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Recently, many discoveries have elucidated the cellular and molecular diversity in the

leukemic microenvironment and improved our knowledge regarding their complex nature.

This has allowed the development of new therapeutic strategies against leukemia.

Advances in biotechnology and the current understanding of T cell-engineering have

led to new approaches in this fight, thus improving cell-mediated immune response

against cancer. However, most of the investigations focus only on conventional cytotoxic

cells, while ignoring the potential of unconventional T cells that until now have been little

studied. gd T cells are a unique lymphocyte subpopulation that has an extensive repertoire

of tumor sensing and may have new immunotherapeutic applications in a wide range of

tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression,

the secretion of antitumor mediators and high functional plasticity are hallmarks of gd T

cells, and are ones that make them a promising alternative in the field of cell therapy.

Despite this situation, in particular cases, the leukemic microenvironment can adopt

strategies to circumvent the antitumor response of these lymphocytes, causing their

exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk

can improve their capabilities and clinical applications and can make them key

components in new therapeutic antileukemic approaches. In this review, we highlight

several characteristics of gd T cells and their interactions in leukemia. Furthermore, we

explore strategies for maximizing their antitumor functions, aiming to illustrate the findings

destined for a better mobilization of gd T cells against the tumor. Finally, we outline our

perspectives on their therapeutic applicability and indicate outstanding issues for future

basic and clinical leukemia research, in the hope of contributing to the advancement of

studies on gd T cells in cancer immunotherapy.
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INTRODUCTION

The leukemic microenvironment is composed of a complex and

distinct network of factors that strongly support the growth and
clonal dissemination of leukemic cells (LCs), thus impacting the

patient’s clinical outcome (1–4). In this context, whereas

conventional T cells (CD4+ or CD8+) and natural killer cells

(NK) have been reported as “cytotoxicity mediators” capable of

inducing tumor regression in vivo and controlling leukemic

proliferation, several reports pointed to the fact that other T
cells considered “unconventional” also have a high potential for

coordinating the immune system and play complex and

promising roles in cancer immunity (5–9). These antitumor

responses are generally mediated by individual molecules with

high or low diversity, such as the alpha-beta (ab) or gamma-

delta (gd) T cell receptor (TCR) (10, 11).

In contrast to the ab TCR, which is highly reactive to
polymorphic molecules of the major histocompatibility

complex (MHC), gd TCR-expressing T cells perform their

functions through recognition of antigens (Ags) presented by

several monomorphic molecules, which in turn, promote a

strong, rapid and effective response (12–14). In addition to

being evolutionarily conserved, gd T cells are important
effectors, since they link innate and adaptive immune

responses (11, 15, 16), and are highlighted as promising targets

in cancer immunotherapy, especially for leukemias. These

hematological malignancies are highly heterogeneous and are

defined based on blast count, maturation stage and flow

cytometry immunophenotyping, which allows them to be

generally classified in acute lymphoblastic leukemia (ALL),
chronic lymphocytic leukemia (CLL), acute myeloid leukemia

(AML) and chronic myeloid leukemia (CML) (4, 17–23).

A potential therapy against these malignancies may depend on

the mobilization and targeting of effector immune cells capable of

producing antitumor factors and effectively killing LCs in different

compartments with the absence of toxicity or alloreactivity. In this
context, gd T cells have unique attributes that support the

promising development of an off-the-shelf cell therapy, as these

lymphocytes provide a lasting and efficient response through

mechanisms that include a higher cytotoxicity, functional

plasticity, the production of several soluble molecules and

responsiveness independent of MHC/HLA expression (24, 25).
Although the tumor microenvironment (TME) and the adjacent

LCs may develop several strategies to escape from gd T cell-

mediated immune surveillance, ex vivo or in vivo activation, the

expansion and the genetic modification of these lymphocytes may

increase their antileukemic reactivity and overcome suppression

and resistance established by the TME (1, 26).

There is emerging evidence that gd T cells exhibit persistent
antitumor responses in different compartments in patients with

leukemia and preserve healthy tissues; however, the adjacent

mechanisms are still poorly understood (27–31). Therefore, gd T
cells are being translated into several clinical and therapeutic

strategies targeting these hematological malignancies. Herein, we

integrate the current knowledge regarding the diversity of gd T

cells and their associated potential in leukemia immune

surveillance. Several approaches to improve their antitumor

functions allow effective targeting against LCs and, therefore,

will be discussed here. Finally, we emphasize open questions

about gd T cells and their subtypes, and also highlight

their therapeutic applicability against leukemia. A better
understanding of the functional relevance of gd T cells in these

malignancies has important implications, as we may be close to

the unprecedented ascension of T cell-based therapies and their

positioning as key-components for improving immunotherapy

against cancer.

UNTANGLING THE RIDDLE OF gd
T CELL DIVERSITY

gd T cells make up a lymphoid lineage that has relevant functions
in tissues and blood circulation. Their development is regulated

in the thymus, where they undergo maturation in different stages

of thymic ontogeny (32–34). In this process, genetic

rearrangements define the compromise and differentiation of

double-negative thymocytes (CD4- and CD8-) for the T cell

lineage-expressing gd TCR (35–38). Subsequently, these cells
migrate to peripheral blood (PB) and mucosal tissues, where

they play key roles in the host’s immunity as primary effectors in

the response against infections and cancer (15, 39, 40), preceding

the responses of the ab T cell lineage (41).

Currently, four major subtypes of human gd T cells have been

documented, which are defined by the TCR d chain (i.e., Vd1, Vd2,
Vd3 and Vd5) according to the Lefranc & Rabbits’s system

nomenclature (42). Vd1 and Vd2 subtypes are the most

predominant (11, 43–45). Vd3 cells make up the majority of

Vd1-/Vd2- subtypes and are rarely found in PB, although they are

found in large numbers in the liver (46). Vd5 cells also can be found
in PB or tissues, but their functions are not entirely clear (43, 47–

50). Here, we will focus on Vd1, Vg9Vd2 and Vd3 cells that are
primarily thought to be involved in antileukemic responses.

Overall, gd T cells constitute up to 10% of circulating CD3+

cells, though predominate among all tissue-resident T cells (51–

54). Vd1 and Vg9Vd2 subtypes represent ~10% and 90% of blood

gd T cells, respectively (51, 55, 56). While polyclonal Vd1 cells are
distributed throughout tissues, and exhibit adaptive-like
behavior after detection of metabolic Ags and stress-induced

molecules, Vd2 cells predominate in blood and exhibit innate-

like behavior after detecting molecules named phosphoantigens

(pAgs) and other non-peptide antigens (11, 39, 57–59). A minor

subtype of Vd3 cells makes up ~0.2% of total circulating T cells

and recognize CD1d and annexin-A2 (ANX2) (49, 60). In

addition, little-known subtypes include Vd5 cells, which detect
the endothelial protein C receptor (EPCR), and other distinct

clonal populations such as Vd4, Vd6, Vd7 and Vd8 (43, 61–63).

Nonetheless, the enigma of the combinatorial and functional

diversity of gd TCRs has been partly revealed only for the Vd1
and Vg9Vd2 subtypes (Table 1).
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gd T CELLS AND LEUKEMIA: THE
LEUKEMIC MICROENVIRONMENT
MATTERS

Basic scientific discoveries regarding leukemia have revealed that

LCs adopt numerous mechanisms for evading immune

surveillance (1, 76, 77). This cancer cell hallmark involves a

heterogeneous group of components i.e., stromal and/or immune

cells, specific receptors and soluble molecules that are present in
the leukemic microenvironment, and which reprogram the

hematopoietic niche and promote the clonal expansion of LCs

in the bone marrow (BM). The subsequent tumor overload in

this compartment results in the release of LCs into the blood,

constituting two important sites of high leukemic clonal

proliferation (1, 4, 26, 78). This is because LCs can bypass

antitumor responses and, consequently, develop a high
potential for making the environment extremely tolerogenic

(79–81). For this, they adopt intrinsic and extrinsic strategies

that impair the immune response of T cells and NK cells (26, 77,

82). Among these strategies, the negative regulation of HLA

expression, high expression of inhibitory ligands for

programmed cell death 1 (PD1), cytotoxic T lymphocyte
antigen 4 (CTLA4) or lymphocyte activation gene 3 (LAG3)

and the production of regulatory factors (i.e., cytokines,

chemokines and inhibitory enzymes) are important changes

that contribute to the inhibition of antitumor cells and the

recruitment of suppressor cells that support the survival of LCs

(83–99).

These established modifications in the leukemic
microenvironment have great capacity for modifying cellular

functions and for suppressing antileukemic responses – a

consequence of the increase in components, such as regulatory

T (Treg) cells, immunosuppressive myeloid cells (IMC),

mesenchymal stromal cells (MSC) and inhibitory proteins (e.g.,
PD1 and CTLA4), which have a high regulatory influence (1, 26).

gd T cells are not exempt within this context, since they are

susceptible to the effects of several molecules such as interleukin

(IL)-4, IL-6, IL-13, IL-17, IL-23 and transforming growth factor

beta (TGF-b) (100–105). These factors can play synergistic or

pleiotropic roles, and can induce gd T cell exhaustion or their

polarization into a tumor-promoting phenotype (Figure 1), thus
contributing to malignant progression (24, 106–109).

Although LCs can escape the immune surveillance of ab T

cells and NK cells, they have several molecular targets that can be

detected by gd T cells; however, the crosstalk between these

lymphocytes and the leukemic microenvironment is still poorly

understood (Figure 1). Initially, gd T cell responsiveness does
not depend on MHC expression by LCs, whereas conventional

ab T cells require the MHC-Ag axis for activation to occur. The

restricted specificity of conventional ab TCR is also an

important factor to be considered, as it is restricted to the

detection of peptide antigens. In contrast, gd TCR can identify

stress-induced molecules, pAgs, lipid Ags and many other non-

peptide molecules (110). In the context of leukemias, these
attributes may offer an unconventional response pathway

against these hematological malignancies.

Mobilization and Recruitment of gd T Cells
Into the TME
The pattern of gd T cell migration and recruitment has not yet
been fully characterized in the context of cancer and, therefore,

represents an important question to be investigated. In humans,

TABLE 1 | Diversity of human gd T cells.

Subtype Paired Vg gene usage Tissue distribution Major secreted

effector molecules

Major recognition

receptors

Activation stimulus or TCR ligand Ref.

Vd1 Vg2, Vg3, Vg4, Vg5, Vg8,

Vg9, Vg10, Vg11

Skin, gut, liver, spleen,

lung, PB and BM

IFN-g, TNF, IL-4,

TGF-b and IL-17

TCR, TRAIL, FasL,

NKG2D,

NCR, FcgRIII and

2B4

Lipid Ags, MIC-A/B, ULBP, NCRL,

CD1, MR1 and BTNL

(13, 29,

64–70)

Vd2 Vg9 PB, spleen, BM and LN IFN-g, TNF and IL-17 TCR, TRAIL, FasL,

NKG2D,

DNAM-1, TLR,

FcgRIII and 2B4

pAgs, BTN, BTNL, N-BPs, MICA/B,

ULBP, PVR and Nectin-2

(71–75)

Vd3 Vg2, Vg3, Vg8 Liver, gut, PB, BM and

LN

IFN-g, TNF, IL-4 and

IL-17

TCR, FcgRIII and

NKG2D

CD1d and ANX2 (46, 49,

60)

Vd4 Vg6 PB ND ND ND (61–63)

Vd5 Vg4 PB IFN-g and TNF TCR EPCR (43)

Vd6 ND PB ND ND ND (61–63)

Vd7 ND PB ND ND ND (61–63)

Vd8 ND PB ND ND ND (61–63)

An expanded view of human gd T cell subtypes allow us to observe that their diversity is principally dictated by the individual variations of gd TCRs and the diversity of their co-receptors. The

TCR repertoire of Vg9Vd2 cells is the best known and targets butyrophilin (BTN) proteins, for example, which undergo a spatial and conformational change in the target cell membrane, and

activate these lymphocytes in a phosphoantigens (pAgs)-dependent fashion. In contrast, non-Vd2 TCRs are still poorly studied, although some ligands have been discovered, namely,

CD1, MHC class I related protein (MR1) and the endothelial protein C receptor (EPCR), which can be expressed in cancer cells. Additionally, cell activation is not mediated only by gd TCR

binding to their cognate ligand, but optionally requires the engagement of co-receptors, such as DNAX accessory molecule-1 (DNAM-1) and natural cytotoxicity receptors (NCR), which

results in the high production of effector molecules.

ANX2, annexin A2; BM, bone marrow; BTNL, butyrophilin-like; FasL, human apoptosis-related factor ligand; FcgRIII, Fc gamma receptor III; LN, lymph node; MICA / B, MHC class I chain-

related antigens A and B; N-BPs, aminobiphosphonates; NCRL, NCR ligand; ND, not determined; NKG2D, natural killer group 2 member D; PB, peripheral blood; PVR, polyoma virus

receptor; TCR, T cell receptor; TLR, toll-like receptor; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; ULBP, UL16-binding proteins.
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Vd1 cells up-regulate the expression of CC-chemokine receptor 2

(CCR2) and CXC-chemokine receptor 3 (CXCR3) and infiltrate

the TME. They are also activated by CC-chemokine ligand 12
(CCL2) and CXC-chemokine ligand 10 (CXCL10) and exhibit

higher IFN-g production (111, 112). Furthermore, Vd1 cells

express CXCR1 strongly and CCR5 weakly, whereas their

Vg9Vd2 counterpart only exhibit strong expression of CCR5

(113). Interestingly, the CCR4/CCR8–CCL17/CCL22 pathway

has also been shown to be an additional axis of chemoattractant
signaling that recruits Vd1 cells to the TME (114). It is important

to note that Vg9Vd2 cells, besides retaining a high expression of

CCR5, also express CCR3 and CXCR3, and can trigger antitumor

responses in peripheral tissues during metastasis (115, 116).

A more accurate analysis of the profile of homing receptors
expressed by gd T cells would reveal how these cells migrate to

the bone marrow microenvironment, for example. It is known

that the mobilization of immune cells in this compartment is

mediated mainly by the CXCR4-CXCL12 pathway, and it has

been shown that CXCR4+ gd T cells (preferably Vd1 cells)

respond to CXCL2 in vitro, but their intramedullary homing
abilities have not yet been evaluated in the in vivo context of

leukemia (117–119).

FIGURE 1 | Crosstalk between gd T cells and the leukemic microenvironment. Upon infiltrating the TME, gd T cells are exposed to several persistent inflammatory

and/or suppressive signals. Pathways implicated in crosstalk with the leukemic microenvironment can be classified into three general categories (center and inner

circle): (i) cell-to-cell signals including antigen recognition by gd T cell receptor (TCR), stimulatory or inhibitory molecules and/or tumor-sensing molecules; (ii) soluble

factors such as cytokines and chemokines that will drive changes in expression levels of (iii) homing receptors and adhesion molecules. Several stromal and/or

immune cells could be the source of many of these changes (outer circle). Among these, tumor-associated macrophages (TAM), myeloid-derived suppressor cells

(MDSC), regulatory T (Treg) cells and dendritic cells (DC) retain their reprogramming potential into the TME by regulating inflammation or suppression through Th1,

Th2 and Th17 cytokines. In addition, the hematopoietic niche can regulate hypoxia, responsible for supporting leukemic cells (LC) survival. Mesenchymal stromal

cells (MSC) and endothelial cells can also express many factors that attract antitumor cells, such as gd T cells, ab T cells and NK cells which can exert cytotoxicity or

undergo cell exhaustion after infiltrating the leukemic microenvironment. CCL, CC-chemokine ligand; CTLA4, cytotoxic T lymphocyte antigen 4; CXCL, CXC-

chemokine ligand; PD1, programmed cell death protein 1.
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Despite this, many in vitro studies have shown that gd T cells

recognize and destroy leukemia blasts, but the complex network

of interactions with the tumor environment in vivo remains

poorly elucidated (120–122). A comparative analysis suggested

that Vd1 TCR-expressing gd T cells were the most frequent

subtype in the BM of pediatric patients with ALL (123).
Subsequently, a low circulating gd T cell frequency was

detected in patients with AML before chemotherapy. Patients

who regressed to minimal residual disease exhibited higher gd T

cell frequencies, whereas patients with a high leukemic burden

exhibited decreased counts (27).

Transcriptomic analyses revealed an abundance of tumor-
infiltrating Vg9Vd2 cells in cohorts of patients with leukemia

(124). This high frequency was positively correlated with the

survival of these patients. Although these results are encouraging,

the method used to determine the relative proportions of these

cells has failed to differentiate them correctly from ab T cells and

NK cells. As a result, this may have contributed to a higher gd T
cell count.

Vd1 cells have been reported to have increased percentages in

patients with CLL (28–31). A high frequency of these cells has

been shown to be directly proportional to leukemic progression,

that is, patients in more severe states exhibited higher Vd1 cell

counts when compared to healthy patients. This allows these

lymphocytes to constitute the major gd T cell subtype in the PB
of these patients, where Vg9Vd2 cells generally predominate.

This finding was also accompanied by cytotoxic Vd1 cells with

high granzyme (Gzm) B expression (28). Taken together, these

data suggest that leukemia affects the gd T cell frequency and that

these cells have some influence during disease regression

or progression.
On the other hand, a higher Vg9Vd2 cell frequency was

associated with a poor prognosis in patients with untreated

CLL (125). These lymphocytes showed a dysfunctional

phenotype with reduced expression of NKG2D, although the

derived LCs showed a high pAgs synthesis. This suggests that

Vg9Vd2 cells expand in patients with leukemia and may exhibit

functional exhaustion, apparently after long-term exposure to
pAgs produced by LCs. Based on these reports, it becomes clear

that the precise frequency of these cells and their clinical

significance during the progression of leukemia is still

controversial. In addition, the few studies carried out again

suggest that the microenvironment of these malignancies has a

strong influence on gd T cells.

The Leukemic Cell–gd T Cell
Interactome
The sensing of LCs and gd T cell activation are attributed to

antigen recognition by gd TCR and/or NK cell receptors (NKR),

which include the natural killer group 2 member D (NKG2D)
receptor, for example (Figure 2). Several reports have shown that

LCs express several NKG2D ligands, which include stress-

induced molecules, such as MHC class I chain-related protein

A (MIC-A), MHC class I chain-related protein B (MIC-B) and

UL16-binding proteins (ULBP) (71, 126, 127), while the lack of

expression of these ligands is high related to immune evasion of

LCs (128, 129). Besides this, some gd T cell subtypes have a

well-documented role in promoting NKG2D-mediated

antileukemic responses.

Vd1 cells recognize and destroy ULBP3+ MIC-A+ LCs and

produce higher concentrations of interferon (IFN)-g and tumor

necrosis factor (TNF) in response to the tumor (29). In parallel,
Vd2 cells detect high regulated ULBP1 in LCs and this is

indicative of tumor susceptibility to the cytotoxicity of these

lymphocytes (130–132). It has also been established that Vd1 and
Vd2 cells can destroy ULBP2+ LCs (133). Although an almost

undetectable ULBP4 expression has been reported in leukemias

(129, 134), remarkably, it has been shown that Vd2 cells detect
this molecule in LCs and respond with potent cytotoxicity (135).

Therefore, the NKG2D receptor plays a key-role in gd T cell-

mediated immune surveillance in leukemia.

In addition to the expression of stress-induced molecules, an

uncontrolled synthesis of metabolic molecules by cancer cells

has emerged as a target that can be detected exclusively by
reactive gd T cells, such as the pAgs identified by Vg9Vd2 TCR.
The pAgs detection mechanism involves butyrophilin (BTN)

molecules, which are proteins related to the B7 family of co-

stimulatory molecules. BTNs are essential prerequisites in gd T

cell activation, as they perform the intracellular capture of

pAgs, undergo spatial and conformational changes in the

membrane surface of target cells and consequently bind to
the Vg9 and Vd2 TCR chains, sending strong stimulatory

signals (72, 73). Thus, BTN3A2 has been shown to mediate

the recognition of leukemic blasts even though it does not have

the B30.2 intracellular domain, important in the internal pAgs

uptake (136, 137). This suggests that BTN3A2 can recruit other

isoforms, such as BTN3A1 or BTN3A3, and send activation
signals through their intracellular domains (138). It is

important to highlight that the presentation of pAgs by BTN

proteins is highly regulated in LCs, whereas in normal cells the

opposite occurs (139).

gd T cells can also identify specific Ags in the context of

monomorphic MHC class I molecules, such as the CD1 protein

family (64). These proteins can mediate endogenous or
exogenous lipid Ags recognition by gd TCR and can be

detected without loading with lipid Ags (140–142). Two major

subtypes of CD1-reactive gd T cells have been identified, namely

Vd1 and Vd3 cells (60, 143). It is well established that these

molecules are expressed in LCs and exhibit different expression

patterns that are related to the leukemia subtype (144). In this
context, gd T cells may play important roles against LCs through

the recognition of CD1 proteins and their isoforms.

In fact, CD1 proteins have established themselves as

mediators of gd T cell antitumor responses (145). It is

important to note that the Vd1 subtype represents a large

proportion of these reactive cells (143), therefore it is suspected

that Vd1 cells can contribute to antitumor immunity through a
CD1-dependent pathway. Recently, it was discovered that these

cells with Vd1 TCR, specifically Vg4Vd1 cells, detected CD1b in

transfected LCs while they producing IFN-g after recognition

(146). These cells also recognized BTN-like (BTNL) proteins,

such as BTNL3 and BTNL8, which suggests that CD1b-reactive
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gd T cells may respond through the engagement and bispecific

combination of CD1b and BTNLs (13).
CD1c recognition has also been investigated and although it

does not yet have a well-defined description, it has been shown

that this isoform can be recognized by gd T cells (147). Their

involvement in detection of LCs has not yet been reported,

although it is clear whether CD1c is positively regulated in LCs

(144), thus hypothesizing a possible role for CD1c in gd T cell

activation. In contrast, CD1d has been extensively investigated
and the molecular insights about its recognition by gd T cells

have helped us significantly to understand its participation in

immune surveillance (148). Interestingly, a high expression of

CD1d has been associated with a poor prognosis in leukemia

(149–152), but it should be noted that Vd3 cells can expand and

respond against CD1d+ target cells through a CD1d-restricted
reactivity and with a potent secretion of effector molecules, such

as IFN-g (60, 153). Although initial studies suggest a CD1

protein-mediated cytotoxicity, questions regarding gd T cell

subtypes and their reactivity to these ligands, in the context of

leukemia, still remain.

Monomorphic MHC class I-related protein (MR1) has gained

prominence after many discoveries about its regulatory role in

mucosal-associated invariant T (MAIT) cell biology and its

expression in cancer. This protein can mediate the recognition
of folate and riboflavin derived small metabolites (154, 155). In

addition, recent reports support that MR1 can present not yet

defined specific tumor Ags for MR1-restricted T cells (156, 157).

As expected, it was also recently established that gd TCR

recognizes this molecule (65), although direct evidence for

MR1+ LCs detection has not yet emerged. The identification of

this protein by MR1-reactive T cells may mean a new therapeutic
target for cancer immunotherapy and clearly places gd T cells on

the map as a promising and important T cell population.

As discussed above, detection of LCs appears to involve many

Ags and stimulatory receptors and is not driven solely by the

binding of gd TCRs to their cognate ligands, but optionally

requires the involvement of additional co-receptors and targets.
Other NKRs, such as DNAX accessory molecule-1 (DNAM-1),

can identify their ligands, such as the polyoma virus receptor

(PVR) and nectin-2 molecules, in LCs (74, 158). Although a

negative role has been reported for DNAM-1 expression in

leukemia (159), this co-receptor is involved in the activation of

gd T cell cytotoxicity after interaction with their ligands in

leukemic blasts. This is evidenced when Vg9Vd2 cells kill LCs

FIGURE 2 | Antileukemic roles of gd T cells and their regulation. gd T cells kill leukemic cells (LC) via direct and indirect mechanisms. When identifying LCs through

gd TCR and co-receptors such as natural killer cell receptors (NKR), they secrete high levels of perforins and granzymes, mediating direct target killing. Additionally,

gd T cells produce interferon (IFN)-g and tumor necrosis factor (TNF), which can increase MHC class I expression in LCs, and enhance ab T cell-mediated cytotoxicity.

IFN-g release also allows NK cell activation, which can enhance tumor killing via NKG2D. Alternatively, gd T cell-derived granulocyte-macrophage colony-stimulating

factor (GM-CSF) can induce dendritic cell (DC) maturation, which in turn potentiates antitumor responses via interleukin (IL)-2, IL-12, IL-15 and IL-18. Thus, ab or gd

T cells and NK cells can be recruited for exerting cytotoxicity in many compartments. Moreover, gd T cells display APC functions and support ab T cell and NK cell

polarization towards an antitumor phenotype. In contrast, their cytotoxicity can be decreased by regulatory T (Treg) cells and immunosuppressive myeloid cells (IMC),

since they produce several inhibitory factors such as IL-10, transforming growth factor b (TGF-b), reactive oxygen species (ROS) and Arginase-1. Finally, PD1-PD1L

axis expression can regulate gd T cell antitumor activities. APC, antigen-presenting cell; FasL, Fas ligand; Fas-R, Fas receptor; PD1, programmed cell death protein 1;

PD1-L, PD1 ligand; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; TRAIL-R, TRAIL receptor.
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in a TCR and DNAM-1 dependent fashion, with robust secretion

of perforins and granzymes (74).

Notably, Vd1 cells can lyse LCs viaNKp30 and NKp44, which

are highly regulated via the synergistic signal of cytokines and

TCR (66). The expression of these natural cytotoxicity receptors

(NCR) is related to higher granzyme production and cytotoxicity
(66). It is important to highlight that NKp30 has been proven to

be crucial for Vd1 cell-mediated antitumor response. However,

NKp30 and NKp44 are bound to an as yet undetermined target

(66), ignoring their classic ligands, such as B7-H6 and MLL5 that

bind to NKp30 and NKp44, respectively (67), suggesting an as

yet unknown additional ligand. In addition, NKp46-expressing
Vd1 cells showed higher cytotoxic activity against LCs and IFN-g
and Gzm B production, while NKp46- gd T cells showed reduced

antileukemic activity (68). Despite this, the target ligand

recognized by NKp46+ gd T cells in LCs has not yet been

demonstrated, although it is well established that cancer cells

express ligands for this protein (69, 70).

HARNESSING gd T CELLS AGAINST
LEUKEMIA: FROM MARROW TO BLOOD

gd T cells are loaded with effector weapons of great potential for

cancer immunotherapy (160). Findings in recent years point to
important roles for these cells, highlighting them as potential

predictive biomarkers, which justifies the current focus of studies

on the nature of these cells and the TME (14, 25, 161). It is

important to remember that several characteristics discussed

here make gd T cells potential candidates for innovative

therapies against tumors and include: (i) activation in a TCR-

independent manner; (ii) the ability to recognize Ags regardless
of MHC/HLA expression; (iii) effector molecules production and

direct and indirect cytotoxicity potentiation against cancer cells;

and (iv) their role as antigen-presenting cells (APC) that induce

the proliferation of antitumor cells (Figure 2).

Given the high responsiveness against LCs and the absence of

toxicity or alloreactivity against the host (162, 163), the
application of gd T cells in leukemia treatment may mean a

new advance in cancer immunity and immunotherapy. To make

this possible, several strategies for gd T cell handling have been

developed and tested and have presented interesting data

(Figure 3). The following subsections will focus on clinical

trials and findings, as well as the activity of these cells in

response to applied methods. Afterwards, we will discuss
potential therapies that may specifically target gd T cells and

their subtypes, while summarizing the main approaches that are

being explored to reach their clinical potential.

Expanding gd T Cells With pAgs, Drugs,
Cytokines and Feeder Cells
Intrinsic synthesisofpAgs incancer cells canbemanipulated through

pharmacological blockade mediated by aminobiphosphonates

(N-BP), such as zoledronate (ZOL) and pamidronate (PAM),

which interfere metabolically in the mevalonate pathway (164).

The mechanism involved causes these compounds to block the

enzymatic activity of farnesyl pyrophosphate synthase, which is

present in this metabolic pathway. N-BP–induced interruption

results in the intracellular accumulation of pAgs in cancer cells or

APCs with subsequent recognition by gd T cells and activation after

cell-cell interaction (165–168). Cancer cell sensitizing with these
compounds increases the tumor’s susceptibility to gd T cell

cytotoxicity, and this also applies in leukemia (132).

Some experimental evaluations took advantage of the gd T cell

recognition mechanism (directed to pAgs) to obtain a better

in vitro or in vivo expansion of these lymphocytes and test their

therapeutic efficacy. To date, these approaches have focused on
ZOL, (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate

(HMB-PP) and synthetic pAgs, such as bromohydrin

pyrophosphate (BrHPP) (169, 170). These compounds are

generally administered in combination with low cytokine doses

such as IFNs, IL-2, IL-12, IL-15, IL-18 and IL-21. In addition,

these approaches can induce an antitumor phenotype and the
pronounced expression of associated receptors (171–176).

Vg9Vd2 cell expansion has become more accessible because,

in addition to being the most prevalent subtype in PB (55, 56), it

can also recognize a diversity of relatively well-defined target

molecules (177). When these cells are treated with ZOL + IL-2 +

IFN type I, their cytotoxic activity is increased and Vg9Vd2 cells
may be able to efficiently destroy lymphoid and myeloid lineage
LCs, as proposed by Watanabe et al. (171). In their study, gd T

cells were generated in vitro with ZOL + IL-2 for 14 days, and

after this period they were activated with IFN type I for up to 3

days. Thus, the resultant gd T cells were well expanded in the

culture and showed a significant expression of CD69, TNF-

related apoptosis-inducing ligand (TRAIL), IFN-g and TNF,
which suggests the acquisition of an activated phenotype and

antileukemic reactivity.

In the same vein, sensitization with ZOL + Imatinib has also

been shown to increase the cytotoxic synapse between Vg9Vd2
cells and LCs (178). Initially, Imatinib resistant or sensitive LCs

had low susceptibility to gd T cells, but in vitro treatment with

ZOL + Imatinib was able to reverse this situation. The lysis of
these LCs was mediated by TCR, NKG2D, TRAIL and perforins.

This high cytotoxicity was dependent on ZOL, since it was

observed that Vg9Vd2 cells exerted low antitumor activity that

was slightly increased after sensitization of LCs. To validate these

findings, it was further demonstrated that when Vg9Vd2 cells,

ZOL and IL-2 are infused in a leukemia mouse model, they
mediate tumor regression in vivo and confer greater survival in

these mice (178).

The ability of N-BPs to invigorate exhausted Vg9Vd2 cells has
also been reported in other investigations (179, 180) and appears

to be a promising alternative for their use, given that a higher

exhausted gd T cell frequency has also observed in leukemia (27,

125). It is important to note that, in this context, these cells
exhibit a low expression of CD107a, FcgRIII (CD16), IFN-g and
TNF, while B and T lymphocyte attenuator (BTLA), LAG3 and

PD1 proteins are more highly regulated on their cell surface (179,

180). When cultured with allogeneic LCs, these lymphocytes had

low cytotoxic activity, while gd T cells from healthy patients
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responded efficiently (179). Notably, when Vg9Vd2 cells that

were considered dysfunctional were cultured ex vivo with mature

monocyte-derived dendritic cells (Mo-DC) and N-BPs for 8 days

without the presence of LCs, the observed functional

impairments could be reversed (179).

Ibrutinib has also been shown to activate gd T cells against
LCs, since Weerdt et al. reported that it was able to induce an

antitumor phenotype (180). In their study, allogeneic and

autologous gd T cells were cultured with LCs. As already seen,

gd T cells from patients with leukemia proved to be dysfunctional

in terms of cytokine production and cytotoxicity, while those

from healthy patients had a strong antitumor activity (179).
When Vg9Vd2 cells from both cases are treated with Ibrutinib,

an effector Th1 phenotype and memory cells are induced.

Overall, their antitumor properties can be recovered after ex

vivo stimulation and after treatment with Ibrutinib, which binds

to the IL-2–inducible T cell kinase molecule and promotes

activation against LCs (180).

Other investigations have presented a new alternative: the

combination of IL-15 plus N-BPs or pAgs promotes significantly

greater expansion, high cytotoxicity and a more pronounced Th1

phenotype in gd T cells, when compared to expansion methods
using only IL-2 (174, 181, 182). IL-15 is a powerful growth factor

for gd T cells (183, 184) and can synergize with other molecules

and enhance the antileukemic capacity of these cells (Figure 2),

as we will highlight below.

The ex vivo tests carried out by Van Acker et al. (174)

demonstrated that the administration of IL-15 + isopentenyl
pyrophosphate (IPP) is able to improve gd T cell cytotoxicity

against LCs. In contrast, gd T cells stimulated with IL-2 + IPP

were more likely to deviate to a Th2 and Th17-like response

phenotype when interacting with LCs (174). It is important to

A B

C

FIGURE 3 | Translating gd T cells into clinical strategies against leukemia. gd T cells exert antitumor responses in different compartments and expressing distinct TCR

patterns. Vd1 and Vd3 subtypes have been implicated as cytotoxic mediators in bone marrow (A), while Vg9Vd2 cells have been shown to respond mainly in peripheral

blood (B). However, strategies are directed towards Vd1 and Vd2 subtypes, as they are the best known (C). Granulocyte colony-stimulating factor (G-CSF) was shown

to be a potential adjuvant to mobilize gd T cells for peripheral blood and enrich the graft. Additionally, Vd1 cells can be isolated from UCB or PB and expanded in vitro

using some approaches, such as the DOT protocol, already reviewed here. In vivo stimulation with Vd1 TCR ligands may be a good alternative, but it remains poorly

investigated. In parallel, Vd2 cells can be isolated from PB and activated and/or expanded in vitro using pAgs. A new therapeutic concept consists in the cloning and

transfer of gd TCRs into ab T cells (TEGs) and can enhance antileukemic responses. The fact is that many of these strategies give rise to gd T cells that express several

recognition receptors and have a higher capacity to target leukemic cells (LC), which can be further improved with chimeric antigen receptor (CAR) transduction.

Moreover, the use of therapeutic antibodies (Abs), such as immune checkpoint inhibitors (ICI), anti-CD19 and anti-CD20 Abs, can also provide improved efficiency in

potential approaches, since gd T cells have unique features and an attractive degree of safety for their translation into clinical trials. CRS, cytokine release syndrome;

DOT, Delta One T; PB, peripheral blood; IC, immune checkpoint; TEGs, T cells engineered to express a defined gdTCRs; UCB, umbilical cord blood.
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highlight that stimulation by IL-15 promoted a more robust

IFN-g and TNF secretion when compared to IL-2 stimulation. In

addition, culturing these lymphocytes with IL-2, IL-15 and ZOL

for 14 days critically enhanced the expansion rates to almost

1000-fold the total yield of viable cells, which showed a 590-fold

increase in the gd T cells cultured only with IL-2 + ZOL (174).
Interestingly, when IL-2 + IL-15 and ZOL are administered to

gd T cells isolated from patients with leukemia, during 14 days of

culture, they assume different phenotypic states. Most of them

may exhibit an effector memory phenotype (CD45RA- CD27-),

followed by a central memory phenotype (CD45RA- CD27+)

(174). In addition, positive regulation of CD56, CD80 and CD86
is also provided (174), suggesting that, in addition to exerting

strong antileukemic activity, these cells may also act as APCs and

improve the antitumor responses.

Vg9Vd2 cell expansion using IL-2 may not even promote

satisfactory proliferative rates; however, it is clear that the

synergism between IL-2 and IL-15 confers a substantial increase
in an inflammatory profile (174, 181), as these cytokines promote

a higher transcription factor T-bet expression (181), which in turn,

is related to greater cytotoxicity. In addition, the advantage of gd T
cells expanded with IL-2 + IL-15 can be maintained under one of

TME’s hallmarks in vivo, namely hypoxia (181). In fact, a striking

feature of the leukemic microenvironment is the low partial

pressure of oxygen that favors the tumor-associated
immunosuppressive pathways, while at the same time promoting

expansion of LCs (185). In this context, the persistence of gd T cells

in hypoxia further demonstrates their clinical importance.

Alternatively, the combination of ZOL, IL-2 + IL-18 also

promotes the proliferation of effector cells (186, 187) since IL-18

is an important inducer of IFN-g secretion (188). Given this, it
has been reported that this cytokine indirectly induces the

expansion of gd T cells. Tsuda et al. (186) showed that Vg9Vd2
cells are efficiently expanded in response to ZOL, IL-2 + IL-18,

but in a CD56bright CD11c+ NK-like cell dependent fashion

(187). Many studies have reported that the involvement of

NK-like cells in the proliferation of gd T cells implies greater

expansion efficiency when compared to methods using dendritic
cells (DC) or monocytes (187, 189–191). These findings suggest

an approach targeted at feeder cells that may be responsible for

gd T cell clonal proliferation in different methods in vitro and,

perhaps, in vivo.

IL-18 can also directly support gd T cell expansion, even in

the absence of feeder cells (192). When Vg9Vd2 cells are treated
only with ZOL, there is a delay in their in vitro expansion, as

prolonged exposure subjects these cells to acute ZOL toxicity

(193). However, when IL-18 combined with geranylgeranyl

pyrophosphate (GGPP) is added, the proliferative capacity is

restored by inhibiting the toxic effects of ZOL, which allows a

substantial expansion of viable gd T cells to occur. IL-18 + GGPP

also were able to activate gd T cells, exhibiting a central memory
or effector memory phenotype and with higher IFN-g production
and CD56 expression (192).

In a subsequent study, treatment with ZOL + IL-2 and culture

with Mo-DCs stimulated an activated phenotype in gd T cells. In

this context, immature Mo-DCs have been shown to have a

particularly higher capacity to intensify gd T cell cytotoxicity

against LCs, whether in autologous or allogeneic condition (194).

Furthermore, IL-15 producing DCs isolated from healthy

patients and patients with leukemia (in remission) can

potentiate gd T cell cytotoxicity in vitro (182). These DCs

induced NKp30, CD16, CD80 and CD86 expression in gd T
cells in an IL-15 dependent manner. This methodology was able

to produce gd T cells with higher expression of co-stimulatory

molecules and low expression of inhibitory proteins. In addition,

stimulation with DCs + IPP + allogeneic LCs led to high IFN-g
secretion and strong antitumor activity (182).

Deniger et al. (162) demonstrate a new strategy that involves
the use of artificial APCs (aAPCs) derived from the K562

leukemic lineage. These feeder cells were modified to express

molecules, such as CD19, CD64, CD86, 4-1BBL and IL-15, on

their membrane surface. When gd T cells are cultured with

aAPCs + IL-2 + IL-21, there is a remarkably robust 4900 ± 1700-

fold polyclonal expansion (162). Most of these cells expressed
different gd TCR domains. Resultant gd T cells also were able to

kill LCs via TCR, NKG2D and DNAM-1 (162).

In the same vein, Cho et al. (175) used CD80+, CD83L+ and 4-

1BBL+ aAPCs. At low IL-2 concentrations, these co-stimulatory

molecules promoted a remarkable Vg9Vd2 cell expansion that

secreted higher levels of IFN-g and TNF (175). Notwithstanding,

there was no significant proliferation rate (106-fold increase)
when compared to the hefty increase observed in the previous

study (162). Triple co-stimulation with these molecules induced

not only the high IFN-g and TNF production, but also the

positive regulation of a range of other molecules such as IL-2,

IL-6, perforins, Gzm A and Fas ligand (FasL) (175). Most

importantly, the expanded cells exhibited a terminal effector
phenotype (CD27low CD45RAhigh), followed by an effector

memory phenotype (175).

Unlike most of the investigations discussed above, other

studies have focused on gd T cells that express the Vd1 TCR

chain. Substantial evidence has demonstrated the ability of this

subtype to kill LCs, as already reviewed. Unlike the Vg9Vd2
subtype, these cells do not show susceptibility to activation-
induced cell death (AICD), which has been reported in several

experimental trials (125, 195, 196). These cells can also exercise

immune surveillance for long periods, favoring the longevity of

cancer immunity (197–199). Several unique attributes have been

discovered that particularly place Vd1 cells as attractive targets in
antileukemic therapies. So far, a few studies have emerged that
have sought to translate the functional role of these lymphocytes

and their applicability, as we will highlight below.

Siegers et al. (30) developed an in vitro expansion protocol

that enabled the proliferation of gd T cells isolated from PB after

treatment with lectin-based compounds named Concanavalin-A

(Con-A). Thus, it was possible to expand Vd1 cells in a greater

proportion than the Vg9Vd2 subtype when Con-A was
combined with IL-2 + IL-4. The low Vg9Vd2 cell proportion

was motivated by the period of exposure to Con-A, which

induced AICD in these lymphocytes (30). Noteworthy, the

resulting Vd1 cells exerted an efficient cytotoxic activity against

LCs through TCR, NKG2D, CD56 and FasL (30).
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Subsequently, proof-of-concept studies were performed on

leukemia xenograft models using a newly established cell

generation protocol called Delta One T (DOT), which was

designed by Almeida et al. (31). Specifically, this clinical-grade

protocol consists of two steps. First, gd T cells are isolated from

PB of healthy donors or patients with leukemia using magnetic
beads and are cultured in vitro for 14 days. During this time,

these lymphocytes are expanded using a combination of

molecules, such as IFN-g, IL-1b, IL-4 + IL-21, in association

with anti-CD3 antibodies (Abs). Then, the expanded cells are

transferred to a new culture medium, where they are

restimulated by anti-CD3 combined with IL-15 and IFN-g for
another 7 days (31). Overall, this is a 3-week protocol that

involves gd TCR and cytokine stimulation that can accomplish

its goals efficiently.

When gd T cells were submitted to the DOT protocol,

expansion was obtained with rates greater than 1000-fold, thus

allowing the viable and efficient proliferation of highly cytotoxic
cells. It is noteworthy that, with this cell proportion rate, Vd1
cells, which are generally less frequent in the blood (55, 56),

expand from less than 0.5% of all circulating T cells to more than

70% (25, 31). Notably, Vd1 cells with high expression of NKp30,

NKp44, DNAM-1 and 2B4 are also provided, all well established

as key-receptors in antileukemic responses (66, 74). These

lymphocytes do not regulate inhibitory proteins on their
membrane surface, even after 3 weeks of continuous

stimulation. In addition, many cell adhesion molecules and

chemokine receptors are positively regulated, while these

lymphocytes can kill autologous and allogeneic LCs in vivo,

and ignoring normal cells (31).

Finally, the same protocol was tested by Lorenzo et al. (200),
in which gd T cells from PB were reinforced using a range of

stimulatory molecules (31). While the previous study sought to

mobilize Vd1 cells against a CLL xenograft model (31), the latter

work applied the DOT protocol to an AML xenograft model

(200). It is important to highlight that in both cases there was an

efficient regression of tumors, and this increased mice survival

(31, 200). In addition, gd T cells avoided systemic metastasis of
LCs (31). They exerted their antileukemic activity against AML

blasts in a partially TCR-dependent manner, while they

depended on the B7-H6 expression (200), which binds to

NKp30 (67).

Blocking Immune Checkpoints in gd
T Cells and Leukemic Cells
Although they are potent, gd T cell antitumor responses can be

regulated by immune checkpoints (IC). Many inhibitory

proteins, such as PD1, CTLA4, LAG3, BTLA, T cell

immunoreceptor with Ig and ITIM domains (TIGIT) and

T cell immunoglobulin and mucin domain-containing protein
3 (TIM3), are key mediators in inflammatory regression and

cell suppression, in the context of the TME (93, 201, 202).

Generally, these molecular interactions can act synergistically

with the infiltration of suppressive cells that support tumor

evasion through the establishment of a strongly tolerogenic

environment (26, 76). However, recent advances in cancer

immunotherapy using monoclonal Abs (mAbs) targeting ICs,

the immune checkpoint inhibitors (ICI), have shown that

combinatorial blocking of proteins, such as PD1 and PD-L1,

can restore cellular functions and reestablish antitumor activity

(203, 204).

The mechanisms of gd T cell regulation mediated by ICs are
diverse and poorly understood, but seemingly unified by the fact

that these receptors functionally complement each other and

ensure the adjustment of the immune response. PD1 and BTLA

are the most potent ICs shown to suppress gd T cell cytotoxicity

in cancer (205, 206). Although CTLA4 expression has not been

consistently assessed, it is known that this molecule is rarely
expressed in activated gd T cells (207, 208). Importantly, the

expression of these ICs may vary between gd T cell subtypes,

where, for example, Vd1 cells exhibit higher PD1 expression than

their Vg9Vd2 counterpart (209).

Early after activation, when the gd TCRs find their cognate

ligands, gd T cells begin to rapidly display many of these ICs on the
cell surface (205, 207). Collectively, the expression of these

proteins is low or stable, but temporary, and is sufficient to

reduce cytokine production, proliferation and survival of gd T

cells (205, 206, 208, 210, 211). These changes can also be observed

in leukemia, as gd T cells increase the expression of PD1, CTLA4

and BTLA, while LCs strongly regulate the expression of their

ligands, such as PD-L1, CD80 and/or CD86, and herpesvirus-
entry mediator (HVEM), respectively (212). This represents an

important barrier, as these molecules can prevent the efficient

activation of gd T cells and the associated antitumor response.

Blocking the expression of these inhibitory receptors through the

use of ICIs may be an interesting alternative to reverse the state of

anergy and/or cell exhaustion.
The influence of ICIs on gd T cells and their potential impact

on the associated cytotoxic activity, in the context of the

leukemic microenvironment, has not yet been characterized

and is, therefore, an open question. Despite this, PD1 has been

shown to negatively regulate Vg9Vd2 cell responses, while the

addition of ZOL + anti–PD-L1 was able to bypass the inhibitory

signals and promote gd T cell reactivation against LCs in a TCR-
dependent fashion (205). Therefore, this discovery allows us to

suggest that gd TCR-mediated activation is capable of

overcoming the inhibitory effects of the PD1/PD-L1 pathway,

since the application of ICIs plus ZOL, which is a strong Vg9Vd2
TCR stimulator, apparently synergizes the activation of gd T cells

and restores their tumor reactivity (205).
Notably, Hoeres et al. (213) demonstrated that although PD1

signaling can modulate the production of IFN-g in leukemia-

reactive gd T cells, its additional blockage and stimulation with

ZOL can increase the production of this cytokine. Although it

did not show a significant effect on the destruction of LCs by gd T
cells, the action of anti-PD1 + ZOL in these lymphocytes was

able to induce high IFN-g secretion, which is a potent
inflammatory and antitumor factor (213). As noted, cytokine

secretion, such as IFN-g, can be negatively regulated, and we can

infer from this study that the application of ICIs potentially

reverses this suppressive condition and is able to stimulate the

triggering of an antitumor response.
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In addition to PD1/PD-L1, other inhibitory proteins are

highly regulated in LCs (i.e., CTLA4, BTLA, TIGIT, TIM3 and

LAG3) and their effects on gd T cells have not yet been fully

investigated (26, 159, 214–216). However, previous studies have

shown that some of these receptors have great potential for

deregulating their antitumor activity, reflecting in cytokine
production (213, 217). Nonetheless, evaluating these

components before proceeding to a clinical application is

important, since these molecules most likely prevent the

efficient killing of LCs. This is one of several mechanisms of

tumor escape that are commonly observed in recent and

innovative treatment modalities, and which also include the
chimeric antigen receptor (CAR) T cell therapy (218).

Focusing on gd T Cell-Engager
Molecules in the Leukemic
Microenvironment
Antibodies Direct gd T Cells Against LCs
As we have shown herein, data from in vitro experiments and
mouse models unequivocally demonstrate the potential of gd T

cells against leukemia. Knowledge obtained regarding the many

signals that regulate their activation and the tumor resistance

underlying gd T cells offers additional approaches that, in

addition to inducing an activated status, a (poly)clonal

expansion or a more pronounced Th1 phenotype, may also
allow more specific targeting against the tumor. Improving gd
T cell efficiency against LCs, however, requires strategies based

on their cytotoxic nature, which include, for example, antibody-

dependent cell cytotoxicity (ADCC) (75, 219). Therefore, this

implies a role for CD16, mAbs and bispecific antibodies (bsAbs)

that bind to their respective target antigens.
CD16-mediated ADCC plays an important role in tumor

destruction. For this to occur, CD16 must bind to the constant

fraction of Abs IgG, thus constituting an optional axis in target

cell killing. gd T cells constitute the major blood T cell population

that expresses CD16 (220, 221), although this expression is

variable (222). Given this, the potential engagement of

therapeutic Abs with the product of Vg9Vd2 cells can provide
an efficient alternative against LCs (223). Several studies have

shown that gd T cells mediate leukemic regression via a CD16-

dependent pathway (136, 223–226), in particular the Vg9Vd2
subtype, which positively regulates CD16 and TNF expression

when stimulated with pAgs (227).

mAbs-coated LCs are efficiently destroyed by CD16+ gd T
cells via ADCC and these lymphocytes subsequently exhibit APC

functions and activate ab T cells, apparently through the tumor

Ags presentation by MHC class II (228). It has been shown that

the application of therapeutic CD20-targeting Abs, such as

Rituximab (RTX), improves the antileukemic effect of these

lymphocytes through tumor destruction by ADCC in vitro.

This leads gd T cells to secrete high levels of IFN-g, perforins
and CCL5 (219). In addition, BrHPP implementation potentiates

the RTX bioactivity and consequently also increases gd T cell

cytotoxicity against CD20+ LCs in vitro and in vivo (75).

When peripheral blood mononuclear cells (PBMC) are

stimulated with ZOL + IL-2 ex vivo and then cultured with

LCs and Obinutuzumab (anti-CD20), it is observed that gd T

cells perform ADCC more efficiently than NK cells (223). Most

importantly, the cytotoxicity of these lymphocytes cultured with

Obinutuzumab is more potent compared to other tested mAbs,

such as RTX. This view was reinforced when LCs treated with

Obinutuzumab were substantially lysed in a CD16-dependent
manner (223).

Benyamine et al. (136) demonstrated that BTN3A-targeting

mAbs (anti-BTN3A 20.1) sensitize LCs and act indirectly in

tumor destruction. This is due to the anti-BTN3A Abs binding in

three different target molecules: BTN3A1, BTN3A2 and

BTN3A3. The combination of these mAbs with gd T cells and
the subsequent infusion in a leukemia murine model was able to

decrease the leukemic load in the PB and BM, increasing survival

in these mice (136). Taken together, these data create the

expectation that targeting mAbs to BTN proteins can be

potentially useful in new therapeutic approaches.

Like most other surface molecules expressed in LCs, CD19 is
also a potential target to be considered. When LCs are incubated

with gd T cells and modified anti-CD19 Abs (Ab 4G7SDIE), a

significant increase in the degranulation marker CD107a is

observed, as well as the strong IFN-g and TNF production

(224). In addition, the adoption of bsAbs targeting CD19/

CD16 (bsAbs N19-C16) is also able to increase the expression

of these inflammatory molecules (224). Interestingly, bsAbs
targeting CD19/CD3 (bsAbs N19-CU) also strongly activated

gd T cells and, unlike the other previously tested Abs, mediated

the lysis of LCs (224). It should be noted that the use of Abs

modified to have a triple specificity to CD16 and CD19

(triplebody SPM-1) was also able to activate these lymphocytes

against CD19+ target cells, which was evidenced by the
expression of antitumor mediators (225).

The projection of a bsAbs targeting the Vg9 TCR chain and

CD123 (anti-TRGV9/CD123 engager) was also able to recruit

gd T cells against AML blasts (229). This engagement induced

its activation and cytotoxicity against endogenous LCs, as

evidenced by CD69, CD25 and Gzm B positive regulation.

Interestingly, these activated gd T cells exhibited a low secretion
of IL-6 and IL-10, which are cytokines that are highly related to

cytokine release syndrome (CRS) in patients undergoing ab T

cell-based therapies (229–231). The efficacy of this approach is

evidenced when anti-Vg9/CD123 directed gd T cells were

infused into a leukemia mouse model and controlled the

leukemic proliferation in different compartments in these
mice (229).

Finally, it has been shown that CD1d is also an attractive

target. A recent study showed that CD1d specific single domain

Abs can guide gd T cells (226). These engagers were able to

mobilize and activate these lymphocytes against autologous LCs

from patients with CLL. This allowed gd T cells to produce many

inflammatory molecules and maintain their pAgs reactivity
(226). Taken together, the many studies reviewed here allow us

to suggest that the therapeutic application of Abs can be

improved with the use of N-BPs that enhance gd T cell

activation. However, their therapeutic application against

leukemia still needs more detailed investigation.
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gd T Cells Expressing CARs
While the application of therapeutic Abs has significantly

increased the effectiveness of leukemia treatments, other
approaches are also emerging with promising healing potential.

Current advances in genetic engineering enable CAR

transduction in NK cells, macrophages and T cells, thus

offering new horizons for cell therapy, although this has been

primarily focused on conventional ab T cells (232, 233). In this

context, gd T cells are also undergoing a number of
improvements in order to enhance their antitumor capacities.

The fact is that gd T cells can be redirected with CARs

against surface molecules expressed by LCs (234). Their unique

innate properties and their high capacity for tumor sensing and

killing place them in an interesting position in potential

approaches against leukemia. CAR gd T cells can offer a triple
activity because, for example, they can recognize LCs (i)

through the direct engagement of gd TCR to their cognate

ligand, (ii) through NKRs and their associated ligands, or (iii)

through CAR specificity to the target antigen (Figure 3) (234,

235). Besides this, their APC functions (211) may allow the

prolongation of immune response in the TME (228), since the

CAR acquisition preserves the ability of gd T cells to present
tumor Ags (235).

The applicability of these genetically modified T cells has been

established by some of the previous studies that evaluated the

viability of viral transduction (236, 237) or electroporation (238)

of the CAR. Rischer et al. (236) demonstrated for the first time

that Vg9Vd2 cells can be efficiently transduced with CAR genes.
Their study also showed that gd T cells expressing anti-CD19

CARs destroy CD19+ LCs and produce high levels of IFN-g in a

target-dependent fashion (236). Subsequently, Deniger et al.

(238) showed that the introduction of CAR by electroporation

in PB-derived gd T cells is able to produce polyclonal CAR T cells

that express Vd1, Vd2 and Vd3 TCR chains (238). For this to

happen, approaches already reviewed here were used (162).
Noteworthy, one study demonstrated that CAR gd T cells

adopt a highly activated, but not exhausted, phenotype, as

highlighted by the low regulation of CD57 (238). In addition,

these lymphocytes tend to assume distinct phenotypic states of

effector memory, while positively regulating homing molecules.

Specifically, these homing receptors included CXCR4, a molecule
associated with migration to BM, as well as CD62L and CCR7,

which are linked to migration to lymph nodes (238). This is

encouraging since BM and lymph nodes are sites of high tumor

growth in acute and chronic leukemias (1, 4, 26, 78, 239–241).

Surprisingly, it has also been confirmed that CAR gd T cells

recognize and kill LCs in BM regardless of the CD19 target.

Rozenbaum et al. (242) recently showed that these modified
lymphocytes have high IFN-g production and reactivity to

CD19+/- LCs in vitro, which was even enhanced with the

addition of ZOL. To investigate in vivo efficacy, the authors

injected CAR gd T cells in a leukemia mouse model. Although it

did not induce a complete remission, the infusion of these cells

led to a drastic reduction in the leukemic burden in the BM of
these mice, which was even more pronounced when ZOL was

administered (242).

These studies demonstrate that the production of CAR gd T

cells is viable and supports the high effectiveness of these

lymphocytes against many malignancies, especially in

leukemias. In contrast to conventional CAR T cell therapy,

approaches based on gd T cells can overcome several currently

reported limitations, such as modulation of tumor antigen
expression (242, 243) and CRS (229–231).

How About Molecular Switching of TCRs?
One interesting strategy for targeting lymphocytes against the

tumor is to design gd T cells with ab TCRs or to design ab T
cells with gd TCRs (244). This therapeutic concept has great

potential for combining some unique gd T cell properties, such as

the rapid responsiveness to the tumor, the expression of individual

molecules, and the absence of alloreactivity, with the high

proliferative capacity and specific reactivity of conventional ab T

cells. Combining these unique aspects through TCR transduction
leads us to expect that the resulting antileukemic responses will be

long-lasting and based on immunological memory.

This new concept of modified T cells, named T cells

engineered with defined gd TCRs (TEG), was adopted in some

studies that showed that TEGs kill LCs in vitro and in vivo

models (245). TEGs tend to deregulate the intrinsic ab TCR

expression in their membrane surface, avoiding the graft-vs-host
disease (GvHD) (245, 246). In addition, CD4+ TEGs retain their

ability to induce a complete maturation of DCs, and stimulation

with PAM can potentiate the cytotoxicity of CD8+ or CD4+

TEGs since it promotes higher production of inflammatory

molecules, such as IFN-g, TNF, and IL- 2, in vivo (245).

Similar results were obtained when TEGs cultured with LCs
reduced the tumor in vitro (247). In addition, the infusion of

TEGs plus IL-2 + PAM in an AML murine model enabled

reactivity directed to LCs without affecting the healthy

hematopoietic compartment and without being influenced by

the TME, when inserted into mice that expressed IL-3,

granulocyte-macrophage colony-stimulating factor (GM-CSF),

and stem cell factor (SCF) (247), which are molecules that
support tumor growth in vivo (248). Therefore, TEGs

demonstrated efficiency in reducing the tumor in xenograft

models with minimal alloreactivity, which stimulated the

projection of a robust manufacturing procedure of TEGs that

were validated under good manufacturing practice (GMP)

conditions (244, 249).
Finally, gd T cells transduced with ab TCR plus CD4 and

CD8 co-receptors showed high antitumor activity against LCs

(250). As similarly observed in TEGs, transduction of ab TCR

induced a low expression of endogenous gd TCR. In addition,

modified CD8+ or CD4+ gd T cells expressed high levels of IFN-g
and IL-4, although IFN-g production was more pronounced in

CD8+ cells. Most importantly, these transduced cells were able to
kill LCs in vitro, although CD8+ gd T cells have shown more

efficiency than CD4+ cells (250, 251). This evidence supports the

important role of gd T cells in TCR gene transfer-based

approaches while suggesting an improved antileukemic

capacity when TCR transduction is combined with co-

receptors, in particular, with the CD8 protein.
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Converting gd T Cells Into Living Drugs
Source, Isolation and Pre-Activation
gd T cells and their subtypes are present in several tissues, but the

ideal source for obtaining all these lymphocytes is still being

determined. Despite this, therapeutic gd T cells for infusion can

be obtained from peripheral blood (252, 253) or umbilical cord

blood (UCB) (254, 255). It is important to note that the

frequency of gd T cells varies between 5-10% of peripheral
blood T cells (51, 52), while they constitute <1% of T cells in

UCB (254). The functional differences between gd T cell subtypes

in these sources are not yet clear, but it is already established that

while the subtype expressing Vg9Vd2 TCR predominates in PB

(51, 55, 56), polyclonal gd T cells expressing the Vd1 TCR

domain predominate in UCB (52, 256, 257).

gd T cell expansion from PB is a well-established method and
is usually adopted in clinical and experimental trials. For

isolation of these lymphocytes, the starting material is the

product of leukapheresis, which can be initially enriched

through stimuli with several soluble factors (e.g., cytokines and

N-BPs) and later undergoes removal of ab T cells and CD19+ B

cells through the use of magnetic beads, depletion or separation
kits (optionally maintaining NK cells) (169, 252, 253). Since

increasing the gd T cell product from leukapheresis can further

improve its therapeutic handling, adopting the use of molecules

as the granulocyte colony-stimulating factor (G-CSF) may

mobilize a large amount of antileukemic gd T cells for

peripheral blood, as shown in several studies (258–262).

Alternatively, physical exercise and the consequent systemic
activation of b-adrenergic receptors (b-AR), immediately before

PBMC isolation, has been shown to substantially increase

mobilization for PB, ex vivo expansion and antitumor capacity.

In their study, Baker et al. (263) showed that the practice of

physical exercises can predict the expansion potential of gd T

cells, which is mobilized in a b-AR type 2 dependent fashion.
Therefore, patients with high levels of physical activity mobilized

gd T cells that expanded ex vivo in much higher percentages

compared to blood at rest when stimulated with IL-2 + ZOL for

14 days (263). These cells had higher expression of CD56 and

NKG2D and showed high cytotoxicity against LCs in vitro.

On the other hand, gd T cell isolation from UCB is still poorly

investigated and so far, it has not been the target of cell expansion
protocols in clinical trials. Berglund et al. (264) showed that it is

possible to expand gd T cells derived from UCB in vitro. The

authors developed an expansion protocol based on the

application of ZOL + IL-2 in culture for 14 days. This

promotes the growth of Vg9Vd2 cells that mostly adopt a

central memory phenotype and secrete higher levels of IL-1b,
IL-2 and IL-8 (264). In general, the acquisition and handling of

UCB-derived gd T cells still need to be investigated more fully.

Some factors, such as the low frequency of Vg9Vd2 cells (more

easily expanded in vitro) in UCB and the poorly defined

phenotypic diversity in this environment, make handling more

limited (254). The approaches discussed here are viable targets

for adoptive cell therapy because they also serve as adequate
and economical adjuvants for hematopoietic stem cell

transplantation (HSCT) (263, 264).

It is not clear whether pre-activation with ZOL + IL-2 can

trigger the total antitumor capacity of gd T cells. However, many

in vitro approaches that use other molecules, such as IL-15, have

demonstrated greater potential in stimulating the activation of

these lymphocytes. As already reviewed, IL-15 associated with

pAgs promotes high cytotoxicity in gd T cells, which is evidenced
by the high T-bet expression (181). In addition, the combined

use of IL-2 + IL-15 can provide gd T cells with antileukemic

properties (174, 181, 182) even in hypoxia (181).

A mix of cytokines combined with Abs can also promote a

pre-activated state in gd T cells, as evidenced in studies using the

DOT protocol. Notably, the use of IFN-g, IL-1b, IL-4, IL-15, and
IL-21 with anti-CD3 Abs positively regulates many NKRs, while

ICs, such as PD1, CTLA4 and CD94/NK group 2 member A

(NKG2A), are negatively regulated on the cell surface (31, 200).

In addition, many homing receptors, such as signal-regulatory

protein alpha (SIRPa), integrin-b7, CD31, CD56, CD96 and

intercellular adhesion molecule 1 (ICAM-1), are expressed, as
well as chemokine receptors, such as CXCR3, CCR6 and CX3C

chemokine receptor 1 (CX3CR1) (31). Noteworthy, the junction

of these cytokines promotes gd T cells with APC functions and a

higher potential to migrate and recirculate between blood and

tissues (31, 174). Therefore, pre-activation using these

approaches may lead to better crosstalk with other cytotoxic

cells (e.g., NK) or LCs in different compartments (265).

The HSCT Questions
The functional importance of gd T cells in HSCT has received

enormous attention after many years of research. The fact is that

the frequency of these lymphocytes may fluctuate between
treated and untreated individuals, either during chemotherapy

(27, 266) or after HSCT (267–273), implying relevant roles for gd
T cells in the patient’s recovery (274). Several initial reports have

shown that ab TCR depleted allogeneic HSTC (allo-HSCT) was

able to increase disease-free survival (2-5 years) after

transplantation (267, 268, 273). Notably, this was correlated
with a high gd T cell frequency circulating in the PB and

mediating the graft-vs-leukemia (GvL) effect (267). The Vd1
subtype represented the highest proportion of these cells in the

blood of patients (267, 273, 275).

Given that gd TCRs are not restricted to HLA expression, the

triggering of the GvHD effect is less likely, since tumor detection

depends on more ubiquitous targets (273, 276). Therefore, the
high frequency of these cells contributes to the restoration of the

hematopoietic niche and is related to antileukemic responses

(273); although this is not their only contribution to the success

of HSCT. Higher gd T cell percentages and a lower incidence of

infection was been observed in many patients after HSCT,

indicating protective roles in fungal, bacterial and viral
infections (268, 273, 276). This made it possible to increase

survival in patients with a high frequency of these cells when

compared to patients with low or normal counts (277).

Cytomegalovirus (CMV) infection and its reactivation is a

major concern after HSCT and, notably, gd T cells can be

essential effectors in controlling viral expansion. Knight et al.

(278) reported for the first time that Vd1 and Vd3 cells expand as
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a result of an active response against CMV in patients after allo-

HSCT; although there were previous data that showed that these

subtypes expand in CMV infection in immunocompetent

individuals (275, 276, 279). Interestingly, CMV reactivation

after allo-HSCT mobilized these non-Vd2 subtypes against

infected cells and against LCs in vivo (280). This is intriguing
and leads us to infer that the reactivation of CMV after HSCT

can benefit patients with leukemia, as it impacts the incidence of

disease recurrence (281).

Epstein-Barr virus (EBV) infection is also a problem. Farnaut

et al. (282) showed that EBV infection resulted in a significant

Vd1 cell expansion in a patient with ALL transplanted with UCB,
which represented more than 80% of the total circulating gd T

cells. One year after transplantation, these cells were highly

differentiated and exhibit CD57 and CD8 expression while

minimally expressing the BTLA protein (282). These data

suggest a strongly adaptive response from Vd1 and Vd3 cells

that possibly improves the efficacy of allografts (269).
Overall, the graft enriched with gdT cells provides a lower relapse

incidence during immune reconstitution after HSCT (274). This is

evidenced when patients with low frequencies of these lymphocytes

have a high rate of death from relapse (283). In addition, gd T cell

innate and adaptive responses can also prevent the occurrence of

infections after HSCT (269, 284, 285). Finally, their functional

plasticity can assist in immunological tolerance to the graft and
avoid GvHD, as evidenced inmany studies (258, 260). Therefore, the

data highlighted here position gd T cells as potential targets in

applications aimed at improving clinical results after HSCT, since

they induce a potent GvL effect in the absence of GvHD.

THE STATE-OF-THE-ART FOR
CLINICAL TRIALS

Although promising, gd T cells have not yet been fully translated

into clinical research that targets leukemia. Although clinical
studies carried out over two decades have shown that gd T cells

have low toxicity and reactivity against the host (274), the clinical

efficacy of adoptive therapy with gd T cells has not been

consistently reported (Table 2). In vivo stimulation, that is, the

activation of autologous gd T cells using N-BPs + IL-2, induced

few measurable responses in patients with leukemia. Wilhelm

et al. (286) included 4 patients with CLL in a clinical study based

on PAM + IL-2 in vivo infusion. None of the 4 patients were able

to obtain objective or complete responses, which was also
evidenced by the low expansion of endogenous gd T cells

in vitro when isolated from these patients.

Kunzmann et al. (287) evaluated stimulation with ZOL + IL-2

in several tumors. In this clinical trial, 8 patients with AML were

included. Only 2 of them had an objective response, and they

achieved a partial remission. Notably, ZOL infusion in pediatric
patients with acute leukemia after HSCT depleted for ab TCR and

CD19+ B cells prolonged the disease-free survival in these patients,

since it was associated with high numbers of circulating gd T cells

(271). This was also reported in a subsequent clinical trial that

evaluated 46 pediatric patients with acute leukemia and reported

that 3 or more repeated ZOL infusions offer a lower rate of
transplant-related death, lower occurrence of relapses and absence

of GvHD. Global disease-free survival is also improved (272).

The efficiency degree of donor gd T cell ex vivo expansion is

evidenced when the graft is depleted for ab TCR, as this was able to
induce a remarkable clinical recovery in 74 patients with acute and

chronic leukemia, in which 43 achieved an objective response

and 25 achieved complete remission, with no risk of recurrence
and with improved survival after allo-HSCT (267). The subsequent

follow-up of 153 patients with acute leukemia after allo-HSCT

showed that gd T cell-enriched graft, even inducing few complete

remissions (36 patients), was able to confer a long-term survival

advantage in patients who exhibited high gd T cell frequency in the

blood (268). Finally, ZOL + IL-2 in vivo stimulation after infusion
of PBMC depleted for ab T cells in 2 patients resulted in a higher

in vivo expansion of donor gd T cells and NK cells that induced

complete remission in these patients (288).

It is important to highlight that many Phase I clinical trials are

emerging to investigate gd T cells as alternative axes in several

established therapies since the available clinical and preclinical

data suggest that gd T cell-based strategies be combined with
agents that better target these cells against the tumor. Therefore,

TABLE 2 | Executed clinical trials with gd T cell-based strategies.

Leukemia subtype N included Interventions Objective response Complete response Ref.

In vivo stimulation (autologous)

CLL 4 PAM and IL-2 0/4 0/4 (276)

AML 8 ZOL and IL-2 2/8 0/8 (277)

ALL and AML 43 ZOL ND ND (261)

ALL, AML and MPAL 46 ZOL after allo-HSCT depleted for

ab T cells/CD19+ B cells

ND ND (262)

Ex vivo expansion (donor gd T cells)

ALL, AML and CLL 74 Allo-HSCT depleted for ab T cells 43/74 25/43 (257)

ALL and AML 153 Allo-HSCT depleted for ab T cells 100/153 36/153 (258)

AML and SPL 2 ZOL and IL-2 after

CD4/CD8 depleted haplo-PBMC

2/2 2/2 (278)

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; allo-HSCT, allogeneic hematopoietic stem cell transplantation; CLL, chronic lymphocytic leukemia; haplo, haploidentical;

IL, interleukin; MPAL, mixed phenotype acute leukemia; ND, not determined; PAM, pamidronate; PBMC, peripheral blood mononuclear cell; SPL, secondary plasma cell leukemia; ZOL,

zoledronate.
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several studies aiming at the optimization of gd T cell antitumor

reactivity through genetic engineering approaches are currently

registered (Table 3). The use of these lymphocytes as platforms
for CAR (NCT02656147) and TEG (NTR6541) engineering can

overcome many obstacles observed in conventional adoptive

therapy with ab T cells and NK cells, although they also have

their limitations (215, 228). Finally, in vivo stimulation and

ex vivo expansion are also being insistently evaluated in the

context of allo-HSCT (NCT02508038, NCT03862833) and the
gd T cell product infusion (NCT03885076, NCT04008381,

NCT04028440, NCT03533816) in the expectation that a safe,

effective and tolerable method for the treatment of patients will

be discovered.

CONCLUDING REMARKS AND
OUTLOOKS FOR THE FUTURE

Through this review, we hope to shed light on a relatively
unexplored unconventional T cell. Nonetheless, it is one that

has proven to be an important component in the leukemic

microenvironment, since it responds effectively against the

tumor and is able to affect the clinical outcome in patients

with leukemia, as we recently reviewed (289). gd T cells have

unique immunological properties that allow the development of
an off-the-shelf immunotherapy with universal applicability, that

is, independent of histocompatibility related factors since gd T

cells respond regardless of MHC/HLA expression and recognize

Ags presented by ubiquitous monomorphic molecules in many

tumors in humans.

Furthermore, the clinical responses reported in clinical and

pre-clinical trials, already reviewed here, highlight the
importance of further increasing gd T cell reactivity, either by

raising intracellular pAg concentrations to “sensitize” LCs or by

projecting gd T cells with higher expression of receptors

associated with cytotoxicity, adhesion and homing, as this

allows recirculation and immune surveillance in different

tumor compartments, even under hypoxia. The fact that these
cells predominate in the blood and healthy or malignant tissues

provides a migratory advantage over ab T cells or NK cells and a

greater ability to infiltrate and respond in the leukemic

microenvironment; in particular the Vd1 subtype, which has
improved cytotoxicity and resistance to exhaustion or AICD.

The difficulty that still needs to be overcome for the

therapeutic use of these cells is, in fact, is that of how to obtain

a clinically significant cell proportion. As such, new techniques

for cell expansion (or improvement) are necessary. In addition,

ensuring that gd T cell antileukemic phenotype is not diverted by
TME stimuli also represents another challenge to be faced.

Therefore, the modulation and effective targeting of these cells

need to be achieved. Finally, improving and maintaining their

in vivo persistence and invigorating exhausted gd T cells also

represent additional barriers that can be reversed using

molecular factors that support their cytotoxicity in TME

in vivo. The fact is that the innate and adaptive gd T cell
properties will lead to advances in better antileukemic

approaches and potentially establish which of these will

provide a real and applicable translational perspective.
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(PROCAD-Amazônia 2018 Program-#88881.200581/2018-01)

and the Brazilian Ministry of Health. MSB, TLPR, NDA,

FM-G and FSHA have fellowships from FAPEAM, CAPES and

CNPq (SI and PhD students). AM is a level 2 research fellow

from CNPq. The funders had no role in study design and
decision to publish, or preparation of the manuscript.

ACKNOWLEDGMENTS

We would like to thank all the authors, researchers at

HEMOAM, UFAM and FMT-HVD for their critical
discussions and insightful and encouraging ideas. We are also

grateful for the support and thoughts that helped shape our

intuition and the perspectives highlighted in this manuscript.

REFERENCES
1. Höpken UE, Rehm A. Targeting the Tumor Microenvironment of Leukemia

and Lymphoma. Trends Cancer (2019) 5:351–64. doi: 10.1016/

j.trecan.2019.05.001

2. Batsivari A, Haltalli MLR, Passaro D, Pospori C, Lo Celso C, Bonnet D.

Dynamic Responses of the Haematopoietic Stem Cell Niche to Diverse

Stresses. Nat Cell Biol (2020) 22:7–17. doi: 10.1038/s41556-019-0444-9

3. Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM,

Gribben JG, et al. Bone Marrow Niches in Haematological Malignancies.

Nat Rev Cancer (2020) 20:285–98. doi: 10.1038/s41568-020-0245-2

4. Witkowski MT, Kousteni S, Aifantis I. Mapping and Targeting of the

Leukemic Microenvironment. J Exp Med (2020) 217(1–13):e20190589.

doi: 10.1084/jem.20190589

5. Carlsten M, Järås M. Natural Killer Cells in Myeloid Malignancies: Immune

Surveillance, NK Cell Dysfunction, and Pharmacological Opportunities to

Bolster the Endogenous NK Cells. Front Immunol (2019) 10:1–18.

doi: 10.3389/fimmu.2019.02357

6. Sander FE, Rydström A, Bernson E, Kiffin R, Riise R, Aurelius J, et al.

Dynamics of Cytotoxic T Cell Subsets During Immunotherapy Predicts

Outcome in Acute Myeloid Leukemia. Oncotarget (2016) 7:7586–96.

doi: 10.18632/oncotarget.7210

7. Wang M, Zhang C, Tian T, Zhang T, Wang R, Han F, et al. Increased

Regulatory T Cells in Peripheral Blood of Acute Myeloid Leukemia Patients

Rely on Tumor Necrosis Factor (TNF)-a-TNF Receptor-2 Pathway. Front

Immunol (2018) 9:1274. doi: 10.3389/fimmu.2018.01274

8. Godfrey DI, Le Nours J, Andrews DM, Uldrich AP, Rossjohn J.

Unconventional T Cell Targets for Cancer Immunotherapy. Immunity

(2018) 48:453–73. doi: 10.1016/j.immuni.2018.03.009

9. Godfrey DI, Uldrich AP, Mccluskey J, Rossjohn J, Moody DB. The

Burgeoning Family of Unconventional T Cells. Nat Immunol (2015)

16:1114–23. doi: 10.1038/ni.3298

10. Lepore M, Mori L, De Libero G. The Conventional Nature of Non-MHC-

Restricted T Cells. Front Immunol (2018) 9:1365. doi: 10.3389/

fimmu.2018.01365

11. Davey MS, Willcox CR, Baker AT, Hunter S, Willcox BE. Recasting Human

Vd1 Lymphocytes in an Adaptive Role. Trends Immunol (2018) 39:446–59.

doi: 10.1016/j.it.2018.03.003

12. La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J. Understanding the

Drivers of MHC Restriction of T Cell Receptors. Nat Rev Immunol (2018)

18:467–78. doi: 10.1038/s41577-018-0007-5

13. Melandri D, Zlatareva I, Chaleil RAG, Dart RJ, Chancellor A, Nussbaumer O, et al.

The gdtcr Combines Innate Immunity With Adaptive Immunity by Utilizing

Spatially Distinct Regions for Agonist Selection and Antigen Responsiveness. Nat

Immunol (2018) 19:1352–65. doi: 10.1038/s41590-018-0253-5
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