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ABSTRACT 21 

 22 
The potential of cancer immunotherapy relies on the mobilization of immune cells capable of 23 
producing anti-tumour cytokines and effectively killing tumour cells. These are major 24 

attributes of  T cells, a lymphoid lineage that is often underestimated despite its major role 25 
in tumour immune surveillance, which has been established in a variety of pre-clinical cancer 26 
models. This notwithstanding, in particular instances the tumour microenvironment seemingly 27 

mobilizes  T cells with immunosuppressive or tumour-promoting functions, thus 28 

emphasizing the importance of regulating  T cell responses to realize their translation into 29 
effective cancer immunotherapies. In this Review we outline both seminal work and recent 30 

advances in our understanding of how  T cells participate in tumour immunity and how their 31 
functions are regulated in experimental models of cancer. We also discuss the current 32 

strategies aimed at maximizing the therapeutic potential of human  T cells, on the eve of 33 
their exploration in cancer clinical trials that may position them as key players in cancer 34 
immunotherapy.  35 
 36 
 37 

 38 
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[H1] INTRODUCTION 40 

 41 
T cells are key components of the tumour microenvironment (TME), and their therapeutic 42 
manipulation with immune checkpoint inhibitors or upon adoptive cell transfer has produced 43 
recent breakthroughs in the treatment of cancer1,2. While most T cell research and clinical 44 

application centres on  T cells, i.e., T cells expressing a lineage-specific  T cell receptor 45 

(TCR),  TCR-expressing T cells are also important players in cancer immunity3.  T cells 46 

share many qualities with their  T cell counterparts, such as cytotoxic effector functions 47 

and pro-inflammatory cytokine production, but one major difference between  T cells and 48 

 T cells is their relative dependence on major histocompatibility complex (MHC) molecules. 49 

The  TCR does not bind MHC molecules, and antigen recognition by  T cells has 50 

remained elusive, as recently discussed elsewhere4,5. This distinction from  T cells, 51 
coupled with their relatively low numbers in mammals, has slowed down progress on 52 

understanding the role of  T cells in tumorigenesis. However, the last few years has seen 53 

major advances in our knowledge of cancer-associated  T cell biology (Figure 1): 54 
uncovering their powerful influence on tumours and other immune cells; highlighting their 55 
multifaceted role as both anti- and pro-tumour mediators; and unravelling the individual 56 

contributions of  T cell subsets to cancer progression. 57 
 58 

An intrinsic difficulty in  T cell research is the evolutionary divergence of TCR genes 59 
between humans and mice, where most pre-clinical work is performed. In particular, the 60 

major  T cell subsets in humans do not have orthologs in mice6. Moreover, the most 61 

relevant mouse  T cell subsets are defined by the TCR V chain usage (i.e. V1-7), in 62 

contrast with V-based subsets in humans (i.e. V1-3)3. Despite this clear discrepancy, 63 

functionally analogous  T cell populations – i.e., with similar effector functions and 64 
(patho)physiological roles – can be found in mice and humans, which has contributed 65 

decisively to our increased understanding of the place occupied by  T cells in immunity. 66 
Along these lines, an important recent finding was the conserved role of butyrophilin family 67 
members in homeostatic interactions with functionally equivalent subsets of mouse and 68 

human intestinal  T cells7. In this Review we elaborate on the basic biological behaviour 69 

and therapeutic potential of  T cells in cancer, from their functional properties and 70 

regulation in the TME to the design of new  T cell-based approaches for cancer 71 
immunotherapy.  72 
 73 
 74 

[H1] ANTI-TUMOUR FUNCTIONS OF  T CELLS  75 
 76 

[H2] Direct tumour cell targeting by  T cells 77 

The seminal study that established an anti-tumour role for  T cells in mice came from the 78 
Hayday laboratory and demonstrated that these cells control the development and growth of 79 
transplantable squamous cell carcinomas, as well as methylcholanthrene (MCA)- or 80 
dimethylbenz[a]anthracene (DMBA)-induced cutaneous tumours8. The strong anti-tumour 81 

function of mouse  T cells in the MCA cancer model was corroborated by other groups9 82 
and extended to models of spontaneous B cell lymphomas10, prostate cancer11 and the 83 

widely-used B16 melanoma model9,12,13.  T cell recognition of cancer cells relies on the 84 
engagement of their TCR and/or natural killer cell receptors (NKRs)14. In mice, skin exposure 85 
to carcinogens leads to expression of the stress ligands, RAE-1 and H60, by keratinocytes 86 

that bind the NKG2D receptor expressed on skin-resident V5+ T cells (also called dendritic 87 
epidermal T cells (DETCs))8. Indeed, acute changes in NKG2D ligand expression in the 88 

epidermis induce morphological changes15,16 and interleukin 13 (IL-13) expression17 in V5+ T 89 

cells to counteract carcinogenesis in vivo. The mechanism by which  T cell-derived IL-13  90 
protects against tumour formation in the DMBA cancer model is not entirely clear. IL-13 91 

activates keratinocytes via the IL-13 receptor (IL-13R1) to produce various cytokines and 92 
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IL-13 mediates their migration through the epidermis17, but whether these effects explain the 93 
anti-tumour functions has yet to be formally established. Recent studies have shown that 94 
inhibition of mTOR signalling using rapamycin increases NKG2D expression on ex vivo-95 

expanded mouse V4+ T cells as well as enhances their cytotoxicity to various cancer cell 96 

lines18. Human  T cells also recognize transformed cells through NKG2D14,19. Tumour cells 97 
in both solid and haematological malignancies frequently express the human orthologues of 98 
RAE-1, MHC class I polypeptide related sequence A (MICA) and MICB, as well as members 99 
of the UL16 binding protein (ULBP) family (ULBP1-6) that also activate NKG2D-expressing 100 

V1+ cells20 and V2+ cells21,22. Other NKRs, such as DNAM-1, NKp30 and NKp44, which 101 

can be expressed by  T cells and play a role in recognition of cancer cells, are reviewed 102 
elsewhere14,23. 103 
 104 

The mechanisms by which  T cells kill cancer cells are similar to that of conventional 105 
cytotoxic T cells (Figure 2). In fact, engagement of NKG2D activates cytolytic responses in 106 

human  T cells19, which are mediated by the granule exocytosis pathway through the 107 
secretion of the pore-forming molecule, perforin, and the pro-apoptotic protease, granzyme 108 

B. In mouse studies,  T cells and CD8+ T cells infiltrating B16 melanoma lesions express 109 

perforin and granzyme B to the same degree12. However, specific subsets of  T cells are 110 

more prone to cancer cell killing than other subpopulations. In vitro-expanded splenic V4+ 111 
cells express higher levels of perforin and induce greater mouse YAC-1 T cell lymphoma and 112 

B16 melanoma cell death than V1+ cells13. Similarly, human  T cells employ the granule 113 
exocytosis pathway to kill various cancer cell types in vitro, such as renal cell carcinoma24, 114 
squamous cell carcinoma25, colorectal carcinoma25,26, transformed kidney fibroblasts25 and 115 

chronic myeloid leukemia (CML) cells27. Besides the perforin–granzyme axis, human V9V2 116 
T cells also induce in vitro killing of CML cells27 and lung cancer cells28 through the 117 
expression of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). In 118 
addition, FAS ligand, another member of the TNF family that induces apoptosis in target 119 

cells, mediates human  T cell killing of FAS receptor-expressing osteosarcoma cell lines in 120 

vitro29. Human  T cells also use antibody-dependent cellular cytotoxicity (ADCC), which is a 121 
cell death-inducing mechanism by which immune cells that express Fc receptors recognize 122 

antibodies bound to a target cell. Indeed, CD16 (also known as FcRIII) expression by 123 

circulating T lymphocytes is mainly attributed to  T cells30. Upon activation, V9V2 T cells 124 
upregulate CD16 and can induce ADCC on target cells following treatment with antibodies, 125 
such as the monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2; 126 
also known as ERBB2) trastuzumab31,32, the B lymphocyte antigen CD20-specific 127 
monoclonal antibody rituximab31,33, bispecific antibodies that bind the TCR complex and 128 
HER234 or even B lymphocyte antigen CD19-specific triplebodies [G] 35. Interestingly, this 129 

category of killing seems specific to V9V2 T cells, as their V1+ T cell counterparts utilize 130 
antibody-independent mechanisms – which may include increased production of interferon-γ 131 

(IFN) and Granzyme B – to induce neuroblastoma cell death in vitro36. However, ADCC may 132 
not be the only outcome of CD16 activation, as IgG-opsonized human cytomegalovirus 133 

induces IFN production by V2– T cells in a CD16-dependent manner, but the importance of 134 
this mechanism remains unknown for anti-tumour responses30. 135 
 136 

[H2] Indirect effects of  T cells on anti-tumour immunity 137 

 T cells also influence anti-tumour immunity by orchestrating downstream immune 138 

responses (Figure 2). In B16 melanoma, they express IFN in the tumour bed to amplify 139 

IFN production in  T cells9 and induce MHC-I expression on tumour cells37, thereby 140 
increasing the potency of cytotoxic T cells and potentiating recognition of cancer cells. 141 

Likewise, human blood- and gastric tumour-derived  T cells stimulate  T cell activation 142 

and proliferation – an effect achieved by the antigen-presenting cell properties of V9V2 T 143 
cells38-42. In fact, this subset not only expresses similar levels of antigen presentation 144 
molecules and co-stimulatory molecules as standard antigen-presenting cells38, they are also 145 
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functionally equivalent to mature dendritic cells in their ability to induce peptide-specific T cell 146 
activation and expansion39. These antigen-presenting cell functions can be further enhanced 147 

by tumour-reactive monoclonal antibodies41. The impact of  T cells on anti-tumour immunity 148 

is not limited to the promotion of  T cell responses, since activated human  T cells can 149 
stimulate NK cell cytotoxicity via costimulation of CD137 (also known as 4-1BB)43. However, 150 

it should be noted that in co-cultures of zoledronate-activated human  T cells, IL-2-primed 151 

NK cells and monocyte-derived dendritic cells (moDCs),  T cells negatively impacted IFN 152 
production by NK cells by killing moDCs that supply NK cell-activating cytokines44. These 153 

data suggest that the effects of  T cells on anti-tumour immunity are context-dependent 154 
and may be modulated by specific anti-cancer therapies. 155 
 156 

Another established function of murine  T cells in immunology is the provision of help 157 
towards immunoglobulin class switching [G], germinal centre [G] formation, production of 158 
autoantibodies and shaping of pre-immune peripheral B cell populations45-47. These data may 159 

also extend to human  T cells, as V9V2 T cells stimulated in vitro with interleukin-21 (IL-160 
21) and (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) – a microbial 161 
metabolite –  increased the production of the B cell chemoattractant, C-X-C motif chemokine 162 
ligand 13 (CXCL13), increasing their potential to influence B cells48. A few studies have 163 

begun to elucidate the relevance of this  T cell function in anti-tumour responses. In a 164 
mouse model of epidermal hyperplasia driven by the loss of Notch1 in keratinocytes that 165 

express an artificial antigen, -galactosidase, the induction of skin hyperplasia results in an 166 

increased production of -galactosidase-specific immunoglobulin G (IgG), which is 167 

dependent on  T cells49. However, the impact of these tumour-specific,  T cell-dependent 168 
antibodies on cancer progression in this model is unknown. More recently, a protective 169 

response by tumour-specific antibodies that are induced by  T cells was shown in a model 170 
of DMBA-driven cutaneous tumorigenesis50, where the anti-tumour functions of NKG2D-171 

expressing V5+ T cells were previously established8,15. In this report, topical exposure to 172 

DMBA leads to V5+ T cell-dependent B cell class switching to IgE. The accumulation of 173 

autoreactive IgE protects against carcinogenesis in an FcRI-dependent manner, indicating 174 

that  T cells play an important role in tumour protection by helping B cells to undergo class 175 
switching50. 176 
 177 

In mice,  T cells can play a beneficial role in chemotherapy and targeted therapy response. 178 

Namely,  T cells were required for the anti-proliferative effects of doxorubicin on 179 
subcutaneously injected AT3 mammary cells51 and MCA205 fiborsarcoma cells51,52. The 180 

mechanism proposed for this anti-tumour benefit involves IL-17A-producing  T cells that 181 

control the influx and activity of IFN-expressing CD8 T cells52.  Similarly, in a cKIT-mutated 182 

mouse model of gastrointestinal stromal tumours (GIST),  T cells mediated anti-tumour 183 
immunity and tumour progression following cKIT inhibitor therapy with imatinib. GM-CSF-184 

expressing  T cells regulated the infiltration of CD103+ dendritic cells (and subsequently 185 

CD8 T cells), under the direction of macrophages producing IL-153. Interestingly,  T cells 186 
co-expressed GM-CSF and IL-17A in the GIST model, even though, the role of IL-17A was 187 
not tested. These data stand in contrast to the large body of literature on the pro-tumour 188 

functions of IL-17A-producing  T cells (discussed in the next section), suggesting that 189 
chemotherapy and targeted therapy in some scenarios may alter the natural functions of IL-190 

17-producing  T cells. 191 
 192 
 193 

[H1] PRO-TUMOUR FUNCTIONS OF  T CELLS  194 
  195 

Much of what we know about the pro-tumorigenic roles of  T cells stems from their ability to 196 
produce IL-17A (Box 1). Various studies have shown that IL-17 (used hereafter to denote IL-197 

17A for simplification) expression is increased by  T cells in tumours formed following the 198 
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injection of cancer cell lines subcutaneously, orthotopically or intravenously in mice54-61, and 199 
that implanting these same cell lines into IL-17 knockout mice results in reduced tumour 200 
growth in models of breast cancer61, fibrosarcoma54,57, hepatocellular carcinoma59, lung 201 

cancer55,58, melanoma55,58 and ovarian cancer60. IL-17-producing  T cells are also 202 
increased in autochthonous genetically engineered models of cancer, such as the Mist1-203 
CreERT2;KrasG12D model of early pancreatic cancer62, colorectal cancer models driven by the 204 
loss of the tumour suppressor, adenomatous polyposis coli (Apc)63,64, the keratin 14 (K14)-205 
Cre;cadherin-1 (Cdh1)F/F;Trp53F/F lobular breast cancer model65, the KrasG12D or 206 
KrasG12D;Trp53F/F lung adenocarcinoma models66,67 and the K14-human papillomavirus 16 207 

(HPV16) model of skin squamous cell carcinoma68,69.  T cells that produce IL-17 in tumour-208 

bearing mice usually express V4 or V6 TCRs59,60,65,67.  209 
 210 

IL-17 from  T cells drives cancer progression via several downstream effects on cancer 211 
cells, endothelial cells and other immune cell populations (Figure 3). For example, signalling 212 
directly through IL-17 receptors on pancreatic acinar cells accelerates pancreatic 213 
intraepithelial neoplasia (PanIN) in Mist1-CreERT2;KrasG12D mice62. IL-17 may act directly on 214 
endothelial cells to stimulate tumour growth via angiogenesis54,68 or to upregulate adhesion 215 
molecules and endothelial cell permeability that promotes metastases at secondary sites58. 216 

In mice bearing mouse ID8 ovarian cancer cells, the expansion of IL-17-producing  T cells 217 
promoted the recruitment of pro-angiogenic macrophages to tumours and initiated the 218 

angiogenic switch [G] 60. There is also a strong reciprocal link between IL-17-producing  T 219 

cells and neutrophils. These two cell types influence each other by  T cell-driven, G-CSF-220 
mediated expansion and polarization of neutrophils towards an immunosuppressive 221 

phenotype56,59,65, as well as neutrophil-mediated upregulation of IL-17 expression in  T 222 
cells59. These mechanisms support tumour growth and metastasis by dampening anti-tumour 223 
immunity in mouse models of liver59 and breast cancer65. More recently, it has been shown in 224 

lung tumour-bearing KrasG12D;Trp53F/F mice that microbiota-triggered IL-17-producing  T 225 
cells promote cancer progression67. Neutralization of IL-17 in these tumour-bearing mice 226 
reduces granulocyte colony-stimulating factor (G-CSF) levels as well as neutrophil infiltration 227 

into tumours, which is a mechanism analogous to the  T cell–IL-17–G-CSF–neutrophil axis 228 
that promotes breast cancer lung metastasis65. 229 
 230 

IL-17-producing  T cells are rarely found in healthy individuals70,71, but these cells 231 
accumulate in disease settings, such as meningitis71 and cancer. Thus, these cells infiltrate 232 
into human tumours from patients with gallbladder72, breast73, colon74,75, lung76, ovarian73 and 233 
cervical68 cancer as well as cutaneous squamous cell carcinoma77. A few of these studies 234 

have shown a preference for IL-17 among V1+ T cells72,77. However, their existence and 235 
importance in humans has been met with some scepticism. The contentiousness 236 

surrounding this issue partly stems from disparate studies where  T cell numbers and IL-17 237 
expression levels are widely different. A prime example of this comes from opposing findings 238 

in colon cancer studies: one concluding that tumour-infiltrating  T cells are highly abundant 239 

and a major source of IL-17 74, while another concluding that IL-17-producing  T cells are 240 
negligible75. The contrasting results may be explained by differences between patient 241 
cohorts, such as diet, microbiome, tumour microenvironment and treatment regimen. 242 
Ultimately, though, research in this area should expand to investigate more patient cohorts, 243 

using techniques that examine  T cells in situ in addition to ex vivo flow cytometry analysis 244 

of  T cells. 245 
 246 

Beyond IL-17,  T cells can advance cancer progression via other means (Figure 3). One 247 
way this can be achieved is through production of IL-4 which can be expressed by both 248 

human78 and mouse79  T cells. In B16 melanoma, IL-4-producing  T cells suppress the 249 

killing capacity of other anti-tumour  T cell subsets79. IL-4 also inhibits the anti-tumour 250 

activities of both human V1+ and V2+ T cells in vitro80. Mouse  T cells residing in injected 251 
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sarcomas derived from transgenic KrasG12D;Trp53F/F mice can also suppress cytotoxic CD8+ 252 
T cells by secreting galectin-173, a molecule that binds glycosylated receptors on target cells, 253 
sensitizing them to apoptosis or desensitizing them to other stimuli81. Galectin-1-expressing 254 

V9+  T cells can also be found infiltrating human ovarian tumours73. In subcutaneous and 255 
intra-pancreatic mouse models of pancreatic cancer using cell lines derived from 256 

KrasG12D;Trp53R172H;Pdx-1-Cre (KPC) mice, tumour-associated  T cells express 257 
programmed cell death protein 1 ligand 1 (PDL1) and galectin-9 that prevent cytotoxic T cells 258 

from killing cancer cells to promote tumour growth82. Like galectin-1+  T cells in ovarian 259 
cancer, this observation is relevant to human disease, as PDL1 and galectin-9 expression in 260 

circulating and tumour-infiltrating  T cells is increased in patients with pancreatic cancer 261 

when compared with healthy individuals82, although  T cell infiltration in this cancer type 262 

seems highly variable83. Apart from their suppressive functions on T cells,  T cells may also 263 

promote cancer progression by acting directly on malignant epithelial cells.  T cells from 264 
KRASG12D-driven lung tumours express amphiregulin67 – an epidermal growth factor receptor 265 
(EGFR) ligand – as well as IL-2267,84, and genetic deletion of IL-2284 or preventing IL-22 266 
signalling in lung epithelial cells67 reduces lung cancer growth. 267 
 268 
 269 

[H1] REGULATION OF  T CELL FUNCTIONS  270 
 271 

[H2] Recruitment of  T cells 272 

Mouse IL-17-producing  T cells constitutively express the chemokine receptors, CC-273 

chemokine receptor 2 (CCR2) and CCR6, which play distinct roles in  T cell trafficking. 274 

While CCR6 is important for homeostatic circulation of V4+ and V6+ T cells to the dermis, 275 
CCR2 drives their recruitment to inflammatory sites, including B16 melanoma lesions85. For 276 
optimal recruitment of these T cells to inflamed tissues, downregulation of CCR6 is required, 277 

which is mediated by the cytokines IL-1, IL-23 and IL-7, and the transcription factors, 278 
interferon regulatory factor 4 (IRF4) and B cell-activating transcription factor (BATF)85. 279 

Intriguingly, V1+ T cells, which are IFN biased (and cytotoxic), also respond to CCR2 and 280 
its ligand, CC-chemokine ligand 2 (CCL2)12, suggesting a pleiotropic role for this chemokine 281 

in  T cell responses. In addition, the CCL2–CCR2 axis may also influence  T cells 282 
indirectly, as shown in the K14-Cre;Cdh1F/F;Trp53F/F mouse model, where mammary 283 

epithelial cells in tumours express high levels of CCL2 that upregulates IL-1 expression in 284 

tumour-associated macrophages, which in turn stimulates IL-17 expression in  T cells86. In 285 

humans, whereas V2+ T cells express CCR587, tumour-infiltrating V1+ T cells express 286 
CXC-chemokine receptor 3 (CXCR3) and are activated by CXC-chemokine ligand 10 287 

(CXCL10)88; and blood-derived V1+ (but not V2+) T cells express CCR2 and respond to 288 
CCL2 in vitro12. A deeper understanding of chemokine receptor profiles and their implications 289 

in migration and tumour infiltration may be important to enhance the efficacy of  T cell-290 
based therapeutic strategies. 291 
 292 
[H2] Regulation of anti-tumour functions 293 

Cytokines have major effects on  T cell functions. IL-2 and IL-15 are the two main 294 

cytokines involved in the acquisition of anti-tumour functions, namely cytotoxicity and IFN 295 

production (Figure 2), by human naïve  T cell thymocytes [G] 89 as well as  T 296 
lymphocytes isolated from the peripheral blood of healthy donors90 or patients with cancer91. 297 
Moreover, IL-15-cultured dendritic cells, isolated from healthy donors or patients with cancer, 298 
were recently reported to induce, through IL-15 production, the proliferation and expression 299 

of cytotoxic molecules and IFN in  T cells, without concomitant upregulation of inhibitory 300 

molecules92. Other cytokines, like IL-12, IL-18 and IL-21 also potentiate IFN production and 301 

cytotoxicity of  T cells in vitro93-95, while IL-36 upregulates IFN in  T cells and slows 302 
tumour growth in transplantable melanoma and mammary tumour mouse models96.  303 
 304 
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 T cells can be negatively impacted by tumour-infiltrating immune cells (Figure 2), such as 305 

regulatory T cells, via transforming growth factor β (TGF) and IL-10, in hepatocellular 306 

carcinoma97. Circulating neutrophils can also suppress IFN production and cytotoxicity of 307 

V2+ T cells in vitro, in an arginase-1-dependent manner98 or through reactive oxygen 308 

species (ROS) production99. Similarly, myeloid cells can induce  T cell exhaustion through 309 

PDL1 expression100, and the PD1–PDL1 axis downregulates IFN production, cytotoxicity 310 

and ADCC101-103. These data suggest that anti-PD1 therapy may enhance  T cell functions. 311 
 312 
Various cues from the TME, including oxygen tension [G] and nutrient availability, may also 313 

regulate anti-tumour  T cell functions. Hypoxia (simulated using 1-2% oxygen) seems to 314 

have variable impact on  T cell activities in vitro, either promoting them104 or having no 315 
effect100 when compared to normoxia (20% oxygen). In contrast, low-density lipoprotein 316 

(LDL)-mediated cholesterol uptake by activated human  T cells decreased IFN production 317 
and expression of NKRs (NKG2D and DNAM-1 (also known as CD226)) in vitro, which 318 
translated into diminished anti-tumour function upon adoptive transfer to a xenograft model of 319 
breast cancer105.  320 
 321 
Finally, in the context of cancer treatment, it is relevant to understand how commonly used 322 

drugs may impact  T cell activity. Low doses of commonly used chemotherapeutic drugs, 323 
such as, 5-fluorouracyl, doxorubicin and cisplatin sensitize differentiated cell lines106 or colon 324 
cancer initiating cells107 to Vγ9Vδ2 T cell cytotoxicity. Decitabine, a drug that inhibits DNA 325 
methylation, seemingly upregulates NKG2D ligands on osteosarcoma cell lines and 326 

enhances their targeting by Vγ9Vδ2 T cells108. However, when  T cells themselves are 327 
subjected to decitabine treatment, their proliferation and cytotoxic features are dampened109. 328 

The adverse effect of decitabine on  T cells occurs through demethylation of the 329 
KIR2DL2/3 promoter, resulting in increased Sp-1-mediated expression of KIR2DL2/3, an 330 
inhibitory receptor of the killer-cell immunoglobulin-like receptor (KIR) family, and reduced 331 
cytotoxic function109. Furthermore, histone deacetylase (HDAC) inhibitors also negatively 332 

regulate  T cell proliferation and cytotoxic features, although this suppression can be 333 
partially reversed by PD1 blockade110.  334 
 335 
[H2] Regulation of pro-tumour functions 336 

The inflammatory cytokines, IL-1 and IL-23, which are often expressed by macrophages65,86 337 

or other myeloid cells59,67 in the TME, have been widely implicated in promoting IL-17+  T 338 
cell responses (Figure 3). Blockade or depletion of these cytokines reduced the number of 339 

IL-17+  T cells in mouse models of breast cancer65,86, fibrosarcoma54,57 and melanoma55. 340 
More recently, a study in KrasG12D;Trp53F/F mice bearing lung tumours demonstrated a role 341 

for commensal bacteria in stimulating the production of IL-1 and IL-23 by myeloid cells in a 342 
myeloid differentiation primary response 88 (MYD88)-dependent manner. These two 343 

cytokines subsequently induced the proliferation and activation of lung IL-17-producing V6+ 344 
T cells67, consistent with the MYD88-dependent mechanisms driving hepatocellular 345 
carcinoma59 and fibrosarcoma57 progression. Other pieces of evidence indicate that Toll-like 346 

receptor (TLR) pathways are important for inducing IL-1 and IL-23 in cancer-associated 347 

myeloid cells upstream of IL-17-producing  T cells, as colonic bacterium initiate this 348 
pathway in carcinogen-induced and ApcMIN models of colorectal cancer64,111. By contrast, 349 
TLR5 negatively regulates IL-17 expression in mammary cancer, ovarian cancer and 350 
sarcoma mouse models73.  351 
 352 

The induction of IL-17 expression in mouse and human  T cells seems to be conserved 353 

between species, since the combination of IL-1, IL-23, IL-6 and TGF stimulates IL-17 354 

production by human V2+ T cells71. Accordingly, human dendritic cells treated with microbial 355 
products increase their expression of IL-23, which is sufficient to generate human IL-17-356 

producing  T cells74. Based on these data, IL-1 and IL-23 inhibitors may be useful in 357 
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abrogating the pro-tumorigenic functions of IL-17-producing  T cells in patients with cancer. 358 
Support for this has been provided by the CANTOS study, a randomized, double-blinded trial 359 
involving 10,061 patients across 39 countries for the purpose of preventing cardiovascular 360 

events. Unexpectedly, this trial found that an IL-1 antibody (Canakinumab) reduced lung 361 

cancer incidence and associated mortality112. Since IL-17-producing  T cells are abundant 362 
in patients with lung cancer76, it is tempting to speculate that some of the protective effects of 363 

Canakinumab may be due to dampening pro-tumour  T cell functions. 364 
 365 
IL-7 is another cytokine that promotes the expansion of both mouse and human IL-17-366 

producing  T cells113. In the cancer context, we have shown that IL-7 expression in ID8 367 

ovarian tumours correlates with expansion of IL-17-producing  T cells that express the IL-7 368 
receptor60. More recently, a study using transplantable mammary tumour models showed 369 

that IL-7 expression drives IL-17-producing  T cells to potentiate tumour growth and 370 
metastasis, and type 1 interferon signaling negatively regulates IL-7 expression. This effect 371 

was specific to IL-7, as IL-1 and IL-23 expression were unchanged in tumour-bearing 372 
interferon-α receptor 1 (Ifnar1)–/– mice61. These data provide another avenue of therapeutic 373 

intervention to counteract IL-17+  T cells. 374 
 375 

Besides cytokines, other molecular cues promoting IL-17+  T cell responses include 376 
activation of TCR and NKG2D54,114 signalling, as blocking antibodies directed against these 377 

two molecules dampen IL-17 production by  T cells, both in vitro54 and in vivo114. 378 

Additionally, nitric oxide synthase 2 (NOS2), whose expression in  T cells is induced by IL-379 

1 and IL-6115, supports the production of IL-17 while restraining the production of IFN116. 380 
However, since this study employed complete Nos2–/– mice, it is unclear whether the effect of 381 

NOS2 on  T cell phenotype is cell-intrinsic or extrinsic. Furthermore, IL-17+  T cell 382 
responses are indirectly promoted by cholesterol metabolites that act on neutrophils and 383 

enhance  T cell-dependent mammary tumour metastasis117.  384 
 385 

By contrast, negative regulators of IL-17+  T cells are still scarce. In a carcinogen-induced 386 

colorectal cancer model, the E3 ubiquitin ligase, ITCH, controls IL-17 expression, in  T 387 
cells, as well as in T helper 17 and innate lymphoid cells, via targeting its master transcription 388 

factor, retinoic-acid-receptor-related orphan receptor-γt (ROR-t; an immune cell-specific 389 
isoform of RORγ), for degradation118. In addition, we showed that tumour-associated 390 

neutrophils suppress the proliferation of IL-17+  T cells in transplantable hepatocellular 391 
carcinoma and melanoma models119, consistent with a previous report using a transplantable 392 

lung cancer model120. We further demonstrated that IL-17+  T cells are especially 393 
susceptible to neutrophil-derived ROS, which is associated with their lower level of the key 394 
cellular antioxidant, glutathione (compared with other lymphocyte subsets)119. These findings 395 
suggest that mild induction of oxidative stress in the TME may have beneficial effects in 396 

tumours highly infiltrated by IL-17+  T cells.  397 
 398 
 399 
[H1] CLINICAL PERSPECTIVES AND CHALLENGES 400 
 401 

While most of the data on the interaction of γδ T cells with tumour cells has been obtained in 402 

mouse models, as reviewed above, there is clear evidence that γδ T cells impact the 403 

progression of human tumours, either as natural immune surveillors or as therapeutic agents. 404 

We discuss below the three main lines of research that substantiate this claim: (i) the 405 

prognostic value of γδ T cell infiltration in human tumours; (ii) the therapeutic proof-of-406 

concept using xenograft models of human tumours in immunodeficient mice; and (iii) the 407 

promising albeit limited clinical data on their therapeutic modulation. We then summarize the 408 

main strategies being pursued to realise the clinical potential of γδ T cells in the near future 409 

(Figure 4).  410 
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 411 
 412 
[H2] Prognostic value in human cancer 413 

Recent data suggest that the dichotomy of IFNγ versus IL-17 expression by γδ T cells in the 414 

TME may easily extend from mouse models to human cancer samples from patients. For 415 

example, IL-17+ γδ T cells are associated with poor outcome in patients with gallbladder72 416 

and colon74 cancers. In the latter cancer type, γδ T cells were shown to constitute the major 417 

source of IL-17 in tumour biopsy samples, and IL-17+ γδ T cell infiltration correlated 418 

positively with tumour size, invasion, metastasis and overall staging74. This contrasts with a 419 

subsequent report where patients with colon cancer whose tumour samples were rich in γδ T 420 

cells had a significantly longer 5-year disease-free survival rate75. Along these lines, other 421 

studies scoring either total γδ T cells121 or specifically IFNγ+ γδ T cells72 reported their 422 

association with increased patient survival. In fact, the most exhaustive study by Gentles et 423 

al. on tumour biopsy samples (>18,000 samples from 39 cancer types), analysed at the 424 

transcriptomic level, ranked γδ T cells as the number 1 (out of 22) immune cell population 425 

associated with favourable prognosis122, even though the bioinformatics analysis of these 426 

data has been subsequently contested due to the inability to distinguish a γδ T cell signature 427 

from a CD4+ T cell, CD8+ T cell or NK cell signature123.  428 

 429 

It is interesting to note that, unlike mouse γδ T cells, circulating human γδ T cells are highly 430 

biased towards IFNγ production (often co-expressed with TNF)89,124, which suggests that 431 

tumour-associated inflammation may be the driver of IL-17+ γδ T cell differentiation3. This is 432 

consistent with what has been reported in the infection setting; for example, in bacterial 433 

meningitis, where a large proportion of IL-17+ γδ T cells are found in the cerebrospinal 434 

fluid71. As with mouse γδ T cells, IL-1, IL-23 and TGF seem to be the main drivers of 435 

human IL-17+ γδ T cell differentiation70,71. 436 

 437 

Besides IL-17 production, the adoption of suppressive functions that interfere with dendritic 438 

cell maturation and functions has also been proposed as a pro-tumour role of human γδ T 439 

cells88,125-127. In particular, an immunohistochemistry examination on breast cancer primary 440 

specimens revealed high infiltration by γδ T cells, which correlated positively with advanced 441 

tumour stages and lymph node metastasis, and negatively with patient survival126.  442 

 443 

More recently, γδ T cells infiltrating human pancreatic ductal adenocarcinoma (PDAC; which 444 

were ~40% of all tumour-infiltrating lymphocytes (TILs) in one study82 and <5% of TILs in 445 

another study83) were shown to express the potent immunosuppressive ligand, PDL1; and to 446 

suppress CD4+ and CD8+ T cell infiltration and functionality in a mouse model of PDAC82. It 447 

remains unclear if abundant PDL1 expression by γδ T cells is exclusive to the pancreatic 448 

cancer microenvironment or shared amongst other tumour types. Future research should 449 

formally link functional properties like IFNγ, IL-17 or PDL1 expression to the analysis of γδ T 450 

cells in human cancer biopsy samples. This will be important to validate the findings of 451 

Gentles et al., which at face value suggest that the anti-tumour functions of γδ T cells 452 

dominate over their pro-tumour properties in the vast majority of human cancers122.  453 

 454 

[H2] Current strategies to bring γδ T cells to the clinic 455 

All the available clinical experience with γδ T cells derives from the modulation of polyclonal 456 

Vγ9Vδ2 T cell activities, either upon in vivo stimulation with aminobisphosphonates [G], or 457 

adoptive cell transfer following in vitro activation and expansion with aminobisphosphonates 458 

or synthetic phosphoantigens. The rationale is derived from the unique TCR-dependent 459 

reactivity of Vγ9Vδ2 T cells to non-peptidic pyrophosphates (known as phosphoantigens), 460 

which can be increased therapeutically upon aminobisphosphonate (zoledronate or 461 

pamidronate) administration. Given the upregulation of the mevalonate pathway [G] (that 462 

produces the pyrophosphate intermediates) in cancer cells, activated Vγ9Vδ2 T cells are 463 
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expected to efficiently and selectively target tumour cells. Despite the confirmed safety with 464 

this strategy and some interesting responses128-130, the cumulative clinical results have been 465 

largely disappointing, given the low objective response rates obtained in both settings131. 466 

Various reasons have been put forward to explain the therapeutic failures, including a highly 467 

variable tumour recognition capacity of the polyclonal Vγ9Vδ2 TCR repertoire, and the 468 

functional instability, dysfunction or exhaustion of chronically activated Vγ9Vδ2 T cells. 469 

Critically, new strategies have emerged to tackle the previous limitations, thus creating a 470 

renewed momentum in the clinical application of γδ T cells – reinvigorating Vγ9Vδ2 T cells 471 

but also betting on their Vδ1+ T cell counterparts (Figure 4). 472 

 473 

The combination with antibodies neutralizing inhibitory cytokines (such as TGF- or IL-10) or 474 

with immune checkpoint inhibitors targeting PD1 or cytotoxic T lymphocyte antigen 4 475 

(CTLA4) are logical approaches to counteract immune suppression (and exhaustion) in vivo. 476 

In fact, in patients with melanoma treated with ipilimumab (anti-CTLA4), higher frequencies 477 

of Vδ2+ (but not Vδ1+) T cells constituted an independent indicator of improved overall 478 

survival132. Future studies in various cancer types should give more attention to these 479 

aspects of anti-PD1/ CTLA4 therapy, since recent work using MCA-induced sarcoma cells in 480 

mice suggests that  T cell infiltration and phenotype change very little after anti-PD1/ 481 

CTLA4 therapy133. Another way to counteract potential dysfunction of patient-derived Vγ9Vδ2 482 

T cells (either ex vivo or induced by long-term in vitro culture) using combination approaches 483 

is the co-activation with autologous monocyte-derived dendritic cells (moDCs), or the 484 

addition of the tyrosine kinase inhibitor, ibrutinib (approved for chronic lymphocytic leukaemia 485 

(CLL) treatment)134. Ibrutinib has direct effects on Vγ9Vδ2 T cells, as it binds to IL-2-inducible 486 

T cell kinase (ITK) and promotes an anti-tumour IFNγ-producing phenotype134. Finally, 487 

bispecific antibodies are also being developed as a means to enhance Vγ9Vδ2 T cell 488 

activation and targeting at the tumour site. A nanobody [G] -based construct targeting both 489 

Vγ9Vδ2 T cells and EGFR induced potent Vγ9Vδ2 T cell activation and tumour cell killing in 490 

vitro and in vivo (in a xenograft model of colon cancer)135. Moreover, a [(HER2)2xCD16] 491 

triplebody molecule, which re-directed CD16-expressing γδ T cells and NK cells to the 492 

tumour-associated cell surface antigen HER2, showed augmented cytotoxicity (and superior 493 

to trastuzumab) against HER2-expressing PDAC, and breast and ovarian tumour cells136.  494 

 495 

A different strategy under clinical development to overcome the low persistence or impaired 496 

activation status of Vγ9Vδ2 T cells in patients with advanced cancer is the transduction of 497 

selected high affinity Vγ9Vδ2 TCRs137 into  T cells that (under particular settings, including 498 

immune checkpoint inhibition) are expected to develop durable, memory-based responses. 499 

These hybrid T cells, named TEGs (T cells Engineered with defined Gamma delta TCRs) 500 

have been shown to endow highly polyclonal  T cells with innate-like responsiveness 501 

against multiple tumours, based on the broad reactivity of Vγ9Vδ2 TCRs138. The TEG cellular 502 

product has already been produced under good manufacturing practice (GMP) conditions139 503 

and is now being tested in a Phase I clinical trial in patients with haematological 504 

malignancies140 (NTR 6541). 505 

 506 

Besides the renewed interest in Vγ9Vδ2 T cells and their receptors, there is a more recent 507 

exploration of a Vδ1+ T cell avenue in cancer immunotherapy (Figure 4). Although there are 508 

still no validated agonist Vδ1+ TCR antibodies that could potentially be employed to activate 509 

Vδ1+ T cells in vivo, their use in adoptive cell therapy has been made possible owing to 510 

methodological breakthroughs in their in vitro expansion upon isolation from human epithelial 511 

tissues141 or peripheral blood142. In particular, we have developed a 3-week clinical-grade 512 

protocol involving TCR and cytokine stimulation that allows >1,000-fold large-scale 513 

expansion of Vδ1+ T cells, which thereby increase Vδ1+ T cells from <0.5% of all peripheral 514 

blood lymphocytes to >70% of the cellular product (the remaining cells being mostly other γδ 515 

T cell subsets); these have been termed Delta One T (DOT) cells142. Importantly, TCR-516 

http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6541
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mediated activation in the presence of IL-15 induces de novo expression of NKRs, 517 

particularly NKp30 and NKp44, that enhance the capacity of DOT cells to target multiple 518 

haematological90,142,143 and solid tumour (B.S-S., unpublished observations) types in vitro. 519 

DOT cells did not show any reactivity against normal cell types (including multiple leukocyte 520 

subsets and activated lymphocytes, as well as healthy fibroblasts) that have been tested. 521 

Antibody blockade and genetic interference (CRISPR) experiments suggest that DOT cells 522 

combine TCR and NKR-mediated mechanisms in tumour cell recognition90,142,143.  523 

 524 

A recent paper showed that Vδ1+ cells generated from hematopoietic stem and/or progenitor 525 

cells in vitro can recognize the melanoma-associated antigens, melanoma antigen 526 

recognized by T cells 1  (MART1) and gp100 (also known as melanocyte protein PMEL)144. 527 

Challenging decades of research, the study showed that MART1 and gp100 reactive γδ 528 

TCRs bind human leukocyte antigen A2 (HLA-A2), identifying a MHC-restricted γδ TCR for 529 

the first time. While evidence for the natural existence of these cells in human tumours was 530 

not provided, the data open up new possibilities for γδ T cell-based adoptive cell therapies. 531 

 532 

Finally, chimeric antigen receptors (CARs) are an obvious addition to the γδ T cell-based 533 

cancer immunotherapy portfolio145. By combining antibody-like high affinity antigen 534 

recognition with T cell signalling, CARs have been shown to dramatically increase the 535 

potency of adoptive T cell products146,147, leading to their approval for treatment of refractory 536 

B-cell malignancies148. Activated γδ T cells are amenable to CAR transduction and may have 537 

the advantage of broadly-reactive γδ TCRs to tackle the potential immune evasion of the 538 

specific CAR antigen, which has been observed in the clinic149,150. Whether CAR-transduced 539 

γδ T cells will also be beneficial in terms of minimizing the cytokine release syndrome and 540 

neurotoxicity adverse events of conventional CAR T cells remains to be investigated. Indeed, 541 

it will also be key to compare their relative persistence in vivo and, ultimately, their efficacy in 542 

inducing cancer elimination. 543 

 544 

[H2] Therapeutic proof-of-concept and challenges 545 

Although mice (including γδ T cell-deficient mice) have been instrumental in revealing the 546 

non-redundant roles played by γδ T cells in cancer development and progression, the 547 

evolutionary divergence in the TCRγ and TCRδ genes between rodents and primates6 make 548 

syngeneic models poorly suited to provide proof-of-concept for γδ T cell-based cancer 549 

immunotherapies. In particular, Vγ9Vδ2 and Vδ1+ T cells, the two main human γδ T cell 550 

subsets, do not have orthologs or equivalents in mice; and the strong reactivity of Vγ9Vδ2 T 551 

cells to non-peptidic phosphoantigens (either tumour-derived or synthetic) is not conserved in 552 

rodents3. 553 

 554 

Pre-clinical in vivo proof-of-concept studies have been mostly performed in xenograft models 555 

using human tumour cell lines or primary samples in immunodeficient (such as NSG) mice. 556 

Thus, Vγ9Vδ2 T cells have been administered (usually together with IL-2) to multiple mouse 557 

models after in vitro expansion with aminobisphosphonates or pyrophosphates and were 558 

shown to impact tumour load and progression. To name some interesting examples, a single 559 

dose of Vγ9Vδ2 T cells had striking impact on tumour burden in a spontaneous and highly 560 

immunosuppressive (via PD1 and CTLA4) Epstein-Barr virus (EBV)-driven lymphoma 561 

model151; a nanobody-based construct targeting both Vγ9Vδ2 T cells and EGFR induced 562 

potent Vγ9Vδ2 T cell activation and tumour cell killing in a xenograft model of human colon 563 

cancer135; and the stereotaxic administration [G] of Vγ9Vδ2 T cells in an orthotopic model of 564 

glioblastoma led to tumour cell elimination and much improved host survival152. Of note, 565 

therapeutic success in the latter model required the co-administration of zoledronate with the 566 

Vγ9Vδ2 T cells, thus highlighting the importance of ‘sensitizing’ tumours (by increasing intra-567 

tumoural phosphoantigen concentrations) to Vγ9Vδ2 T cells. As for the TEG approach, i.e. 568 
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 T cells transduced with high-affinity Vγ9Vδ2 TCRs, it has also been successfully tested in 569 

a lymphoma xenograft model137. 570 

 571 

Vδ1+ T cells have also shown substantial in vivo efficacy in pre-clinical models of human 572 

cancer. In fact, in one of very few studies where the in vivo potency of Vδ1+ T cells was 573 

compared with that of their Vδ2+ counterparts, both expanded with artificial antigen-574 

presenting cells (derived from K562 CML cells) serving as irradiated feeders, it was observed 575 

that Vδ1+ T cells had superior therapeutic activity, as evaluated by improved host (NSG 576 

mouse) survival to human CAOV3 ovarian cancer cells153. We have subsequently tested 577 

Vδ1+ T cells expanded and differentiated with the DOT protocol in 4 xenograft models of 578 

leukaemia (acute myeloid leukaemia (AML) or CLL)142,143. In all the models, DOT-cell 579 

treatment diminished tumour burden and prolonged host survival, and moreover prevented 580 

systemic tumour dissemination in the MEC-1 CLL xenograft142.  581 

 582 

Besides efficacy, safety (toxicology) is clearly a key component of (pre-)clinical studies. 583 

However, this constitutes a major challenge and intrinsic limitation of xenograft models. For 584 

example, although DOT cell administration did not produce any histological alterations in 585 

tissues or in the biochemical analyses reporting liver and kidney function, the host tissue 586 

cells were mouse, and therefore lacked potentially relevant human self-antigens to evaluate 587 

toxic side effects. An alternative, albeit a very expensive one, is the use of non-human 588 

primates, which have been shown to induce potent Vγ9Vδ2 T cell responses in vivo154,155. 589 

This notwithstanding, non-human primates also present various limitations as toxicology 590 

models: (i) in the setting where macaque-derived T cells and administered to macaques, the 591 

cellular product being tested may be considerably different (in terms of phenotype and 592 

functionality) to the human counterpart to be used in the clinic; (ii) if injecting the human 593 

cellular product into macaques, there are issues with the potential need for immune 594 

suppression (to prevent graft rejection); (iii) and the ethical issues posed by tumour 595 

challenge, which may be required to mimic the relevant cellular interactions and even to 596 

sustain γδ T cell activation in vivo.  597 

 598 

Given the limitations of in vivo models, we believe the pre-clinical therapeutic potential of 599 

anti-tumorigenic human γδ T cells is best evaluated by detailed in vitro assessment of tumour 600 

versus healthy cell targeting, using comprehensive collections of primary tumour samples 601 

and normal cell types of multiple origins (for example, haematopoietic, epithelial, endothelial), 602 

ahead of regulatory discussions and ultimately clinical trials. 603 

 604 

 605 
[H1] CONCLUSIONS 606 
 607 

As a result of almost two decades of translational and clinical research on  T cells in 608 
cancer, the time is ripe for developing efficacious therapies based on their in vivo activation 609 
or upon adoptive cell transfer. The limited success of previous clinical tests with Vγ9Vδ2 T 610 
cells may now be overcome by innovative strategies aiming to surmount exhaustion and 611 
guarantee persistence and improved tumour cell recognition. At the same time, we now have 612 
the means to expand their rarer (in the blood) Vδ1+ T cell counterparts, which have high 613 
tropism for tissues, including tumours, and can therefore test them in the clinic for the first 614 

time. These are exciting times for  T cell application in cancer immunotherapy, as decisive 615 
clinical trials will take place in the next couple of years. 616 
 617 
One important conclusion arising from the initial modulation of Vγ9Vδ2 T cells in patients with 618 
cancer is the overall safety of such strategies in the autologous setting131. But a much more 619 

ambitious and potentially feasible goal is the development of allogeneic, off-the-shelf  T 620 

cell-based immunotherapies.  T cells are especially suited for allogeneic strategies, since 621 
they are largely not restricted by MHC, thus avoiding the graft-versus-host effects of MHC-622 
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mismatched  T cells. In fact,  T cell (and particularly Vδ1+ T cell) reconstitution and 623 
persistence in patients with leukaemia that received partially mismatched but related donor 624 
bone marrow transplantations was the best predictor of long-term disease-free survival156; 625 
and this has promoted the successful application of haploidentical stem cell transplantation 626 

[G] using  T-cell and B-cell depleted grafts157. One interesting prospect of allogeneic  T 627 
cell immunotherapies is using them to treat aggressive haematological tumours derived from 628 

the transformation of  T cells themselves (Box 2). 629 
 630 
By not being restricted by MHC, most γδ T cells also bypass one of the most common cancer 631 
immune evasion mechanisms, the downregulation of surface MHC class I molecules158. 632 
However, since they do not recognize mutated peptides, γδ T cells might be especially suited 633 
for treating tumours with low mutational burdens, where immune checkpoint inhibition is 634 
notably unsuccessful159.  635 
 636 

Based on ample evidence from pre-clinical models, the balance between IFN versus IL-17 637 
producing γδ T cells in the TME may strongly impact on the success of their therapeutic 638 
modulation. Thus, upcoming clinical trials should track such activities while clearly attempting 639 

to promote IFN over IL-17 producing γδ T cells in vivo. This may require specific cytokine 640 

signals that epigenetically ‘lock’ γδ T cells in an IFN-producing programme, such as IL-15, 641 
which can be provided during the in vitro expansion and differentiation of cellular products; or 642 
administered in vivo to patients with cancer, which would require formal testing in the clinic. 643 
Another important factor to consider is the impact of the microbiome, since at least in the 644 
mouse lung it has been shown to drive the expansion of tumour-promoting IL-17+ γδ T 645 
cells67,160. Finally, the prognostic value of tumour-infiltrating γδ T cells should be revisited in 646 
multiple cancer types with the resolution of IFNγ versus IL-17 protein expression by γδ T 647 
cells.  648 
 649 
From a more fundamental standpoint, future research should address non-IL-17-mediated 650 

pro-tumourigenic functions of  T cells; and focus on further dissecting the key cellular 651 
partners and molecular co-receptors that may regulate γδ T cell activities in the TME. Finally, 652 
the identification of tumour antigens recognised by γδ T cells, either through TCRs or NKRs, 653 
remains a priority14: it will help clarifying the non-redundant role of γδ T cells in immune 654 
surveillance of tumours; and may be the key for the rational selection of patients to be 655 
treated with γδ T cell-based cancer immunotherapies.  656 
 657 
 658 
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[b1] BOX 1. Phenotypic markers of effector  T cell subsets  1222 

 T cell differentiation has been mostly dissected in the C57BL/6 mouse, where the two 1223 

main effector cytokines implicated in  T cell responses are interferon-γ (IFN) and 1224 
interleukin-17A (IL-17A). These are mostly expressed by distinct subsets segregated on the 1225 
basis of markers such as CD27, CD122, CD45RB (a splice variant of CD45), which are 1226 

expressed on IFN+  T cells; and CC-chemokine receptor 6 (CCR6) and the scavenger 1227 

receptor SCART-2, which are found on IL-17A+  T cells. IL-17 producers also express 1228 

higher levels of CD44, whereas NK1.1 marks IFNhi  T cells161. Moreover, effector  T cell 1229 
differentiation varies across thymic developmental waves characterized by T cell receptor 1230 

(TCR) V chain usage as result of V(D)J recombination [G]; for example, fetal-derived V6+ 1231 

 T cells produce IL-17A but not IFN, while perinatal V1+  T cells are biased towards 1232 

IFN expression. Importantly, most of the accumulated evidence suggests that whereas  T 1233 

cells making IFN participate in anti-tumour responses, IL-17A production underlies tumour-1234 
promoting functions in various tumour mouse models3. 1235 

In humans, the developmental and phenotypic segregation between IL-17A versus IFN 1236 

producing  T cells is much less straightforward. For example, IL-17A producers have been 1237 

found to be mostly V1+ and to lack CD27 expression, but the majority of cells with this 1238 

phenotype are actually IFN producers72,77. Thus, unlike in the mouse, the definition of 1239 

effector  T cell subsets in humans must always rely on cytokine production itself (as 1240 
assessed by intracellular staining).  1241 
 1242 
 1243 

[b2] BOX 2. When  T cells become malignant 1244 

 T cell lymphomas are aggressive and rare haematological malignancies that develop from 1245 

the transformation of mature  T cells, and include hepatosplenic  T cell lymphoma 1246 

(HSGDTL) and primary cutaneous  T cell lymphoma (PCGDTL). HSGDTL, which is more 1247 
common among young males, presents with splenomegaly (abnormally enlarged spleen) and 1248 
thrombocytopenia (a low blood platelet count), often in the absence of nodal involvement; it 1249 
progresses rapidly, responding poorly to treatment and associating with high mortality162. 1250 
PCGDTL represents less than 1% of all primary cutaneous lymphomas, but is highly 1251 
aggressive and deadly163.  1252 

 T-cell acute lymphoblastic leukaemia ( T-ALL) derives from the transformation of 1253 

immature  thymocytes, and presents with clinical features distinct from  T-ALL164. Albeit 1254 

rare,  T-ALL accounts for up to 10% of all T-ALL cases, which is substantially higher than 1255 

the proportion (around 1%) of  thymocytes from the total number of thymocytes in the 1256 

human thymus, thus raising the possibility that  thymocytes have increased potential for 1257 
malignant transformation164,165.  1258 
 1259 
 1260 
 1261 
  1262 
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FIGURE LEGENDS 1263 
 1264 
Figure 1. Timeline of developments in the research of γδ T cell function in cancer and 1265 
their exploitation for immunotherapy  1266 
 1267 
Discovery of γδ T cells – 1984-7166-169 1268 
 1269 
Phosphoantigens identified as agonists  1270 
for human Vγ9Vδ2 T cells – 1994-1996170 1271 
 1272 
Anti-tumour role of γδ T cells recognized 1273 
in mice – 20018 1274 
 1275 
Development of γδ T CARs – 2004146 1276 
 1277 
Antigen-presenting cell functions of  1278 
human Vγ9Vδ2 T cells discovered – 200538 1279 
 1280 
Academic-run trials  1281 
of adoptive Vγ9Vδ2 T cell  1282 
therapy in humans conducted – 2003128 1283 
 1284 
Pro-tumoural IL-17-producing γδ T cells found 1285 
in mice and humans – 2010-201454,55,59,60,69,71,74 1286 
 1287 
Development of TEGs – 2011138 1288 
 1289 
BTN3A1 identified as a 1290 
phosphoantigen  1291 
sensing molecule – 2012171 1292 
 1293 
γδ T cells reported as the most  1294 
favourable prognostic indicator  1295 
among 22 different immune cell  1296 
populations in 39 cancer types – 2015122 1297 
 1298 
Proof-of-concept demonstrated 1299 
for DOT cells – 2016142 1300 
 1301 
Clinical development  1302 
of γδ T cell-based therapies  1303 
by 8 companies world-wide – 2018 1304 
 1305 
BTN3A1, butyrophilin subfamily 3 member A1; CAR, chimeric antigen receptor; DOT, delta 1306 
One T; IL-17, interleukin-17; TEGs, T cells engineered with defined gamma delta T cell 1307 
receptors.  1308 
 1309 
Figure 2. Anti-tumour γδ T cell functions and their regulation 1310 

 T cells directly recognize tumour cells through the T cell receptor (TCR) and natural killer 1311 
cell receptors (NKRs). Tumour cell-killing can be mediated by the expression of tumour 1312 
necrosis factor-related apoptosis-inducing ligand (TRAIL), FAS or the granule exocytosis 1313 

pathway (leading to secretion of perforin and granzyme). Moreover,  T cells can target 1314 
tumour cells through antibody-dependent cellular cytotoxicity (ADCC) upon treatment with 1315 

tumour-specific antibodies. Alternatively,  T cells induce anti-tumour immune responses 1316 

through IFN production, and antigen-presenting cell functions, which lead to αβ T cell 1317 
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activation, while 4-1BB ligand (4-1BBL) expression stimulates NK cells. In addition,  T cells 1318 
induce antibody class switching in B cells, contributing to a protective humoral response. The 1319 

anti-tumour features of  T cells are mainly potentiated by interleukin-15 (IL-15) and IL-2, 1320 
while the expression of programmed cell death protein 1 (PD1), the presence of secreted 1321 
major histocompatibility complex class I polypeptide related sequence A (sMICA) or 1322 
treatment with the DNA methylation inhibitor decitabine and histone deacetylase (HDAC) 1323 
inhibitors dampen their killing capacity. Other immune cell subsets like regulatory T (Treg) 1324 

cells and neutrophils can also inhibit anti-tumour  T cell features through IL-10 and TGFβ 1325 
or Arginase-1 and reactive oxygen species (ROS) production, respectively. DC, dendritic cell; 1326 
FASL, FAS ligand; FcγRIII, Fcγ receptor III; HLA-DR, human leukocyte antigen-DR; Ig, 1327 
immunoglobulin; LDL, low-density lipoprotein; LDL-R, LDL receptor; sTRAIL, secreted 1328 
TRAIL; TGFβ, transforming growth factor β; TRAIL-R, TRAIL receptor.  1329 
 1330 
 1331 
Figure 3. Pro-tumour γδ T cell functions and their regulation 1332 

The pro-tumour functions of  T cells are mainly associated with interleukin-17A (IL-17) 1333 
production, which has several different roles, such as stimulation of tumour cell proliferation, 1334 
induction of angiogenesis and mobilization of pro-inflammatory or immunosuppressive 1335 
myeloid cells. Commensal bacteria, 27-hydroxycholesterol (27-HC) or IL-17 itself can 1336 
mobilize myeloid cells, which produce IL-17-promoting cytokines like IL-1β and IL-23. Both 1337 
IL-1β and IL-6 can induce the expression of nitric oxide synthase 2 (NOS2), which promotes 1338 

IL-17+  T cell responses. IL-7 is another factor involved in the survival and proliferation of 1339 

IL-17-producing  T cells. Other tumour-promoting roles of  T cells include inhibition of 1340 
dendritic cell (DC) maturation, suppression of T cell responses through galectin, programmed 1341 
cell death protein 1 ligand 1 (PDL1), IL-4 expression, and induction of tumour-cell 1342 

proliferation by IL-22 and amphiregulin production. Inhibition of IL-17-producing  T cells 1343 
can be achieved through reactive oxygen species (ROS) generated by neutrophils or by the 1344 
E3 ubiquitin ligase ITCH that targets retinoic-acid-receptor-related orphan receptor-γt 1345 

(RORt) for degradation.  P, phosphorylation; STAT3, signal transducer and activator of 1346 
transcription 3; TGFβ, transforming growth factor β. 1347 
 1348 
 1349 
Figure 4. Current strategies for therapeutic manipulation of human γδ T cells 1350 

Current strategies for therapeutic use of human  T cells involve both V1 and V2 subsets. 1351 

V1 can be isolated from tissues and expanded in vitro, or from peripheral blood and 1352 
expanded with the Delta One T (DOT) cell-generating protocol (a 3-week clinical grade 1353 

protocol involving T cell receptor (TCR) and cytokine stimulation), which gives rise to V1+ T 1354 
cells expressing the natural killer (NK) cell receptors NKp30 and NKp44 and the ability to 1355 

target both solid and haematological tumours. V2-based strategies also involve peripheral 1356 
blood extraction and in vitro activation with phosphoantigens (PAg). Another strategy relies 1357 
on the generation of T cells Engineered with defined Gamma delta TCRs (TEGs), which 1358 

consists of the cloning and transfer of V9V2 T cell receptors into αβ T cells. CAR, chimeric 1359 
antigen receptor; PBL, peripheral blood lymphocyte. 1360 
 1361 
 1362 
Glossary  1363 
Triplebodies. Immunoligands consisting of three tandem single-chain variable fragments 1364 
with three distinct specificities. 1365 
 1366 
Immunoglobulin class switching. Mechanism by which B cells change the isotype of 1367 
immunoglobulin produced, altering its effector function. 1368 
 1369 
Germinal centres. Sites within spleen and lymph nodes where B cells proliferate, 1370 
differentiate and perform immunoglobulin class switching. 1371 
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 1372 
Angiogenic switch. Timepoint during tumour progression when the pro-angiogenic factors 1373 
outcompete the anti-angiogenic ones, leading to the transition between a dormant 1374 
avascularized hyperplasia and an outgrowing vascularized tumour. 1375 
 1376 
Thymocytes. Hematopoietic progenitor cells present in the thymus gland. 1377 
 1378 
Oxygen tension. Partial pressure of oxygen molecules dissolved in a liquid (such as blood 1379 
plasma). 1380 
 1381 
Aminobisphosphonates. A drug type that derives from bisphosphonates and is commonly 1382 
used in bone-related disorders to avoid excessive bone resorption. 1383 
 1384 
Mevalonate or isoprenoid pathway. An essential metabolic pathway that gives rise to two 1385 
five-carbon building blocks called isopentenyl pyrophosphate (IPP) and dimethylallyl 1386 
purophosphate (DMAPP) which are converted into isoprenoids. Metabolites of this pathway 1387 
accumulate in metabolically distressed cells. 1388 
 1389 
Nanobody. An antibody with a single monomeric domain. 1390 
 1391 
Stereotaxic administration. Delivery of a compound in the brain using an external, three-1392 
dimentional frame of reference usually based on the Cartesian coordinate system. 1393 
 1394 
Haploidentical stem cell transplantation. Treatment of blood disorders involving the 1395 
replacement of the patient’s hematopoietic cells by healthy partially (50%) HLA-matched 1396 
hematopoietic progenitors  1397 
 1398 
V(D)J or somatic recombination. The somatic rearrangement of variable (V), diversity (D) 1399 
and joining (J) regions of the genes that encode antigen receptors, leading to repertoire 1400 
diversity of both T cell and B cell receptors 1401 
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