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ABSTRACT To achieve the tamper-proof, reliability and traceability of transactions in a trustless environ-
ment, the blockchain requires each peer node to store the whole global ledger. However, as transactions keep
increasing over time, the storage cost of each node increases. In addition, many schemes have been proposed
to boost rapid transactions which will even lead transactions to grow explosively. The problem of storage is
becoming one challenge of blockchain since the storage overhead of each node increase rapidly. Reducing
the storage overhead of each participant is very urgent and worthy. In this paper, we present GCBlock:
a grouping overlay network storage scheme for the blockchain which can reduce the storage overhead of
nodes and cut the whole storage cost of the blockchain greatly while keeping the underlying protocols. In our
scheme, we try to group the nodes according to their physical fuzzy distance to reduce the overall delay when
tracing. We set rules of autonomous check to deal with evil behavior within the group. To further enhance
the stability of our scheme, we propose the transcript fractional repetition code which is newly constructed
based on the fractional repetition code to encode data. Finally, we make a comprehensive evaluation of
GCBlock and the results show that it is workable and reasonable.

INDEX TERMS Blockchain, distributed storage, overlay network, network coding.

I. INTRODUCTION
Since the birth to Bitcoin [1], blockchain technology has
attracted great attention on both academic and industry for
its trustworthy, tamper-proof, traceable, and decentralized.
People began to explore the application mode of blockchain.
As an example, Ethereum [2] even can run apps written in
Turing-complete languages. Blockchain is a P2P distributed
ledger technology, which maintains a global ledger through
each node. However, to prevent malicious tampering with
accounts, data redundancy has to be infinitely expanded. As a
result, the storage cost of nodes is rising. Taking Bitcoin as
an example, the size of a block data is about 1MB, and a new
block is created every 10 min. Each individual node increases
storage costs nearly 52GB per year.

In addition, fast transactions are a general trend to
increase system throughput and many recent schemes have
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been proposed [3]–[5]. When the transaction throughput
of a blockchain system increases to the level of VISA,
the blockchain system needs to increase the storage cost
of 214PB each year [6]. Therefore, with the development of
the blockchain, the storage cost will become a problem that
cannot be ignored.

Pruning data and sharding storage are popular candidates
to reduce data redundancy in blockchains. Pruning data may
lose the traceability of the blockchain. A blockchain system
without traceability will lose many application scenarios,
such as auditing, product traceability [7]–[9], and so on.
Sharding storage is to disperse store data in different stor-
age sharding to reduce redundancy. The sharding blockchain
system modifies the protocol of the traditional blockchain.
Therefore, different committees need to constantly interact
to verify new transactions. It can reduce redundancy, but
changes the underlying storage and verification modes. Mod-
ifying the original protocol of an existing blockchain system
requires community consensus, which requires a lot of work
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TABLE 1. The differences between GCBlock and blockchain protocols.

and risks ecological damage. Therefore, this paper tries to
solve the storage redundancy problem without modifying the
existing blockchain system.

Here, we propose GCBlock: a scalable and tolerant dis-
perse storage scheme by leveraging grouping and a new
created network coding architecture. The grouping idea is
somewhat similar to the existing sharding system [4], but the
application model and structure are different. First, grouping
is performed on the overlay network layer and will not change
the existing underlying architecture of the blockchain. Our
approach is only to provide an option to reduce storage cost
in existing blockchain systems. It differs from the sharding
blockchain system which changes the protocols and architec-
ture of the most existing system. Then, in terms of disperse
data, the sharding blockchain system needs to store data
instantly, while we only disperse the data after the transaction
consensus is reached. Because the data after the consensus is
not directly used to verify new transactions, it will not break
the underlying running mechanism. For example, in Bitcoin,
new transactions are verified by a copy of UTXO [10].
In addition, GCBlock is not a blockchain protocol, but a
scheme to reduce storage for existing blockchain systems.
The differences between GCBlock and blockchain protocols
are shown in Table 1.

To reduce the communication delay between nodes within
a group, we group based on fuzzy distance. To further
enhance stability and reduce redundancy, we construct the
transcript fractional repetition (TFR) code, which is a new
code scheme using erasure code within a group. For the
blockchain system is a complete P2P network and the join
and departure of nodes is uncertain, traditional erasure code
schemes cannot handle this instability very well. TFR code is
based on fractional repetition (FR) code [11] to add layers,
which will enhance the fault tolerance of the system. In
addition, because the nodes in the blockchain network are not
always benign, our distributed storage schememay also suffer
attacks from malicious nodes. To address these challenges,
we introduce a way to independently detect malicious and
selfish behaviors within the group. Malicious and selfish
peers can be removed from the group by a node’s autonomous
check. Specifically, our contributions can be summarized as
follows:

1) In this paper, we present a scheme to reduce the storage
cost for the existing blockchain system by leveraging

grouping overlay network and a new network code archi-
tecture.

2) To shorten the communication delay when tracing,
the grouping criteria is based on fuzzy distance. The
grouping is over overlay network which can keep the
original protocols of blockchain systems.

3) We construct a new coding scheme - TFR code which
aims to adapt the scalability of the number of nodes in
the group. To further enhance system stability, we pro-
pose countermeasures to identify evil behaviors and
nodes within the group.

4) We evaluate our scheme comprehensively. The results
show that the communication overhead and system
latency are reasonable.

The rest of the paper is organized as follows. Section II is
related work. Section III gives the basic structure model,
the threat model and the design goals. Section IV proposes
our scheme, including network grouping and network coding.
Section V analyzes of the security of GCBlock. Section VI
evaluates the performance of GCBlock. Section VII con-
cludes the paper.

II. RELATED WORK
Recently, some researchers have focused on pruning old data
and designing new system architectures to reduce blockchain
data redundancy. In the Bitcoin white paper [1], Nakamoto
has proposed ‘‘restoring disk space’’ and ‘‘simplifying pay-
ment verification (SPV)’’. SPV nodes need to rely on other
nodes to verify transactions, which reduces security. Restor-
ing disk space is to prune old transaction data. Similarly,
in sharding blockchain system, E. Kokoris-Kogias et al. [5]
also chose the way of pruning old data to reduce data
redundancy. However, with the pruning of transaction data,
the blockchain also loses the properties of data traceability.
R. K. Raman et al. [12] designed a new blockchain that uses
Shamir secret sharing coding schemes to allow each node
to store only a portion of the data to reduce storage costs.
M. Zamani et al. [4] designed a new sharing blockchain
protocol and proposed a sharding storage scheme that allows
each committee to store a portion of the data to reduce data
redundancy. Our scheme is different from the above. We do
not change the original blockchain system, but only provide a
solution to solve data redundancy for the existing blockchain
system. We propose to add an overlay layer for the existing
blockchain network, allowing the nodes to choose whether to
join the grouping overlay network. Nodes joining a grouping
rely on data encoding to reduce data redundancy.

Z. Xu et al. [13] proposed a scheme to reduce data redun-
dancy in the private/permissioned blockchain by assigning
blocks in a Consensus Unit. In their scheme, the Consensus
Unit comprises a group of nodes which work together and
just need to maintain at least an entire copy of Blockchain
data. This may be impractical in public blockchain for nodes
in public blockchain are independent of each other and the
assignments may be unequal for both storage costs and
query costs. Besides, they should estimate the communication
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FIGURE 1. The basic structure model.

costs and the frequently access set periodically and adjust
to reassign the blocks which may be unstable and can be
affected by multiple factors. In this paper, we focus on the
redundancy problem in the public blockchain rather than
the private/permissioned blockchain. We use an erasure code
scheme to reduce node redundancy instead of the replication
scheme. It has been demonstrated [14] that erasure coding
has greater advantages in terms of fault tolerance, lower
bandwidth and lower storage.

III. PRELIMINARIES
In this section, we define the basic structure model, the threat
model and on that basis present our design goals.

A. STRUCTURE MODEL
To show our scheme more clearly, we draw the original
blockchain network model and grouping overlay network
model as shown in Figure 1.
Original Blockchain Network: A common blockchain

network, such as Ethereum, Bitcoin, etc.
Full ledgers: The global ledger data of the blockchain

includes the data of reached consensus and the data of waiting
for consensus. The full ledgers are stored synchronously in
each node.

All nodes:All nodes that store the full ledgers (e.g., the full
node of Bitcoin). All nodes can choose whether to join the
grouping overlay network.

Grouping Overlay Network: A grouping network built
on top of the original blockchain network.

Data of reached consensus: The data of reached con-
sensus cannot be changed. (e.g., Bitcoin transactions that

have been confirmed after 6 blocks are almost impossible to
tamper with.) GCBlock only operates on the data after the
consensus is reached.

Network coding: Erasure code is used to encode block
data and store them in groups. Our coding scheme is
described in Section IV.

Groupi: Groups formed by nodes that have joined
the overlay network. Specific grouping schemes will be
described in Section IV.
Next, we briefly describe how nodes reduce storage costs

by joining the grouping overlay network. When a node joins
the GCBlock, the node preferentially joins the closest group.
After successfully joining the group, it accepts encoded frag-
ments within a group and deletes data of reached consensus
stored by itself. In this way, the node only stores a part
of the encoded fragments, which reduces the storage costs.
When data needs to be recovered, the node can download
enough encoded fragments from peer nodes within the group
to decode recovery.

B. THREAT MODEL
Since the GCBlock only provides a service to reduce data
redundancy of the original blockchain, we do not consider the
case where the blockchain system is compromised. In addi-
tion, we also do not consider irrational large-scale attacks.

In the threat model, we mainly consider the selfish behav-
ior of nodes and the malicious behavior of nodes. The
selfish behavior of nodes is mainly free-riding. Free-riding
means that the node does not store any encoded fragments
and gets encoded fragments from other nodes in the group
when needed. The malicious behavior of a node is that the
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node provides spurious encoded fragments to peers within
the group. Sometimes, malicious behavior is a disguise of
selfish behavior. For example, selfish nodes provide spurious
encoded fragments for others. We collectively refer to selfish
behavior and malicious behavior as evil behavior.

C. DESIGN GOALS
The main purpose of GCBlock is to reduce the storage costs
of blockchain systems. As we all know, the blockchain net-
work is a P2P network. Therefore, we considered the char-
acteristics of P2P networks to design GCBlock. Our design
goals are:
High tolerance: In a P2P network, nodes may quit and

join at any time. Our coding scheme must be highly flexible
to accommodate the constant quitting and joining of nodes
while ensuring extremely low data recovery failure rates.
Security: For the evil behaviors proposed by the threat

model, we need to formulate strategies to remove the evil
nodes from the group.
Efficiency:Nodes within a group should be able to transfer

data with low latency.

IV. PROPOSED SCHEME
A. OVERLAY GROUPING NETWORK
An overlay network is a virtual network built on top
of an existing network through logical links of nodes,
designed to extend services that are not available on existing
networks [15]. There is no need to changes the underly-
ing network, overlay network looks like a normal user-level
application. Constructing GCBlock in the overlay layer can
maintain the running mechanism and architecture of the orig-
inal blockchain system. There have been many researches on
the application of overlay network in P2P network, which
can be divided into structured overlay network [16], [17] and
unstructured overlay network [18], [19]. A structured overlay
network maintains a specific structure that enables reliable
routing between a limited number of nodes. Compared with
the unstructured overlay network, the nodes of the structured
overlay network can choose the neighbors that meet certain
constraints in a set of nodes.

To group nodes based on delay is an effective approach for
organizing andmanaging nodes that join GCBlock. The delay
between nodes of the same group is less than that between
nodes of different groups, to reduce network traffic and
improve routing efficiency. Usually, the delay between nodes
is proportional to their physical distance. Therefore, we can
construct a structured overlay network based on grouping
according to the underlying physical distance. In addition,
the physical scope within the grouping should be reduced and
the upper bound of this range should be specified to meet the
requirements between nodes.

1) BEGINNING GROUPING
The algorithm to group nodes by geographical location on
overlay network is usually called landmark clustering. In the

grouping algorithm, we need to select the landmark node
and then optimize the topology based on the landmark node.
It is an NP-hard problem to find landmark node that can
minimize the total communication delay in the group. There-
fore, the algorithm for beginning grouping should be able to
achieve our requirements approximately and get a grouping
topology. In the beginning state, GCBlock needs a bootstrap
node. The bootstrap node is only for boot system startup and
will stop working after system startup.

The bootstrap node asks joining nodes for routing mes-
sages, and then obtains a similar distance among the nodes
according to count the IP (The IP in this paper is the IP
address.) hop in route messages. Therefore, we can easily get
a similar distance matrix. The network nodes grouping also
becomes points grouping in the matrix. This idea of network
grouping is called fuzzy clustering [20], [21] and has been
used in many fields [22]–[24].

For the uncertainty of the number of groups, the hard
clustering algorithm that directly specifies the number of
groups is not suitable. Thus we introduce the ISODATA
algorithm [25], [26] and make adaptive modifications for net-
work grouping in Algorithm 1. To implement the algorithm,
we need to set the following parameters:
(1) s–The number of centers that were selected randomly;
(2) Dmin– The minimum distance between groups;
(3) Dcenter–The distance between groups;
(4) σmax–The maximum variance within the group;
(5) n–The minimum number of nodes in a group;
(6) σλ– The variance of nodes within a group;
(7) Sum[Gi]–The number of nodes in a group;
(8) v–The number of iterations;
In order not to affect the nature of the algorithm, the delay

between nodes is represented by the Euclidean distance.
In the first step, the algorithm randomly selects s center points
as group centers. The second step is to compare the distance
from each point to the centers and add the node to the nearest
group. The third step is to calculate the number of points in
each group and remove the group that the number of points
less than n. The fourth step is to recalculate the coordinates
of each group center and σλ of each group. If σλ > σmax
and Sum[Gi] > 2n, then the group will be split two group
according to the standard deviation as an offset value. The
fifth step is to calculate the Dcenter . If Dcenter < Dmin, then
the two groups will bemerged and the center of the new group
will be calculated. The sixth step is to calculate the ungrouped
nodes’ set U and the number of running Q. When Q > v,
the calculation stops and the grouping result is outputted,
otherwise it returns to the second step.

After outputting the grouping result, the bootstrap node
will send the number of a corresponding group and the IP
list of group members to nodes and complete the begin-
ning grouping phase. For the randomness of the algorithm,
the optimal result cannot be guaranteed. Some nodes that too
scattered may not join a group during the beginning grouping
phase. Therefore, these nodes need to wait for new nodes to
join and form new groups.
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Algorithm 1 Beginning Grouping
Input: Nodes set U and distance matrix M|U |∗|U |
Output: The result of initial grouping G = {G1G2 . . . ..Gi}

Step 1:
1: Randomly selected s nodes from U as the centers of

initial groups: C = {c1c2 . . . ..cs};
Step 2:

2: for each ui ∈ U do
3: computing d(ui, cj), j = 1, 2 . . . s; G ui represents

a node.
4: Add ui to the group-Ga and satisfies d (ui, ca) = min

{d(ui, cj)|j = 1, 2, ..s};
5: end for
Step 3:

6: Recomputing the number of each group Sum[Gi], i =
1, 2 . . . s;

7: while Sum[Gi] < n do
8: Get rid of the Gi;
9: s← s− 1;
10: end while

Step 4:
11: Updating the grouping centers G Take the mean of

each dimension in the group
12: Computing the variance within the group σλ, λ =

1, 2 . . . s.
13: if σλ > σmax and sum[Gi] > 2n then
14: Split into two different groups

New1 center← center + sqrt(σmax)
New2 center← center − sqrt(σmax)

15: s← s+ 1
16: end if

Step 5:
17: Computing the distance between centers-Dcenter
18: if Dcenter < Dmin then
19: Merge Gi and Gj

Computing the new center-Gij
s← s− 1

20: end if
Step 6:

21: U ← U −
s∑
i
Gi

22: Q← Q+ 1 G Q is the iteration count.
23: if Q > v then
24: goto Step 2
25: else
26: output the G = {G1G2 . . . ..Gi}
27: end if

Remark: In cases where regional faults (network fault and
power fault) need to be considered, our scheme can be eas-
ily extended to a simple grouping way in which nodes are
randomly divided into groups. However, this will lose the
efficiency of transferring data among nodes. Actually, our
scheme can provide alternative node-dividing methods to be
compatible with the different requirements.

2) DUTY NODE
For out of group communication and intragroup tasks, each
group needs to select a duty node at every T interval. The duty
node is selected by random voting within the group.

a: SELECTION RULES
Scope: Each node randomly selects a node from the 1/3 nodes
that joined the group for the longest time. Method: Each
selection result will be broadcast within the group, the node
with the highest number of votes becomes the duty node.
Therefore, the longer the joining time, the easier it is to be
selected as the duty node. We also believe that the stability
and reliability of the node with a long joining time are higher.
Balance: When a node is selected as the duty node, its join
time will be reset. This ensures a more balanced chance of
becoming a duty node.

When the duty node does not send the encoded fragments
within M time, the group members will remove the IP of duty
node from the IP list of group members and reselect a new
duty node.

b: RESPONSIBILITY
During the tenure, the duty node is responsible for encoding
the data and sending it to the peers within the group according
to encode rules. The duty node is also responsible for check-
ing malicious and selfish behavior and alerting peers within
the group. Additionally, the duty node is also responsible for
the tasks of contacting new nodes and checking nodes exit.

c: DEAL WITH EVIL BEHAVIOR
When the node finds malicious or selfish behaviors, it can
remove the evil nodes from the IP list of group members
and report these behaviors to the duty node. The duty node
will verify the report. If an evil behavior is verified, it will
broadcast the alerting signal to the peers within the group.
The peers self-verify evil behaviors by the alerting signal,
and remove the node from the IP list of the group members
when the evil nodes are identified. All IP of evil nodes will
be added to a blacklist of the group by the peers, and the IP
in the blacklist will be forbidden to join the group.

d: IDENTIFY EVIL NODE
After encoding, the duty node hashes the encoded fragments,
forms a Merkle tree structure and broadcasts it to all nodes
in the group. When decoding is required, the node can verify
the obtained encoded fragments according to the Merkle tree,
and can quickly identify the source of the pollution. As shown
in Figure 2, a schematic diagram for the generation of a
Merkle hash tree with eight encoded fragments.
Remark: The duty node does not have the authority to

remove other nodes from the group. Removing an evil node
from the IP list of the group members are nodes’ self-
behavior. When most nodes within a group remove the evil
node from the IP list of the group members, the evil node
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FIGURE 2. An eight-leaf Merkle hash tree. The leaves of a tree are hashes
of encoded fragments. The Merkle hash tree is formed by recursively
hashing the hashes of the leaves.

FIGURE 3. The request process for a new node to join a group.

cannot get data from these nodes within the group. In this
way, the evil node is removed from the group.

3) JOINING AND EXITING
The joining and exiting of nodes in a P2P network are unpre-
dictable. For joining and exiting nodes, we give the following
scheme:

New node joining: When a new node joins the network,
it sends a notification message to the entire network. The
duty nodes reply with the confirmation message to the new
node, indicating that the new node has been known to join
the overlay network. The new node estimates the distance
according to the delay of the confirmation message, and then
requests to join the group with the closest distance. The
process of request to join a group is shown in Figure 3.
Describe the process:

(1) The new node sends a request join message to the closest
duty node.

(2) After receiving the request message, the duty node sends
a test message to the new node.

(3) When the new node receiving the test message, it imme-
diately sends the request test message.

(4) After receives the request test message, the duty node
estimates the distance of the new node according to the
delay. The duty node sends an accept message to the
new node when the distance of the new node does not
exceed the requiredmaximumdistancewithin the group,
otherwise sending a refuse message. The distance within
a group is estimated by communication delay.

When the duty node sends the acceptance message, it also
broadcasts the information of the new node to the nodes
within the group. Each node within the group will add the
information of the new node. If refused, the new node needs
to wait for other nodes to join and form a new group.
Node Exiting: Through the heartbeat mechanism, the duty

node can detect the node exit and broadcast a message within
the group. The exit node will be removed from the group and
the IP of the node will be added to a limit list. The limit list
is designed to prevent the intermittent offline behavior of the
nodes. If the node exits, it will be restricted to rejoin for a
long time.

B. NETWORK CODING
The joining and exiting of the nodes is uncertain in the
blockchain network. Therefore, our coding scheme has to
meet the following two requirements:

(1) It is able to adapt to the constant changes in the number
of nodes within the group.

(2) It has the ability to quickly repair the fault nodes and
higher fault tolerance.

In faulty node repair, most erasure code systems use coding
repair. Surviving nodes and new nodes need to calculate
a linear combination of stored symbols for regeneration,
which undoubtedly adds additional computational overhead.
To reduce the delay of repairing failed nodes, our scheme
adopts the idea of the FR code. FR code is a non-coding repair
based on a table, which reduces the complexity of additional
coding repair than the regenerating code [27].

However, once the parameters of FR code are set, the num-
ber of nodes are fixed. This cannot adapt to the constant
changes in the number of nodes in the blockchain network.
To meet the change in the number of nodes, we propose
the transcript fractional repetition code which is newly
constructed based on the FR code.

1) REVIEW FRACTIONAL REPETITION CODES
The FR code is constructed based on theMaximum Distance
Separable (MDS) [28] code. The data is encoded into θ
fragments by MDS, and then each node in the system stores
d encoded fragments. Each encoded fragment is placed in ρ
different nodes. By an index table, the FR code can achieve
the purpose of exact repair.

Here we need to describe the MDS code: The MDS code
with the parameter (θ, k) means that the M size file/data is
divided into k pieces, and then the k pieces are encoded into
θ fragments (of the same size) by MDS code. Where θ >
k , the number of the parity-check fragments is r = θ − k .
Any k encoded fragments in θ can be used for decoding to
reconstruct data.

FR code can be described as follows: The MDS encoded
fragments {1, . . . θ} are repeatedly placed in n nodes, each
node stores d encoded fragments and each encoded fragment
must belong to ρ nodes. Figure 4 shows a schematic diagram
of FR code. The parameters (n, d, ρ) = (6, 4, 3), the data is
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FIGURE 4. An example of a simple FR code. First, a data block is divided into six equal pieces, and then encoded
into eight equal pieces by a MDS code (8,6). Finally, these encoded fragments are repeatedly placed to form an
FR code with a repetition degree ρ = 3.

TABLE 2. A level index table of the TFR code.

encoded by (8, 6) MDS code (parity-check fragments r = 2),
and then according to the rules of the FR code to store the
encoded fragments in six nodes. The parameters in the FR
code satisfy the following formula [11]:

θρ = nd (1)

For detailed rules of construct FR codes, the reader is urged
to read [11].

2) TRANSCRIPT FRACTIONAL REPETITION CODES
To meet the fluctuation of the number of nodes, we con-
structed the TFR code. The TFR code extends the flexibility
of the FR code by adding replication levels to cope with the
fluctuation of the number of nodes within the group.
Construct the TFR code: First construct an initial FR

code as level 0 and then add levels based on the level 0.
All levels form a level index table. The level index table
is dynamic and changes as nodes within the group change.
Each complete level is a copy of the initial FR code. In
Figure 5, an example of the TFR code, the initial FR codewith
n = 6 is shown{node1, node2, node3, node4, node5, node6},
which are the nodes of the level 0. The nodes of level 1 are
{node′1, node

′

2, node
′

3, node
′

4, node
′

5, node
′

6}. As the number
of nodes within a group increases, the number of levels can
be expanded.
The encoding process: The duty node encodes the block

data using the MDS code, and performs encoding frag-
ments distribution according to the level index table of
the TFR code. For example, send a set of encoded frag-
ments (y1, y2, y3, y4) to a set of nodes (node1, node′1, node

′′

1).
As shown in Table 2, a level index table of the TFR code.
ID-IP is the unique identifier for each node.
Verification encode fragments:After receiving the encoded

fragments, the nodes perform to decode verification. After

determining the trueness of the data encode, the nodes delete
the original block data to save the encoded fragments.
Repair rules: Priority to repair the node of the upper level.

We specify that the level 0 has the highest priority, so the
integrity of level 0 needs to be maintained in priority. Repair
the fault node of a higher level, first find a copy of the fault
node from the lowest level and move it to the higher level of
the level index table. If the lowest level does not have a copy
of this failed node, it executed up one level. In the worst case,
the fault node has no copy and needs to wait for the new node
to join to repair it.
Restore data: A node should preferentially obtain the

encoded fragments from the nodes of the same level for
decoding. If the encode fragments of the same level are not
enough, then to access the upper level to get the encode
fragments.
Dynamic level index tables:

(1) Remove node: When a node is removed by the IP list
of the group members, the node will be removed from
the level index table. After the node is removed, repair
it according to the repair rules.

(2) Add node: When a new node joins a group, the level
index table needs to be updated. First, the new node
gets the level index table of the group from the duty
node. Then, according to the level index table and repair
rules, the new node repairs the fault node. If all levels are
complete, the new node will form a new level. After the
new node updates the level index table, it will broadcast
the content of update within the group. When the update
is received, the members of the group will update the
level index table.

V. SECURITY ANALYSIS
We analyze GCBlock security in terms of grouping security
and coding availability.

A. GROUPING SECURITY
GCBlock serves the public blockchain, so the data is public
and there are no access control security issues. GCBlock is
essentially a mutually beneficial storage solution. GCBlock
is essentially a mutually beneficial storage solution. Due to
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FIGURE 5. A example of TFR code. TFR code is formed by adding levels of replication to the basis of FR
code.

TABLE 3. The profit of games between nodes.

the GCBlock is built on the overlay, we do not consider the
case where the underlying layer is being attacked on a large
scale. Implementing a large-scale attack against GCBlock
does not bring any direct benefits, and the attack cost are
comparable to attack the original blockchain (for example,
51% attack).

We will discuss the evil behavior presented in the threat
model. The nodes that join the group are only interested in
reducing storage. According to the game, we represent the
reduced storage overhead as profit. So, the stable profit of
per node within the group are (k − d)L/k . L is the block data
originally stored by each node. An evil node will not store any
data, so its profit becomes L. If the evil node are not removed
from the IP list of group members, the profit of other nodes
in the group will be lost. The biggest loss is (k−d)L/k . If the
evil node are removed, the other nodes will retain the stable
profit. If a node removes an honest node, it will reduce the
chances of getting the fragments. This causes a loss to itself
and to the removed node, and the biggest loss is (k − d)L/k .
Table 3 shows the profit state of the game. In Table 3, four
basic game types as follows. Pa represents the evil node and
Pb represents the honest node.

(1) (remove, evil): When Pb removes the evil node from the
IP list of the group members, Pb makes a choice for the
stability of the group and will continue to maintain the
profit (k−d)L/k . For Pa, will lose the profit (k−d)L/k
when it is removed.

(2) (remove, not evil): When Pb removes a not evil node
from the IP list of the group members, it reduces the
chance that gets the encoded fragments. This biggest
loss may be (k − d)L/k . This is an act that does harm to
others but no good to itself.

(3) (not remove, evil): If Pb does not remove the evil node
from the IP list of the group members, this will affect
the stability of the group and cause a loss to itself. The
biggest loss is (k−d)L/k . And then the profit of the evil
node is L.

(4) (not remove, not evil): When there are no evil nodes, Pb
does not remove any nodes from the IP list of the group
members. In this state, all nodes maintain the profit
(k − d)L/k .

The wisest choice of nodes is not to do evil, so as to ensure
the balance of interests of all parties. And the honest node
does not remove the non-evil node from the IP list of the
group members, so that both parties do not lose. When a
node is evil, other nodes will remove it from the IP list of the
group members and add it to the blacklist to ensure maximum
benefit. Therefore, this will reach a state of Nash equilibrium.

B. CODING AVAILABILITY
In [11], we can know that the FR code can maintain the
uncoded repair feature when ρ − 1 nodes are offline. When
an encoded fragment in a group is losing, we call the group
lose the uncoded repair feature. Since the exit behavior of
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FIGURE 6. ρ = 2,3,4 and n = 8,9,10,11,12,13,14,15, the uncoded
repair failure rate R.

TABLE 4. Rm with different n and ρ.

each node is independent and unpredictable, we assume that
the probability of exiting ρ nodes and just losing the same
encoded fragment is expressed as the uncoded repair failure
rate of FR code. The probability of joining and exiting nodes
cannot quantified in the blockchain. Without considering the
probability of the nodes exit, we use R = 1(n

ρ

) to represent

the uncoded repair failure rate of FR code. Therefore, in a
m-levels TFR code, the uncoded repair failure rate is Rm. We
analyze the values of Rwith different ρ and n and the value of
Rm with different m. The change of the R is shown in Figure 6,
when ρ = 2, 3, 4 and n = 8, 9, 10, 11, 12, 13, 14, 15.We can
find that when the repetition degree ρ is fixed, the more
the number of nodes, the lower the uncoded repair failure
rate, namely, the higher the fault tolerance. When the number
of nodes n is fixed, the greater the degree of repetition ρ,
the lower the non-coding failure rate, namely, the higher
the fault tolerance. In Table 4, we list the values of Rm for
m = 2, 3 and different parameters. We can clearly see that
the uncoded failure rate is exponentially reduced as the levels
of TFR code increases. Therefore, the TFR code is more fault
tolerant than the FR code.

VI. PERFORMANCE EVALUATION
We evaluate the performance of the GCBlock based on the
effect of grouping and the performance of erasure code. All
of our experiments were performed on a Lenovo ThinkStation
P910 with two Intel Xeon E5-2620 v4@2.1GHz and 64G
DDR4 RAM installed.

A. GROUPING IMPLEMENTATION
In order to get closer to the grouping effect of the origi-
nal network, we join the Bitcoin network to collect the IP

FIGURE 7. The average distance within the group and the average
distance between adjacent groups according to the IP hops with the
different number of bitcoin network nodes.

addresses by DNS seed [29]. The brief process: To get the IP
address from the DNS seed and put it into the seed collection
of IP. To create an epoll, constantly extracting IP from the
seed collection to establish a TCP connection, and sniff the
read and write events. As long as the addr message(a mes-
sage containing neighbors’ IP addresses) is received, the IP
addresses are extracted into the IP seed set, and thus loops
to collect the IP address in the network. The IP addresses
between neighbor nodes are set one distance delay. We col-
lected a total of 27403 IP addresses (including full nodes and
light nodes). We extracted 1000, 1500, 2000, 2500, 3000,
3500, and 4000 IP addresses respectively, and constructed the
adjacency matrix and distance matrix of these IP addresses
to implement the beginning grouping algorithm. We set the
initial selection s = 100 and the minimum number of nodes
in a group is n = 10. The minimum distance between groups
Dmin = 5. The maximum variance within the group σmax =
2. The number of iterations v = 100.We recorded the average
distance of nodes within the group and the average distance
between the adjacent groups in the experiment. The results
are shown in Figure 7. It can be seen that the average distance
of nodes within the groups are less than the average distance
of adjacent groups. The delay between nodes is positively
related to the physical distance. Therefore, grouping nodes
with fuzzy distances can reduce the latency of data interaction
between nodes.

B. THE PERFORMANCE OF THE ERASURE CODE
1) ENCODING AND DECODING
In order to test the performance of the TFR code, we use
the Reed-Solomon code which is a good quality MDS
code. Encoding is essentially a process of calculating the
parity-check fragments. As the number of parity-check frag-
ments increases, the complexity of encoding will increase.
Decoding complexity depends on the finite field of the
encoded fragments. The larger the finite field, the greater
the complexity of decoding. We study the Backblaze [30]
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FIGURE 8. Encoding speed when the block data size is 1MB.

and implement Reed-Solomon encoding and decoding with
AVX 2.0 instructions and Golang on two Intel Xeon
E5-2620 v4@2.1GHz. We tested the encoding and decoding
performance of a 1MB block size. The block size we chose to
test is based on the standards of Bitcoin [1] and Ethereum [2].
Figure 8 and 9 show the speed of encoding and decoding on
different r and k . As shown in Figure 8, the value of k has
little effect on the efficiency of encoding, and the speed of
encoding depends on the size of r . As shown in Figure 9,
it can be seen that the efficiency of decoding depends on
the number of encoded fragments. Therefore, we can set the
values of k and r according to the system requirements. For
example, when the operation of the underlying blockchain
system has lower hardware requirements, we can set a smaller
r and a smaller k .
In order to test the efficiency of Merkel hash tree gener-

ation, we implemented the Merkel hash tree generation pro-
cess using Golang. We analyzed the generation efficiency of
Merkel hash trees with different data sizes and different num-
bers of encoded fragments. In Figure 10, we can see that the
generation of merkel hash tree is extremely efficient, which
means that the resource consumption is extremely small.
We can also see that when the number of encoded fragments
is constant, the larger the data, the slower the Merkel hash
tree is generated. When the data size is constant, the number
of encoded fragments increases, and the slower the Merkel
hash tree is generated. If a system needs to consider reducing
the resources consumption of generating Merkle hash tree,
we can set a smaller θ or encode smaller data.

2) EVALUATE THE BANDWIDTH CONSUMPTION
The encoded fragments in the TFR are multicast transmitted
according to the levels index table, so that the duty node trans-
mits encoded fragments only n times for nodes in different
levels. When encoding a Y size data, the bandwidth con-
sumption by the duty node transmits the encoded fragments
is Y

k nd . The bandwidth consumption by each node stores
the encoded fragments is Y

k d . Decoding the data requires k
encoded fragments. In a decoding process, the bandwidth
consumption of a node to obtain the encode fragments

FIGURE 9. Decoding speed when the block data size is 1MB.

FIGURE 10. The Merkle hash tree generation speed with different data
sizes and different number of encoded fragments.

is (k−d)Yk . We evaluated the bandwidth consumption of each
node storing d encoded fragments when encoding and decod-
ing 1MB data. For example, when k = 10, 20, 30, 40, 50, 60
and d = 2, 3, 4, the bandwidth consumption of the encod-
ing and decoding of the node changes. Figure 11 shows
the change of bandwidth consumption when a node stores
encoded fragments during encoding. Figure 12 shows the
change of the bandwidth consumption when a node gets the
encoded fragments during decoding. We can know that when
d is fixed, the larger k is, the less bandwidth consumption
the node stores the encoded fragments, but the more band-
width consumption the node gets encoded fragments during
decoding.When k is fixed, the larger d is, themore bandwidth
consumption the node stores encoded fragments, but the less
bandwidth consumption the node gets encoded fragments
during decoding. Therefore, on the premise of ensuring the
stable operation of the system, we can design coding param-
eters according to the situation of different blockchain sys-
tems. For example, when the old data of a blockchain system
is used less frequently, we can set a larger k and a smaller d .

3) STORAGE OVERHEAD REDUCTION RATE (SORR)
The storage overhead reduction rate of each node is 1− d/k .
While considering the reduction rate of storage overhead,
we also consider the speed of encoding and decoding and the
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TABLE 5. Encoding and decoding speed, Rm and SORR with different parameters.

FIGURE 11. Bandwidth consumption of per node for encoding with
different k and d .

FIGURE 12. Bandwidth consumption of per node for decoding with
different k and d .

uncoding repair failure rate Rm. In Table 5, we take the values
of different (n, k, r, d, ρ,m) to evaluate the SORR. The val-
ues of k and r affect the speed of encoding and decoding. The
values of n and ρ affect the value of R. Another expression of
formula (1) is (k + r)ρ = nd . These parameters are related
to each other. Therefore, while reducing storage, we should
set different coding parameters according to different system
requirements. For example, in a system that pursue encoding
speed and stability, we can set a smaller r and a larger ρ.

VII. CONCLUSION
This paper presents the design of the GCBlock – an
open scheme for reducing the nodes storage overhead of
blockchain. GCBlock is designed to provide an option to
reduce storage costs for existing public blockchain systems.
Each node that joins the GCBlock can effectively reduce

storage costs by implementing an erasure code schemewithin
the group. In order to reduce the delay of nodes acquiring
data, we try to use the idea of fuzzy distance clustering to
group. Within the group, we use a reconstructed TFR code
that satisfies the dynamic scalability of the number of nodes
to reduce the storage overhead of the nodes. In order to pre-
vent evil behavior, we develop an autonomous check strategy
and prove that it satisfies the Nash equilibrium. We have
conducted extensive performance evaluation and showed that
the scheme is feasible and reasonable.

Since the GCBlock does not modify the original architec-
ture of blockchain, it can be easily used in existing public
blockchain systems as a scheme to reduce data redundancy.
In addition, the number of data transmission of nodes to serve
peers are different in the scheme. It is an interesting topic for
nodes to actively serve peers. In the future work, wewill carry
on the related incentive mechanism research.
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