D., AND PHILBIN, J.
Facenet: A unified embedding for face recognition and
clustering. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA, June
7-12,2015 (2015), pp. 815-823.

[39] SIMONYAN, K., AND ZISSERMAN, A. Very deep convo-
lutional networks for large-scale image recognition. CoRR
abs/1409.1556 (2014).

[40] SzE, V., CHEN, Y., YANG, T., AND EMER, J. S. Efficient
processing of deep neural networks: A tutorial and survey.
CoRR abs/1703.09039 (2017).

[41] SzEGEDY, C., L1u, W., JIA, Y., SERMANET, P., REED,
S., ANGUELOV, D., ERHAN, D., VANHOUCKE, V., AND
RABINOVICH, A. Going deeper with convolutions. In
Computer Vision and Pattern Recognition (CVPR) (2015).

[42] TRAMER, F., ZHANG, F., JUELS, A., REITER, M. K.,
AND RISTENPART, T. Stealing machine learning models
via prediction apis. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016.
(2016), pp. 601-618.

[43] V,G.,L,P.,M, C., AND ET AL. Development and valida-
tion of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs. JAMA 316, 22
(2016), 2402-2410.

[44] Yao, A. C. How to generate and exchange secrets (ex-
tended abstract). In FOCS (1986).

[45] ZAHUR, S., ROSULEK, M., AND EVANS, D. Two halves
make a whole - reducing data transfer in garbled circuits
using half gates. In Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the The-

ory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part 11 (2015),
pp- 220-250.

A The Halevi-Shoup Hoisting Optimization

The hoisting optimization reduces the cost of the ciphertext
rotation when the same ciphertext must be rotated by
multiple shift amounts. The idea, roughly speaking, is to
“look inside” the ciphertext rotation operation, and hoist
out the part of the computation that would be common to
these rotations and then compute it only once thus amor-
tizing it over many rotations. It turns out that this common
computation involves computing the NTT ! (taking the ci-
phertext to the coefficient domain), followed by a wejin-bit
decomposition that splits the ciphertext [(10g,q)/Wrejin |

ciphertexts and finally takes these ciphertexts back to the
evaluation domain using separate applications of NTT.
The parameter wji, is called the relinearization window
and represents a tradeoff between the speed and noise
growth of the Perm operation. This computation, which
we denote as PermDecomp, has © (nlogn) complexity
because of the number theoretic transforms. In contrast,
the independent computation in each rotation, denoted by
PermAuto, is a simple ®(n) multiply and accumulate op-
eration. As such, hoisting can provide substantial savings
in contrast with direct applications of the Perm operation
and this is also borne out by the benchmarks in Table 7.

B Circuit Privacy

We next provide some details on our light-weight circuit
privacy solution. At a high level BFV ciphertexts look
like a tuple of ring elements (a,b) where a is chosen
uniformly at random and b encapsulates the plaintext and
the ciphertext noise. Both a and the ciphertext noise are
modified in a circuit dependent fashion during the process
of homomorphic computation and thus may violate
circuit privacy. We address the former by simply adding
a fresh public-key encryption of zero to the ciphertext to
re-randomize a. Information leakage through the noise is
handled through interactive decryption. The BFV decryp-
tion circuit is given by [(a-s+b)/A| where s is the secret
key and A= | (p/q)]. Our approach splits the interactive
computation of this circuit into 2 phases. First we send
the re-randomized a back to the client who multiplies it
with s to a - s. We then use a garbled circuit to add this
to b. We leverage the fact that A is public to avoid an
expensive division inside the garbled circuit. In particular
both parties can compute the quotients and remainders
modulo A of their respective inputs and then interactively
evaluate a garbled circuit whose size is Q(n-¢q). Note that
in contrast the naive decryption circuit is Q(n? - q) sized
even without accounting for the division by A.

1668 27th USENIX Security Symposium

USENIX Association

https://eprint.iacr.org/2017/1164
https://eprint.iacr.org/2017/1164
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://git.njit.edu/palisade/PALISADE

	Introduction
	Secure Neural Network Inference
	Linear Layers
	Non-Linear Layers
	Secure Inference: Problem Description

	Packed Additively Homomorphic Encryption
	Addition: SIMDAdd
	Scalar Multiplication: SIMDScMult
	Slot Permutation: Perm
	Paillier vs. Lattice-based PAHE
	Parameter Selection for PAHE

	Our Protocol at a High Level
	Fast Homomorphic Matrix-Vector Multiplication
	Output Packing
	Input Packing

	Fast Homomorphic Convolutions
	Strided Convolutions
	Low-noise Batched Convolutions

	Implementation and Micro-benchmarks
	Cryptographic Primitives
	Evaluation Setup
	Micro-benchmarks

	Network Benchmarks and Comparison
	Conclusions and Future Work
	The Halevi-Shoup Hoisting Optimization
	Circuit Privacy

