GCMA: Guaranteed Contiguous Memory Allocator

SeongJae Park
Seoul National University

sjpark@dcslab.snu.ac.kr

ABSTRACT

While demand for physically contiguous memory allocation
is still alive, especially in embedded system, existing solu-
tions are insufficient. The most adapted solution is reser-
vation technique. Though it serves allocation well, it could
severely degrade memory utilization. There are hardware
solutions like Scatter/Gather DMA and IOMMU. However,
cost of these additional hardware is too excessive for low-end
devices. CMA is a software solution of Linux that aims to
solve not only allocation but also memory utilization prob-
lem. However, in real environment, CMA could incur un-
predictably slow latency and could often fail to allocate con-
tiguous memory due to its complex design.

We introduce a new solution for the above problem, GCMA
(Guaranteed Contiguous Memory Allocator). It guarantees
not only memory space efficiency but also fast latency and
success by using reservation technique and letting only im-
mediately discardable to use the area efficiently. Our eval-
uation on Raspberry Pi 2 shows 15 to 130 times faster and
more predictable allocation latency without system perfor-
mance degradation compared to CMA.

1. INTRODUCTION

Because resource requirement of processes is not predictable,
keeping high resource availability with high utilization has
always been one of the hardest challenges. Memory manage-
ment has not been exception either. Especially, large mem-
ory allocation was pretty much impossible because of the
fragmentation problem [7]. The problem seemed to be com-
pletely solved with the introduction of virtual memory [3].
In real world, however, the demand for physically contiguous
memory still exists [5, 6, 13]. Typical examples are various
embedded devices such as video codec or camera which re-
quires large buffers.

A traditional solution for the problem was memory reser-
vation technique. The technique reserves sufficient amount
of contiguous memory during boot time and use the area
only for contiguous memory allocation. This technique guar-
antees fast and successful allocation but could degrade mem-
ory space efficiency if contiguous memory allocation does not
use whole reserved area efficiently. There are alternative so-
lutions using additional hardware like Scatter/Gather DMA
or IOMMU. They solve the problem by helping devices to
access discontiguous memory as if it was contiguous, like vir-
tual memory system does to processes. However, additional
hardware can be too expensive to low-end devices.

EWiLi’15, October 8th, 2015, Amsterdam, The Netherlands.
Copyright retained by the authors.

Minchan Kim
. LG Electronics
minchan.kim@Ige.com

Heon Y. Yeom
Seoul National University

yeom@snu.ac.kr

Baseline == CMA

2 10 -
S 08

2 06

S 04

% .

=

£ 02

=

E 00

O 0 1,000 2,000 3,000 4,000 5,000

Latency (milli-seconds)

Figure 1: CDF of a photo shot on Raspberry pi 2
under background task.

Linux kernel has a subsystem for the problem, namely,
CMA (Contiguous Memory Allocator) [13]. It basically fol-
lows the reservation technique and boosts memory efficiency
by allowing the reserved area to be used by other mowvable
pages. At the same time, it keeps contiguous memory allo-
cation be available by migrating movable pages out of the
reserved area if those movable pages are required for contigu-
ous memory allocation. However, CMA is not very popular
because memory migration usually takes a long time and
could even fail from time to time. Figure 1 shows CDF of
latency for a photo shot on Raspberry Pi 2 [19] under mem-
ory intensive background task, which is a realistic workload.
Baseline means Raspberry Pi 2 using the reservation tech-
nique and CMA means modified to use CMA as alternative.
Maximum latency for a photo shot using CMA is about 9.8
seconds while it is 1.6 seconds with reservation technique.
Normally, 9.8 seconds for a photo shot is not acceptable
even in the worst case. As a result, most system uses the
reservation technique or additional hardware as a last resort
despite expensive cost.

To this end, we propose a new contiguous memory allo-
cator subsystem, GCMA (Guaranteed Contiguous Memory
Allocator) [14], that guarantees not only memory space effi-
ciency but also fast response time and successful allocation
by carefully selecting additional clients for the reserved area
as appropriate ones only. In this paper, we introduce the
idea, design and evaluation results of GCMA implementa-
tion. GCMA on Raspberry Pi 2 shows 15 to 130 times faster
and much predictable response time of contiguous pages al-
location without system performance degradation compared
to CMA, and zero overhead on latency of a photo shot under
background task compared to the reservation technique.

2. BACKGROUND

2.1 Virtual Memory Management

Virtual memory [3] system gives a process an illusion that it
owns entire contiguous memory space by letting the process
use logical address which can be later mapped into discon-
tiguous physical memory space. Because processes access
memory using only logical address, system can easily allo-
cate large contiguous memory to processes without fragmen-
tation problem. However, giving every process the illusion
cannot be done easily in reality because physical memory in
system is usually smaller than the total sum of each process’s
illusion memory space. To deal with this problem, kernel
conceptually expands memory using another large storage
like hard disk drive or SSD. However, because large stor-
ages are usually much slower than memory, only pages that
will not be accessed soon should be in the storage. When
memory is full and a process requires one more page, kernel
moves content of a page that is not expected to be accessed
soon into the storage and gives the page to the process.

In detail, pages of a process can be classified into 2 types,
file-backed page and anonymous page. File-backed page
have content of a file that are cached in memory via page
cache [15] for fast I/O. The page can be freed after syn-
chronizing their content with the backing file. If the page
is already synchronized with, it can be freed immediately.
Anonymous page is a page that has no backing file. A page
allocated from heap using malloc() can be an example. Be-
cause anonymous page has no backing file, it cannot be freed
before its content is stored safely elsewhere. For this rea-
son, system provides backing storage for anonymous pages,
namely, swap device.

2.2 Contiguous Memory Allocation
Because MMU, a hardware unit that translates logical memory
address into physical location of the memory, is sitting be-
hind CPU, devices that communicate with system memory
directly without CPU have to deal with physical memory
address rather than taking advantage of the virtual mem-
ory. If the device, for example, requires large memory for an
image processing buffer, the buffer should be contiguous in
physical address space. However, allocating physically con-
tiguous memory is hard and cannot always be guaranteed
due to fragmentation problem.

Some devices support hardware facilities that are helpful

for the problem, such as Scatter/Gather DMA or IOMMU [13].

Scatter/Gather DMA can gather buffer from scattered mem-
ory regions. IOMMU provides contiguous memory address
space illusion to devices similar as MMU. However, neither
Scatter/Gather CMA nor IOMMU is free. Supporting them
requires additional price and energy, which can be critical in
low-end device market unlike high-end market. Moreover, it
seems that the trend would not disappear in the near fu-
ture due to advance of IoT paradigm and emerging low-end
smartphone markets. Low-end devices market is not the
only field that could utilize efficient contiguous memory al-
location. One good example is huge page [1] management.
Because huge page could severely reduce TLB overflow, ef-
ficient huge page management is important for system with
memory intensive workloads like high performance comput-
ing area. In this case, neither Scatter/Gather DMA nor
IOMMU can be a solution because they do not guarantee

real physically contiguous memory. This paper focuses on
the low-end device problem, though.

Linux kernel already provides a software solution called
CMA [13]. CMA, which is based on reservation technique,
applies the basic concept of virtual memory that pages in
virtual memory can move to any other place in physical
memory. It reserves memory for contiguous memory alloca-
tion during boot time as reservation technique does. In the
meantime, CMA lets movable pages to reside in the reserved
area to keep memory utilization. If contiguous memory al-
location is issued, appropriate movable pages are migrated
out from the reserved area and the allocation is done using
the freed area. However, unlike our hope, page migration is
a pretty complex process. First of all, it should do content
copying and re-arranging of mapping between logical address
and physical address. Second, there could be a thread hold-
ing the movable page in kernel context. Because the thread
is already holding the page, it cannot be migrated until the
holding thread releases it. In consequence, CMA guarantees
neither fast latency nor success. Another solution for fast al-
location latency based on CMA idea was proposed by Jeong
et al.[5, 6]. It achieves the goal by restricting use of reserved
area as evicted clean file cache rather than movable pages.
Because anonymous pages cannot be in the reserved area,
the memory utilization could suffer under non file intensive
workload despite its sufficiently fast latency.

3. GCMA: GUARANTEED CMA

3.1 Mistake on Design of CMA

In conceptual level, basic design of CMA is as below:

1. Reserve contiguous memory space and let contiguous
memory allocation to be primary client of the area.

2. Share the reserved area with secondary clients;

3. Reclaim memory used by secondary clients whenever
a primary client requests.

In detail, CMA chooses movable pages as its secondary
client while using page migration as a reclamation method.
Actually, basic design of CMA has no problem; the prob-
lem of CMA is that movable pages are actually not an ap-
propriate candidate for secondary client. Because of many
limitations of page migration described in Section 2.2, mov-
able pages cannot easily give up the reserved area. That’s
why CMA suffers from slow latency and sometimes even
fails. This problem can be avoided by selecting appropriate
candidates instead of movable pages and managing them ef-
fectively.

3.2 Appropriate Secondary Clients

We have seen a bad candidate for secondary clients, mov-
able pages. The problem is that movable pages cannot be
freed for the primary client (contiguous memory allocation)
immediately because of high cost and possible failures of
page migration. Therefore, appropriate secondary clients
should satisfy the following three requirements. First of all,
it should be freed with an affordable cost. Second, it should
not be accessed frequently because the area could be sud-
denly discarded for primary client. Finally, it should be out
of kernel scope to avoid pinning of the page to other threads.

| Process |
¥ Normal Allocation |, Contiguous Allocation

System Memory GCMA —>| Swap Device |
_ Reserved
Reclaim / Swap _ » Area _pl File |

Figure 2: GCMA workflow.

For these purposes, final chance cache for clean pages
that evicting from page cache and swapped out pages from
system memory (Section 2.1) are good candidates. Evict-
ing clean pages can be freed immediately without any cost.
Swapping pages can be freed just after write-back. Those
pages would not be accessed soon because they are chosen
as reclaim target which kernel expected so. They are out
of kernel scope because they are already evicted or swapped
out. Additionally, system can keep high memory utilization
because the final chance cache can utilize not only file-backed
pages, but also anonymous pages. As consequence, GCMA
can be designed as a contiguous memory allocator using final
chance cache for evicting clean pages and swapping pages as
its secondary clients. In other words, GCMA carries out
two missions. A contiguous memory allocator and a tem-
poral shelter for evicting clean pages and swapping pages is
that.

3.3 Limitation and Optimization

Although secondary clients of GCMA are effective enough
for contiguous memory allocation, it could have adverse ef-
fect on system performance compared to CMA. While mov-
able pages, the secondary client of CMA, would be located
in reserved area with only slight overhead, secondary clients
of GCMA requires reclaim overhead before they are located
in reserved area and it would consume processing power.
Moreover, swapping pages would require write-back to swap
device. It could consume I/O resource as well.

To avoid the limitation, GCMA utilizes the secondary
client as write-through mode cache [8]. With write-through
mode, content of pages being swapped out will be written
to GCMA reserved area and backing swap device simultane-
ously. After that, GCMA can discard the page when neces-
sary without incurring additional overhead because the con-
tent is already in swap device. Though using write-through
mode could enhance GCMA latency, system performance
could be degraded because it would consume much I/0 re-
source. To minimize the effect, we suggest constructing the
swap device with a compressed memory block device[4, 10],
which could enhance write-through speed and swapping per-
formance. We recommend Zram[10] as a swap device, which
is an official recommendation from Google [17] for Android
devices with low memory. After those optimization applied,
GCMA proved it has no performance degradation at all from
our evaluation owing to simple design and efficient imple-
mentation. Detailed evaluation setup and results are de-
scribed in Section 5.

4. IMPLEMENTATION

To minimize migration effort of CMA users, GCMA shares
CMA interface. Therefore, CMA client code can use GCMA
alternatively by changing only one function call code from
its initialization or turning on a kernel configuration option

| Cleancache " Frontswap I | CMA Interface
| Dmem Interface |<—

GCMA Logic | | CMA Logic
I Dmem Logic I

Reserved Area

Figure 3: GCMA overall architecture.

without any code change.

GCMA is implemented as a small independent Linux ker-
nel module to keep code simple rather than increasing com-
prehensive hooks in kernel. Only a few lines of CMA code
have been modified for interface integration and experimen-
tal features for evaluation. As evidence, GCMA implemen-
tation has been easily ported to various Linux versions, which
have always been done in few minutes. In total, our imple-
mentation uses only about 1,300 lines of code for main im-
plementation and only about 200 lines of code for changes to
CMA. GCMA is published as a free / open source software
under GPL license at https://github.com/sjp38/linux.
gcma/releases/tag/gema/rfc/v2.

4.1 Secondary Client Implementation

Final chance cache for evicting clean pages and swapping
pages can make system performance improvements. The
fact has been well known in the Linux kernel community and
facilities for the chance, namely, Cleancache and Frontswap [2]
have been proposed by the community. As those names im-
ply, they are final chance cache for evicting clean pages and
swapping pages. To encourage more flexible system configu-
ration, community implemented only front-end and interface
of them in Linux kernel and left back-end implementation to
other modules. Once the back-end implementation has been
registered, page cache and swap layer tries to put evicting
clean pages and swapping pages inside that back-end imple-
mentation as soon as the victim is selected. If putting those
pages succeeds, future reference of those pages will be read
back from that back-end implementation which would be
much faster than file or swap device. Otherwise, the victim
would be pushed back to the file or swap device. Because
the design fits perfectly with the secondary clients of GCMA,
GCMA uses it by implementing those back-ends rather than
inventing the interface again.

Back-end for Cleancache and Frontswap has similar re-
quirements because they are just software caches. To remove
redundancy, we implemented another abstraction for them,
namely, dmem (discardable memory). It is a key-value stor-
age that any entry can be suddenly evicted. It uses a hash
table to keep key-value entry and constructs buckets of the
table with red-black tree. It also tracks LRU list of entries
and evicts bunch of LRU entries if the storage becomes too
narrow as normal caches do. GCMA implements Cleancache
and Frontswap back-ends simply using the dmem by giving
its reserved area as an area for values of key-value pairs and
let Cleancache and Frontswap use it with information for
evicting clean pages and swapping pages as a key and con-
tent of the page as a value. When GCMA needs a page used
by Cleancache or Frontswap for contiguous memory alloca-
tion, it evicts the page associated entry with dmem interface.
Figure 3 depicts overall architecture of GCMA.

= CMA == GCMA
1,800

1,200

600

o & —
g v *

0 10,000 20,000 30,000

L 2

Latency(milli-seconds)

Number of requested contiguous pages

Figure 4: Averaged allocation latency.

5. EVALUATION

5.1 Evaluation Environments

Component | Specification

Processors | 900 MHz quad-core ARM Cortex-A7
Memory 1 GiB LPDDR2 SDRAM

Storage Class 10 SanDisk 16 GiB microSD card

Table 1: Raspberry Pi 2 Model B specifications.

We use Raspberry Pi 2 Model B single-board computer [19]

as our evaluation environment. It is one of the most popular
low-end mini computers in the world. Detailed specification
is described in Table 1.

Specification

Linux rpi-v3.18.11 + 100 MiB swap +

256 MiB reserved area

CMA Linux rpi-v3.18.11 + 100 MiB swap +

256 MiB CMA area

Linux rpi-v3.18.11 + 100 MiB Zram swap +
256 MiB GCMA area

Name
Baseline

GCMA

Table 2: Configurations for evaluations.

Detailed system configurations we use in evaluations is
described in Table 2. Because Raspberry Pi development
team provides forked Linux kernel optimized for Raspberry
Pi via Github, we use the kernel rather than vanilla kernel.
The kernel we selected is based on Linux v3.18.11. We
represent the kernel as Linux rpi-v3.18.11. Raspberry
Pi has used reservation technique for contiguous memory
allocation from the beginning. After Linux implemented
CMA, Raspberry Pi started to support CMA from Novem-
ber 2012 [16]. However, Raspberry Pi development team
has found CMA problem and decided to support CMA in
unofficial way only [12]. As a result, Raspberry Pi default
configuration is reservation technique yet.

Our evaluation focus on the following three factors: First,
latency of CMA and GCMA. Second, effect of CMA and
GCMA on areal workload, Raspberry Pi Camera [18]. Third,
effect of CMA and GCMA to system performance.

5.2 Latency of Contiguous Memory Allocation
To compare contiguous memory allocation latency of CMA
and GCMA, we issue contiguous memory requests with vary-
ing allocation sizes. The first request is for 64 pages (256

KiB) and the size is doubled for subsequent requests until
the last request is for 32,768 pages (128 MiB). We give 2 sec-
onds interval between each allocation to minimize any effect
to other processes and the system. We repeat this 30 times
with both CMA and GCMA configuration.

The average latencies of CMA and GCMA are shown in
Figure 4. GCMA shows 14.89x to 129.41x faster latency
compared to CMA. Moreover, CMA failed once for 32,768
pages allocation while GCMA did not even though the work-
load has run with no background jobs. Even without any
background job, CMA could meet secondary client page that
need to be moved out because any movable page can be lo-
cated inside CMA reserved area. In the case, moving the
page out would consume lots of time and could fail in worst
case. The worst case actually happened once during 32,768
pages allocation. On the other hand, because only evict-
ing clean pages and swapping pages can be located inside
reserved area of GCMA, GCMA wouldn’t need to discard
pages out unless memory intensive background workload ex-
ists. Moreover, CMA code is much bigger and slower than
GCMA because CMA has to consider complicate situations
of movable pages and migration while GCMA needs to con-
sider only dmem. That’s why GCMA shows much lower
latency than CMA even without any background workload.

5.3 Distribution of Latencies

For predictability comparison between CMA and GCMA, we
do the contiguous memory allocation workload again with
only 1,024 contiguous pages requests and draw CDF of la-
tencies. In this evaluation, we first do the workload without
any background job to show latency of CMA and GCMA
itself without any interference. After that, we do the work-
load with a background job to show latencies under realistic
memory stress. For the background job, we use Blogbench
benchmark. The benchmark is a portable file system bench-
mark that simulates a real-world busy blog server.

The result is shown in Figure 5. In ideal case without
any other background jobs, GCMA latencies mostly lie un-
der 1 millisecond while CMA latencies are anywhere from
4 milliseconds to even more than 100 milliseconds. Under
Blogbench as a background job, GCMA latencies mostly lie
under 2 milliseconds while CMA latencies lie from 4 mil-
liseconds to even more than 4 seconds. The result says that
GCMA latency is not only fast but also predictable and in-
sensitive to background stress compared to CMA.

Even without a background workload, CMA shows much
dispersed latency than GCMA because CMA is slower than
GCMA basically due to complexity and has more chance of
secondary client page clean-up. With a background work-
load, CMA could meet more secondary client pages to clean-
up because any movable page of background job can be in-
side CMA reserved area. In contrast, because only evicting
clean pages and swapping pages can be inserted to GCMA
reserved area, GCMA would not meet secondary client pages
to clean-up unless the background job has sufficiently large
memory footprint.

5.4 Raspberry Pi Camera Latency

Though result from Section 5.3 is impressive, it shows only
a potential of GCMA, not any performance effect on a real
workload. That’s why we evaluate latency of photo shots
using Raspberry Pi Camera in this section.

CMA —GCMA

1.0
0.8
0.6
0.4
0.2
0.0

Cumulative Probability

Latency (milli-seconds)
(a) Without Blogbench

Cumulative Probability

1 10 100 1,000

CMA =—GCMA

1.0
0.8
0.6
0.4
0.2
0.0
1 10 100 1,000 10,000
Latency (milli-seconds)
(b) With Blogbench

Figure 5: CDF of 1,024 contiguous pages allocation latency.

For a photo shot, Raspberry Pi 2 usually allocates 64 con-
tiguous pages 25 times asynchronously using a kernel thread
and keeps the allocated memory without release as long as
possible [16]. The maintained memory is used for subse-
quent photo shots. Therefore, only the first photo shot is
affected from contiguous memory allocation. For convenient
evaluation, we configure the system to release every memory
allocated for camera as soon as possible to make subsequent
photo shots to be also affected.

We measure latency of each photo shot using Raspberry
Pi Camera 30 times under every configuration with 10 sec-
onds interval between each shot to eliminate any effect from
previous shots. Each configuration uses Reservation tech-
nique, CMA, and GCMA for the photo shot. To explicitly
show the effect of contiguous memory allocation, we mea-
sure contiguous memory allocation latencies caused for each
photo shot under CMA and GCMA.

Without a background job, every configuration shows sim-
ilar photo shot latency of about 0.9 seconds. There is no
difference between CMA and GCMA though GCMA shows
much faster latency than CMA from Section 5.3. There
are two reasons behind this. First, though CMA is about
15 times faster than CMA for each allocation required by
the camera, absolute time for the allocation is only 1 mil-
lisecond for CMA, 69 micro-seconds for GCMA. Because a
photo shot issues the allocation only 25 times, the allocation
latency comprises only a small portion of the entire photo
shot latency. Second, CMA can do allocation almost with-
out any page migration if there are no background jobs and
the number of required pages is not many. In other words,
the environment is too optimal.

To show real latency under a realistic environment, we
do the camera workload with Blogbench in background as
we did in Section 5.3 for a simulation of a realistic back-
ground workload. To minimize scheduling effect on latency,
we set priority of photo shot process higher than that of
background workload using nice [9] command.

The result is described in Figure 6. CMA shows much
slower camera shot latency while GCMA shows similar la-
tency with Baseline using Reservation technique. In the
worst case, CMA even requires about 9.8 seconds to do a
photo shot while GCMA requires 1.04 seconds in the worst
case. Contiguous memory allocation latencies also show sim-
ilar but more dramatic result. Latencies of CMA lie between
4 milliseconds and 10 seconds while GCMA’’s latencies lie be-
tween 750 micro-seconds and 3.32 milliseconds. This result
means contiguous memory allocation using CMA produces

extremely high and unpredictable latency under a realistic
situation. With this evaluation result, it’s not surprising
that CMA on Raspberry Pi is not officially supported [12].

5.5 Effect on System Performance

Baseline | CMA GCMA
lat_ctx(usec) 147.36 143.525 | 142.93
bw_file_rd(MiB/s) 511.77 517.6 519.73
bw_mem rd(MiB/s) | 1426.33 | 1438.33 | 1434.5
bw_mem_wr(MiB/s) | 696.5 | 701.25 | 699.966

Table 3: LMbench measurement result.

Finally, to show performance effect of CMA and GCMA
on system, we measure system performance under every con-
figuration using two benchmarks. First, we run a micro-
benchmark called Imbench [11], 3 times and get an average
of results to show how performance of OS primitives is af-
fected by CMA and GCMA.

The result is depicted in Table 3. Each line shows an
averaged measurement of context switch latency, file read
bandwidth, memory read bandwidth, and memory write
bandwidth. CMA and GCMA tend to show improved per-
formance compared to Baseline because of memory utiliza-
tion though the difference is not so big. Differences between
CMA and GCMA are just in margin of error.

To show performance under realistic workload, we run
Blogbench job 3 times and measure average score normal-
ized by Baseline configuration result. At the same time,
we continuously issue photo shots on the background with
10 seconds interval as described in Section 5.4 to simulate
realistic contiguous memory allocation stress on system.

The result is shown in Figure 7. Writes / reads perfor-
mances with background job are represented as Writes /
cam and Reads / cam. CMA and GCMA show enhanced
performance for every case though the enhancements are
not remarkably big. Those performance gains came from
enlarged memory space that are rescued from reservation.
GCMA shows even better enhancement than CMA owing to
the light overhead of reserved area management that bene-
fited from its simple design and characteristic of secondary
clients. Moreover, GCMA get less performance degradation
from background contiguous memory allocations than CMA
owing to its fast latency. As a summary, GCMA is not only
faster than CMA but also more helpful for system perfor-
mance.

Baseline ==——=CMA =——GCMA

Cumulative Probability

CMA =— GCMA

1.0
0.8
0.6
0.4
0.2
0.0
1 10 100 1,000 10,000
Latency (milli-seconds)

(b) Contiguous memory allocation

Figure 6: CDF of photo shot / following memory allocation latencies under Blogbench.

2 1.0 J
§ 0.8
S 06
m 0.4
(<% K
>
£ 02 ’
=2
E 0.0
O 0 1,000 2,000 3,000 4,000 5,000
Latency (milli-seconds)
(a) Photo shot
CMA EBGCMA
1.1
£ 1.0
2
T 09
N
=
E 08
o
Z
0.7

Writes Reads Writes / cam Reads / cam

Figure 7: Blogbench performance with CMA and
GCMA.

6. CONCLUSION

Physically contiguous memory allocation is still a big prob-
lem for low-end embedded devices. For example, Raspberry
Pi, a popular credit card sized computer, still uses reser-
vation technique despite of low memory utilization because
hardware solutions such as Scatter/Gather DMA or IOMMU
were too expensive and a software solution, CMA, was not
effective.

We introduced GCMA, a contiguous memory allocator
that guarantees fast latency, successful allocation, and rea-
sonable memory space efficiency. It achieves those goals by
using the reservation technique and effectively utilizing the
reserved area. From our evaluation on Raspberry Pi 2, while
CMA increases latency of a photo shot on Raspberry Pi from
1 second to 9 seconds in the worst case, GCMA shows no ad-
ditional latency compared to the reservation technique. Our
evaluation also shows that GCMA not only outperforms la-
tency but also improves system performance as CMA does.

7. ACKNOWLEDGEMENTS

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIP) (NRF-2015R1A2A2A01005995).

8. REFERENCES
[1] A. Arcangeli. Transparent hugepage support. K VM
Forum, 2010.
[2] J. Corbet. Cleancache and Frontswap.
http://lun.net/Articles/386090/, 2010.
[3] P. Denning. Before memory was virtual. 1997.

[4] M. Freedman. The compression cache: virtual memory
compression for handheld computers. 2000.

[5] J. Jeong, H. Kim, J. Hwang, J. Lee, and S. Maeng.
DaaC: device-reserved memory as an eviction-based
file cache. In in Proc. 21th Int. Conf. Compilers,
architectures and synthesis for embedded systems, page
191. ACM Press, Oct. 2012.

[6] J. Jeong, H. Kim, J. Hwang, J. Lee, and S. Maeng.
Rigorous rental memory management for embedded
systems. ACM Transactions on Embedded Computing
Systems, 12(1s):1, Mar. 2013.

[7] M. S. Johnstone and P. R. Wilson. The memory
fragmentation problem. ACM SIGPLAN Notices,
34(3):26-36, Mar. 1999.

[8] N. P. Jouppi. Cache write policies and performance. In
Proceedings of the 20th annual international
symposium on Computer architecture - ISCA 93,
volume 21, pages 191-201, New York, New York,
USA, June 1993. ACM Press.

[9] D. MacKenzie. nice. Linux man page, 2010.

[10] D. Magenheimer. In kernel memory compression.
http://lun.net/Articles/545244/, 2013.

[11] L. McVoy and C. Staelin. Imbench: Portable Tools for
Performance Analysis. USENIX annual technical
conference, 1996.

[12] msperl. Rpiconfig. hitp://elinuz.org/RPiconfig, 2014.

[13] M. Nazarewicz. Contiguous Memory Allocator. In
Proceedings of LinuzCon Europe 2012.
LinuxFoundation, 2012.

[14] S. Park. introduce gcma.
http://lun.net/Articles/619865/, 2014.

[15] A.-W. Robert Love. The Buffer Cache. In
Linuz-Kernel Manual: Guidelines for the Design and
Implementation of Kernel 2.6, page 348. 2005.

[16] T. C. Ruth Suehle. Automatically Share Memory. In
Raspberry Pi Hacks: Tips € Tools for Making Things
with the Inexpensive Linuxz Computer, page 95. 2013.

[17] A. Team. Low RAM.
http://s.android.com/devices/tech/low-ram.html, 2013.

[18] E. Upton. Camera board available for sale!
https://www.raspberrypi.org/camera-board-available-
for-sale/,

2013.

[19] E. Upton. Raspberry Pi 2 on sale now at $35.
https://www.raspberrypi.org/raspberry-pi-2-on-sale/,
2015.

