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Abstract

A minor subset (approximately 5%) of peripheral T cells has their TCR build up from γ and δ chains instead of α and β—those 
are the γδ T lymphocytes. They can be functionally divided into subsets, e.g., Th1-, Th2-, Th9-, Th17-, Tfh-, and Treg-like 
γδ T cells. They share some specifics of both innate and adaptive immunity, and are capable of rapid response to a range 
of stimuli, including some viral and bacterial infections. Atopic diseases, including asthma, are one of major health-related 
problems of modern western societies. Asthma is one of the most common airway diseases, affecting people of all ages and 
having potential life-threatening consequences. In this paper, we review the current knowledge about the involvement of γδ 
T cells in the pathogenesis of asthma and its exacerbations. We summarize both the studies performed on human subjects as 
well as on the murine model of asthma. γδ T cells seem to be involved in the pathogenesis of asthma, different subsets prob-
ably perform opposite functions, e.g., symptom-exacerbating Vγ1 and symptom-suppressing Vγ4 in mice model of asthma.
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Abbreviations

AHR  Airway hyperresponsiveness
APC  Antigen-presenting cell
BALF  Bronchoalveolar lavage fluid
CD  Cluster of differentiation
HMB-PP  (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophos-

phate
HSP  Heat shock protein
IFN-γ  Interferon γ
IL  Interleukin
IPP  Isopentenyl pyrophosphate
OVA  Ovalbumin
RSV  Respiratory syncytial virus
TCR   T cell receptor
Tfh  T follicular helper cell

Th  T helper cell
Treg  Regulatory T cell

Introduction

Majority of T cells, frequently referred to as conventional 
T cells, express T cell receptor (TCR) comprised of α and 
β chains, while approximately 5% of peripheral T cells 
express TCR built of γ and δ chains instead—this subset is 
commonly called γδ T lymphocytes (Shiromizu and Jancic 
2018). In human, one of three δ (δ1, δ2 or δ3) and one of 
six γ (γ2, γ3, γ4, γ5, γ8 or γ9) chains are used (Shiromizu 
and Jancic 2018). γδ T cells share characteristics of both 
adaptive (functional TCR) and innate immunity—they can 
recognize antigens in an MHC-unrestricted manner and 
express receptors like natural killer group 2D or Toll-like 
receptors (Pizzolato et al. 2019; Wu et al. 2014). Human 
Vδ2 recognizes the so-called phosphoantigens—small phos-
phorylated molecules like microbial (E)-4-hydroxy-3-me-
thyl-but-2-enyl-pyrophosphate (HMB-PP) (Eberl et al. 2003) 
or eukaryotic isopentenyl pyrophosphate (IPP) (Tanaka et al. 
1995). Vδ1 may recognize a wider range of antigens includ-
ing some self-antigens like MHC class I polypeptide-related 
sequence A or UL16-binding protein, that are frequently up-
regulated in cancer cells (Kabelitz et al. 2007). γδ T cells are 
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capable of rapid response to a number of threats, including 
some viral and bacterial infections (Pizzolato et al. 2019). 
Moreover, they are probably involved in human autoimmune 
diseases like multiple sclerosis (Zarobkiewicz et al. 2019a), 
where they may be an important source of early interleukin 
(IL)-17 that drives further production of IL-17 by Th17 cells 
(Zarobkiewicz et al. 2019b). Similar to conventional T lym-
phocytes, γδ T cells can be functionally divided into subsets, 
e.g., Th1-, Th2-, Th9-, Th17-, Tfh, regulatory T cell (Treg)- 
and antigen-presenting cell (APC)-like γδ T cells (Pang et al. 
2012). The diversity of human γδ T cells is briefly presented 
in Fig. 1. The majority of γδ T cells express either CD8 or 
no-TCR-co-receptor (double negative,  CD4–/CD8–)—rarely, 
they may express CD4 or be double positive  (CD4+/CD8+) 
(Kadivar et al. 2016).

Asthma is a heterogeneous and serious chronic inflamma-
tory disease of the respiratory system. It is one of the most 
common airway disorders that affect people in all ages but 
usually begins in childhood (Frati et al. 2018; Papadopoulos 
et al. 2019; Wei et al. 2020). Both congenital and acquired 
factors contribute towards risk of asthma. There is consid-
erable evidence that inflammation is crucial to the patho-
genesis of bronchial asthma. Studies attempting to quantify 
the magnitude of the airway inflammatory response have 
reported increased eosinophils, basophils, mast-cells, and 
T lymphocytes in bronchoalveolar lavage fluid (BALF) and 
blood samples. Among those cells, the Th2 lymphocytes 
seem to play the fundamental role in asthma pathogenesis. 
Th2 lymphocytes take part in recruiting eosinophils—by 
secreting IL-5—and promoting local and systemic synthesis 

Fig. 1  Major populations of human γδ T cells as proposed by Pang et al. (2012). Most important surface antigens, cytokines produced by them 
as well as their transcription factors are presented
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of IgE by producing IL-4. There are a lot of data about the 
role of αβ T cells in the pathogenesis of asthma; still, mice 
deficient in αβ T cells were found to make immunoglobulins 
of all isotypes with high levels of IgE and IgG1, suggesting 
importance of γδ T cells in asthma development (Lee et al. 
2001).

Our current understanding of asthma pathogenesis stems 
from two major sources—human studies and animal models 
of asthma. For the latter, mice are most commonly used, 
especially BALB/c and C57BL/6 strains (Aun et al. 2017). 
Utilization of animal models makes it possible to use dif-
ferent experimental approaches, e.g., gene-knockouts that 
otherwise would not be possible. Still, results thereof should 
be viewed with caution due to important differences between 
animal and human physiology and immunology (Aun et al. 
2017). What should be clearly noted are some major dif-
ferences between human and mice γδ T cells. First of all, 
there is a significant difference in VDJ segments of TCR 
used in both species—the Vδ segments distinguish different 
subsets of human γδ T cells; while in mice, it is the role of 
Vγ segments. Moreover, subsets described by the similar 
segment of TCR do not correspond one to the other between 
species—in short, e.g., the Vγ4 in mice may be functionally 
significantly different from Vγ4 in humans (Holderness et al. 
2013). The majority of human peripheral blood γδ T cells 
(Vδ2Vγ9) reacts to phosphoantigens; on the other hand, no 
reactivity to phosphoantigens was so far discovered in mice 
and rats (Herrmann et al. 2020). Thus, the results of animal 
studies are not always applicable to humans.

Blood γδ T Cell Percentage is Lower in Asthmatic 
Patients

The initial percentage of γδ T cells at 6 months of age seems 
not to correlate with the risk of developing asthma at the age 
of 7 (Larsen et al. 2014). On the other hand, a significant 
decrease in total γδ T cells in peripheral blood was observed 
in atopic children and atopic adults aged up to 30 (Schauer 
et al. 1991). Similarly, a significant decrease in peripheral 
blood γδ T percentage was observed in older (> 65 years 
old) asthmatic subjects with both mild and severe asthma 
(Mota-Pinto et al. 2011). This may suggest a role of γδ T 
cells in the early phases of atopic disease development dur-
ing childhood. Moreover, a significant decrease in  CD8+ γδ 
T lymphocytes was noted in peripheral blood of all atopic 
patients but the youngest group (< 10 years old) (Schauer 
et al. 1991).

No difference in the percentage of the total γδ T lym-
phocytes was observed between asthmatic patients and 
healthy controls in neither peripheral blood (Bai et al. 
2001; Urboniene et  al. 2013; Walker et  al. 1991) nor 
induced sputum (Urboniene et al. 2013) or BALF (Krug 
et al. 2001; Urboniene et al. 2013; Walker et al. 1991). 

Contrary, in a study by Chen et al. (1996), a significant 
decrease in the percentage and number of total γδ T cells 
in peripheral blood of allergic and, to even higher extent, 
of asthmatic patients was observed, Belkadi et al. (2019) 
observed similar pattern—a significant decrease in periph-
eral blood γδ T cell percentage among Blomia tropicalis 
atopic patients. Similarly, in a group of elderly asthmatic 
patients, a significant decrease in peripheral blood γδ T 
cells was noted (Todo-Bom et al. 2007). Moreover, Spi-
nozzi et al. (1995) observed significant increase in BALF 
γδ T cells, both  CD4+ and double negative, in asthmatic 
patients, likewise Bai et al. (2001) observed a significant 
increase in BALF γδ T cells. In fact, most of the BALF 
 CD4+ cells in asthmatic patients seem to be γδ T lympho-
cytes (Spinozzi et al. 1996).

Next, we have performed a meta-analysis to better assess 
the difference in γδ T in peripheral blood, BALF and induced 
sputum between asthmatic patients and healthy donors. 
OpenMetaAanalyst was used for calculations (Wallace et al. 
2012). If the original article presented data as median, IQR, 
then an estimation of mean and SD values was performed as 
proposed by Hozo et al. (2005). Hedges–Olkin method with 
confidence level 95.0 was used for the analyses (Hedges and 
Olkin 1985). No conclusive results were obtained for BALF 
and induced sputum γδ T percentage or absolute numbers. 
On the other hand, a significant decrease of γδ T percent-
age in peripheral blood of adult asthma patients was noted 
(p = 0.022; Fig. 2).

Moreover, an up-regulation of Vδ1+ γδ T cells and con-
sequent decrease in Vδ2+ γδ T cells in BALF of asthmatic 
patients was noted (Bai et al. 2001). Some signs of monoclo-
nal–oligoclonal type of expansion were noted in BALF γδ T 
cells of asthmatics as well (Bai et al. 2001). Total γδ T and 
 CD8+ γδ T cells were found to be significantly increased in 
induced sputum of asthmatic patients during exacerbation 
(Hamzaoui et al. 2002). This rise can be mostly ascribed to 
the increase in Vδ1 subset as the Vδ2 resembles that of the 
control group (Hamzaoui et al. 2002). Moreover, the activa-
tion markers (CD25) were expressed more frequently—on 
up to one sixth of γδ T cells (Hamzaoui et al. 2002). γδ 
T cells from induced sputum of asthmatic patients during 
exacerbation naturally exhibit higher FasL expression (on 
approximately one sixth of them) than the control samples 
and are significantly more cytotoxic (Hamzaoui et al. 2002).

Concluding, it seems that adult asthmatic patients tend to 
have lower percentages of γδ T cells in peripheral blood—
this should, however, be tested on some larger groups as 
the current data are still inconclusive. Apart from total γδ T 
percentage, the internal balance between various γδ T cell 
subsets, e.g., Vδ1/Vδ2 balance seems to be of importance 
in asthma. Therefore, further studies should focus also on 
an in-depth description of functional landscape within the 
γδ T compartment.
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γδ T Depletion/Knockout Lowers BALF Eosinophilia 
and Serum IgE Levels in Murine Model of Asthma

Significantly lower number of total leukocytes, eosino-
phils and lymphocytes in BALF was observed in γδ 
T-deficient mice than in wild-type ones (Schramm et al. 
2000; Svensson et al. 2003); moreover, the percentage 
of eosinophils and lymphocytes dropped, while that of 
macrophages nearly doubled (Schramm et al. 2000). This 
effect is less pronounced when anti-TCRγδ antibodies are 
used to deplete γδ T cells than when the knockout mice 
are used (Schramm et al. 2000). A significant decrease in 
BALF B cells was noted in ovalbumin (OVA)-challenged 
γδ-knockout mice (Svensson et al. 2003). In addition, a 
significant drop in BALF level of OVA-specific IgA and 
IgG was also noted, suggesting attenuated immunoglobu-
lin synthesis in airways (Svensson et al. 2003). This may 
suggest either subtotal depletion in the former case or 
that the function of γδ T lymphocytes is important for the 
proper maturation of αβ T cells. In a study by Tamura-
Yamashita et al. (2008), the number of total leukocytes 
in BALF in γδ-knockout mice remained similar to that 
of wild-type ones, but the percentage of eosinophils sig-
nificantly dropped and the number of macrophages rose. 
Similarly, a decrease in eosinophilia and IgE level was 
noted in γδ-knockout mice in a model of B. tropicalis 
asthma (Belkadi et al. 2019). Finally, the percentage of γδ 
T cells in BALF of asthmatic mice rises significantly post 
OVA challenge, but nevertheless remains low (Landgraf 
and Jancar 2008).

This suggests a significant role of γδ T cells in regula-
tion of IgE production and influx of eosinophils to airways.

γδ T Cells Take Part in Regulation of IgE Production

Indeed, the influence of γδ T cells on IgE production has 
been briefly researched in murine models of asthma. The 
 CD8+ γδ T cells seem to be capable of significant sup-
pression of IgE secretion in mice after repeated exposure 
to OVA aerosol; this is probably mediated by interferon 
(IFN)-γ (Huang et al. 2009, 2013; McMenamin et al. 1994). 
Those cells tend to express Vγ4 (Huang et al. 2009, 2013) 
and most of them Vδ5 chains (Huang et al. 2009). Simi-
lar results were obtained for Brown Norway rats (McMe-
namin et al. 1995). The protective influence of some γδ T 
subsets in mice was further evaluated in knockout models. 
Vγ4 and Vγ6-knockout mice exhibited high levels of serum 
IgE without any treatment similarly to wild-type mice after 
OVA sensitization (Huang et al. 2009). Moreover, treatment 
with anti-Vγ4 antibody significantly increased total serum 
IgE level in wild-type mice after OVA sensitization (Huang 
et al. 2009). On the other hand, the Vγ1+ γδ T cells seem to 
increase the total IgE level as well as the OVA-specific IgE 
after OVA sensitization in mice (Huang et al. 2009). Never-
theless, total γδ T lymphocytes seem to generally promote 
IgE suppression (Huang et al. 2009).

On the other hand, according to Seymour et al. (1998), γδ 
T lymphocytes and IFN-γ are not required for IgE suppres-
sion. This is contrary to the previous results of McMenamin 
et al. (1994, 1995), who proved that adoptive transfer of γδ 
T cells even in low number caused significant decrease of 
OVA-induced IgE production and by Huang et al. (2009), 
who observed that in IFN-γ-knockout mice such effects were 
not observed. It seems that there is no need for the direct 
contact of γδ T cells with the antigen—they can be induced 

Fig. 2  The forest plot of meta-analysis of the percentage of γδ T cells in peripheral blood of asthma patients. A significant decrease thereof can 
be noted (p = 0.022)
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by activated splenocytes, mostly non-T  CD11c+ (Huang 
et al. 2013). During this process, unprocessed or partially 
processed allergen can be transferred to a small part of γδ 
T cells (Huang et al. 2013). This subpopulation is mostly 
MHC  II+ (Huang et al. 2013) and, thus, should be labeled as 
APC-like γδ T (Pang et al. 2012). Moreover, the APC-like 
γδ T cells seem to be critical for the γδ T-mediated IgE-
production suppression (Huang et al. 2013). The γδ T-defi-
cient mice are capable of IgE production following proper 
OVA immunization in a similar manner to the wild-type 
mice (Korsgren et al. 1999; Tamura-Yamashita et al. 2008; 
Wang and HayGlass 2000; Zuany-Amorim et al. 1998), but 
the total IgE (Schramm et al. 2000) and OVA-specific IgE 
(Svensson et al. 2003; Tamura-Yamashita et al. 2008) may 
be significantly lower in γδ T-deficient mice. The γδ T-medi-
ated IgE suppression seems to be allergen specific (Huang 
et al. 2013). This suggests that γδ T cells are important for 
the successful immunotherapy, but are not necessary for the 
allergic reaction to occur.

Airway Hyperresponsiveness is Partially Governed 
by the Vγ1 and Vγ4 Balance in Mice

Airway hyperresponsiveness (AHR) is a predisposition of 
airways to contract in response to a stimulus that does not 
produce such an effect in a healthy subject (Chapman and 
Irvin 2015). Despite being introduced nearly half-century 
ago, AHR is still one of the core concepts in the current 
understanding of asthma pathogenesis. In mouse model of 
OVA-induced asthma, depletion of γδ T cells after sensitiza-
tion leads to an increase in AHR (Lahn et al. 1999; Schramm 
et al. 2000), while depletion of αβ T cells leads to total lack 
of response to OVA challenge (Schramm et al. 2000). On 
the other hand, total depletion of γδ T cells before OVA 
sensitization leads to a significant decrease of AHR; simi-
lar effect was observed when anti-Vγ1 antibody was used, 
but nothing changed after Vγ4-depletion (Hahn et al. 2004). 
Similarly, a significantly decreased AHR was observed in 
γδ-knockout mice after B. tropicalis challenge, and adop-
tive transfer of wild-type mouse Vγ1 γδ T cells completely 
reverses this process; this was not observed in the case of 
IL-4-knockout mouse Vγ1 γδ T cells (Belkadi et al. 2019). 
This suggests that γδ T may play an important, but not cru-
cial role in establishing asthma-related AHR, the Vγ1+ cells 
seem especially important therein, while the Vγ4 seem not 
to be involved. The difference in effect between those two 
times of depletion may indicate that the AHR-aggravating 
Vγ1 cells are mostly needed at the time of challenge, prob-
ably for their IL-4 production, while the AHR-suppressing 
Vγ4 are required post-challenge to perform their action. 
This is partially supported by the fact that even though the 
Vγ4 cells are the major subset of γδ T lymphocytes in nor-
mal mice lungs, they also are strongly induced by the OVA 

sensitization (Hahn et al. 2003). Vγ1 and Vγ4 opposition in 
mice is presented in Fig. 3.

Similar balance between Vγ1 and Vγ4 has been described 
in other mice pathologies (Born et al. 2010). While Vγ1 
plays a positive and Vγ4 negative role in one disease, the 
opposite may be observed in yet another case.

Vγ4-Dependent AHR Decrease is Probably Mediated 
by IFN-γ

The Vγ1Vδ5 γδ T lymphocytes seem to promote increased 
AHR in mice model (Jin et al. 2009). Their actions seem to 
be not related to the typical Th2 cytokines as they rarely pro-
duce IL-4 or IL-13 (Jin et al. 2009). Nevertheless, a signifi-
cant decrease in BALF IL-13 and IL-5 and increase in IL-10 
were noted in γδ-deficient mice; after adoptive transfer of 
Vγ1 γδ T cells, the levels of those cytokines normalized in 
relation to the wild-type asthmatic mice (Hahn et al. 2004). 
Functional studies indicate that their potential to increase 
AHR is at least partially dependent on the external source 
of TNF-α, IFN-γ and IL-4 (Jin et al. 2009). The AHR-
enhancing subset of γδ T cells can be developed by either 
the influence of those three cytokines or by stimulation with 
OVA; for both ways, the  CD8+ dendritic cells are probably 
necessary (Cook et al. 2008; Jin et al. 2009). Nevertheless, 

Fig. 3  The γδ T subsets and airway hyperresponsiveness in the 
mouse model of asthma. Vγ1, probably by secreting Th-2-type 
cytokines, promotes airway hyperresponsiveness (AHR), while Vγ4 
seems to decrease AHR by secreting IFN-γ. Thus, the former aggra-
vates symptoms of disease in murine model of asthma, while the lat-
ter alleviates them (Belkadi et al. 2019; Cook et al. 2008; Cui et al. 
2003; Hahn et al. 2004; Jin et al. 2009; Lahn et al. 2002)
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the AHR-enhancing subset probably does not require anti-
gen priming; its action is also probably further promoted 
by invariant natural killer T cell cells (Jin et al. 2007). The 
Vγ4+ AHR-decreasing γδ T lymphocytes requires the  CD8+ 
dendritic cells to perform their function properly (Cook 
et al. 2008). Contrary to the Vγ1+ AHR-enhancing subset, 
the Vγ4+ AHR-decreasing subpopulation does require the 
allergen-driven induction and activation to perform its sup-
pressive role, but what is important the allergen may be mis-
matched—ragweed-, BSA- and OVA-induced cells exhibited 
similar suppressive effect in OVA-sensitized mice (Jin et al. 
2005). The use of aerosolized anti-γδ T antibody leads to 
aggravated AHR and increased airway inflammation, while 
use of anti-Vγ4 exerts similar effects, but with decrease in 
inflammation and the effect of aerosolized anti-Vγ1 is yet to 
be discovered—one study found no effect on AHR, but in 
another it seems to decrease both the AHR and the airway 
inflammation (Lahn et al. 2002, 2004). The Vγ4-knockout 
mice exhibit significantly increased AHR (Lahn et al. 2002). 
This suggests that the AHR-regulating properties of both 
the suppressive Vγ4 and the enhancing Vγ1 subsets can be 
exerted only by the locally present cells. An important part 
of the Vγ4 subset is  CD8+ and produces IFN-γ, which seems 
crucial for the ability of Vγ4 to suppress AHR (Lahn et al. 
2002). Long-term challenge with OVA caused nearly com-
plete lack of AHR, the depletion of either total γδ or only 
Vγ4 subset restored the normal airway response, suggesting 
an important protective role thereof (Cui et al. 2003).

The γδ-knockout mice after OVA challenge show sig-
nificantly lower late airway response in contrast to the early 
airway response that is similar to that observed in wild-type 
ones (Tamura-Yamashita et al. 2008). On the other hand, 
the adoptive transfer of IFN-γ+  CD8+ γδ T cells potently 
inhibits the late airway response and BALF eosinophilia 
in rats after OVA challenge (Isogai et al. 2007); this effect 
seems to be noticeable only when the cell donor was OVA 
naive (Isogai et al. 2003). Moreover, the percentage of major 
basic protein-positive eosinophils in BALF is also signifi-
cantly lower (Isogai et al. 2003, 2007); similarly, the level 
of IL-4 and IL-5 (Isogai et al. 2003, 2007) and IL-13 (Isogai 
et al. 2003) mRNA in BALF cells and cysteinyl leukotrienes 
in BALF also drops significantly (Isogai et al. 2007). An 
increase in IFN-γ mRNA was also noted, implying a pos-
sible shift towards Th1 response (Isogai et al. 2003).

Viral infections Affect Airway γδ T Cells an2 Change 
the Course of Asthma Exacerbation

Viral infections of upper respiratory tracts belong to the 
most common causes of acute asthma exacerbations, both in 
adults and children (Dougherty and Fahy 2009). Although γδ 
T cells are already increased in BALF of asthmatic patients, 
they are even further increased during viral-induced asthma 

exacerbation with their number correlating with AHR, 
eosinophil count in BALF and airway obstruction (Glanville 
et al. 2013). The respiratory syncytial virus (RSV) infection 
seems to promote FasL-dependent apoptosis of γδ T cells in 
mice lungs, leading to alleviated symptoms of OVA-induced 
asthma (Zeng et al. 2014). Moreover, RSV infection, that 
precedes the OVA induction of asthma, leads to significantly 
milder course; this could possibly be ascribed to the shift 
in Th1/Th2 balance among γδ T cells, namely the elevated 
expression of IFN-γ (Th1-like γδ T) and decreased that of 
IL-4 (Th2-like γδ T) (Zhang et al. 2013b). This balance is, 
however, unaffected if the infection occurs post OVA immu-
nization (Zhang et al. 2013b). Finally, pan-γδ T depletion 
leads to a significant increase in AHR, and both neutrophil 
and lymphocyte (including rise in Th2 cells) count in BALF 
during viral-induced exacerbation in OVA model of asthma 
in mice (Glanville et al. 2013). This suggests the complexity 
of γδ T involvement in the pathogenesis of asthma. Clearly, 
depending on the predominant functional landscape within 
γδ T cells, they can either alleviate or aggravate symptoms.

Th1-Like γδT are Either Decreased or Increased 
Depending on the Stimulus

Asthma is traditionally regarded as Th2-driven, though 
Th1-related response is also believed to be important for 
the maintenance of chronic inflammation (Ngoc et al. 2005). 
Moreover, higher than usual Th1 response has been linked 
to psychological problems like anxiety or depression among 
asthma patients (Zhu et al. 2016). In fact, lung-infiltrating 
IFN-γ+ γδ T (Th1-like) lymphocytes are significantly 
expanded in OVA-induced asthma model and viral-mediated 
exacerbation thereof (Glanville et al. 2013). In contrast to 
Th2-like γδT, Th17-like γδT and Treg-like γδT, this effect 
slightly diminishes over time (Glanville et al. 2013). Still, 
in another study, a significant decrease in IFN-γ+ γδ T cells 
in lungs of OVA-induced asthmatic mice was observed; this 
effect was significantly attenuated by the inhalation of inacti-
vated Mycobacterium phlei (Zhang et al. 2013a). Moreover, 
lung-infiltrating γδ T cells are rarely IFN-γ+ in the murine 
model of asthma (Murdoch and Lloyd 2010).

The IFN-γ+ γδ T cell percentage is significantly decreased 
in peripheral blood of asthmatic patients (Zhao et al. 2011). 
Similarly, a significant decrease in BALF IFN-γ+ γδ T and 
IL-2+ γδ T cells was observed in asthmatic subjects post 
allergen challenge, no such change was noted among healthy 
subjects, though the initial values in both groups were simi-
lar (Krug et al. 2001). Nevertheless, in a recent study on the 
B. tropicalis allergic patients—a significant up-regulation of 
IFN-γ+ γδ T cells in peripheral blood was observed (Belkadi 
et al. 2019).
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Studies on both animal model and human asthmatic sub-
jects show the heterogeneity of responses—the prevalence of 
Th2-like γδ T differs between various settings, possibly being 
partly dependent on the exact nature of stimulus.

Airway Epithelial γδ T Cells are Th2-Skewed 
in Asthmatic Patients

Despite being a minor population in peripheral blood and 
lymph nodes, γδ T are one of the major lymphocyte subsets 
at epithelial barriers, including airway epithelium (Born et al. 
2000). γδ T lymphocytes comprise about one fourth of total 
epithelial infiltrating lymphocytes in nasal cavities of aller-
gic patients (Pawankar et al. 1996). Half of them is double 
negative, one fourth  CD4+ and the remaining fourth is  CD8+ 
(Pawankar et al. 1996). Among those γδ T lymphocytes, the 
Vγ1 (approx. two thirds) and Vδ1 (approx. four fifths) prevail 
(Pawankar et al. 1996). Only marginal part of nasal epithelial 
γδ T cells produces IFN-γ (Th1-like γδ T); while one third 
secretes IL-4 and one fourth IL-5, which suggest a significant 
skew towards Th2-like γδ T cells in allergic patients (Pawankar 
et al. 1996). No significant difference in the total number of γδ 
T cells in bronchial mucosa and submucosa was observed in 
asthmatic patients (Fajac et al. 1997). No co-localization with 
heat shock protein (HSP)-60-, HSP-70- or HSP-80-positive 
epithelial cells was noted either (Fajac et al. 1997).

On the other hand, γδ T cells seem to be important for 
the bronchial infiltration in OVA-induced animal asthma 
model—the γδ T-deficient mice tend to have lower Th, Tc 
(Korsgren et al. 1999; Zuany-Amorim et al. 1998) and eosino-
phil bronchial infiltration (Korsgren et al. 1999; Lahn et al. 
1999; Zuany-Amorim et al. 1998) as well as attenuated total 
inflammatory infiltration (Schramm et al. 2000). Moreo-
ver, treatment with anti-TCRγδ antibody during the resolu-
tion of allergic response leads to prolonged eosinophilic and 
Th2 airway infiltration in an OVA-induced murine asthma 
model; similarly, it prevents the drop in IL-4 content, typi-
cally observed during resolution phase (Murdoch and Lloyd 
2010). This phenomenon may probably be related to the Vγ1 
and Vγ4 balance—while the former seems to be important for 
the onset of symptoms and airway infiltration, the latter may 
have a significant role in symptom resolution.

Altogether it once again suggests the complexity of the γδ 
T compartment in asthma. Current data on airway γδ T cells 
in asthmatic patients show a significant skew towards Th2 type 
of response, thus suggesting a possible importance thereof in 
asthma pathogenesis (Tables 1, 2).

Th2-Like γδ T Constitute Only a Minor Population 
in Animal Model, but are Significantly Increased 
in Asthmatic Patients

Th2 type of response is one of the main concepts in asthma 
pathogenesis; here, we consider all γδ T cells producing any 
of Th2 cytokines (IL-4, IL-5 or IL-13) as Th2-like γδ T 
(Barnes 2001). IL-4+ γδ T cells, although being expanded in 
OVA-induced asthma and viral-mediated exacerbation, con-
stitute only a minor subset of total γδ T lymphocytes in mice 
lungs (Glanville et al. 2013). Generally, γδ T cells secreting 
either of Th2-related cytokines are scarcely present in lungs 
of asthmatic mice (Murdoch and Lloyd 2010). Moreover, 
only a slight decrease in BALF IL-4 content was noted in γδ 
T-deficient mice following OVA challenge (Zuany-Amorim 
et al. 1998). Nevertheless, in vivo administration of IL-4 
to γδ T-deficient mice restored the wild type-like effect of 
OVA challenge, thus suggesting an importance of this small 
subset (Zuany-Amorim et al. 1998). In fact, OVA seems to 
stimulate IL-4 expression in mouse γδ splenocytes (Tamura-
Yamashita et al. 2008). BALF concentration of IL-5 is sig-
nificantly lower in γδ T-deficient mice after OVA immuni-
zation compared to wild type—suggesting the importance 
of γδ T for overall IL-5 production (Zuany-Amorim et al. 
1998). On the other hand, stimulation of bronchial biopsy 
cultures with anti-TCRγδ leads to only marginal IL-5 pro-
duction when compared to allergen, αβ TCR stimulation or 
pan-T stimulation with anti-CD3 (Jaffar et al. 1999). This 
suggests some importance of γδ T cells for both IL-4 and 
IL-5 production, but they may rather play a regulatory role 
as they rarely produce significant amounts of those cytokines 
themselves. Nevertheless, in a mouse model of B. tropicalis 
house-dust-mite asthma, a significant up-regulation of IL-4 
and IL-13 production was noted among lung-infiltrating Vγ1 
γδ T cells (Belkadi et al. 2019). Similarly, a higher percent-
age of IL-4-producing γδ T cells in peripheral blood was 
noted among B. tropicalis allergic patients, though it was 
still very low (Belkadi et al. 2019).

Air pollution may trigger asthma exacerbation—both 
the particulate matter (mostly PM2.5) and ozone; the lat-
ter is believed to be the cause of up to 20% of all asthma-
related emergency room visits worldwide (Anenberg et al. 
2018). Obesity is yet another risk factor—both for asthma 
in general and for severe asthma (Peters et al. 2018). Ozone 
exposure leads to an increase in total γδ and IL-13+ γδ cells 
within lungs of obese mice, the latter seems of particular 
importance in the pathogenesis of ozone-related asthma 
exacerbation in obese subjects (Mathews et al. 2017). The 
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ozone-related increase in BALF IL-13 and IL-5 levels was 
significantly lower in TCRδ-deficient obese mice which fur-
ther confirms the importance of γδ T lymphocytes as the 
source of IL-13 in exacerbation (Mathews et al. 2017). Gen-
erally, ozone exposure triggers release of IL-33 in airways; 
this cytokine is responsible for ozone-related AHR (Kasa-
hara et al. 2019). The up-regulation of IL-13 and IL-5 are 
most probably related to IL-33; its receptor (ST2) is present 
on γδ T lymphocytes (Mathews et al. 2017). Those effects 
were not observed in non-obese mice.

Pro- and anti-apoptotic balance is one of the main mecha-
nisms in T cell biology—significant change towards any of 
those directions may lead to either autoimmunity or cancer 
and immunodeficiency (Murali and Mehrotra 2011). Indeed, 
impairment of T cell apoptosis was suggested as one of the 
asthma pathomechanisms (Spinozzi et al. 2008). Allergen-
specific Th2-like  CD30+ γδ T lymphocytes are expanded in 
the BALF of asthmatic patients (Spinozzi et al. 1995). CD30 
promotes expression of anti-apoptotic Bcl-2 family proteins, 
namely Bcl-2 and Bcl-xl; increasing survival and prolifera-
tion by impairing apoptosis (Banjara et al. 2020; Wang et al. 
2020). Similarly, IL-4+ γδ T lymphocytes are significantly 
increased in peripheral blood of asthmatic patients, com-
pared to healthy control (Zhao et al. 2011) and in induced 
sputum (during asthma exacerbation) after short-term phy-
tohemagglutinin stimulation (Hamzaoui et al. 2002). A sig-
nificantly higher percentage of IL-5+ γδ T cells and IL-13+ 
γδ T cells was noted in BALF of asthmatic patients versus 
healthy controls, no difference was observed in IL-4+ γδ T 
cells (Krug et al. 2001). The values remained steady fol-
lowing the allergen challenge in both healthy and asthmatic 
subjects (Krug et al. 2001).

Lung-Infiltrating γδ T Predominantly Express IL-17 
in Murine Model of Asthma

In healthy mouse lungs, γδ T lymphocytes are relatively 
abundant, consisting up to 20% of total lymphocytes in that 
niche (Born et al. 2000). Still, their number is increased 
in lungs of mice with experimentally induced asthma, both 
in the case of house-dust-mite and cockroach challenge 
(Belkadi et al. 2019; Ullah et al. 2015). Moreover, the γδ T 
lymphocytes are also increased in the lungs in both the mice 
model of OVA-induced asthma (Cui et al. 2003; Glanville 
et al. 2013; Zhang et al. 2013b) and RSV-related exacerba-
tion of asthma (Glanville et al. 2013; Zhang et al. 2013b). 
The number of lung-infiltrating γδ T cells is the higher the 
longer airway challenge to OVA lasts (Cui et al. 2003). How-
ever, no significant influx of γδ T cells was observed after 
OVA challenge, when the RSV infection preceded it (Zhang 
et al. 2013b). In animal model of house-dust-mite asthma, 
lung-infiltrating γδ T cells express IL-6R (Ullah et al. 2015) 
which predisposes them to either Th17- or Th2-like roles Ta
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(Su et al. 2017). Similarly, in a mice model of OVA-induced 
asthma, the majority of lung-infiltrating γδ T cells express 
IL-17, while there are scarcely any expressing either IFN-γ 
or IL-4 (Murdoch and Lloyd 2010). A significant up-regu-
lation (fivefold) of lung-infiltrating γδ T cells was observed 
in Bim-deficient1 mice—no significant change was observed 
after OVA sensitization—this implies the importance of 
apoptosis for the regulation of lung-infiltrating γδ T lym-
phocytes as the up-regulation was strikingly stronger in 
the case of γδ T cells than αβ  CD4+ or  CD8+ (Pierce et al. 
2006). Studies on murine model of asthma suggest that in 
the course of disease, there may be a significant increase in 
pulmonary γδ T cells, mostly those producing IL-17. This 
may possibly be attributed to some disregulations in γδ T 
apoptosis.

Th17-Like γδ T May Reduce AHR in Murine Model 
of Asthma

According to recent studies, IL-17 is an important cytokine 
for the pathogenesis of asthma and its exacerbation in at least 
some asthmatic patients, especially those with severe asthma 
(Chakir et al. 2003; Iwanaga and Kolls 2019), the effect of 
IL-17 on asthma seems to be dose dependent with low doses 
increasing and high doses decreasing the AHR (Kinyanjui 
et al. 2013). IL-23 is one of the major regulators of Th17 
type of response—it promotes expansion and survival of 
Th17 cells, mostly by activation of STAT4 (Khan and Ansar 
Ahmed 2015). Indeed, an increase of IL-23 levels in lungs of 
mice after OVA challenge during the acute phase of allergic 
response was observed (Murdoch and Lloyd 2010). Moreo-
ver, an increase in IL-23R+ γδ T cells was observed in BALF 
in murine model of asthma (Ming et al. 2017). This may be 
related to a further increase in IL-17+ cells and concomitant 
symptom resolution.

An increase in the percentage of Th17-like γδT was 
observed in BALF in murine model of asthma (Belkadi et al. 
2019; Ming et al. 2017; Murdoch and Lloyd 2010; Zhang 
et al. 2019). Th17-like γδ T cells are even more numer-
ous than Th17 lymphocytes in lungs during OVA-induced 
asthma in mice (Murdoch and Lloyd 2010). Th17-like γδT 
were found to be the major source of IL-17A in lungs of 
mice after cockroach challenge (Ullah et al. 2015). IL-17A 
production seems to be stimulated by IL-6 trans-signaling—
IL-6 first binds to the soluble IL-6R (sIL-6R) and then that 
complex associates with glycoprotein 130 to transduce the 
signal (Rose-John and Heinrich 1994; Ullah et al. 2015). 
This effect was, however, not observed in house-dust-mite 

asthma model (Ullah et al. 2015), which may be related to 
the fact that IL-6 trans-signaling is relevant in only a group 
of asthmatic patients, recently marked as a distinct subset 
(Jevnikar et al. 2019). Moreover, IL-13 may also stimulate 
γδ T cells to produce IL-17 (Kinyanjui et al. 2013).

Activation of Th17-like γδT cells in mice leads to 
reduced AHR (Kinyanjui et al. 2013; Nakada et al. 2014), 
decreased eosinophil, but increased neutrophil airway infil-
tration (Nakada et al. 2014). Similarly adoptive transfer of 
γδ T cells, among which no less than 75% are IL-17+, or 
of only the Vγ4+ Th17-like γδT cells leads to symptom 
attenuation and significant decrease in Th2-related cytokines 
(IL-4, IL-13) and decreased lung infiltration, and increased 
neutrophil airway infiltration. Finally, among macrophages, 
the alveolar ones were increased and tissue ones decreased 
(Murdoch and Lloyd 2010). This effect seems to be IL-
17-driven as treatment with IL-17 instead of cells leads to 
similar effects (Murdoch and Lloyd 2010). Both treatments 
cause also a significant decrease in eotaxin-1 and CCD20 
and significant increase in CCL2 in lungs (Murdoch and 
Lloyd 2010). The adoptive transfer of OVA-sensitized 
Th17 cells does not cause similar changes as only reduced 
eosinophilic infiltration was observed thereafter (Murdoch 
and Lloyd 2010). Autophagy is somehow linked to asthma 
pathogenesis—increased autophagy was noted in bronchial 
tissue from asthmatic patients, autophagy is also important 
for IL-13-dependent up-regulation of mucus production 
(Dickinson et al. 2016; Jyothula and Eissa 2013). On the 
other hand, the deficiency of autophagy is linked to a corti-
costeroid-resistant asthma with neutrophilic inflammation, 
driven at least partially by IL-17—under such conditions, 
γδ T cells turn out to be the most important source of IL-17 
(Suzuki et al. 2016).

In animal models of OVA-induced asthma, γδ T cell con-
tribution to IL-17 production in BALF is related to the adju-
vant used (Nakada et al. 2014). They seem to be of minor 
importance in the case of no adjuvant, of similar impor-
tance to Th17 in the case of aluminum-based adjuvant and 
of major importance in the case of complete Freud adjuvant 
(Nakada et al. 2014). The latter is especially not surprising 
as γδ T cells are well known for strong response to Mycobac-

teria, major component of complete Freud adjuvant (Zhao 
et al. 2018). By contrast, treatment with inactivated M. phlei 
caused symptom alleviation and near normalization other-
wise increased percentages of Th-17-like γδ T and IL-23R+ 
γδ T in murine model of asthma (Ming et al. 2017). In the 
viral-mediated exacerbation of OVA-induced mice asthma, 
up to three fourths of total lung-infiltrating γδ T cells are 
Th17-like γδT, constituting 20–40% of total IL-17A+ cells 
in that compartment (Glanville et al. 2013).

Nevertheless, the data from murine model are contradic-
tory to those in human asthmatic subjects, in whom no dif-
ference in Th17-like γδ T cells in either BALF, peripheral 

1 Bim is a Bcl-2 family member with a pro-apoptotic function (Ban-
jara et al. 2020).
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blood or induced sputum was observed when asthmatic 
patients were compared to healthy controls and between 
patients with asthma of different severity (Hinks et al. 2015; 
Zhao et al. 2011). Concluding, Th17-like γδ T cells were 
predominantly studied in animal model of asthma, in which 
they seem to be alleviating symptoms. Exact effect depends, 
to some extent, on stimulus used to establish the model. Data 
about Th17-like γδ T cells in human asthmatic subjects are 
scarce, but suggest a lesser role in asthma pathogenesis.

Apart from IL-17, Th17-like cells may also produce 
IL-22 (Zarobkiewicz et al. 2019c), a cytokine acting mostly 
on non-hematological cells, e.g., epithelial cells (Rutz et al. 
2013). Under the majority of experimental settings, IL-22 
was found to be protective in murine model of asthma; 
though in fungal asthma, it was found to be rather patho-
genic (Hirose et al. 2018). Although γδ T cells can be the 
source of IL-22, they seem not to be an important one in 
fungal asthma (Reeder et al. 2018).

Treg-Like γδT are of Minor Importance in Asthma

IL-10 is one of the major anti-inflammatory cytokines, 
during asthma, its concentration in BALF is significantly 
lowered; this probably predisposes to prolong inflammation 
(Trifunović et al. 2015). The depletion of γδ T cells in mice 
model of asthma exacerbation leads to significant decrease 
in BALF IL-10 level, which may suggest the important regu-
latory role of γδ T cells (Glanville et al. 2013). Moreover, a 
decrease in IL-10+ γδ T lymphocytes was observed in lungs 
of OVA-induced asthma in mice (Zhang et al. 2013a). The 
latter effect was significantly alleviated by the inhalation of 
inactivated M. phlei (Zhang et al. 2013a). On the other hand, 
according to Murdoch and Lloyd (2010), there are scarcely 
any IL-10+ γδ T cells in lungs of OVA-induced asthmatic 
mice. The opposite was reported in human asthmatic sub-
jects—a significant up-regulation of IL-10+ γδ T cells was 
noted in induced sputum after short-term phytohemaggluti-
nin stimulation (Hamzaoui et al. 2002). Data about Treg-like 
γδ T cells in asthma are scarce—while in animal models, 
they seem to be of some importance, in human asthma, Treg-
like γδ T cells may be insignificant.

Conclusions

Most of our current knowledge about γδ T cells in asthma 
stems from animal studies. Due to significant differences 
between γδ T cells in rodents and humans as well as between 
different experimental approaches used in those studies, 
those data cannot be easily extrapolated to human asthma. 
Unfortunately, γδ T cells in human asthma to date have not 

been extensively studied, still available results suggest their 
important role in pathogenesis of human asthma. More com-
prehensive studies (involving different functional subsets) on 
γδ T in human asthma are required to significantly advance 
our knowledge.
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