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We investigate the use of gaze behaviour as a means to assess password strength as perceived by users. We contribute to the e�ort of

making users choose passwords that are robust against guessing-attacks. Our particular idea is to consider also the users’ understanding

of password strength in security mechanisms. We demonstrate how eye tracking can enable this: by analysing people’s gaze behaviour

during password creation, its strength can be determined. To demonstrate the feasibility of this approach, we present a proof of

concept study (N = 15) in which we asked participants to create weak and strong passwords. Our �ndings reveal that it is possible to

estimate password strength from gaze behaviour with an accuracy of 86% using Machine Learning. Thus, we enable research on novel

interfaces that consider users’ understanding with the ultimate goal of making users choose stronger passwords.
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1 INTRODUCTION

Text-based passwords are still among the most commonly used means for authentication. The most important reasons

for this are that users are familiar with this approach – hence, requiring only little learning – and that such schemes are

easy to implement. At the same time, a well-known issue is that, despite the many existing approaches and tools to

support the use of stronger passwords, people are still not selecting strong passwords [Florêncio et al. 2014].

This is, on one hand, a result of usability issues [Bonneau et al. 2015; Egelman et al. 2013; Florêncio et al. 2014]. On

the other hand, it has been understood by the usable security community that many users have a wrong perception

of factors contributing to password strength [Stobert and Biddle 2016; Ur et al. 2016, 2015]. This is mostly due to

password creation rules and policies being inconsistent and misleading, ultimately resulting in such wrong perceptions

of password strength [Das et al. 2014; Leonhard and Venkatakrishnan 2007; Seitz et al. 2017; Wang and Wang 2015].
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As one solution to this, many services (in particular, web sites) employ password meters, providing people an estimate

of their chosen password’s strength. This is done through visual aids that provide instant feedback on password strength

in the form of coloured bars. Instead of forcing users to choose stronger passwords, password meters nudges users to

rethink their password choice. However, similar to policies, also password meters often su�er from inconsistent ratings

across di�erent meters. For example, one meter might consider “password$1” a strong choice whereas another meter

might rate the security of this password much lower [de Carné de Carnavalet and Mannan 2014]. In any case, a system

employing a password meter might still accept a password, despite being relatively insecure. This is likely to create a

wrong perception among users that also the use of weaker passwords is acceptable, regardless of existing concerns and

will confuse them, ultimately reducing credibility and understandability of password meters.

This demonstrates the need to develop better mechanisms to make users choose stronger passwords. We see particular

potential in mechanisms, that not only take into account the actual strength of the password, but also how users

perceive it. This creates two important prerequisites: �rstly, a system needs to be able to infer the perceived strength of

the users’ chosen passwords; secondly, the system should be capable of doing so without creating additional e�ort

for the user. As a result, novel approaches to increase password strength could be created or existing ones, such as

password meters, be enhanced. We outline ideas after the contribution statement.

We address this by showing that password strength can be inferred implicitly, that is, without any need for interaction

by the user, from gaze behaviour upon password creation. Our approach is based on the assumption that the cognitive

processes while coming up with weak or strong passwords di�erently in�uence users’ physiological response and

behaviour, re�ected, for example, in their gaze behaviour. We implicitly monitored and analysed users’ gaze behaviour

while creating weak and strong passwords in a lab study. We investigated two input devices – laptops and smartphones –

to compare di�erences in gaze behaviour among the most frequently used input devices. We report on the performance

and compare di�erent machine learning classi�ers. In particular, we investigated, user-dependent and user-independent

classi�ers. Besides, we validate the collected passwords by comparing their entropy against the zxcvbn password meter

[Wheeler 2016] which is a password strength estimator using pattern matching and conservative estimation.

Our �ndings demonstrate the potential of eye tracking for unobtrusive classi�cation of password strength. We found

a promising accuracy of up to 86% for personalised classi�ers on smartphones and 80% on laptops. We found that

the average pupil diameter, average saccadic duration, �xation duration, and the duration spent while entering the

passwords are good features for detecting passwords strength from users’ gaze behaviour.

Contribution Statement We propose a novel approach for classifying users’ password strength (weak vs. strong) by

monitoring users’ gaze. Secondly, we present a proof-of-concept implementation and evaluate it in a user study (N=15).

We believe the research community and practitioners can bene�t from our work in several ways. Our approach

supports the design of novel interfaces that make people use stronger passwords. Such designs can either nudge the user

towards the use of more secure passwords (similar to traditional password meters), with the di�erence that the approach

is not based on password entropy. Or novel designs can use knowledge on password strength for entirely new concepts

that, for example, only allow users to register passwords if their strength match the sensitivity of the data that need to

be protected. We see two particular strengths of our approach: �rstly, it is independent of the underlying authentication

mechanism. Hence, our approach does not require any knowledge about the actual password (as opposed to traditional

password meters), hence minimising the attack surface; secondly, concepts can be implemented independent of the

input device. For example, using a mobile eye tracker, the strength of a password entered on a desktop computer can be
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assessed and recommendations for a better password be provided on a smartwatch. Finally, future work could apply

our concept to other knowledge-based authentication schemes, such as lock patterns or image-based approaches.

2 RELATEDWORK

Our work draws from several strands of prior research, most importantly research on password strength meters and

gaze behaviour in the context of passwords.

2.1 Password Strength Meters

The use of password strength meters was adopted a decade ago [Weir et al. 2010]. Many studies investigated the

e�ectiveness of using password meters on the security and memorability of passwords. Work by Ur et al. [de Carné de

Carnavalet and Mannan 2014] showed that participants believe that adding an exclamation mark at the end of their

passwords would make it stronger. Participants also believed that having keyboard patterns or adding their pet name in

the password is an asset for a strong password.

In 2013, Egelman et al. [Egelman et al. 2013] examined whether the use of password meters in�uenced users’

password strength or not. The authors asked participants to �rst change their real passwords according to the presence

of the password meters, next to change an important account password, and �nally to change an unimportant account

password. They found that password meters signi�cantly enhanced users’ generated passwords for their real accounts

and important accounts. However, for non-important accounts, password meters did not have an a�ect. The authors

concluded that the use of password meters is only e�ective if the user is forced to change or create a password for an

important account.

Further research by Ur et al. showed that also the appearance of the password meter a�ects the choice of passwords

[Ur et al. 2012]. For example, meters without visual bars gave participants the impression that it is not important to

enter a strong password and, hence, caused participants to put less e�ort in satisfying the meter’s requirement. In

contrast, participants who saw more lenient meters tried to ful�l the meter requirements and were reluctant to choosing

passwords a meter deemed as “bad“ or “poor“.

In 2014, Shay et al. [Shay et al. 2014], studied the e�ect of password length on password strength. They found that

policies requiring longer passwords reduces the percentage of easy-to-guess passwords. They also found that enforcing

combinations of certain requirements and increased password length led to stronger passwords and was more usable

compared to traditionally complex policies. Later, Shay et al. [Shay et al. 2015], studied the usability of feedback and

guidance mechanisms for password meters. They found that service providers should present password requirements

in combination with feedback to increase usability. However, feedback needs to be designed carefully, as the same

requirements can have di�erent security and usability e�ects depending on the way they are presented.

In 2017, Ur et al. [Ur et al. 2017] proposed a ‘Data-Driven Password Meters’. The meter communicates up to 3 ways to

the user how the entered password can be enhanced. The results showed that data-driven meters with detailed feedback

led users to create more secure, yet equally memorable passwords, compared to normal meters with a strength bar

indicator. Research by Dupuis et al. [Dupuis and Khan 2018], studied the e�ect of changing the feedback on generated

passwords’ strength. Instead of indicating the actual password strength, they provided a comparison of the strength

to passwords of other users. For example, instead of showing weak password, they showed weak compared to other

users. The authors report that by changing the feedback mechanism and comparing users’ passwords to others, people

generated stronger passwords.
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2.2 Gaze Behaviour and Passwords

Eye trackers are becoming ubiquitous. Today, they are already integrated in some laptops1 or embedded as front-facing

depth cameras in some smartphones2. Future generations of laptops and smartphones may ship with built-in eye tracker

as default feature. These may bene�t from decades of research that investigated the use of eye gaze as an interaction

modality [Forget et al. 2010; Kumar et al. 2007; Majaranta and Räihä 2007], hybrid modality [Abdrabou et al. 2019;

Khamis et al. 2016, 2017] and as a behavioural modality. Gaze behaviour has been integrated in many areas, including

but not limited to detecting personality traits [Hoppe et al. 2018], detecting activity recognition [Bulling et al. 2011] and

measuring cognitive load [Henderson et al. 2013].

In particular, security mechanisms might bene�t from eye gaze [Katsini et al. 2020]. Eye gaze has been used for

continuous veri�cation [Abdulin and Komogortsev 2015; Cantoni et al. 2018; Zhang et al. 2018] and implicit identi�cation

[Bayat and Pomplun 2018; Cantoni et al. 2015; Vitonis and Hansen 2014]. In 2018, Katsini et al. [Katsini et al. 2018a],

investigated users’ visual behaviour and how it a�ects the strength of the created picture passwords. They used cognitive

style theories to interpret their results. They found that users with di�erent cognitive styles followed di�erent patterns

of visual behaviour, which a�ected the strength of the created passwords. Furthermore, The authors introduced and

studied adaptive characteristics of authentication mechanism, aiming to assist user groups following di�erent cognitive

styles to create more secure passwords. The results con�rmed that adaptive mechanisms based on di�erent cognitive

and visual behaviour enables new ways of improving password strength in graphical user authentication.

Other work by Katsini et al. [Katsini et al. 2018b], studied the feasibility of estimating the strength of user-created

graphical passwords based on gaze behaviour during password composition. The authors used unique �xations on

each area of interest (AOI) and the total �xation duration per AOI. The authors also investigate whether gaze-based

entropy is a credible predictor of password strength. Their results revealed a strong positive correlation between

password strength and gaze-based entropy. This suggests that the proposed gaze-based metric enables the strength of

the password to be predicted in an unobtrusive manner and, thus, help users create stronger passwords. We adopted a

similar strategy for detecting password strength from users’ gaze. In contrast to prior work we focus on text-based

passwords (instead of graphical ones) and we assess password strength as perceived by users (as opposed to password

strength as assessed by a system).

As discussed, throughout the years, password meters and heuristics have biased users’ choice of passwords and

forced them to adopt similar strategies for passwords creation. This yields a major security risk as most of the users

creates similar passwords which makes them more vulnerable to attacks. With the ubiquity of eye trackers and by

proving that eye gaze behaviour can act as a picture password strength meter, we propose adopting the same idea of

using eye gaze behaviour to estimate text-based passwords’ strength. We hypothesise that users behaviour (re�ected in

the gaze data) while creating a strong password is di�erent than while creating weak passwords and it can be used as a

new behavioural aspect.

3 EYE TRACKING FOR PASSWORD STRENGTH CLASSIFICATION

Previous work showed that security mechanisms can generally strongly bene�t from the use of eye gaze data. As

previously mentioned, this becomes possible through eye trackers being increasingly available in situations in which

security-related tasks (such as authentication) is performed. Hereby, a particular strength of eye tracking is that

1https://gaming.tobii.com/products/laptops/
2https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
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assistance during security-critical tasks can be provided in an unobtrusive, implicit manner, i.e. a system can make use

of gaze data without the need for action from the user.

In this work, we investigate a novel application area of using gaze data in security-critical contexts, that is the

implicit assessment of password strength as perceived by users. In particular, we focus on the distinction between weak

and strong passwords with the ultimate goal of supporting the design of future mechanisms that use this knowledge for

interventions that make users chose stronger passwords.

3.1 Password Strength

Password strength can be assessed in di�erent ways. Traditionally the theoretical password space was used to determine

password strength, that is the overall number of possible passwords. However, it is today well understood that passwords

are not uniformly distributed over the password space, since certain passwords are more likely to be chosen by users

than others (for example, ‘password’ or ‘123456’. Hence, researchers today rather consider the practical password space,

that is the number of actually used passwords. This password space is generally assessed through empirical studies.

Password strength estimators, such as zxcvbn are considering this fact. Hereby, strength is determined through the

average number of guesses required to identify a password (a so-called guessing attack). The mentioned password

estimator, which today serves as a standard way of estimating password strength in security research, classi�es

passwords into 5 categories: (1) too guessable passwords can be identi�ed through less than 103 guesses. (2) very

guessable passwords, which protect from throttled online attacks, require about 106 guesses. (3) somewhat guessable

passwords prevent unthrottled online attacks, requiring on average 108 guesses. (4) Safely unguessable passwords

provide moderate protection from o�ine slow-hash attack scenarios (1010 guesses). (5) Finally, very unguessable

passwords provide strong protection by requiring more than 1010 guesses.

In the context of our work we consider weak passwords any password that requires on average below 107 guesses,

according to zxcvbn. Strong passwords are such that require on average more than 107 guesses.

3.2 Perceived Password Strength

As laid out in the motivation of our work, a major challenge in usable security research is the mismatch between the

password strength as determined by a strength estimator (we refer to this as the actual password strength and the

strength as perceived by users perceived password strength). Figure 1 demonstrates this mismatch and its implications.

Optimally, the way users perceive the strength of their passwords would match the actual password strength (i.e.,

both strong – upper left, both weak – lower right). This would allow them to make a reasonable decision, whether

or not their password is appropriate for the type of data they seek to protect. What is now interesting are cases in

which actual and perceived passwords strength do not match. In the case where the actual password is strong, but

perceived weak by users, no harm would be caused, but it might be worthwhile to explain users their misconception.

More problematic is the other case in which the password is perceived as strong by users but is actually weak. In this

case it might be useful to both explain this misconception (and the reasons for it) to the user but additionally to also

support or even require them to create stronger passwords.

Our work is meant to particularly identify cases where actual password strength and perceived password strength

are at odds. In this way, we enable researchers to come up with interventions that address the respective cases.
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Fig. 1. Experiment study setup consisting of laptop, wearable eye tracker

and the smartphone used. Top Le�: gaze monitoring while creating pass-

words viewed from Tobii pro glasses controller.

Table 1. Di�erences between actual password strength and perceived password strength and potential use cases.

Actual Strength/

Perceived Strength
Strong Weak

Strong No action is required. Need to clarify misconception / motivate users to chose stronger password. .
Weak Opportunity to explain misconception to users Opportunity to make users consider whether password strength is appropriate.

4 STUDY

To demonstrate that it is possible to infer perceived password strength from gaze data, we conducted a proof of concept

user study. We recorded participants’ eye gaze data while creating weak and strong passwords on two input modalities:

laptops and touchscreen smartphones. We chose to include di�erent input devices to understand the the in�uence on

gaze movements, in particular, or eye movements between keyboard and screen.

4.1 Design

We applied a repeated-measures design, where all participants experienced all conditions. Participants were asked to

enter 24 passwords (6 weak and 6 strong) on both laptop and smartphone.The order of the devices and the password

they should create were counterbalanced using a Latin Square. Participants were advised to neither reuse passwords

they were already using beforehand nor to reuse passwords they came up with for the study.

4.2 Apparatus

The experimental setup consisted of Lenovo T4803 and Yotaphone4 as input devices (Figure 1). For the eye tracker we

used the Tobii Pro Glasses5, connected to a Lenovo T440s6 using with the Tobii glasses controller7. We decided on a

wearable eye tracker in order to use the same hardware across all conditions. Also, this allowed us to assess participants’

pupil diameter. Deployed systems may rely integrated cameras such as front facing depth cameras in smartphones

[Khamis et al. 2018]. We implemented a simple web page interface showing the task and login interface.

3Lenovo T480: https://www.lenovo.com/us/en/laptops/thinkpad/thinkpad-t-series/ThinkPad-T480/p/22TP2TT4800
4Yotaphone: https://www.cect-shop.com/de/yota-yotaphone-3-plus.html
5Tobii Pro Glasseshttps://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
6Lenovo T440s: https://www.lenovo.com/gb/en/laptops/thinkpad/t-series/t440s/
7Tobii Glasses Controller: https://www.tobiipro.com/learn-and-support/learn/steps-in-an-eye-tracking-study/setup/installing-tobii-glasses-controller/
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4.3 Recruiting and Procedure

We recruited 15 participants (5 males) via University mailing lists. The age varied from 22 to 31 (Mean = 24.27; SD = 2.91).

Participants had di�erent backgrounds (CS, engineering, landscape design) and di�erent nationalities (Spain, China,

Bangladesh, Pakistan, Egypt, Germany). They had basic to average eye-tracking experience. Nobody wore glasses.

After arriving at the lab, participants signed a consent form. Then we explained the purpose of the study. After that,

we calibrated the eye tracker using Tobii’s one-point calibration. We then asked them to begin creating passwords.

After each password, we asked the participants to rate the password’s strength on a Likert-scale (1=very weak; 5=very

strong). After creating password on both devices, we interviewed them about what they though characterizes a strong

password. The study lasted approximately 20 minutes. Participants were compensated with 5 EUR.

4.4 Limitations

In our study, people did not create passwords to protect real data. Yet, prior research showed that people in such

studies still create realistic passwords. We speci�cally focused on cases where people created new passwords. In reality,

password reuse is a common strategy to cope with the issue of having to memorize too many passwords. The e�ect of

this strategy on perceived password strength estimation could be subject to future work. We acknowledge that the

sample for our proof-of-concept study was rather small. At the same time, it is in line with prior studies including

password creation tasks [Forget et al. 2008; Notoatmodjo and Thomborson 2009; Rinn et al. 2015]. Also, asking people to

create multiple passwords still allowed us to collect a data set appropriate for the employed machine learning techniques

(cf. the confusion matrix in Figure 4).

5 METHODOLOGY

In this section, we describe the step-by-step process to derive perceived password strength from eye gaze.

5.1 Statistical Analysis and Password Strength Estimation

To validate the collected passwords, we analysed and compared passwords entropy and user rated password strength

against the zxcvbn password strength estimator [Wheeler 2016] (details can be found in Section 6.1.1 and 6.1.2). We

normalised the zxcvbn password strength estimator score to the range of 1 to 5 and used it to classify passwords into

weak and strong. We used a cut-o� score of 2.5 for di�erentiating between weak and strong passwords, i.e. passwords

with a score of 1 to 2.5 are considered weak, whereas passwords with a score of 2.5 to 5 are considered strong (cf. section

3).

We also investigated the e�ect of the input modality on password strength and gaze behaviour. We used a repeated-

measures ANOVA (with Greenhouse-Geisser correction if sphericity was violated). This was followed by post-hoc

pairwise comparisons using Bonferroni-corrected t-tests. Finally, we analysed the post-study questions.

5.2 Feature Extraction

To train the classi�ers, we derived a set of seven features that best describe gaze behaviour while entering passwords and

are commonly used in literature [Jacob and Karn 2003; Raptis et al. 2017]. For extracting the features, we pre-processed

the gaze data. First, we removed irrelevant data. As we used a wearable eye tracker, we also collected gaze data focusing

on areas beyond the device screen and keyboard. We only considered gaze data inside the AOI (i.e.., screen and keyboard)

and removed the rest. We then identi�ed �xations using the Dispersion-Threshold Identi�cation algorithm [Salvucci and
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Goldberg 2000]. It produces accurate results in real-time using only two parameters, that are dispersion and duration

threshold (set to 25 and 100, respectively). We then extracted seven low-level gaze features from the de�ned two areas

of interest (AOI), keyboard and screen.

Selected main features used for classi�cation are: 1) avg �xation duration, 2) �xation duration, 3) avg saccadic

duration, 4) avg left pupil diameter, 5) avg right pupil diameter, 6) screen �xations count, 7) keyboard �xations count.

In addition to those seven main features we considered the duration spent while typing the password as well as the

ratio between the �xations count on the screen and the �xation count on the keyboard. We used thresholding to split

the gaze data points between the screen and the keyboard. Di�erences between AOI are not statistically signi�cant.

Hence, we did not take them into further consideration.

5.3 Classification Approach

The goal of our classi�er is to map a feature vector computed from a window of data to one of the classes corresponding

to the password strength (weak vs strong). We implemented two classi�er: a user-independent, modality-dependent

classi�er, trained on the data from di�erent users but using the same input modality and a user-dependent, modality-

dependent classi�er, again using the same input modality. As di�erent classi�cation models generate di�erent levels

of performance, we compared three classi�ers with a leave one out classi�cation approach: support vector machines

(SVM), decision trees, and random forest.

5.3.1 User-independent, Modality-dependent Classifier. We created a user-independent, modality-dependent classi�er

by training the models on all users for both modalities available (laptop and smartphone). To ensure that the classi�ers

are performing well on all distributions of data, we split the data into 3 sets: testing, validation, and training. The test set

consists of a participant who was not included in training. The validation set was used for tuning the hyper-parameters

of the employed machine learning model. It included data of one randomly selected participant with a speci�ed seed

for a participant who has been already included in the training set. The password used in the validation set is also not

included in the training set. Finally, the training set included the data of all remaining participants. We used a “leave

one participant out“ cross-validation. For this purpose, we trained and evaluated the classi�er for each modality 15

times and each time for a speci�c participant.

5.3.2 User-dependent, Modality-dependent Classifier. The goal of building user-dependent and modality-dependent

classi�ers was to determine if better accuracy could be achieved using a personalised model. The classi�er was created

once for each participant for each input modality. Again, we separated the data into the three sets mentioned above and

we used “leave one observation out“ cross-validation. For this, we trained and evaluated the classi�er 15 times each,

using all features, for each participant.

6 RESULTS

6.1 Weak vs Strong Passwords

We collected 366 passwords from all participants in all conditions. In this section, we analyse the passwords collected

and report the e�ect of the di�erent passwords strength on the following:

6.1.1 Passwords Entropy. Table 2 shows the characteristics of the weak and strong passwords used for the comparison,

as suggested by [Egelman et al. 2013]. We found that passwords perceived as strong by participants were indeed

characterized by a high entropy, i.e. they were indeed considered as actually strong by the password strength estimator.

8
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Table 2. Passwords’ characteristics for weak and strong (laptop and smartphone). We compare the password length in characters,

number of upper and lower case characters, number of digits, symbols or special characters in the password, whether the password

starts with an upper case le�er, ends with a lower case le�er and finally, we show the zxcvbn strength estimator entropy score

Password

Length

Number of

upper case

characters

Number of

lower case

characters

Number of

digits in

the password

Passwords count

that start with

upper case

characters

Password count

that ends

with digit

Number of

symbols in

the password

zxcvbn

Entropy

score

Mean 7.25 0.41 5.02 1.74 0.21 0.39 0.07 14.61
Weak

SD 3.87 0.92 4.05 2.47 0.41 0.49 0.33 3.59
Mean 15.32 2.25 7.4 3.45 0.49 0.37 1.96 60.76

Strong
SD 6.67 2.22 5.47 2.69 0.5 0.49 2.67 9.20

Mean 11.17 1.13 6.18 2.93 0.27 0.44 0.82 36.88
Laptop

SD 6.63 1.77 4.59 2.65 0.45 0.5 1.87 7.01
Mean 11.01 1.44 6.12 2.19 0.4 0.33 1.11 35.75

Phone
SD 6.76 2 5.17 2.74 0.49 0.47 2.26 8.45

Fig. 2. Laptop (Le�) and smartphone (Right) strength comparison between participants’ rating and the zxcvbn rating. Showing

similar ratings between the zxcvbn meter and users ratings.

This was also re�ected in the statistical tests. An ANOVA reveals a statistically signi�cant di�erence between the

entropy of the weak (M = 14.45; SD = 3.59) and the strong passwords (M = 60.75; SD = 9.21), (F1,14 = 268.760,

P < .001). An ANOVA did not show a statistically signi�cant e�ect for the input device laptop (M = 35.75; SD = 8.45)

and smartphone (M = 36.89; SD = 7.02) on the password entropy generated by the zxcvbn password strength estimator,

P > 0.05. This suggests that the input modality did not a�ect the generated passwords’ actual strength.

6.1.2 Rated Password Strength. To understand how participants perceive their passwords’ strength, we compared the

users’ rated password strength to the strength as indicated by the zxcvbn strength estimator. Figure 2 and 3 compares

the average rating for all the passwords entered per participant against the results from the zxcvbn password meter.

While there is a variance between passwords ratings, the di�erence between both ratings is not statistically signi�cant

– neither for laptop (χ2(1) = 3.769, = .0521) nor for smartphone (χ2(1) = 1.66, P = .197), as found by a Friedman test.

The Friedman test also did not reveal a signi�cant e�ect of the modality on the strength of the weak (χ2(1) = 3.6,

P = .058) and strong (χ2(1) = 3.267, P = .071) passwords. This suggests there might be no di�erence between perceived

and actual password strength. It also shows that the input modality did not a�ect the strength of the entered password.

In summary, we found that the input modality did not a�ect the strength or the entropy of the password. This means

that participants entered similar passwords on both input modalities. Additionally, we found a statistically signi�cant
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Fig. 3. Weak (Le�) and strong (Right) password strength comparison between participants’ rating and the zxcvbn password meter

rating. Showing similar ratings between the zxcvbn meter and users ratings.

di�erence between weak and strong passwords’ entropy and strength which means participants were able to create

password that were rated as weak and strong by the password strength estimator.

6.2 Post Study�estions Analysis

At the end of the study, we asked participants what characteristics makes a strong password. Participants named special

characters (22%), adding numbers (18%) upper/lower case characters (18%), and, �nally, increasing the length (14%),

adding numbers (14%) and adding random characters (14%).

6.3 Gaze Behaviour Statistical Analysis

To assess the relationship between passwords strength and gaze behaviour, we conducted repeated-measures ANOVA.

6.3.1 E�ect of Modality on Gaze Behaviour. We tested the e�ect of the input modality (laptop vs smartphone) on the

gaze features (see Table 3). We found that for strong passwords, the input modality has a statistically signi�cant e�ect

on the average �xation duration, �xation duration, average saccadic duration, and keyboard as well as screen �xation

count. This means that entering strong passwords on laptops induces shorter �xations, longer saccades, and more

�xations on the keyboard as well as less �xations on the screen, compared to smartphone. Participants enter longer

passwords on laptops than smartphones. In contrast, for weak passwords, the input modality did not have a strong

impact on most gaze data, except for the left pupil diameter8, screen and keyboard �xation count. This means that

entering weak passwords on laptops induces less �xation on the screen and more �xations on the keyboard and also

smaller pupil dilation than on smartphones.

6.3.2 E�ect of Password Strength on Gaze Behaviour for Input Modalities. To understand the in�uence of password

strength on the gaze features, we ran a repeated-measures ANOVA on the gaze features for both laptops and smartphones.

We found that for laptops, entering passwords of di�erent strength has a signi�cant e�ect on the average �xation

duration, �xation duration, average saccadic duration, average left pupil diameter, screen and keyboard �xation count.

In particular, entering weak passwords on laptops induces longer �xation duration, shorter saccadic length, smaller left

8Possibly due to the dominant eye e�ect. We were not able to verify this as we did not assess participants’ dominant eye. We leave this for future work.
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Table 3. ANOVA results for eye movements comparing between weak and strong passwords across modalities.(significant in bold)

Eye gaze Feature
Strong Passwords

Pairwise Comp. (Bon.Corr.)

(Mean; SD)
Weak Passwords

Pairwise Comp. (Bon.Corr.)

(Mean; SD)

ANOVA (F (1, 14); P) Laptop Smartphone ANOVA (F (1, 14); P) Laptop Smartphone

Avg �xation dur. F = 31.012; P < .001 .94 ± .017 .96 ± .015 F = .330; P > .05 .95 ± .015 .95 ± .023

Fixation dur. F = 31.012; P < .001 112.70 ± 2.09 114.61 ± 1.75 F = .290; P > .05 113.56 ± 1.80 113.81 ± 2.78

Avg saccadic dur. F = 31.012; P < .001 .061 ± .017 .045 ± .015 F = .290; P > .05 .053 ± .015 .052 ± .023

Avg L pupil diameter F = 4.039; P > .05 3.49 ± .38 3.72 ± .54 F = 12.071; P = .004 3.39 ± .38 3.69 ± .55

Avg R pupil diameter F = .095; P > .05 3.35 ± .59 3.38 ± .89 F = .625; P > .05 3.25 ± .64 3.35 ± .89

Screen �xation count F = 6.377; P = .024 65.87 ± 22.31 87.27 ± 19.54 F = 9.246; P = .009 55.37 ± 22.16 84.14 ± 27.67

Keyboard �xation count F = 6.377; P = .024 54.12 ± 22.31 32.72 ± 19.54 F = 9.246; P = .009 64.63 ± 27.16 35.85 ± 27.67

Password duration F = 2.14; P = 165 13.5 ± 8.8 11.02 ± 4.3 F = .056; P = .817 6.5 ± 2.9 6.7 ± 2.8

Table 4. ANOVA results for eye movements comparing between laptop and smartphone during creating weak and strong passwords.

Eye gaze Feature
Laptop

Pairwise Comp. (Bon.Corr.)

(Mean; SD)
Smartphone

Pairwise Comp. (Bon.Corr.)

(Mean; SD)

ANOVA (F (1, 14); P) Strong Weak ANOVA (F (1, 14); P) Strong Weak

Avg �xation dur. F = 8.339; P = .012 .94 ± .017 .94 ± .015 F = 3.182; P > .05 .96 ± .015 .95 ± .23

Fixation dur. F = 8.401; P = .012 112.68 ± 2.09 113.57 ± 1.80 F = 3.182; P > .05 114.61 ± 1.75 113.82 ± 2.78

Avg saccadic dur. F = 8.401; P = .012 .060 ± .017 .053 ± .015 F = 3.182; P > .05 .045 ± .015 .051 ± .023

Avg L pupil diameter F = 4.984; P = .042 3.50 ± .38 3.39 ± .37 F = .756; P > .05 3.72 ± .54 3.69 ± .55

Avg R pupil diameter F = 1.497; P > .05 3.33 ± .59 3.25 ± .69 F = 1.970; P > .05 3.38 ± .89 3.35 ± .89

Screen �xation count F = 6.453; P = .024 65.87 ± 22.31 55.37 ± 22.16 F = .847; P > .05 87.28 ± 19.54 84.14 ± 27.68

Keyboard �xation count F = 6.453; P = .024 54.13 ± 22.32 64.63 ± 22.16 F = .847; P > .05 32.72 ± 19.54 35.86 ± 27.68

Password duration F = 12.77; P = .003 13.5 ± 8.8 6.5 ± 2.9 F = 25.28; P < .001 11.02 ± 4.3 6.7 ± 2.8

pupil diameter, fewer �xations on the screen and more �xations of the keyboard. We repeated the same analysis for the

smartphone. We did not �nd a statistically signi�cant e�ect of the password strength on the gaze behaviour (see Table

4). A reason for this might be that for smartphones gaze is more strongly a�ected by the area around the device, which

might have had an in�uence on gaze behavior.

6.4 Classifiers Performance

To measure the performance of the classi�ers, we computed the Area Under the Curve (AUC), as proposed by Abdelrah-

man et al.[Abdelrahman et al. 2019]. It aggregates precision and recall into one metric. We also investigated the e�ect of

using user-dependent and user-independent classi�ers on the classi�cation of passwords’ strength for both modalities.

We �rst compared the performance of the classi�ers on 3 di�erent models: decision trees, random forests, and SVMs.

Each classi�er was tuned with its relative hyper-parameters to achieve the best results.

As shown in Table 5, the three classi�ers resulted in similar AUC, with SVM performed best in most cases. Hence,

for the remainder of our analysis, we focus on the SVM results. We found that it is possible to di�erentiate between

strong and weak passwords from users’ gaze, independent from the user. The accuracy is 78% for laptops and 76% for

smartphones. The user-dependent classi�ers outperformed the the user-independent for each modality. They achieve

an accuracy of 86% on smartphone and 80% on laptops. We report the true positive and true negative rates using the

normalised confusion matrix over all participants for each of the user-independent classi�er for both modalities in

Figure 4.

6.4.1 Feature Importance. We used the SHAP [Lundberg and Lee 2017] algorithm to investigate the importance of

features on the performance of the model for classifying weak and strong password. The SHAP algorithm explains the

output of any machine learning model by computing the contribution of each feature to its prediction. The feature

11



ETRA ’21 Full Papers, May 25–27, 2021, Virtual Event, Germany Abdrabou, et al.

Smartphone Laptop

Fig. 4. Confusion matrix for the user-independent, modality dependent classifier for mobile (Le�) and laptop (Right).

Table 5. The AUC of the three classification (Decision trees, Random Forests, and SVMs) for smartphone and laptop. The three

classifiers have similar accuracy but SVM performs be�er in most of the results. The best results is highlighted in bold.

SVM Random Forest Decision Tree

Phone Laptop Phone Laptop Phone Laptop

User-indep., Modality-dep. .76 ± .19 .78 ± .16 .76 ± .2 .79 ± .15 .70 ± .17 .71 ± .14

User-dep., Modality-dep. .86 ± .23 .80 ± .29 .80 ± .25 .71 ± .29 .76 ± .28 .64 ± .29

Smartphone

Fixation Count Screen 
Fixation Count Keyboard 

Fixation Duration 
Duration

Average Left Pupil Diameter

Average Right Pupil Diameter
Average Fixation Duration

Average Saccade Duration

Laptop

Duration
Average Left Pupil Diameter

Fixation Count Screen
Fixation Count Keyboard

Fixation Duration
Average Right Pupil Diameter 

Average Saccade Duration
Average Fixation Duration

Fig. 5. Features importance for the user-independent, modality dependent classifier for smartphone (Le�) and laptop (Right).

importance graph for the SVM model is shown in Figure 5. We observed that for the smartphone modality the �xation

count and �xation duration on the smartphone screen and the keyboard are signi�cant in deciding the strength of the

password entered by the user. Followed by this, the duration spent while typing the password plays a signi�cant role

in the model prediction. For laptops, we observed that the duration has the highest contribution on di�erentiating

between weak and strong passwords followed by the pupil diameter and the �xation count on the screen and keyboard.

6.4.2 Scan Path. Figure 6 shows the di�erent gaze plots for one Participant while creating weak and strong password

on both modalities. For laptops strong passwords, participants had more �xations on the screen and keyboard compared

to during creating weak passwords. For smartphones, participants had more �xations on the keyboard (area 2) in case

of strong passwords compared to weak passwords where they had more �xations on the screen (area 1).
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Laptop Strong Smartphone Weak Smartphone StrongLaptop Weak

2

1

2

1

2

1

2

1

Fig. 6. Gaze Plots, highlighting behaviour while creating weak and strong passwords divided by the areas of interest (1) Screen and

(2) Keyboard for both laptops (Le�) and smartphones (Right).

7 DISCUSSION

Prior work showed that it is possible to assess graphical password strength based on eye gaze. We applied this idea to

detect the strength of text-based passwords from users’ gaze behaviour and provided an in-depth investigation. Here,

we summarise and discuss the results grouped by di�erent observations.

7.1 Classification Performance

Our results show that password strength classi�cation is feasible, achieving an accuracy of up to 86% when using

user-dependent, modality-dependant classi�ers. This result is promising as it paves the way for integrating gaze

behaviour in authentication where perceived password strength plays an important role, e.g., password strength meters.

When comparing the performance with a user-dependent classi�er, we observed a decrease in the accuracy to 76%

for smartphones and 74% for laptops. This performance might be su�cient for some applications and is substantially

better than guessing. Yet, if high accuracy is crucial future systems might want to employ user-dependent classi�ers.

Our results show that it is possible to distinguish the strength of text-based passwords by using gaze features and

duration spent while typing the password for user-dependent classi�cation. User-independent results were still strong,

suggesting that by training the classi�er on one speci�c task, the classi�cation generalises well to unseen users. This is

also con�rmed by the statistical analysis of the e�ect of the input modality and password strength on the gaze features.

It is important to highlight that password characteristics are likely to have an in�uence on gaze metrics. For example,

passwords that include many upper and lower case characters are likely to in�uence features such as the �xation ratio

between keyboad and screen. We only tested with a limited number of users and passwords, so it is likely that such

cases are under-represented in our sample. In future work we will investigate the genralsability of our gaze metrics

across di�erent password characteristics. In any case, classi�ers need to be re-trained for such cases and it is possible

that the contribution of features to the classi�cation accuracy might be di�erent.

7.2 Features Performance

The feature importance graph for the SVM classi�er shows that the �xation count substantially contributes to the

classi�cation accuracy. This is more pronounced for the laptop condition. One explanation for this is that people

generally entered longer passwords on the laptop, resulting in this being a more suitable feature. We ran a Pearson

correlation between the gaze features and password perceived strength. This, however, did not reveal any statistically
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signi�cant e�ect of the password perceived length on any of the gaze features. We might simply not have had enough

data to reveal such a correlation. Apart from this, for both laptops and smartphones pupil dilation is a strong feature.

This can be explained through the increased cognitive load while creating strong passwords. In the literature, it has

been proven that higher cognitive load leads to an increase in pupil dilation [Duchowski et al. 2018].

7.3 Input Modality E�ect

As noticed from our analysis, it was more di�cult to estimate password strength from users’ gaze behaviour while

entering passwords on smartphones compared to laptops. This can be due to the small screen size, as a result of which

gaze movements might be more subtle. Also, the way each user holds the phone is di�erent. Some of the users prefer to

have the phone closer to their face than other. Besides, some participants used the phone using one hand and others

used it with two hands. All of these can be factors that a�ected classi�cation accuracy. In contrast, on laptops, the

distance between the screen and keyboard is larger and, hence, gaze movements are easier to observe. Additionally, we

found that participants generate signi�cantly stronger passwords on laptops than on smartphones. This can be due to

the di�erent behaviours and reasons behind the use of input modalities. For example, participants might be more used

to PINs and lock patterns on smartphones [Harbach et al. 2014; Von Zezschwitz et al. 2013]. In contrast, on laptops

users are more likely to authenticate using text-based passwords [Florencio and Herley 2007].

7.4 Influence on Security

Finally, the question arises to which degree the presented approach has an in�uence on security in general. While our

approach is primarily meant to be used by researchers and practitioners to design novel approaches that ultimately lead

to stronger passwords, knowledge on password strength in the hand of an attacker might have an adverse e�ect. For

example, if an attacker gets access to an eye tracker, they might �nd out which users employ weaker passwords of for

which accounts they employ weaker passwords, making those a more likely target of an attack.

8 CONCLUSION

We introduced a novel approach of using gaze behaviour as an additional metric to assess password strength. Our

approach assesses users’ gaze behaviour while creating passwords. We hypothesised that the way in which users create

strong and weak passwords is re�ected in their gaze behavior. Our results con�rmed our hypothesis and showed that it

is possible to di�erentiate between weak and strong passwords with an accuracy of 86% for personalised classi�ers on

smartphone and 80% on laptops. Our �ndings pave the way for using gaze behaviour in security interfaces, in particular

interfaces that make people use stronger passwords.

Future work could collect datasets that focus on di�erent password characteristics, settings, input modalities as

well as user characteristics (e.g., dominant eye) to investigate for which cases the approach generalises well. Another

interesting aspect is the in�uence of password reuse on the approach. Also, trying to classify password strength in a

more �ne-grained manner could be interesting. Finally, future work could look into novel concepts. In particular, we

see potential in approaches that are independent of the input device.
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