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ASD autism spectrum disorders  

BSTFA bis(trimethylsilyl)trifluoroacetamide  

GC�MS gas chromatography combined with mass spectroscopy  

NMR nuclear magnetic resonance 

OPLS�DA orthogonal partial least�squares discriminant analysis 

Par pareto  

PCA principal component analysis 

PLS�DA partial least squares discriminant analysis 

TMS trimethylsilylated derivative 

TMSO trimethylsilylated and oximated derivative  

UV unit variance  

VIP variable importance on projection  

 

Page 2 of 36Analytical & Bioanalytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

�������  

Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders resulting from 

multiple factors. Diagnosis is based on behavioural and developmental signs detected before 3 

years of age, and there is no reliable biological marker. The purpose of this study was to evaluate 

the value of gas chromatography combined with mass spectroscopy (GC�MS) associated with 

multivariate statistical modeling to capture the global biochemical signature of autistic 

individuals. CG�MS urinary metabolic profiles of 26 autistic and 24 healthy children were 

obtained by liq/liq extraction, and were or were not subjected to an oximation step, and then 

were subjected to a persilylation step. These metabolic profiles were then processed by 

multivariate analysis, in particular orthogonal partial least�squares discriminant analysis (OPLS�

DA). Discriminating metabolites were identified. The relative concentrations of the succinate and 

glycolate were higher for autistic than healthy children; whereas those of hippurate, 3�

hydroxyphenylacetate, vanillylhydracrylate, 3�hydroxyhippurate, 4�hydroxyphenyl�2�

hydroxyacetate, 1��indole�3�acetate, phosphate, palmitate, stearate, and 3�methyladipate relative 

concentrations were lower. Eight other metabolites, that were not identified but characterized by 

a retention time plus a quantifier and its qualifier ion masses, were found to differ between the 

two groups. Comparison of statistical models leads to the conclusion that the combination of data 

obtained from both derivatization techniques leads to the model best discriminating, between 

autistic and healthy groups of children.  

 

/	 0�
�1�Mass spectrometry; Chemometrics / Statistics; Bioanalytical methods; GC; Clinical / 

Biomedical analysis 
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Autistic disorder (AD), Asperger syndrome (AS) and pervasive developmental disorder�not 

otherwise specified (PDD�NOS) are collectively termed autism spectrum disorders (ASD). The 

prevalence of ASD appears to be increasing (1 per 110 in 2009) [1] without any identified cause 

for this increase [2�5]. Autism is usually diagnosed in infancy between the second and the third 

years of life [6]. The disease is characterized by a behavioral triad as listed in the Diagnostic and 

Statistical Manual of Mental Disorders (DSM�IV) [7]: impaired communication, impaired social 

interaction, and restricted and repetitive interests and activities. Diagnosis mostly involves 

clinical evaluation using subjective methods based on perceived behaviors in the patient. Thus, 

this diagnostic approach is dependent on the expertise of those administering the tests.  

Metabolomics is the study of metabolites, including classification, identification and semi 

quantitative evaluation of metabolites levels [8]. Metabolomics has been successfully applied for 

disease diagnosis, therapeutics, and functional genomic and toxicology studies [9,10]. A 

metabolite is commonly defined as compound having a low molecular weight, from 50 to about 

1000 Daltons. Biological fluids contain very large numbers of metabolites (more than 8000), so 

sensitive and robust analytical methods are required. The analytical techniques most commonly 

used to identify and quantify metabolites are gas chromatography or liquid chromatography 

combined with mass spectroscopy (GC�MS or LC�MS, respectively) and nuclear magnetic 

resonance spectroscopy (NMR) [11]. NMR is independent of ionization propensities but is less 

sensitive than MS: less than 60 different metabolites are commonly identified in biological 

samples using this technique [12]. GC�MS is a sensitive and reproducible analytical method and, 

combined with public databases, its power for compound identification makes it of great value 

for metabolomics [13]. Low�molecular weight metabolites may be analyzed directly by GC�MS, 
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but many structures contain polar groups and therefore need to be chemically derivatized prior to 

GC�MS analysis. The most commonly used derivatization methods involve silylation preceded 

or not by oximation [8]. These derivatization strategies give an access to a large set of chemical 

functions, including alcohol and carboxylic functions, amines, amides and aldehydes [8]. 

Several bio�fluids can be analyzed by GC�MS, of which urine has the advantages of 

being easily and non�invasively accessible and containing hundreds of metabolites that represent 

the endpoint of endogenous metabolism. GC�MS has been used for the description of the 

metabolic status of patients with neuropsychiatric disorders such as autism ([14], for review, see 

ref: [15]). In particular, gastrointestinal metabolites, abnormal neurotransmitter concentrations, 

the creatine to creatinine ratio, and the guanidine acetate concentrations have been reported to be 

discriminative markers. However, there is currently no evidence that any biomarker is useful in 

routine practice, and consequently further studies are required to identify clinically useful 

indicators [15].  

We report an analysis of the urinary metabolic signatures of autism patients and healthy 

subjects with the aim of identifying potential biomarkers of ASD. Two techniques were 

compared, with and without oximation during the derivatization process before GC�MS. 

Statistical analysis methods [partial least squares discriminant analysis (PLS�DA) and orthogonal 

partial least squares discriminant analysis (OPLS�DA)] were used to identify metabolites that 

discriminate between ASD and control populations.  

 

���	�������
��	�)�
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Sample collection 
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Between 2008 and 2010, urine samples were collected from children aged 6�14 years (mean 8 

years) with ASD living in France (n = 26; male 85%, female 15%) and from control children (n = 

24; male 67%, female 33%) aged 6�9 years (mean 7 years). Urine samples were collected into 

untreated vials during routine medical consultations, principally in the morning and the exact 

time of collection was recorded. Each urine sample was aliquoted into 1.5 mL Eppendorf tubes 

and stored at �80°C immediately after collection until analysis. All study participants and their 

parents or guardians provided informed consent. 

 

Patients 

The following data were collected for all autistic and control children: age, gender, treatment, 

and clinical characteristics. The severity of autism was assessed according to the International 

Classification of Diseases 10
th

 Edition [16]. Autistic patients were recruited in three French 

autism centers [Tours (n = 8), Montpellier (n = 13), and Orléans (n = 5)] and all twenty�four 

urine samples were from healthy volunteers from Tours. �

 

GC�MS study 

��������	���	�
�����

Samples were thawed at room temperature, centrifuged (at 3000 �) for 10 min and an aliquot was 

used for creatinine analysis (Jaffé method, Olympus AU640, France). The urine volume used for 

GC�MS was adjusted according to the urinary creatinine concentration as follows: for creatinine 

concentrations lower than 1 mmol/L, 1 mL of urine was used; for concentrations higher than 5 

mmol/L, 0.2 mL of urine was used; and for concentrations between 1�5 mmol/L, the urine 

volume was calculated to obtain 1 Pmole of creatinine in the sample. To monitor the performance 
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of data acquisition, the samples were randomized and several samples were injected in duplicate 

to ensure reproducibility. To estimate the accuracy of the analysis, QC samples were run after 

every 10 patient samples. 

�

����������	���
��

Organic metabolites isolated from urine were subjected to two preanalytical procedures 

(derivatization with bis(trimethylsilyl)trifluoroacetamide (BSTFA) preceded, or not, by an 

oximation step ; see below) so as to catch the widest urinary metabolome possible and then 

injected into a GC�MS apparatus. Compounds were identified semi�quantitatively, and 

concentrations are expressed relative to the amount of creatinine. 4�Phenylbutyric acid was used 

as internal standard (3 RL of a 7 mM solution) because it is absent from urine, elutes in the 

middle of the GC chromatogram and does not co�elute with any of the other metabolites.  

 

�	�����	����
���
������
�� 

Urine samples were acidified with HCl (200 RL of a 2.4 � solution) and NaCl was added to 

facilitate the extraction with an ethylacetate / diethylether mixture (1/1) (3 × 1 mL). After 

centrifugation, the upper organic layers were pooled and dried under nitrogen at room 

temperature. Each sample was derivatized by addition of 70 RL of a mixture of BSTFA and 

trimethylchlorosilane (TMCS) (BSTFA/TMCS: 99/1) in 30 RL of acetonitrile for 40 min at 80°C 

in a sand bath. The derivatized mixture was transferred to a silanized insert for GC�MS analysis. 

�

�	�����	����
�������
�� 
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Urine samples were basified with NaOH (100 RL of a 6 � solution) and 200 RL of 

hydroxylamine (7 mg/mL) were added. The mixture was heated for 30 minutes at 60°C, cooled 

to room temperature and acidified with HCl (400 RL of a 6 � solution). NaCl was added until 

saturation, and each sample was extracted with an ethylacetate / diethylether mixture (1/1) (3 × 1 

mL). After centrifugation, the upper organic layers were pooled and dried under nitrogen at room 

temperature. Each sample was derivatized by addition of 70 RL of a mixture of BSTFA /TMCS 

(99/1) and 30 RL of acetonitrile for 40 min at 80°C in a sand bath. The derivatized mixture was 

transferred to a silanized insert for GC�MS analysis.  

 

��������������

A Shimadzu GC�MS system (Kyoto, Japan) was used. It is composed of an AOC�20S auto�

sampler, an AOC�20i auto�injector, a gas chromatograph 2010 and a QP�2010�Plus mass 

spectrometer. The derivatized samples (3 RL, split ratio = 10) were separated on a capillary CG 

column (Phenomenex, Zebron ZB�5, 30 m × 0.25 mm i.d., 0.25 Rm film thickness). The oven 

temperature was set at 80°C for 6 min, ramped to 300°C at 5°C/min and then held for 10 min. 

Helium was used as the carrier gas and set at 0.45 mL/min. The injection port, ion source and 

interface temperature were 250°C, 250°C and 300°C, respectively. The mass spectra of all GC 

peaks were generated by electronic impact (EI) at 70 eV and recorded in a positive total ion 

monitoring mode scanning the 50�500 ��� range (event time = 0.1, scan speed = 5000).  

�

��
���	��	��������

Each chromatogram obtained was processed for smoothing, library matching and area 

calculation using an identical data processing method created using the GC�MS Solution Postrun 
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Analysis
®

 software (Shimadzu, Japan) (Autoarea mode, maximum peak number = 300, width 

time = 2 s, smoothing method = standard). Only peaks with minimum peak area = 50 000 were 

selected for further analysis. The area of each peak was calculated using a unique quantifier ion 

mass when its relative qualifier ion mass intensity was within 20% range ratio. To minimize 

process errors, we manually checked each integrated peak for each sample.  

The resulting data table was exported to Excel for normalization to the internal standard (4�

phenylbutyric acid) and then to the creatinine concentration. The normalization to the internal 

standard was performed by dividing the integrated area foreach analyte by the integrated area of 

the internal standard. The results are expressed as ratios to the urinary creatinine concentration ( 

/mmole creatinine).��

 

��
���	������������� �!��
�"���
���

Compounds were identified from their electron impact mass spectra by comparison to the NIST 

spectral mass library (NIST 05). Mass spectra of unknown compounds were labeled according to 

the retention times as part of the identification, one quantifier peak and one or two fragmental 

qualifier peaks. There is currently no commercially available reference standard for silyzed 

metabolites to determine the derivatization recovery, so we checked the reproducibility of the 

quantitative results without knowing the derivatization efficiency.  

 

Statistical Methods. 

The intensity of all peaks for all urine samples were studied by multivariate statistical methods, 

following published protocols [17,18].  
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���
�#�	��
�� ������� was performed using Simca�P+�12 software (version 12.0, Umetrics, 

Umeå, Sweden). Unit variance (UV) scaling means that the variable is centered and scaled from 

the standard deviation of the variable. With pareto scaling (Par), obtained by dividing each 

variable by the square root of its standard deviation, the variance differs between variables, but 

the range of variance across each spectrum is much smaller than that for the initial unscaled data 

(small values being scaled up and large values being scaled down). The combination of scaling 

and mean centering is termed autoscaling in MetaboAnalyst software [each descriptor (of high or 

low intensity) is weighted equally] [19].A logarithmic transformation (which is a nonlinear 

conversion) such as an appropriate variance�stabilizing transformation, can be performed to 

minimize the effects of noise or high variability of the variables [20]. Principal component 

analysis (PCA) [21] was first performed as unsupervised clustering to identify the similarity or 

the differences between sample profiles. Grouping, trends and outliers were revealed from the 

scatter plot. To identify subsets (linear combinations) of metabolic features associated with a 

specific sample class (ASD or control), partial least squares (PLS) analysis was used as 

supervised clustering. PLS derives latent variables which describe the maximum proportion of 

covariance between measured data (X matrix) and the response variable (Y matrix) [22]. 

Orthogonal partial least squares discriminant analysis (OPLS�DA), also used for discrimination, 

is a refinement of this approach: variation in the data measured is partitioned into two blocks, 

one containing variations that correlate with the class identifier (ASD or control) and the other 

containing variations that are orthogonal to the first block and thus, do not contribute to 

discrimination between the defined groups [23]. Discriminant metabolites were proposed by 

OPLS�DA from one predictive and two or more orthogonal components. The quality of the 

models was described by the cumulative modeled variation in the X matrix $
2
X(cum), the 
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cumulative modeled variation in the Y matrix $
2
Y(cum), where $

2
Y(cum) is defined as the 

proportion of variance in the data explained by the models and indicates goodness of fit, and the 

cross�validated predictive ability %
2
(cum) values. Models were rejected if they presented 

complete overlap of %
2 

distributions [%
2
(cum)

 
< 0] or low classification rates [%

2
(cum)< 0.05 

and eigenvalues should be > 2]. The features with variable importance on projection (VIP) 

values and regression coefficients CoeffCS[1] lower than 0.35 were deleted and evaluated 

again. A number of variables was identified from PLS�DA and OPLS�DA as being responsible 

for the difference between ASD and control urine samples with a VIP value > 1.0.   

One of the main problems with PLS�DA is the data overfitting that can occur if the 

algorithm picks up random noise as real signals. To validate the model, the data are divided into 

seven parts: a model was built with 6/7
th

 of data left in, and the left out data were predicted [24]. 

The predicted data are then compared with the original data and the sum of squared errors 

calculated for the whole dataset. This was converted into %
2
, which is an estimation of the 

predictive ability of the model. The model was thus considered sufficiently well guarded against 

overfitting and validated after 200 random permutation tests [25] as the %
2
 line intercepted the Y 

axis at a negative value.  

We also performed PLS�DA with autoscaling normalization which is very similar to 

pareto scaling using the freely available web�based software called MetaboAnalyst [26].  

&�#�	��
�� �������� (Student’s 
�test)� was performed using MetaboAnalyst [26] for all 

metabolites with a VIP >1.0. The ratio of the peak areas of these metabolites to that of creatinine 

was calculated and a non�parametric test was performed with the critical ��value set at 0.05 

[27,18].  
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.	�����  

We used two preanalytical preparations methods: a simple liq./liq. separation, followed by 

trimethylsilylation process (TMS); and oximation (with hydroxylamine) before 

trimethylsilylation derivatization (TMSO). All samples were subjected to a single GC�MS run, 

and explored on the basis of the total ion current (TIC) and one quantifier fragment ion as 

responses (see Table 3).  

�

GC�MS data 

Representative GC�MS TIC chromatograms of urine samples is displayed in Fig 1. We focused 

on 56 signals obtained using the method without oximation: 37 of them could be identified by 

comparison of retentions times and fragmentation patterns with the GC�MS software library. For 

samples subjected to oximation, we obtained 76 signals and 36 of them could be identified.  
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%����3 a) Typical urine GC�MS spectra obtained for urine from ASD (blue) and healthy control 

(black) children; b) Subtraction of these two chromatograms revealing differential metabolite 

profiles. 
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Statistical studies – choice of pre�treatment technique 

Both unsupervised and supervised statistical analyses were done for the results from samples 

subjected to both pre analytical techniques to assess the possibility of discriminating between 

control and ASD children using urinary metabolite profiling 

 

Without oximation  

PCA analysis did not identify any particular similarity or large differences between sample 

profiles, such that there were no identified outliers. Potentially discriminant metabolites were 

identified by PLS�DA and OPLS�DA. The impact of data pretreatment (scaling, transformation) 

before multivariate analysis was assessed (see statistical values shown in Table 1). 

�

4���	�3 Summary of statistical values of PLS�DA and OPLS�DA with different scaling methods 

for data obtained from GC�MS analyses, without oximation. The different cumulated modeled 

variations in X [$
2
X(cum)] and Y [$

2
Y(cum)] matrix on spectral datasets and predictability of 

the model [%²(cum)] are given [observations (N)=50] 

� �������5������������� �
6
7� �

6
7�8���9� �

6
:�8���9� �

6
�8���9�

Model 1
 a
 UV 0.21

 
0.427

  
0.608

 
0.443

  

Model 2
 b

 UV 0.0648
 

0.469
 

0.792
 

0.541
 

Model 3 
c
 Pareto 0.173

 
0.83

 
0.591

 
0.333

 

Model 4
 d

  log transformed, UV scaling 0.080
 

0.753
 

0.654
 

0.422
 

a
 PLS�DA, from 2 components, Variables X=12 

b
 OPLS�DA, Variables X=28, 2 orthogonal projections 

c
 OPLS�DA, Variables X=11, 2 orthogonal projections 

d
 OPLS�DA, Variables X=34, 2 orthogonal projections 

 

From the predictive variation between X (metabolites) and Y (urine samples) given by 

$
2
X(cum), the models 1 and 2 with the same scaling (UV) interpreted around 40% of the total 
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variation in X (0.42 and 0.47, respectively, Table 1). The part of the variation that could not be 

explained by the model might originate from the noise or high variability of the variables [20]. 

This variation was minimized by Pareto scaling (model 3) and is expressed by the formula [28]: 

1 � $
2
X � $

2
X(cum) = 1 � 0.173 � 0.83 = 0.003, as the noise could account for less 1% in this 

analysis. The quality of the models is expressed by $
2
Y(cum) and %

2
(cum) values. UV scaling 

(model 2, Table 1), explained 79% of the variations in the various peaks, whereas with Pareto 

scaling $
2
Y(cum) = 0.59. With non linear transformation (model 4, Table 1), by log 

transformation minimizing the effects of noise or high variability of the variables [$
2
X(cum) = 

0.75)], the model explained 65% of the variance in the data, but the value was lower than by UV 

scaling where $
2
Y(cum) = 0.79 (model 2, Table 1). The high %

2
(cum) value [%

2
(cum) > 0.5] 

indicated good predictivity. Pareto scaling or log transformation led to lower predictability 

[%
2
(cum) = 0.33 and 0.42, respectively] (Table 1). As UV scaling seemed to be the best scaling 

method in our study investigations [(confirmed by analysis of variance CV�ANOVA with the 

lower value of ��value = 4.4 e
�6

)], it was used for the subsequent investigations. The OPLS�DA 

cross�validated score scatter plots for model 2 [Fig. 2, (a)] showed good discrimination between 

the two populations. 

 

With oximation  

OPLS�DA models explained 83% (Table 2) of the variance of the data obtained after oximation�

silylation�based GC�MS compared to 79% [$
2
Y(cum)= 0.79] of that obtained without oximation. 

The cross�validated predictive ability %
2
(cum) values were also better after oximation (0.68 

compared to 0.54, respectively).  
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4���	�6 Summary of statistical values of OPLS�DA UV scaling obtained for data from GC�MS 

analyses, from TMSO procedure (model 5) and, without and with oximation (TMS + TMSO, 

model 6). The different cumulated modeled variations in X [$
2
X(cum)] and Y [$

2
Y(cum)] matrix 

on spectral datasets and predictive power of the model [%²(cum)] are given [observations 

(N)=50] 

� �
6
7� �

6
7�8���9� �

6
:�8���9� �

6�
8���9�

Model 5
 a
 0.0817

 
0.385

 
0.826

 
0.679

 

Model 6 
b
 0.0798 0.446 0.973 0.878 

a
 OPLS�DA, UV scaling, variables X=39, 2 orthogonal projections 

b
 OPLS�DA, UV scaling, variables X=42, 4 orthogonal projections 
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%����6 OPLS�DA, UV�scaled, score scatter plots obtained from of GC�MS analysis of samples 

without oximation (a), with oximation (b), and with and without oximation (c) from urine from 

autistic (red dot) and control (black box) children, showing that the two populations are well 

separated with (a) a $
2
Y(cum)=0.79 and a %

2
(cum)=0.54 (model 2, Table 1), with (b) a 

$
2
Y(cum)=0.83 and a %²(cum) =0.68 (model 5, Table 2) and (c) a $

2
Y(cum)=0.97 and a 

%
2
(cum)=0.88 (model 6, Table 2). 

 

Combination of data obtained by both TMS and TMSO derivatizations 

We also tested the hypothesis that a better statistical model could be obtained by combining data 

for samples subjected to the TMS process (56 metabolites) with those obtained from the 

oximation+silylation process (TMSO, 76 metabolites) into a single matrix. About 20% of the 

metabolites identified were detected in both sample sets and in these cases, only data obtained 
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without an oximation process were included in the analysis (data obtained from samples 

undergoing less manipulation were expected to be more repeatable). Consequently, 117 signals, 

58 of them identified, were used. 

Multivariate analysis of the two sets of data combined showed that OPLS�DA (Table 2, 

model 6) led to a very good discrimination between the two populations [0.45 for $
2
X(cum) and 

0.97 for�$
2
Y(cum)]; this was confirmed by analysis of variance CV�ANOVA (��value = 9.6 e

�15
, 

see supporting information), and good predictive ability value with %
2
(cum) ;�0.88. Using the 

cumulated data (that for samples with or without an oximation process), the multivariate analysis 

clearly gave more discriminatory results than obtained using data from samples subjected to just 

one pre�analytical chemical process. The OPLS�DA cross�validated score plots for model 6 [Fig. 

2, (c)] showed excellent discrimination between the two populations. The loading scatter plot 

(Figure 3) shows which variables expressed similarity between ASD and control children in 

model 6. �
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4���	�< Study of both analyses without and with an oximation process 

�
 Metabolites characterized after oximation are marked with the suffix –Ox. “X” compounds are 

TMS derivatives, “Z” compounds are TMSO derivatives. 

������!	�������	�� a�
Quantifier 

ion mass�

Retention 

time 

(minutes)�

Qualifier ion 

mass 

Differentiation 

for autistic 

samples�

OPLS�DA�  

VIP values
 b 

Model 6�

=3>� 219.1 23.91 189.1 � ↓�
2.00�

'()*+
�,
-�

,������	�?@� 236.1 32.06 206 � ↓�
1.65�

'+)+++.-�

��������	� 147� 18.60� 246.9             ↑�
1.53�

'+)++(-�

=6A� 267.15 30.60 341.15 � ↓�
1.48�

'+)++/-�

<�, 
�@ �)	� ���	���	� 295.9� 26.63� 164 280.8 ↓�
1.47�

'+)++/-�

*����� �) 
�� ���	�?@�� 297.15 32.75 371.15 � ↓�
1.42�

'+)++0-�

=63� 170 25.93 122.1 � ↓�
1.35�

'+)++1-�

<�, 
�@ �)������	�?@� 294.15 39.77 193.1 � ↓�
1.32�

'+)++.-�

��, 
�@ ����
	���	�� 266.9� 30.72� 267.9 341.8 ↓�
1.30�

'+)+*+-�

3��2�
��	�<���	���	� 201.9� 34.65� 73 319 ↓�
1.24�

'+)+*0-�

�)���)��	� 298.8� 17.42� 299.8 313.8 ↓�
1.18�

'+)+*2-�

73A� 288.9� 24.81� 125 147 ↓�
1.17�

'+)+(*-�

��������	�?@� 313 36.26 145 � ↓�
1.16�

'+)+(*-�

��	���	�?@� 341 40.06 117 � ↓�
1.15�

'+)+(/-�

<��	�) ��
����	�?@� 199.1 24.70 186.15 � ↓�
1.15�

'+)++,-�

=B3� 338 33.65 323 � ↓ 
1.11�

'+)+(2-�

�� �����	� 218 12.55 190.10 �            ↑ 
1.07�

'+)+03-�

=C� 238 14.68 208.05 �            ↑�
1.06�

'+)+*3-�

=<D� 324 27.54 309 324                ↑ 
1.02�

'+)+03- 
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b
 Magnitude of variation of variable importance in the projection (VIP) with a threshold of 1.0 

obtained using Simca�P
+
 software. 

c
 ��values for the 
�test were calculated with MetaboAnalyst software for these 19 metabolites. 

(↑) denotes higher and (↓) a lower concentration for the ASD population than contols. 
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/��/���&�').�(�

�

%����<�pq loading plot of the OPLS�DA model 6 (Table 2): scatter plot of the X� and Y�loadings 

(p and q). This plot shows how the responses (Y's) varied in relation to each other, i.e. which 

provided similar information and their relationship to the terms of the model. Two tendencies 

can be seen. Peaks framed in pink were lower in ASD urine, and peaks framed in green were 

higher. Peaks in red were obtained without (TMS), and peaks in black with (TMSO) the 

oximation process. 

 

The metabolites making the greatest contribution to the discrimination between the two 

populations were screened according to the variable importance on projection (VIP) values >1.0. 

The concentrations of all the nineteen metabolites (Table 3) were found to be significantly 

different (��< 0.05) between the two groups. 

�

����������  

Statistical studies – choice of pre�treatment technique 
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OPLS�DA is recommended as it allows a clearer and more straightforward interpretation than 

other statistical methods [19], so we focused on this approach. Variation between samples can 

generally be classified into “technical” or “biological” variance; the impact of technical 

variability should be minimized and useful biological data needs to be discrimination from noise. 

Data processing methods are highly dependent on the pre�treatment technique used for the data. 

Several types of scaling are commonly used: UV, Par, and autoscaling. The choice of pre�

treatment methods depends on several factors (numbers of samples, magnitude of concentration, 

similarities, etc), and different methods emphasize different aspect of the data. As each method 

has its own merits and drawback, and as, to our knowledge, there is non consensus in the pre�

treatment for urines analyzed by GC�MS, we studied the effect of all these scaling methods on 

identification of biomarkers.  

We found that noise (and/or high variability of the variables) was minimized by Pareto 

scaling: ($
2
X(cum) was highest in model 3, but it led to lower predictability [%

2
(cum) = 0.23] 

(Table 1). UV scaling seemed to be the best scaling method for our data set (confirmed by 

analysis of variance CV�ANOVA, see supporting information). We therefore focused on results 

obtained from OPLS�DA using UV scaling (model 6, Tables 2 and 3). 

�

Statistical analysis of� TMS and TMSO results – Analysis of models and identification of 

important features 

Factors such as disease, drugs and diet modify the concentrations of individual metabolites 

[29,30]. It is known that autistic patients display dysfuntions in the levels of hormones, peptides, 

metabolites associated with neurological, gastrointestinal, immunological and toxicological 

effects (for review see [31]). Although the number of samples included in this study was too 
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small for powerful statistical analysis, we applied a metabolomics strategy to screen for 

metabolites potentially associated with a pathological context, ASD. Few targeted or untargeted 

metabolomics studies by MS have been performed on urine samples from ASD patients ([32], 

and for review see ref [31,15]). For example, the targeted studies include evaluation of tartaric 

acid concentrations [33,34], homocysteine levels [35], and aminoacid excretions [36,37] in the 

urine of autistic and healthy children. Fewer than one hundred metabolites, including amino 

acids,have been screened in untargeted studies. To expand the number of metabolites detected by 

GC�MS, we tested two types of pre�analytical chemical treatment. As described in previously 

study (without an oximation step before derivatization) [32], we found higher citrate 

concentrations in the ASD than control group (Table 3). However, isocitric acid, 2�oxoglutaric 

acid, adipic acid, suberic acid (all rejected in the different models), 4�hydroxyphenylacetic acid 

(0.6<VIP<1) and 4�hydroxybenzoic acid (VIP<0.5) were not found to provide any discrimination 

between our two groups (see supporting info). Furthermore, we found significantly lower 

concentrations of hippurate (�=0.002, Table 3), contrasting with a previous report [32], the same 

for ��hydroxyhippurate. The succinate concentration was found to be higher, consistent with a 

previous 
1
H�NMR study [14]. Another targeted GC�MS study [38] reported higher than control 

levels of homovanillic acid (HVA) and vanillylmandelic acid (VMA) in the urine of autistic 

children. In our study, no significant differences in the level of HVA (observed as a TMSO�

derivative, VIP values in OPLS�DA were lower than 1, and the ��value=0.1) or VMA (observed 

as a TMS�derivative as the previous study, ��value=0.8) were detected. 

The discriminant urinary metabolites were vanillylhydracrylate, 3�methyladipate, ��

hydroxymandelate�� glycolate, palmitate, stearate, succinate, phosphate, hippurate, 3�

hydroxyphenylacetate, 3�hydroxyhippurate, 1��indole�3�acetate (these last metabolites could be 
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implicated in microbial pathways associated with gut bacterial), and also eight metabolites 

identified only according to their retention time and fragmentation patterns (Table 3).  

We compared metabolic fingerprinting obtained by GC�MS after a silylation step (which 

is the most versatile and universally applicable derivatization method) with that after oximation 

of keto�derivatives followed by a BSTFA silylation step. This study clearly shows that the two 

derivatization procedures are complementary, and allow analysis of a wider range of metabolites 

for metabolomics studies. 

 

����������  

Evaluation of urinary metabolite profiles using a GC�MS method showed promising results. 

First, this study clearly suggest that sample pre�treatment techniques are relevant, and we 

highlighted complementarities between the two derivatization procedures assessed: TMS 

derivatization (economic, minimal sample handling suitable for routine analysis), and a TMSO 

procedure (higher sensitivity). Combined, the two procedures allowed analysis of 132 

metabolites as their TMS/TMSO ether/ester derivatives, 73 of which could be identified as 

known compounds. Secondly, relevant metabolites, with different concentrations in children with 

or without a diagnosis of ASD were successfully extracted by multivariate analysis. Further work 

including targeted studies, is needed to identify chemically those features that are potentially 

discriminant and to validate their clinical value. 
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List of figures 

%����3 a) Typical GC�MS spectra obtained for urine from ASD (blue) and healthy control (black) 

children; b) Subtraction of these two chromatograms revealing differential metabolite profiles 

 

 

%����6�OPLS�DA, UV�scaled, score scatter plots obtained from of GC�MS analysis of samples 

without oximation (a), with oximation (b), and with and without oximation (c) from urine from 

autistic (red dots) and control (black box) children, showing that the two populations are well 

separated with (a) a $
2
Y(cum)=0.79 and a %

2
(cum)=0.54 (model 2, Table 1), with (b) a 

$
2
Y(cum)=0.86 and a %²(cum) =0.73 (model 5, Table 2) and (c) a $

2
Y(cum)=0.97 and a 

%
2
(cum)=0.88 (model 6, Table 2). 

 

 

%����<�pq loading plot of the OPLS�DA model 6 (Table 2): scatter plot of the X� and Y�loadings 

(p and q). This plot shows how the responses (Y's) varied in relation to each other, i.e. which 

provided similar information, and their relationship to the terms of the model. Two tendencies 

can be seen. Peaks framed in pink were lower in ASD urine, and peaks framed in green were 

higher. Peaks in red were obtained without, and peaks in black with, the oximation process�
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Fig. S1  
Principal component analysis (PCA) score plot of GC�MS 

 

S2 

Fig. S2  
Screenshots of Validation Plots of PLS�DA, UV scaling, model 6 obtained after 200 

permutations tests of valid 

 

S2 

Tables S1, S2, S3 and S4 
CV�ANOVA analyses of models 6, 7, 8 and 9 

 

S3 

Fig. S3  
Correlation plot of model 6, OPLS�DA, UV scaling. 

S4 

Table S5  
Analysis of urinary metabolites: ions monitored for each metabolites and retention 

time (RT), variable importance (VIP values) for OPLS�DA UV scaling (model 6), 

and ��value (	�test) 

S5�6 

Table S6  
Analysis of urinary metabolites in children: ions monitored for each metabolites and 

retention time (RT), variable importance (VIP values > 1) for OPLS�DA, UV 

scaling, models 2 and 5 

S7 
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S 2

Fig. S1  
Principal component analysis (PCA) score plot of GC�MS data obtained without and with 

oximation process before derivatization   
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Fig. S2  
Screenshots of Validation Plots of PLS�DA, UV scaling, model 6 obtained after 200 

permutations tests of valid 
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Table S1. TMS and TMSO data 
 

CV�ANOVA analysis of PLS�DA, UV scaling, model 7  

Model 7 SS DF MS F p SD 

Total corr. 49 49 1     1 

Regression 31.3777 2 15.6888 41.8432 3.65492e�011 3.96091 

Residual 17.6223 47 0.374943     0.612326 

 

 

Table S2. 
CV�ANOVA analysis of model 6, OPLS�DA, UV scaling 

Model 6 SS DF MS F p SD 

Total corr. 49 49 1     1 

Regression 43.0028 10 4.30028 27.9646 9.62845e�015 2.07371 

Residual 5.99725 39 0.153776     0.392142 

 

  

Table S3. 

CV�ANOVA analysis OPLS�DA, Par scaling, model 8  

Model 8 SS DF MS F p SD 

Total corr. 49 49 1     1 

Regression 21.2664 6 3.5444 5.49546 0.000270877 1.88266 

Residual 27.7336 43 0.644968     0.803099 

 

 

Table S4. 
CV�ANOVA analysis of OPLS�DA, log. transformation, UV scaling, model 9  

Model 9 SS DF MS F p SD 

Total corr. 49 49 1     1 

Regression 42.2228 8 5.27785 31.9294 3.02587e�015 2.29736 

Residual 6.77719 41 0.165297     0.406568 
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Fig S3  
Correlation plot, cross peaks with negative correlations were in higher concentration in ASD 

population, with positive correlation in higher concentration in control urines (model 6) 
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Table S5  
Analysis of urinary metabolites in children: ions monitored for each metabolites TMS + 

OTMS and retention time (RT), variable importance (VIP values) for PLS and OPLS�DA 

with different scaling/transformation, model 6, and ��value (	�test) 

Putative Assigment a

 
Quantif

ier ion 

mass�

Retentio

n time 

 minutes �

Qualifier ion mass 

Differe

ntiation 

for 

autistic 

samples�

OPLS�DA� 

UV�  

VIP values 

b 
Model 6�

� value
 c
 

 

Z18 219.1 23.91 189.1  ↓ 2.00 %8%�
�(
��

Hippurate�Ox 236.1 32.06 206  ↓ 1.65 �8��6� 

Succinate� 147� 18.60� 246.9  
          

↑�
1.53� �8��6��

Z26 267.15 30.60 341.15  ↓ 1.48 �8���� 

3�

Hydroxyphenylacetate�
295.9� 26.63� 164 280.8 ↓� 1.47� �8���� 

Vanillylhydracrylate�

Ox  
297.15 32.75 371.15  ↓ 1.42 �8�%'� 

Z21 170 25.93 122.1  ↓ 1.35  

3�Hydroxyhippurate�Ox 294.15 39.77 193.1  ↓ 1.32 �8�%6� 

��Hydroxy mandelate � 266.9� 30.72� 267.9 341.8 ↓� 1.30� �8�%�� 

1��Indole�3�acetate� 201.9� 34.65� 73 319 ↓� 1.24� ���8�%(� 

Phosphate� 298.8� 17.42� 299.8 313.8 ↓� 1.18� ���8�%�� 

X16� 288.9� 24.81� 125 147 ↓� 1.17� ���8�6%� 

Palmitate�Ox 313 36.26 145  ↓ 1.16  

Stearate�Ox 341 40.06 117  ↓ 1.15 ���8��6� 

3�Methyladipate�Ox 199.1 24.70 186.15  ↓ 1.15 ���8��3� 

Z41 338 33.65 323  ↓ 1.11  

Glycolic 218 12.55 190.10          ↑ 1.07 �8�(9� 

Z5 238 14.68 208.05         ↑ 1.06 �8�%9� 

Z37 324 27.54 309 324         ↑ 1.02 �8��9� 

Z31 234 19.77 219          ↑ 0.98  

Citrate� 272.9� 31.63� 374.8 464.7         ↑� 0.82�  

ββββ�Lactate� 147� 10.29� 117 190.9         ↑� ��  

4�

Hydroxyphenylacetate�
295.9� 27.41� 252 280.9 ↓� �  

X21 157 26.03 147 75 ↓ 0.87  

X14 221.1 24 146.9 103 ↓ 0.82  

Z12 252.05 22.17 191.10          ↑ 0.82  

Z4 221.10 14.46 187.10          ↑ 0.77  

Z19 131.15 24.09 117.10  ↓ 0.77  

Oxalate 73 12.75 147 190 ↓ 0.72  

X7 219 21.50 103 72.90         ↑ 0.71  

3�Methoxy�4�hydroxy 

phenyl acetate 
325.90 30.51 208.90 266.9 ↓ 0.64  
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Z29 118.10 37.87 91.10          ↑ 0.52  

Cis�aconitate 374.80 30.02 228.9 284.8         ↑ 0.51  

2�Hydroxy�isobutyrate�

Ox 
205.15 10.31 131.15  ↓ 0.50  

L�Proline, 5�oxo�Ox 258.1 24.28 230          ↑ 0.48  

X1 244.7 12.52 142.9 146.9 ↓ 0.42  

Z6 103.1 17.14 147.1  ↓ 0.32  

2,5�Furandicarboxylate 284.8 27.55 147 73         ↑ 0.32  

2�Hydroxybutanoate 131.1 10.41 142.9 146.9         ↑ 0.28  

X15 317.4 24.19 217          ↑ 0.22  

2�Me�succinate�Ox 261.10 27.74 202.1         ↑ 0.16  

Z22 226.1 27.74 202.1  ↓ 0.14  

Z1 221.1 10.45 133.1  ↓ 0.03  
a
 Metabolites characterized after oximation were marked by the suffix –Ox. “X” compounds 

were TMS derivatives, “Z” compounds were TMSO derivatives. 
b
 Magnitude of variation of variable importance in the projection (VIP) with a threshold of 

1.0 obtained using Simca�P+ software. 
c
 ��values from 	�test were obtained from MetaboAnalyst software. 

(↑) denotes an increased concentration for ASD population, (↓): decreased 

(�) denotes not present in the model 
�

�
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Table S6  
Analysis of urinary metabolites in children: ions monitored for each metabolites and retention time (RT), variable importance (VIP values > 1) 

for OPLS�DA, UV scaling, models 2 and 5 

Without oximation: TMS process With oximation: TMSO process 

Putative 

Assigment 

Quantifier 

ion mass 

Retention 

time 

 minutes  

Qualifier ion 

mass 

 

Differentiation 

for autistic 

samples 

VIP 

coeff 
Putative Assigment 

Quantifier 

ion mass 

Retention 

time 

 minutes  

Qualifier 

ion mass 

 

Differentiatio

n for autistic 

samples 

VIP 

coeff 

Succinic 147 18.60 246.9             ↑ 1.90 Z18 219.1 23.91 189.1 ↓ 2.17 

3�OH�

phenylacetic 
295.9 26.63 164 280.8 ↓ 1.83 Hippuric 236.1 32.06 206 ↓ 1.78 

4�OHphenyl�2�

OH�acetic 
266.9 30.72 267.9 341.8 ↓ 1.61 Z26 267.15 30.60 341.15 ↓ 1.60 

1H�Indole�3�

acetic acid 
201.9 34.65 73 319 ↓ 1.57 Vanillylhydracrylate 297.15 32.75 371.15 ↓ 1.54 

Phophoric 298.8 17.42 299.8 313.8 ↓ 1.47 Z21 170 25.93 122.1 ↓ 1.46 

X16 288.9 24.81 125 147 ↓ 1.44 	�OH�hippurate 294.15 39.77 193.1 ↓ 1.43 

Glycolic 218 12.55 190.10             ↑ 1.33 Palmitic 313.25 36.26 145.15 ↓ 1.26 

X21 157 26.03 147 75 ↓ 1.09 Stearic 341 40.06 117 ↓ 1.25 

X20 348.8 25.88 129.1 246.9            ↑ 1.09 Z41 338 33.65 323 ↓ 1.20 

X14 189 24.01 146.9 103 ↓ 1.04 Z5 238.05 14.68 208.05            ↑ 1.15 

Citric 272.9 31.63 374.8 464.7            ↑ 1.02 Z37 324 27.54 309            ↑ 1.10 

X7 219 21.50 103 72.9            ↑ 0.90 Z31 234 19.77 219            ↑ 1.06 

Oxalic 73 12.73 147 190 ↓ 0.90 Z34 220 22.89 205            ↑ 1.03 

3�OH�isovaleric      0.87 Z36 293 23.91 251            ↑ 1.03 

3�methoxy�4�

OHphenyl�acetic 
325.9 30.51 208.9 266.9 ↓ 0.80 Z9 73.05 20.90 131.15            ↑ 0.97 

 …        Z12 252.05 22.17 191.1            ↑ 0.89 

��cresol      0.48 Succinic 247.1 18.50 172.05            ↑ 0.85 
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