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Abstract

We describe the coupling of the Goddard Institute for Space Studies (GISS) general

circulation model (GCM) to an online sulfur chemistry model and source models for organic matter

and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number

concentration is diagnosed empirically from field experiment datasets over land and ocean that

observe droplet number and all three aerosol types simultaneously; corrections are made for implied

variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate

variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud

optical thickness and micropl-ysical process rates. We calculate the aerosol indirect effect by

differencing the top-of-the-atm )sphere net cloud radiative forcing for simulations with present-day

vs. pre-industrial emissions. Eoth the first (radiative) and second (microphysical) indirect effects

are explored. We test the se,_sitivity of our results to cloud parameterization assumptions that

control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol

scavenging rate, each of which feeds back sig _ificantly on the model aerosol burden. The global

mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m 2 in our

simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with

low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic

aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this

dependence on the background aerosol, model diagnostics such as albedo-particle size correlations

and column cloud susceptibility, for which satellite validation products are available, are not good

predictors of the resulting indirect effect.
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1. Introduction

The greatest uncertainty in the assessment of climate forcing by anthropogenic aerosols is

their effect on clouds, referred to as the aerosol indirect effect (AIE). For a given cloud liquid water

content (LWC), an increase in the cloud droplet number concentration (N) implies a decrease in the

effective radius (rcff), thus increasing the cloud reflectivity (Twomey 1977); this is known as the

first or radiative indirect effect (RIE). Several studies have attempted to observe the Twomey effect

in clouds modified by ship tracks (Coakley et al. 1987; Radke et al. 1989; King et al. 1993; Coakley

et al. 2000; Durkee et al. 2000) or contil,ental sources of pollution (Saxena and Menon 1999;

Brenguier et al. 2000). The second or micrgphysical indirect effect (MIE) is based on the idea that

decreasing the mean droplet size in the presence of enhanced aerosols decreases the cloud

precipitation efficiency, producing clouds with a larger LWC and longer lifetime (Albrecht 1989;

Pincus and Baker 1994). Recent results frcm the Monterey Area Ship Track Experiment (MAST;

Ferek et al. 2000) and Tropical Rainfall Measuring Mission (Rosenfeld 2000) provide anecdotal

evidence that anthropogenically forced decreases in reff can significantly alter the liquid water path

(LWP) and suppress rainfall. Observations of aerosol-induced changes in cloud lifetime have not

been reported, however.

Observational assessment of both indirect effects is problematic because (a) direct

measurements of aerosols and cloud properties are localized in space and time and cannot be used

to infer global radiative impacts, and (b) it is difficult to isolate the aerosol effect on clouds from the

natural variability in reff and LWC caused by changes in the cloud thermodynamical structure and

the dynamics. Satellite data sets have begun to provide some cloud-top or vertically integrated

measures of relevant cloud properties (Han et al. 1994, 1998a, b, 2000), but by themselves do not

give a measure of the radiative impact of aerosols on clouds. Furthermore, global climatologies of

aerosol properties exist only over ocean, provide only the column optical thickness, do not



differentiateamongaerosoltypes,andhavelargeuncertaintiesdueto contaminationby thin clouds

(Stoweet al. 1997). Thus, the global AIE can only be estimatedvia simulationsusing general

circulation models (GCMs) coupled to aerosol sourceand chemistry models. Unfortunately,

existingGCM simulationsof the AIE spananunacceptablybroadrange,from near0 to -5 W m2

(Joneset al. 1994;BoucherandLohmann1995;Chuanget al. 1997;LohmannandFeichter1997;

Kiehl et al. 2000; Rotstayn 1999; Ghan et al. 2000). No observationalconstraintshave been

demonstratedto limit this range. To date,all thatcanbe saidis that the largerAIE predictionsare

lesslikely to becorrectin light of theobservedglobaltemperatureincreasethat hasaccompaniedan

accumulatedanthropogenicgreenhousegasforcing of only 2.5W m2 (Hansenet al. 2000).

Most previousGCM researchon the AIE haserr_phasizedthe uncertaintiesassociatedwith

determiningthe aerosoldistribution and its effect on cloud properties. GCMs take two different

approachesto determinecloud dropletnumberconcentration.SomemodelspredictN from aerosol

chemicalandmicrophysicalpropertiesby meansof a sophisticatedaerosolnucleationand growth

model (Chuanget al. 1997;Ghanet al. 2000;Lohmannet al. 1999),therebymakingit possiblefor

N to be a prognostic variable. This has the appealof being physically based,but it requires

underlyingassumptionsabout(a) the unresolvedsmall-scaleturbulentupdraft velocity, a quantity

that is especiallydifficult to predict within clouds, and (b) the efficiency with which different

aerosoltypesnucleateclouddroplets,which dependson detailsof theaerosolcompositionandthe

unknown extentof internal vs. externalmixing. Other modelsusea simpleempirical diagnostic

approach,directly parameterizingN as a function of either aerosolmass or aerosol number

concentrationbasedon field observations(Joneset al. 1994;Lohmannet al. 1997;Rotstayn1999;

Kiehl et al. 2000). This bypassesthe difficult physicsof cloud droplet formation, andby using

sulfateasaproxy for all aerosols,thediagnostic.approachin principle allows for the indirecteffect

of all aerosolsin a modelthatonly explicitly simulatesthesulfatedistribution. Thedisadvantageof



the diagnosticapproachis thatit is basedon limited information from local or regional field studies

that sample a specific mix of aerosol types in

compromises their usefulness in global applications.

specific meteorological conditions, which

Some models determine N diagnostically

using monthly mean sulfate fields computed offline; in such models the aerosol affects the cloud but

the cloud is not allowed to feed back on the aerosol distribution.

In both approaches a major additional uncertainty concerns natural sources of aerosols or

their precursors. In this regard, evaluation of the AIE is much more difficult than for climate

forcing due to greenhouse gas emissions. For greenhouse g,_s forcing the pre-industrial

concentration levels are well known, and anthropogenic increases thus far have not yet even

doubled the effective background concentration. For aerosols, on the other hand, there is probably

no vegetated continental location anywhere that retains a pristine environment, and thus there is no

way to reliably determine the pre-industrial continental background aerosol level. Over oceans, the

natural sulfate contribution from DMS emissions is still uncertain (Charlson et al. 1987) and the

role of sea-salt depends in a complex fashion on meteorological conditions and the coincident

presence of sulfate (O'Dowd et al. 1999; Ghan et al. 1997). Furthermore, anthropogenic aerosol

increases to date dwarf the background levels near and downwind of pollution sources. Thus,

considering that the susceptibility of clouds is greatest in relatively clean conditions (Platnick and

Twomey 1994), the uncertainty in the background aerosol concentration itself introduces significant

variability in the simulated present-day AIE (Chuang et al. 1997; Kiehl et al. 2000).

By comparison, much less attention has been paid to the effect of cloud parameterization

assumptions on the simulated AIE. Lohmann et al. (1997) and Rotstayn (1999) have explored the

sensitivity of the MIE to different autoconversion and cloud cover parameterizations. Different

autoconversion schemes have markedly different dependence of rain formation on N and LWC, and

are intended for use on the cloud scale, rather than the GCM grid scale; but subgrid variability can



potentially have a great impacton microphysicalprocessrates(Pincusand Klein 2000; Rotstayn

2000). Cloud formationschemesin GCMsarenot yet eitherphysically-basedor evenempirical, so

theeffectof initial cloudformationassumptionson theAlE canpotentiallyvarywidely. To dateno

attentionhasbeenpaid to the ability of GCMs to simulatethe vertical distribution of cloudiness,

despitethe fact that the aerosolconcentrationdecreasessharplyabovethe surfaceand the AlE

dependson the colocation of aerosol and cloud. Coakley et al. (2000) found that the presence or

absence of ship tracks in MAST data was quite sensitive to the relative heights of the aerosol layer

and the cloud top, suggesting that these details might be important for simulation of the AlE. The

feedback of cloud processes on the aerosol distribution, e.g., via the in-cloud oxidation source and

wet deposition sink, has been mostly ignored, although Lohmann et al. (1997) comment on the

effect of different cloud formation parameterizations on the resulting aerosol field.

In this paper we describe initial results from a version of the Goddard Institute for Space

Studies (GISS) GCM that has been coupled to an aerosol source/chemistry model, with particular

emphasis on how model cloud parameterization assumptions influence the simulated AlE and how

existing observations do or do not constrain AlE estimates. The basic coupled model structure and

design of sensitivity experiments are described in Sections 2 and 3, respectively. Resulting

distributions of the aerosol concentration and the AIE for the different simulations are described in

Section 4. In Section 5 we evaluate our results against various satellite diagnostic quantities. We

discuss the implications of our work and possible future directions of research in Section 6.

2. Model Description

(a) General circulation model

We use the GISS Model II' GCM (Hansen et al. 1997), a gridpoint model with 4 ° x 5 °

horizontal resolution and 9 vertical sigma coordinate levels and a dynamical top at 10 rob. This
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GCM was developed from the GISS GCM Model II (Hansen et al. 1983), with several

improvements:notablya newprognosticcloudwaterschemefor stratiformclouds(Del Genioet al.

1996),improvedmassflux cumulusparameterization(Del Genio and Yao 1993),a second-order

closureplanetaryboundarylayer, andimprovedgroundhydrology(RosenzweigandAbramopoulos

1997).Stratiformcloud generationis relativehumidity (RH) dependent,basedon the approachof

Sundqvistet al. (1989),but alsoincludesa dependenceon moist stability. Cloudsform whenRH

exceedsa thresholdthatis specifiedfor all modellevelsexceptfor the lowestlayer. In the lowest

layer thethresholdRH is calculatedastheRH for which a parcelwould saturateif lifted from the

bottomto thetop of the layer. TheGCM allows for fractionalcloudinessin the vertical aswell as

horizontal,i.e., a cloud physicalthicknessthat is lessthanthe GCM layerthickness,dependingon

stability. Microphysical sinks for liquid water include autoconversion,evaporation,cloud-top

entrainment,accretion,andthe Bergeron-Findeisenprocess.The cumulusparameterizationusesa

cloud baseneutralbuoyancymassflux closurehndincludesconvectivedowndrafts,entrainingand

non-entrainingplumes,detrainmentof condensateinto anvils,andevaporationof precipitation. The

radiation schemeincludes all important radiatively active species;it uses the correlatedk-

distribution approachfor gaseousabsorptionand a singleGausspoint adaptationof the doubling

andaddingmethodfor multiple scattering.

(b) Aerosol model

We simulate the indirect effects associated with sulfate, organic carbon and sea-salt

aerosols. Aerosol distributions are calculated online and are fully interactive with the GCM

dynamics and physics. Details of included aerosols are listed below and are summarized in Table 1.



(i) Sulfate

The sulfate chemistry model (Koch et al. 1999) includes SO2,sulfate, dimethylsulfide

(DMS) andH202asprognosticspecies.It usesaresistancein seriesdry depositionschemeandhas

a wet depositionand in-cloud chemistryschemethat is coupledto the GCM cloud schemes.For

large-scaleclouds,theautoconversionratesandthegrid boxcloudfractionareusedto calculatethe

first-order lossfor precipitationscavenging.For moist convectiveclouds,all thedissolvedtracers

(in the updraft) are removedwith the rainwaterexceptfor thosethat areevaporatedor detrained.

Below-cloudscavengingandevaporationof gasesarealsoincluded. A detailedcomparisonof the

simulatedsulfatedistributionwith observationsis presentedin Kochet al. (1999).

(ii) Organic carbon

Thecarbonaceousaerosolmodelof Koch (2000) includesbothabsorptiveblack carbonand

the morerefractiveandmoresolubleorganiccarbon(OC); (weconsideronly the latterhere). The

OCemissionsfor biomassburningandindustryarefrom Liousseet al. (1996). As in Liousseet al.

(1996),we usethe organicmatter(OM), whereOM=1.3 x OC to accountfor thepresenceof non-

carbonelements.Theemissionsfor OC arehighly uncertainandmeasurementsavailablefor model

validation areextremelysparse,with few datasetsspanninga full year. Koch (2000) found the

total model bias againstobservationsto be low; however, the scatterwas high, with the model

typically within afactor of 10of observations.The sourcefor naturalOM emissionsfrom terpenes

is from Guentheret al. (1995). A 10%yield rateof OM from terpenesis assumed,which is higher

thanthatusedin Liousseet al. (1996)but atthe low endof that in AndreaeandCrutzen(1997).

(iii) Sea-salt

Sea-saltconcentrationsin 6 sizebins arefrom Gonget al. (1997a)who usedtheMonahanet

al. (1986) sourceand the NCAR Climate SystemModel (CSM) to treat sea-saltdependenceon

wind speed.In this study,we input monthlysea-saltconcentrationsfrom thefirst 4 bins (radii < 2.0



_m), sincemodeling(Ghanet al. 1997)andobservationalstudies(O'Dowd et al. 1999)indicatethat

the film and jet modes are most important (in terms of sea-saltnumber and surface area

concentrations,respectively)in modifying the sulfatedistribution. Sea-saltis assumedto be fully

solublefor wet depositionpurposes.In addition to removalby wet and (resistance-in-series)dry

deposition,gravitationsettlingis included.

(c) Aerosol direct effect

Although the direct aerosol radiative forcing is treated, we restrict our discussion to the AIE

since Koch et al. (1999) and Koch (2000) discuss the direct effect. The 0.55 _tm aerosol optical

thickness is obtained from the product of the aerosol mass and the specific extinction cross-section

as in Charlson et al. (1984). The effect of relative humidity on optical thickness is only applied for

sulfate aerosols. Aerosol interaction with radiation is treated via Mie scattering theory.

(d) Aerosol-cloud interaction

We use a simple diagnostic approach to calculate N from aerosol mass based on field

observations. However, we attempt to partly address the limitations of this approach by developing

multiple regressions against all three simulated aerosol types (rather than assuming sulfate to be a

universal proxy) and by including an empirical correction factor thz_t mimics the effect of varying

cloud turbulence strength on N.

Field data from Leaitch et al. (1996) in the NE Atlantic and from Borys et al. (1998) in

Tenerife were used to develop a multiple regression relationship between N, sulfate, OM and sea-

salt. Since OM measurements were not reported in Borys et al., we parameterize OM as a function

of sulfate using data from Tenerife obtained during the Aerosol Characterization Experiment (ACE-

2) (Putaud et al. 2000). This assumption is based on field measurements (Liu et al. 1996;



Matsumotoet al. 1997;Putaudet al. 2000)that indicatea positivecorrelationbetweensulfateand

OM. Sincethedatawereobtainedfrom the samelocationat similar timesof the year,albeit from

differentexperiments,variability in the ratio of OM to sulfateshouldnot bean important factor.

The Leaitchet al. datasetdid not havecompletemeasurementsof all speciesof OM andtherefore

could underestimatethe actual OM for the NE Atlantic (Leaitch 2000, private communication).

Identical regressionsareappliedover land andocean,exceptthat sea-saltis includedonly in the

latter. Theresultingmultiple regressionrelationshipsto predictN for land,NLand, and ocean, Nocean,

are_

NLand = 10 {2.41 + 0,50 log (Sulfate) + 0.13 Log (OM) }

Nocean = 10 {2.41 + 0.50 log (Sulfate) + 0.13 Log (OM) +0.05 Log (Sea-salt) }

(la)

(lb)

where sulfate, OM and sea-salt are the mass concentrations in gg m -3 and N is in cm -3. N predicted

using the above equations is more sensitive to changes in sulfate than to OM due to the higher slope

for sulfates, however, the AlE has not been evaluated separately for either sulfates or OM alone.

These regressions differ from the commonly used empirical relationships given in Boucher and

Lohmann (1995) in their modeling study on the AlE. Their relationships were based on

simultaneously measured CCN/N and sulfate, and in deriving their N-sulfate relationships, they

assumed that the CCN concentration was the same as N. This assumption is not true, as under

varying supersaturations, updraft speeds, etc., the empirical relationship between CCN and N is

non-linear (Menon and Saxena 1998, Snider and Brenguier 2000). The advantage of relating N

with aerosol mass as given in (la) and (lb) is that these implicitly take into account the physics

(updraft velocity, size spectra, growth rate, supersaturation profiles, etc.) that actually determines N,

while explicitly representing the contribution of the three different aerosol species allows us to more

confidently apply the regression to other regions .with different mixes of aerosol types.



Leaitch et al. (1996) havehighlighted the role of turbulencein modifying N for a given

aerosolconcentration.Higherupdraftspeedsincreasetheactivationof aerosolparticles,which thus

increasesN. Under stableconditions,N is reducedbecausethe lower updraft speedsproduce

supersaturationsthat are not high enoughto activatesmaller sizeparticles. We use the GCM's

parameterizationof cloud top entrainment(CTE) as an indicatorof within-cloud turbulence. The

parameterizedCTE mixing dependson themoist staticenergyjump acr_ssthecloud top interface

andon the total water contentin the cloud (Del Genio et al. 1996). To mimic the Leaitch et al.

observations,wescaleN aspredictedby (la) and(lb) by a factorthat rangesfrom 1.5in highCTE

(unstable,strong turbulence)conditionsto 0.5 in zero CTE (extremelystable,weak turbulence)

conditions.

GivenN, the volume-weightedmeancloud droplet radius,rvol,is determinedas:rvol= {(3

LWC)/(4 rt 9_ N)}_/3, where p_ is liquid water density. This value is applied to determine aerosol

effects on cloud microphysical processes (autoconversion, cloud evaporation). The reef needed to

compute cloud radiative properties is obtained from r,,o_, assuming an effective variance of the size

distribution of 0.2, given as reef = 1.28 rvol. Cloud optical depth (x) is then evaluated as: "r = (1.5

LWP)/(p_ reff). For a given "r and reef, cloud radiative properties are computed using the spectral

dependence predicted by Mie theory (Hansen and Travis 1974). Aerosols are only allowed to affect

liquid-phase clouds, so the longwave contribution to AIE is small in all the experiments.

3. Experimental Setup

The AIE is defined as the difference in the net cloud radiative forcing between simulations

that use present-day (PD) (natural plus anthropogenic) aerosols and simulations that use pre-

industrial (PI) (natural) aerosols. Baseline model runs are forced by climatological sea surface

temperature fields for the period 1978-1998 and are carried out for six years, with the results based



on the final five-year averages.For sensitivity studies,shortermodel runs for threeyears(with

resultsbasedon two-year averages)arecarriedout. We examine5 (PD, PI) pairsof simulations

(Table2), definedasfollows:

(a) CTRL-R: This run usesthestandardmodelconfigurationdescribedin theprevioussectionand

accountsonly for theRIE. In this run, the autoconversionrate(Q) is an increasingft:nction of the

cloudLWC with no dependenceonN exceptfor specifiedland-oceandifferencesin efficiency (Del

Genioet al. 1996).

(b) NEWCLD-R: In commonwith mostGCMs,the GISSmodeltendsto overpredictcloudinessin

the lowest model layer. For most applicationsthis is not a seriousdefect,but given the sharp

decreasein aerosolconcentrationawayfrom the surface,even small errorsin cloud altitude can

influencethe simulatedAIE. The frequencyof occurrenceof low-level cloudtops in GCM layers

1, 2 and3 (top pressure= 934,854and720 hPa,respectively)in CTRL-R is 36%,30% and34%,

respectively.Data from the InternationalSatelliteCloudClimatologyProject (ISCCP)mappedto

theGCM layersindicateanoccurrencedistributionof 16%,26%and58%,respectively,instead.

We thereforemodifiedour calculationof thethresholdRH for cloudfraction asfollows: In

the standardschemedescribedearlier, the thresholdRH for the lowest layer is basedon implied

lifting over the layer depth,which is only appropriateif the lowest layer is dry convectivewith

respectto layer 2, i.e. if there are subgrid vertical motions that extend over a full layer. In

NEWCLD-R, thefull layerthicknessis usedto calculatethethresholdRH only if layer 1 is unstable

with respectto the nexthigher layer. In all othercases,the implied subgridlifting only goesfrom

the bottom of the layer to a height Z determinedby the degreeof stability, as follows: If the
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Richardsonnumberbetweenlayer 1and layer 2 (Ri]2)_< 1 (anapproximateupper limit for small-

scaleturbulencein themodelof Chenget al.2000),then

Ri]2< 0.25 _ Z = topheightof layer 1(Zl)

0.25 _<Ri12< 1 _ Z = interpolatedheightbetweenZI andmidpointof layer 1(Zm)

Ril2= 1 :=_Z = Zm

If Ri 12> 1,a similarcalculationis performedfor Ri betweenthe surfaceair layerandlayer 1 (Risl),

suchthat

Ri_ < 0.25

0.25 _<Ri_j < 1

Ri _l>- 1

=::¢, Z = Zm

Z = interpolated height between Zm and the surface layer height (Z0)

_Z=Zo

The prescribed threshold RH for all higher layers is decreased at the same time so as to produce a

total cloud cover and planetary albedo roughly equivalent to those in CTRL-R. The net effect of the

parameterization change is to reduce cloudiness in layer 1 under more stable PBL conditions and to

increase cloudiness in higher l_yers. The resulting cloud top distribution in NEWCLD-R is 26%,

43% and 31%, respectively, in better agreement with the ISCCP data. The remaining model-data

discrepancy is at least in part an ISCCP bias caused by inaccuracies in its input humidity profiles,

which cause it to overpredict cloud height by 60-80 hPa in marine stratus regions (Wang et al.

1999).

(c) NEWCLD-M-7.5: This scheme differs from NEWCLD-R only in that it allows for the MIE as

well as the RIE. To evaluate the MIE, an autoconversion parameterization from Tripoli and Cotton

(1980) (hereafter referred to as TC) is implemented. Here, autoconversion does not occur unless the

in-cloud liquid water mixing ratio ql exceeds a certain critical limit qc,it defined as

qcrit = (4 rc Pl r3rit N)/(3 p) (2)

11



where rcrit is the critical value of the droplet radius that would initiate precipitation and O is the air

density. The autoconversion rate is then given by

0"I04gEAu (3)

Q- e(N pl)_

where H is the Heaviside function, EAu is the collection efficiency of droplets set to 0.55, g is the

acceleration due to gravity and e is the dynamic viscosity of air. High values of N increase the

threshold limit and also decrease Q. Low values of rent result in increased precipitation and thus a

smaller MIE. Values generally used in different climate models vary from 4.5 to I0 l.tm (Rotstayn

1999; Boucher et al. 1995; Rasch and Kfistjansson 1998). In NEWCLD-M-7.5 we assume rcril = 7.5

I.tm.

(d) NEWCLD-M-5.0: This experiment is identical to NEWCLD-M-7.5 but with re,it = 5.0 lam,

which enhances the autoconversion rate and thus reduces the importance of the MIE.

(e) NEWCLD-M-5.0-P: The first-order rate loss parameterization in the stratiform in-cloud

scavenging scheme depends on the amount and areal coverage of precipitation in the cloudy part of

the grid box. The baseline model assumes that the fraction of the grid box that is precipitating

equals the product of the sub-grid cloud areal fraction and the ratio of precipitating to total

condensed water (Koch et al. 1999). Thus, in dense clouds, most of the cloud area precipitates and

participates in scavenging below. This is probably an overestimate, based on the satellite analysis of

Lin and Rossow (1997) who find that only -5% of pixels between 50S and 50N contain

precipitation. In NEWCLD-M-5.0-P we assume that precipitation occurs in only 10% of the cloudy

area. This reduces scavenging and thus increases aerosol concentration. This probably represents a

12



lower limit for the role played by precipitation, but it serves as a useful sensitivity test for the

resulting radiative impact of a process not generally associated with radiative issues.

4. Results

(a) Aerosol mass distribution

The aerosol column burdens for the PD and PI aerosol sources for the 5 model runs are

listed in Table 3. Detailed comparisons of sulfate and OM distribution with observations for a

model version similar to CTRL-R can b, found in Koch et al. (1999) and Koch (2000). Although

the magnitudes of the column burden differ, all 5 simulations have similar horizontal distributions

and vertical profiles. As one example, wc show the present-day aerosol mass distributions in lag m -3

for sulfate, OM and sea-salt for January and July for model layer 1 (P=959 hPa) for the NEWCLD-

M-5.0-P run in Fig. 1. Figure 2 is similar to Fig. 1 but shows the vertical distribution of the mass

(106 kg for sulfate and OM, and 107 kg for sea-salt). Sulfate concentrations are the highest during

summer over the NH continents due to increased oxidant availability, whereas they are higher over

the SH oceans in summer due to the higher natural burden in summer. The model, similar to other

models with prognostic H202, has a somewhat higher SO2 burden compared with models using

fixed H202 due to depletion of the in-cloud oxidant in polluted regions. The natural DMS source for

sulfate is low compared to observations (and other models) in remote regions. This is due in part to

weaker than observed GCM winds, and to the use of a low sea-to-air transfer rate for DMS. Because

of this, all the sulfur species over the remote oceans tend to be lower than observed. Koch et al.

(1999) found the sulfate surface concentrations on land to agree well with observations; however,

the sulfate concentrations in the free troposphere above continents may be somewhat excessive.

OM concentrations are greater than sulfate in the SH due to the larger biomass burning

source. Mass concentrations for OM are higher than sulfate mass in the first layer, though the OM

13



column burdenis much lower. This is becauseOM hasonly a surfacesource,while sulfate is

formedonly after oxidationof the SO2precursorthat is often transportedto higherlayers. Model

OM concentrationsare lower thanobservationsin the Pacific andArctic but not over the Atlantic

(Koch 2000).

Sea-salt concentrations are higher over the high latitude oceans during the winter months

due to the stronger wind-speeds there. For sea-salt, comparison is performed with respect to the

sodium content (assuming sodium content to be 0.3061 that of sea-salt). Observations and model

simulations of sodium content for 5 locations listed ir Gong et al. (1997b) for NEWCLD-M-5.0-P,

(which has the highest sea-salt concentration of all tl,e experiments) are shown in Fig. 3. Model

simulations are in fairly good agreement and do captur-- the seasonality in the distribution.

(b) Evaluation of cloud droplet number concentrati,3n

Since our prediction of N depends on the concentrations of 3 aerosol species and varies with

the implied cloud turbulence strength, it is instructive to compare the resulting N-sulfate

relationship to field measurements with simultaneous N and sulfate observations. Data for the land

points are from NE America (Leaitch et al. 1992), SE US (Menon and Saxena 1998) and the United

Kingdom (UK) (Roelofs et al. 1998). Those for the ocean points are NE Atlantic (Leaitch et al.

1996), Puerto Rico (Novakov et al. 1994) and Tenerife (Borys et al. 1998). Most measurements

were taken during summer with two exceptions: the Novakov et al. (1994) data set also included

cases from March-April, and the NE American data set included winter and fall measurements.

Main differences between winter/fall and summer measurements are stronger updrafts, higher cloud

bases and higher N during summer and lower median sulfate values for winter, due to the lower

cloud bases and mixing heights, which could lead to higher surface concentrations (Leaitch et al.

1992). The N predicted from the NEWCLD-M-5.0-P model run as a function of sulfate mass is

14
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shown in Fig. 4 along with the observed N-sulfate relationships from the 6 locations. Hourly

averaged model values of N and sulfate were sampled 4 times during the day-time in July for model

grid points and layers closest to the observational areas and altitudes.

Model sulfate values are within the range of observations for NE America, the UK, and

Puerto Rico but are higher than observed for the SE US and the NE Atlantic. Model N and sulfate

values are systematically underestimated over Tenerife. The underprediction of N is probably

related to an underestimate of OM simulated by the model there as well, though the sensitivity to

sulfate appears to be similar to observations. For Puerto Rico, c_bservations are limited and the

sensitivity of N to sulfate appears low (Novakov et al. 1994). Furthermore, the data suggest that

OM dominates sulfate over this region, though the model predictio_a is the opposite. Differences in

slopes between model and observations are within 15% for the combined land locations, but the

model systematically overestimates the slope over ocean relative to the available data. The

discrepancy is primarily due to our underprediction of N over Tenerife, and the NE Atlantic points,

since our regression utilizes data from Leaitch et al. for this location that do not measure all species

of OM. Considering the different spatial scales of the model and data and the limited sampling

time, the general trend is fairly well simulated using the diagnostic approach, especially over land.

(c) Aerosol indirect effect

Table 4 lists the global mean AIE values, and their partitioning by surface type and

hemisphere, for all 5 simulations. Included in the AIE is the relatively small (-0.1 W m -2)

longwave contribution. The spatial distributions of annual mean AIE are shown in Fig. 5. Changes

in low cloud cover (ALCC) and liquid water path (ALWP) from PI to PD in the 5 experiments are

also listed in Table 4.
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Our global meanAIE valuesrangefrom -1.55 to -4.36 W m "2, within the range of results

reported for other GCMs but generally somewhat higher than typical values in previous studies. A

comparison of Tables 3 and 4 indicates that the AIE is much more sensiti.ve to the PI aerosol

distribution and the specifics of the cloud parameterization than to the anthropogenic aerosol

increase (with one exception). In common with other models, the AIE is much stronger in the

Northern Hemisphere than in the Southern Hemisphere, and the parameterization changes we test

have little effect in the Southern Hemisphere in all but the most sensitive simulation. In all 5

simulations the AlE is stronger over land than over ocean, a feature we have in common with some

previous investigators but not others. The differences between our results and previous workers are

largely due to differences in the definition of the background aerosol and extent of aerosol-cloud

interaction, as follows:

(a) Our AlE is a true difference between simulated PD and PI conditions for all included

aerosol types. Some previous studies prescribe an elevated continental background aerosol (to

mimic other anthropogenic aerosols) and simulate only the AlE due to anthropogenic sulfate, which

lowers the global AlE and shifts the maximum from land to ocean. Others use an N-sulfate

regression with different slopes over land and ocean, which implicitly accomplishes the same thing.

Others prescribe a lower limit for N, which can shift the peak AlE either onto land or ocean

depending on where the lower limit is assumed to apply.

(b) Some models use offline monthly mean sulfate fields to alter cloud properties but do not

allow the clouds to feed back on the aerosol distribution. Our coupled model is fully interactive,

and thus the global aerosol burden in the PI simulations can increase or decrease depending on

cloud sources and sinks of aerosol. In general, the lower the PI aerosol burden, the larger the AIE.

(c) Since the continental PI aerosol distribution cannot be observed, different assumptions

about background sources can significantly influence the resulting AIE. For example, our control
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run assumes a 10% yield of OM from terpenes and produces an AlE of -1.82 W m -2. A sensitivity

test using a 5% yield instead reduces the background aerosol burden by 50% and increases the AlE

to -2.56 W m "2.

(d) The GISS GCM surface winds are weaker than observed, and hence the model

underestimate the sea-air transfer coefficient magnitude and the resulting DMS source when the

Liss and Merlivat (1986) parameterization is employed. This may imply that our AlE over ocean is

overestimated.

Comparing CTRL-R and NEWCLD-R illustrates the effect of the change in vertical cloud

distribution. Shifting the low clouds upward by only 4 mb on average (but with a 10% absolute

decrease in low cloud contribution by the lowest layer) by itself reduces the magnitude of the AIE

by 0.3 W m 2. This occurs both because fewer of the clouds in NEWCLD-R are coiocated w'ith the

altitude of largest anthropogenic aerosol increase, and because clouds in the lowest layer are most

likely to rain, which explains the slightly lower aerosol burden in CTRL-R. Changes in LCC (0.15,

0.22%) and LWP (-i.1, -0.3 g m -2) in these runs are due strictly to feedbacks, since they include

only the RIE, and are thus much smaller than those in the "M" runs, which allow for the MlE.

Inclusion of the MIE (NEWCLD-M-7.5) significantly increases the AlE relative to

NEWCLD-R. However, the difference between these two cannot be interpreted as the magnitude of

the MlE itself, because qualitatively different autoconversion schemes were used in the two

experiments. In general, the TC parameterization has much stronger autoconversion rates at typical

cloud LWC values than the scheme used in Del Genio et al. (1996). As a result, the PI aerosol

burden is very low in NEWCLD-M-7.5. This, combined with the actual MIE, explains the

exceptionally large overall AlE in this experiment. The runs with the TC scheme have annual mean

global liquid water path (LWP) values of 75-80 g m 2, much closer to the satellite-retrieved value of

81 g m 2 reported by Greenwald et al. (1993) than the 118 g m "2 value in NEWCLD-R. The PI-to-
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PD increase in LWP (8 g m -2) in NEWCLD-M-7.5 is about 10%, more than twice as large as the 4%

relative (1.2% absolute) increase in LCC. Thus, the MIE in our GCM is due to both cloud lifetime

and in-cloud liquid water increases.

Since the TC scheme was designed for models that resolve clouds, the critical radius that

initiates autoconversion is not a very physically meaningful parameter in the context of a global

model which is intended to relzresent an ensemble of clouds and a distribution of LWC values

(Rotstayn 2000; Pincus and Klein 2000). NEWCLD-M-5.0 tests the sensitivity of the AlE to this

effectively free parameter. By reducing the critical radius, we make autoconversion easier and thus

limit the magnitude of the MlE. The resulting decrease in magnitude of the AlE is dramatic (-4.36

to -1.84 W m2), not only because the anthropogenic changes in LCC (1.18 to 0.33%) and LWP (7.8

to 0.90 g m -2) are smaller, but also because the efficient rainout causes the anthropogenic increase in

aerosol burden to be much less in this experiment than in the other four.

The aerosol burden in NEWCLD-M-7.5 and especially NEWCLD-M-5.0 is significantly

lower than that in the earlier version of the coupled model analyzed in detail by Koch et al. (1999),

which did not include the AlE. Although the actual global aerosol burden is unknown, the earlier

model did compare reasonably well with point observations at a variety of locations. At the same

time, the scavenging scheme in that model assigns too large a precipitating area of clouds compared

to satellite observations. NEWCLD-M-5.0-P thus weakens the scavenging to offset the effect of the

stronger autoconversion in the TC scheme. The resulting PI aerosol burden is much larger, and the

PD burden is much closer to that in Koch et al. (1999). Thus, even though the PD aerosol burden is

the largest of all 5 experiments and both indirect effects are included, the total AlE is only -2.41 W

m 2. Changes in LCC (0.6%) and LWP (2 g m 2) are intermediate between the other "M"

experiments.
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5. Comparisons with Satellite Data

Han et al. (1994, 1998a, b, 2000) have retrieved a variety of parameters that are potentially

diagnostic of aerosol-cloud interactions from global satellite datasets. In this section we compare

analogous model parameters to these retrievals to determine whether the satellite diagnostics

constrain the AlE. Model outputs were processed in the same way as were the satellite retrievals,

with only clouds with tops warmer than 273 K included and parameters calculated either at cloud

top or as column integrals as appropriate. Table 5 summarizes the global mean results for July, in

increasing order of the simulated AlE magnitude, while Figures 6-8 show the global distributions of

each parameter. Impressions gained from January comparisons (not shown) were generally similar.

(a) Droplet effective radius and column number concentration

Figure 6 shows the distributions of reff (left) and column droplet number concentration Nc for

each simulation. Particle size is proportional to (LWC/N) u3 and column number concentration is

the vertical integral of N, so we might expect changes in reff and Nc from one experiment to another

to be negatively correlated. Table 5 shows that with the exception of the extreme high AlE

experiment NEWCLD-M-7.5, this is the case. In the other 4 simulations, N¢ is primarily controlled

by the aerosol burden (compare with Table 3). In general reff is underpredicted by the model. In

part, this may be explained by the fact that the satellite-retrieved radius is characteristic of only the

top x = 1 of the cloud. Since LWC increases with height in non-precipitating clouds, the cloud top

droplet sizes tend to be larger than the mean throughout the cloud. The GCM's "cloud top" value is

the mean for the highest cloud layer, which in many cases is the entire depth of the cloud.

The GCM does produce the sense of particle size differences over land and ocean. Its NH-

SH differences are much greater than the satellite-retrieved values, in part because the model

aerosol impact appears to be too large over NH midlatitude oceans, and in part because the satellite
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retrievals include someregionsof unusuallysmall particle sizesover SH desertregionsthat are

probably dust contamination. Nc is somewhat overestimatedover NH land and slightly

underestimatedover SH land in most of the simulations. Severalof the runs produceocean

concentrationssimilar to thoseobserved,but theobservedoceanminimatendto beat low latitudes,

while the model oceanminima arein southernmidlatitudes. The AIE doesnot vary consistently

with either reffor No, so althoughthey representone componentof a model validation strategy,

neitherparameterby itself canbeconsideredadiagnosticof theAIE.

(b) Albedo-particle size correlations

Since the AIE is largely a response of cloud albedo to aerosol-induced changes in cloud

droplet number and size, it is potentially more fruitful to relate albedo variations to changes in either

quantity than to utilize the mean quantities themselves. Hart et al. (1998a) correlated albedo to

droplet effective radius in the hope of finding regional signatures of the AIE. They found the

expected negative relationship (brighter clouds with smaller particle sizes) only for the optically

thickest ('r > 15) 15-20% of all low clouds. For the majority of low clouds, albedo is positively

correlated with particle size. This occurs because for thinner clouds, dynamically-induced changes

in LWC control particle size, hiding any ArE in such clouds amidst the much larger natural

variability. For the thicker clouds, on the other hand, the onset of precipitation may limit LWC

increases and allow the weak AIE signal to emerge (Nakajima and Nakajima 1995; Lohmann et al.

2000).

Cloud albedo (A) in the GCM was estimated from the calculated optical thickness using A =

(1 - g) r/(2 + (1 - g)r), where g = 0.85 is the asymmetry parameter for single scattering. The GCM

produces albedo-particle size correlations for the thinner clouds that are quite close to those

observed (Table 5; Fig. 7, left). There is little variation from one simulation to another, supporting
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the ideathatthecorrelationfor thesecloudsismostlydueto naturalvariability andnot aerosol.The

GCM alsosimulatesmuchsmallercorrelationsoverall andsomeregionsof negativealbedo-particle

sizecorrelationfor thethicker clouds,althoughin nocaseis theGCM global meancorrelationfor

the thicker clouds negativeas is true for the satellite data. Even though the lowest albedo-refr

correlationsoccurin therun with the highestAIE andthe negativecorrelationsin all runsarea lot

more pronouncedin cloudsin model layer 1 wherethe aerosoleffect is the strongest,an inverse

relationbetweenalbedo-reffand the AIE is not observedin Table 5. Thus, althoughthis satellite

relationmay offer someevidenceof the AIE, it is apparentlynot sensitiveenoughto distinguish

betweenlargeandsmallAIE simulationsin ourmodel.

(c) Column susceptibility

Twomey (1991) first suggested that the albedos of cleaner clouds with smaller N are more

susceptible to changes in N than are clouds with larger N. If LWC, cloud physical thickness, and

the droplet size distribution are held constant, then the susceptibility dA/dN = A(1-A)/(3N). This

relationship has been used to evaluate the sensitivity of clouds to aerosols in different regions

(Taylor and McHaffie 1994; Platnick and Twomey 1994). N is not observed by satellites, but Han

et al. (2000) have retrieved an analogous column cloud susceptibility defined for constant LWP as

CSI = dA/dNc = A(1-A)/(3Nc). Furthermore, since LWP and size distribution need not remain

constant, Han et al. provide another estimate of column susceptibility CS2 = AA]ANc by regressing

A vs. No.

Figure 8 shows both versions of column susceptibility for thinner clouds for all 5

simulations, while Table 5 indicates the global mean values for thinner and thicker clouds

separately. Excepting once again the extreme case NEWCLD-M-7.5, differences in global mean

CSj values are inversely correlated with differences in N_, and thus CSI provides no independent
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information about cloud-aerosolinteractions. Likewise, model-datadifferences in the global

distributionof CSl mimic thedifferencesalreadydescribedfor N¢.

To estimateCS2in the GCM, A and Nc valueswere sampledevery 6 hours to capture

synopticvariability, andgridboxeswith fewer than 10points of warm cloud occurrencesover the

monthwereexcludedfrom theregressionanalysis. Like Hartet al., we find that susceptibilitiesare

noticeably lower when LWP is not assumedfixed, althoughour susceptibilitiesare significantly

smaller than those retrieved by Han et al. in 3 of the 5 simulations. The GCM especially

underestimatessusceptibilityover the oceans,and althoughthe model producessomegridpoints

with negative susceptibilities,they are randomly scatteredover the oceansrather than being

confined to the easternoceanmarinestratusregionsas in the satellitedata. Susceptibilitiesare

higher for the runsthat includethe MIE than for the runs that simulateonly the RIE. Also, the

decreasein CS: from thin to thick clouds (as in observations)are only seenfor the "M" runs,

suggestingthat microphysicsplays a bigger role in determiningcloud susceptibility than does

radiation. Furthermore,for the 3 runs that includethe MIE, both susceptibilitiesincrease(for the

optically thin cases)astheaerosolburdendecreases,aswe mightexpect,but this is not apredictor

of theresultingArE becauseof differencesin PI aerosol.

6. Discussion and Conclusions

Our suite of simulations differs from those performed by previous workers in that we

emphasize sensitivity of the ArE to uncertain cloud parameterization elements (formation,

autoconversion, scavenging) that affect major source and sink terms in the aerosol budgets. We did

not perform any tuning, so our global aerosol burdens vary considerably among the different

simulations (Table 3). The global burdens of all aerosol types are poorly constrained, since only

point observations in some parts of the world are available, with little vertical profile information.
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The sulfurburdensin existingmodelsrangeoverabouta factorof two (Koch et al. 1999). Two of

our simulations (NEWCLD-M-7.5, NEWCLD-M-5.0) have very low aerosolburdens that are

probablyinconsistentwith availabledata,but theotherthreearerepresentativeof therangefoundin

othermodels.

Of evenmore importanceis that the PI aerosoldistribution is andwill remaincompletely

unconstrainedby observations.Thecombineduncertaintyin PD andPI aerosolburdenis the single

largestuncertaintyfactor for theAIE in ourmodel. As a crudeindicatorof their impact,weplot in

Fig. 9 the AIE vs. the ratioof PD to PI sulfateburden. (A similar plot usingPD and PI sulfate+

OM givessimilar results,sincesulfateis moreabundantanddominatestheregressionweuse.) In

our limited sampleof model runs, the magnitudeof the AIE is strongly correlatedwith the

fractional enhancementof aerosol burden by anthropogenic activities. Thus, we can

weaken/strengthenthe AIE by increasing/decreasingthe PI burden, and to a lesser extent by

decreasing/increasingthePD burden.

The sensitivityto thePI burdenmaypartly explain the absenceof anyweak AIE resultsin

oursetof simulations.Specifically,theGISSGCM's DMS sourceis significantly weakerthan that

of other models becauseof the GCM's weak surfacewinds; Koch et al. (1999) report a 42%

increasein the DMS sourcewhenthe model is forcedby SSM/I winds instead. Applying sucha

changeto Fig. 9, weanticipatethatourAIE mightdecreasein magnitudeby afew tenthsof aW m"2

if this werecorrected. Othersourcessuchasthe OM yield from terpenesincreasethe uncertainty.

Even more importantantly, the microphysical processesthat remove aerosols in GCMs can

drasticallyalter the aerosolburden,andproperrepresentationsof theseprocessesthat accountfor

subgridLWC variability do not exist (Pincusand Klein 2000). It is clear that usingoffline non-

interactiveaerosolfields to force a GCM missesimportantfeedbacksof the cloudson the aerosol

field.

23



Since it is impossible to specify the PI aerosolburdenaccuratelyand uniformly across

models,GCM estimatesof the AlE canbe expectednot to convergeas long asPI conditionsare

usedas the baseline. Since the total AlE from the start of the Industrial Revolution is of less

practical importancethan the recentandfuture rateof increaseof the AlE, we suggesta shift in

modelstrategythat focuseson simulatingthe changein AlE over the period for which the most

reliable observationsexist. If the NASA Global Aerosol Climatology Project can generatean

aerosolclimatologyfor thepasttwo decadeswith reasonableaccuracy,this time periodmight serve

as a better standardfor different GCMs to operateon common ground, so that remaining

disagreementsmight moreeasilybe tracedto differencesin modelphysics. Sucha strategymight

enhancethe usefulnessof satellite productsas well. None of the tested satellite diagnostics

constrainstheAlE in oursimulations(Table5). However,muchof the simulatedvariability in AlE

in our model resultsfrom PI aerosolburdenvariations,which areunrelatedto the current climate

aerosol-cloudsensitivitycapturedin thedata.

Of moreconcernfor observationallyconstrainingthe AlE is thefact that aerosolsappearto

havea subtleeffect oncloudsthat is largelyobscuredby naturalmeteorologicalvariability. Thus,

unlike the globalmeangreenhousegasor directaerosolforcing,neitherof which is greatlyaffected

by dynamics,it will never be possibleto simply estimatethe global AlE by using "observed"

aerosolmodificationsof cloudsasinput to a l-dimensionalradiative transfercalculation. What is

neededis to combinethe existing satelliteproductswith meteorologicalanalysisfields to isolate

specificdynamicalregimeswithin which thecloudvariability dueto aerosolsmight bedetected.A

similaranalysisappliedto aGCM might thenbeableto validatetheGCM's processrepresentations,

andsuchamodelmight thengive acredibleestimateof theAlE. In otherwords,theAlE, which is

usually groupedwith climate forcings, is more properly treatedas a feedbackthat can only be

estimatedwithin themodelcontext.
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Our studyalsohighlightssomeneededobservations.Sinceaerosolconcentrationsdecrease

sharply with height, it is important to accuratelysimulatethe detailed vertical distributions of

clouds. Coarsevertical resolutionmodelssuchas the one we usemust clearly be replacedwith

versionsthat adequatelyportray inversions,decoupledboundary layers, and cloud turbulence

strength. Observationsto validatesuch modelsare lacking, though. ISCCP gives a first-order

global estimateof low cloudheightbut apparentlycontainsbiasesin marinestratusregions(Wang

et al. 1999). Colocatedverticalprofiles of cloud andaerosolat anumberof locationsfrom surface

lidarsandradarsmay offer thebesthopeof gettingsuchinformation. Futurefield experimentscan

be justified, but only if they sampleclimate regimesunobservedthus far, especially in regions

whereotheraerosolsdominatesulfate,and only if they measureN and all relevantaerosolsand

includesupportinglarge-scaleandturbulence-scalemeteorologicalinformation.

Finally, it is instructiveto comparethe statusof AIE simulationsto that of cloud feedback.

Therangeof cloudfeedbackestimatesbroadenedconsiderably10-15yearsagoasnew physicswas

introducedthat increasedthenumberof possiblefeedbackloops. Only recentlyhaveobservations

begunto narrowthat range. Diagnosticcloud schemesultimately gave way to prognostic cloud

water parameterizations,not just becausethey representbetterphysics but becausethey allow

GCMs to predict not only sourcesbut also important sinks of cloud water, which require the

memoryof the previouscloud state. AIE simulations,by comparison,haveexistedfor fewer than

10years. Therangeof estimateshasrecentlyexpanded,andno observationalconstraintshaveyet

beenidentifiedthat narrowtherange. Prognosticschemeshavebegunto appear,but their ultimate

fate will dependon whetherdropletconcentrationsandparticle sizeson GCM resolvedspaceand

time scalescanbe shownto deviatein importantwaysfrom equilibriumwith the simulatedaerosol

field. For the foreseeablefuture,diagnosticapproachesoffer comparablepredictivecapability for

estimatesof the AIE.
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Table 1. Chemical speciesand sourcesfor sulfate,organic matter (OM) and sea-saltaerosols.

ANTH andNATL refer to anthropogenicandnaturalaerosolsources,respectively.

Species Sources References

ANTH sulfate SeasonallyvaryingGEIA SO2emissions

Aircraft source

Biomassburning

Benkovitzet al. 1996

Baughcumet al. 1993

Spiroet al. 1992

NATL sulfate DMS Oceanicsource

Non..eruptivevolcanicsources

Kettle et al. 1999;Liss andMerlivat

1986

Spiroet al. 1992

ANTH OM

NATL OM

Fossil fuel andbiomassburning

Terpeneemissions

Liousseet al. 1996;Cookeet al.

1999; Penneret al. 1993

Guentheret al. 1995

Sea-salt Ocean Gonget al. 1997a
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Table 2. Designation of experiments used for model simulations of the aerosol indirect effect

(ALE). Also included is the length of model runs. The different columns indicate the sensitivity

tests conducted to evaluate the AlE. D96 refers to Del Genio et al. (1996), TC80 to Tripoli and

Cotton (1980), and K99 to Koch et al. (1999).

Experiment No. of AlE Cloud vertical Autoconversion Scavenging

years distribution

averaged

CTRL-R 5 I st f(layer 1 D96 K99

thickness)

NEWCLD-R 5 1st f (Ri) D96 K99

NEWCLD-M-7.5 2 IS" and f (Ri) TC80 [rc,-it=7.5 lam] K99

2 nd

NEWCLD-M-5.0 2 1sl and f (Ri) TC80 [rcrit =5.0 l.tm] K99

2nd

NEWCLD-M-5.0-P 5 Ist and f(Ri) TCS0 [rcrit =5.0 _m]

2nd

Decreased

scavenging
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Table 3. Globally averaged annual aerosol column burden (mg m "2) for sulfate, organic matter

(OM) and sea-salt for present-day (PD) and pre-industrial (PI) emissions. Also included is the

difference (A) between the PD and PI simulations.

Experiment Sulfate OM Sea-salt

PD PI A PD PI A PD PI A

CTRL-R 3.75 0.96 2.79 1.90 0.23 1.67 7.64 7.56 0.08

NEWCLD-R 4.02 1.14 2.88 2.15 0.29 1.86 7.91 7.92 -0.01

NEWCLD-M-7.5 2.66 0.42 2.24 1.57 0.14 1.43 4.16 3.70 0.46

NEWCLD-M-5.0 1.11 0.30 0.81 0.90 0.12 0.77 3.53 3.59 -0.06

NEWCLD-M-5.0-P 5.03 1.05 3.98 2.46 0.27 2.19 9.36 9.02 0.34
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Table 4. Globally averagedannualmeansof the aerosol indirect effect (AIE) evaluated by the

model. Also included are the northern and southern hemisphere (NH and SH, respectively) and

land and ocean averages. Global annual changes in low cloud cover (_d_.CC) and liquid water path

(ALWP) between present-day and pre-industrial emissions are also given.

Experiment AIE (W m -2) ALCC (%) ALWP (g m 2)

Land Ocean NH SH Global

CTRL-R -3.13 -1.31 -2.56 -1.09 -1.82 0.15 -1.10

NEWCLD-R -2.39 -1.22 -1.82 -1.27 -1.55 0.22 -0.30

NEWCLD-M-7.5 -7.83 -2.99 -6.16 -2.56 4.36 1.18 7.80

NEWCLD-M-5.0 -2.91 -1.42 -2.39 -1.29 -1.84 0.33 0.90

NEWCLD-M-5.0-P -4.08 -1.75 -3.41 -1.41 -2.41 0.56 1.90
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Table 5. Globally averaged July means for reff, No, A-reff correlation, and column cloud

susceptibility using the constant LWP assumption (CSI) and column cloud susceptibility using the

regression method (CS2) i.e. when LWP varies. Model results are compared to observations from

Han et al. (1994; 1998a, b; 2000). Also given are the AIE annual means.

Model/Obs. AIE reff Nc A-reff

(V( (_m) (106

m -2) cm -2)

CSI CS2

(10 .8 cm 2) (10 -s cm 2)

'r<15 z>15 x<15 x>15 'r<15 x>15

NEWCLD-R -1.55 9.79 4.97

CTRL-R -1.82 10.76 3.96

NEWCLD-M-5.0 -1.84 11.26 2.07

NEWCLD-M-5.0-P -2.41 6.75 6.03

NEWCLD-M-7.5 -4.36 10.36 4.68

0.33 0.09 7.84 4 18 0.32 0.75

0.31 0.07 8.75 6.05 0.76 0.77

0.36 0.15 14.13 13.63 4.74 0.10

0.36 0.12 5.00 3.19 1.09 0.17

0.34 0.03 11.98 6.35 3.01 0.40

Obs. 11.44 4.43 0.30 -0.19 8.29 2.70 3.19 1.15
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List of Figures

Fig. 1: Global distribution of sulfate, organic matter (OM) and sea-salt mass (lag m "3) in model layer

1 for January and July for the NEWCLD-M-5.0-P model run. Global annual averages are

listed on the right hand side.

Fig.2: Vertical distribution of sulfate (10 6 kg), organic matter (OM) (10 6 kg) and sea-salt (10 7 kg)

mass for January and July for the NEWCLD-M-5.0-P model run.

Fig.3: Comparison between model simulated sodium content (obtained from lhe sea-salt

concentrations) and observations at five locations for January and July for the NEWCLD-M-

5.0-P model run.

Fig.4: Regression of the cloud droplet number concentration (N) (cm "3) predicted from the

NEWCLD-M-5.0-P run versus the simulated sulfate mass (lag m 3) for July. Also shown is

the regression from observations at 3 land and 3 ocean locations. Individual regressions as

well as the regressions for all locations for both model and observations are given. The

dashed and solid lines are the regression curves for model and observations, respectively.

Fig.5: Global distribution of the aerosol indirect effect (ALE) (W m 2) for the 5 model runs listed in

Table 2. Global annual averages are listed on the right hand side.

Fig.6: Global distribution of model simulated cloud droplet effective radii reff (lam) and column

number concentration (No) (10 6 cm "2) for the 5 model runs listed in Table 2. Global averages

are listed on the right hand side. Color bar chosen is similar to that shown in Han et al.

(1994, 1998b).

Fig.7: Global distribution of the correlation coefficient between cloud albedo and cloud droplet

effective radii (rcff) for optically thin ('r < 15) and thick ('t > 15) clouds for July for the 5
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model runs listed in Table 2. Global averages are listed on the right hand side. Color bar

chosen is similar to that shown in Hart et al. (1998a).

Fig.8: Global distribution of the column cloud susceptibility (10 -g cm 2) calculated using the constant

liquid water content (LWP) assumption, referred to as CS_, and under varying LWP

assumption, referred to as CS2, for optically thin ('r < 15) clouds in July for the 5 model runs

listed in Table 2. Color bar chosen is similar to that shown in Hart et al. (2000).

Fig.9: Model simulations of the aerosol indirect effect (W m 2) versus the ratio of present-day (PD)

to pre-industrial (PI)sulfate aerosol burden for the 5 model runs listed in Table 2 and an

additional sensitivity run (same as the CTRL-R run but with a 50% reduction in the PI

organic aerosol burden).
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Fig.l" Global distribution of sulfate, organic matter (OM) and sea-salt mass (_g m 3) in model layer

1 for January and July for the NEWCLD-M-5.0-P model run. Global annual averages are

listed on the fight hand side.



Sulfate

132

224_----

316

408

499

591

683

g75

867

959

)M

40 I

132 --

224 --

316 --

408 --

499 -- _

591 --

683-

775 --

867 --

959

Sea-salt
40

JAN

JAN

132

224

316

408

499 --

591

683

77(

86'

95_990 %0

0 1 2 5 i0 15 20 30 4063.1

40--

132

Sulfate JUL

499

591

683

775

867

959'

OM

40_ I132

224 F

316 F

408' -

499 -

591 L

683 --

775 --

887 [-

959 -- ....

Sea-salt

401 I

JUL

JUL

I I

1321--

224[---

316F--

4991

5911

6831

775J

867]

95-990 0 90

0 i 2 5 lO 15 20 30 4049.0

Fig.2: Vertical distribution of sulfate (10 6 kg), organic matter (OM) (10 6 kg) and sea-salt (10 7 kg)

mass for January and July for the NEWCLD-M-5.0-P model run.
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Fig.4: Regression of the cloud droplet number concentration (N) (cm 3) predicted from the

NEWCLD-M-5.0-P run versus the simulated sulfate mass (lag m -3) for July. Also shown is

the regression from observations at 3 land and 3 ocean locations. Individual regressions as

well as the regressions for all locations for both model and observations are given. The

dashed and solid lines are the regression curves for model and observations, respectively.



CTRL-R AIE - !.82

NEWCLD-R AIE - 1.55
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Fig.5: Global distribution of the aerosol indirect effect (AIE) (W m 2) for the 5 model runs listed in

Table 2. Global annual averages are listed on the fight hand side.
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CTRL-R r,rt i0.76 CTRL-R Nc 3.96

NEWCLD-R r,rr 9.79 NEWCLD-R Nc 4.97

NEWCLD-M-7.5 rerf 10.36 NEWCLD-M-7.5 N¢ 4.68

NEWCLD-M-5.0 r,tf 11.26 NEWCLD-M-5.0 N+ 2.07
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Fig.6: Global distribution of model simulated cloud droplet effective radii reff (I.tm) and column

number concentration (No) (106 cm -2) for the 5 model runs listed in Table 2. Global averages

are listed on the fight hand side. Color bar chosen is similar to that shown in Hart et al.

(1994, 1998b).
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Fig.7: Global distribution of the correlation coefficient between cloud albedo and cloud droplet

effective radii (r_rf) for optically thin ('_ < 15) and thick ('_ > 15) clouds for July for the 5

model runs listed in Table 2. Global averages are listed on the fight hand side. Color bar

chosen is similar to that shown in Han et al. (1998a).



CTRL-R CS_ 8.75 CTRL-R CS2 0.76

NEWCLD-R CSI 7.84 NEWCLD-R CS2 0.32

NEWCLD-M-7.5 CS_ 11.98 NEWCLD-M-7.5 CSz 3.01
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Fig.8: Global distribution of the column cloud susceptibility (10 -s cm 2) calculated using the constant

liquid water content (LWP) assumption, referred to as CS_, and under varying LWP

assumption, referred to as CS2, for optically thin (_ _< 15) clouds in July for the 5 model runs

listed in Table 2. Color bar chosen is similar to that shown in Han et al. (2000).
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Fig.9: Model simulations of the aerosol indirect effect (W m z) versus the ratio of present-day (PD)

to pre-industrial (PI) sulfate aerosol burden for the 5 model runs listed in Table 2 and an

additional sensitivity run (same as the CTRL-R run but with a 50% reduction in the PI

organic aerosol burden).


