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Abstract

Motivation: To date, only a few distinct successful approaches have been introduced to reconstruct

a protein 3D structure from a map of contacts between its amino acid residues (a 2D contact map).

Current algorithms can infer structures from information-rich contact maps that contain a limited

fraction of erroneous predictions. However, it is difficult to reconstruct 3D structures from predicted

contact maps that usually contain a high fraction of false contacts.

Results: We describe a new, multi-step protocol that predicts protein 3D structures from the pre-

dicted contact maps. The method is based on a novel distance function acting on a fuzzy residue

proximity graph, which predicts a 2D distance map from a 2D predicted contact map. The applica-

tion of a Multi-Dimensional Scaling algorithm transforms that predicted 2D distance map into a

coarse 3D model, which is further refined by typical modeling programs into an all-atom represen-

tation. We tested our approach on contact maps predicted de novo by MULTICOM, the top contact

map predictor according to CASP10. We show that our method outperforms FT-COMAR, the state-

of-the-art method for 3D structure reconstruction from 2D maps. For all predicted 2D contact maps

of relatively low sensitivity (60–84%), GDFuzz3D generates more accurate 3D models, with the

average improvement of 4.87 Å in terms of RMSD.

Availability and implementation: GDFuzz3D server and standalone version are freely available at

http://iimcb.genesilico.pl/gdserver/GDFuzz3D/.

Contact: iamb@genesilico.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Predicting protein tertiary structure from amino acid sequence has

been a major challenge in structural biology for over four decades. It

was proposed by Anfinsen that in the native environment, all pro-

teins assume their tertiary structure spontaneously and this process

is solely determined by the amino acid sequence (Anfinsen et al.,

1961). Still, predicting the 3D structure accurately from its amino

acid sequence remains a formidable challenge. Contemporary

protein structure prediction protocols are built upon two distinct

approaches: comparative modeling (typically based on the evolu-

tionary relationship between the target sequence and a sequence of

another protein with known structure, which can be used as a tem-

plate) and folding simulation (typically based on a search of the con-

formational space, with a scoring function that attempts to identify

‘native-like’ conformations for the polypeptide chain). Both

approaches can benefit from the use of additional data encoded as
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spatial restraints, which can be derived from experimental analyses

or from independent predictions.

One of the commonly considered types of additional data useful

for protein 3D structure prediction are the spatial proximities be-

tween individual amino acid residues. Information about the prox-

imity of residue or atom pairs in the molecule can be represented as

a square symmetric matrix (Phillips, 1970). Values stored in such a

matrix may represent the Euclidean distances between particular

atoms and such a matrix is then called a (Euclidean) distance map. If

only binary information about residue-residue interactions is

included (e.g. qualified by a Euclidean distance below a given

threshold), that matrix is called a contact map. The majority of the

contact map processing approaches, especially those using contacts

in protein 3D structure prediction, use Euclidean metric functions

based on the distances between the Ca or Cb atoms of the residues

with the contact threshold set to 8 Å.

A protein 3D structure can be accurately predicted based on in-

formation about distances between its individual atoms, encoded as

spatial restraints (Sali and Blundell, 1993). It can be also modeled

based on its binary contact map, with the reconstructed and original

structures similar up to the resolution of the contact map representa-

tion (Vendruscolo et al., 1997; Vendruscolo and Domany, 2000).

The pioneering method for protein 3D structure reconstruction from

2D contact maps developed by Vendruscolo et al. was tested and

proven to work with the native (100% accurate) contact maps, as

well as with maps into which up to 4% of true contacts were

replaced by erroneous ones. A more recent method FT-COMAR

enabled 3D structure reconstruction from less accurate contact

maps. It was shown that the quality of 3D reconstruction with FT-

COMAR is unaffected by deleting up to an average 75% of the real

contacts (if the remaining 25% contains no errors) while indeed

only a small percentage of randomly generated (wrong) contacts in

place of non-contacts are sufficient to hamper 3D reconstruction

(Vassura et al., 2008, 2011). A detailed error-rate comparison

implies that 8 Å RMSD model quality limit is upheld by

Vendruscolo method if the random error rate is about 6% or less,

while in FT-COMAR an error rate of 16% or lower can be

tolerated.

It must be emphasized that information about chirality in 3D

(handedness) is lost upon conversion of a protein structure from 3D

to a 2D representation. The determination of the actual biological

structure among the two mirror image models that are in agreement

with the map is not trivial, but can be achieved. Typically, if the

protein contains a-helices, a model with biologically relevant right-

handed helices can be selected. Further, the need to instantiate

biologically relevant stereoisomeric forms of individual residues

may allow the discrimination of models with native-like versus

mirrored topologies using scoring functions for protein model

quality assessment at the stage of all-atom reconstruction of the 3D

model (Kryshtafovych and Fidelis, 2009).

The conservation of 3D structures in globular protein domains

imposes strong constraints on amino acid residues. In each protein,

favorable interactions are formed between residues with appropriate

side chains (e.g. disulfide bridges between cysteine residues, salt

bridges between charged residues, hydrophobic interactions between

aliphatic residues, etc.). Favorable interactions tend to be preserved

in evolution, resulting in correlations among amino acid compos-

itions at different sequence positions when aligned sequences of

homologous proteins are considered. Both physico-chemical and

evolutionary considerations can be exploited to infer spatial con-

tacts for proteins with unknown structure. Currently, the

computational prediction of direct contacts is considered much eas-

ier than the prediction of distances between residues. There are

many methods that predict contacts between amino acid residues

from protein sequence; e.g. NNcon (Tegge et al., 2009), SVMcon

(Cheng and Baldi, 2007), Possum (Hamilton et al., 2004), Psicov

(Jones et al., 2012), PconsC (Skwark et al., 2013) and MULTICOM

(Wang et al., 2010). Typically, they generate a map with predicted

contact probabilities for all possible pairs of residues, which can be

used as a starting point for 3D structure reconstruction. For a typical

structure of a protein of length L, the total number of unique con-

tacts defined as distances between the Ca atoms�8 Å, is about 4.5–

5.0 L (data not shown). A typical predicted map contains a much

larger number of tentative contacts; however, a more realistic map

(with a native-like number of contacts) may be inferred by taking

4.5 L contacts predicted with highest probability scores.

Over last 20 years, significant effort has been made to bench-

mark and assess methods for predicting protein structure from

amino sequence, in particular in the framework of the biannual

Critical Assessment of Protein Structure Prediction (CASP) experi-

ment (Moult et al., 2014). Methods for contact prediction were

evaluated in the RR category of CASP. A common evaluation metric

for residue-residue contact predictions is the accuracy of only the

top L/5, L/10 or 5 predictions scored best by a given method.

Accuracy is defined as the number of correctly predicted residue-

residue contacts divided by the total number of contact predictions

considered (Graña et al., 2005). Unfortunately, the overall contact

prediction quality is still at a disappointingly low level as compared

with the required levels of 3D structure retrieval protocols.

Recently, novel quality measures were introduced to score pre-

dictors in CASP10 (Monastyrskyy et al., 2014). MULTICOM was

able to predict contacts with best quality levels, defined as a mutual

score of sensitivity (recall): 31.4% and precision (accuracy) 6.9%

when considering predictions for long-range contacts (i.e. residue

pairs separated in the sequence by at least 24 other residues).

However, these predictions of contact maps that may be considered

state-of-the-art, are significantly worse than the minimal require-

ments by the state-of-the-art methods for 3D protein structure re-

construction from 2D contacts.

Here, we present a novel approach for predicting 3D structures

from 2D maps. It is based on two components: first, a new method

for predicting 2D distance maps from 2D contact maps and second,

a modeling protocol that involves a combination of coarse-grained

and all-atom modeling. Our method was developed to use predicted

contact maps that include probabilities of contacts for all residues

and can be used in de novo 3D structure prediction, based on the

output of various existing contact map prediction programs. We im-

plemented this protocol as a publicly available web server

GDFuzz3D that takes a contact map as an input and reports an all-

atom 3D model of the protein structure, as well as a predicted 2D

distance map.

2 Methods

A typical binary contact map lacks sufficient information to be per-

ceived as a comprehensive 2D alternative to a 3D protein model. On

the other hand, a Euclidean distance map can be treated as a detailed

2D representation, which can be relatively easily converted into a

3D model. Thus, we developed an algorithm with which to

reconstruct a Euclidean distance map from a 2D contact map.

Our protocol draws from a concept similar to that described by

(Tenenbaum et al., 2000) and applies it to protein structures.
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2.1 Graph distance map: definition and features
A contact map can be regarded as an adjacency matrix that repre-

sents a residue proximity graph. In this graph, each vertex is a sin-

gle-point representation of a residue (typically a Ca atom). Edges

between vertices (residue pairs) can be deduced or just read out from

the contact map (as respective contacts). If any two residues are in

contact, there also exists an edge connecting the respective pair of

vertices. The graph thus represents the mathematical relation of spa-

tial proximity for all residue pairs in 3D space. In this case, an edge

has uniform weight set to 1; however, graph edges can bear different

weights and this feature will be used later, for the purpose of graph

generalization. Our new distance function is defined as a graph dis-

tance function applied to the connectivity graph. Such distance is

measured for all possible residue pairs, also for pairs other than

those that are in contact. The distance is defined as the shortest path

length among all paths for any given residue pair. In the connectivity

graph, the path length is calculated by summing the total number of

edges connecting the two residues under consideration. This func-

tion isn’t however a Euclidean distance, and such distances only ap-

proximate real distances in 3D. The proposed distance function has

natural numbers as values, because the graph distance (edge weight)

between a residue pair contacting in 3D is uniformly set to 1. An ex-

ample graph derived from protein Ca backbone fragments as well as

its respective graph distance matrix, are shown in Figure 1.

Fast numerical routines exists for calculating the graph distance

map given a contact map. For example, graph-based algorithms are

implemented in the Mathematica package (Wolfram Research,

2015). For a typical protein 200 residues long, the graph distance

calculation using this algorithm takes usually below 1 s. An example

visualization of a protein contact map, the graph distance map and a

Euclidean distance map is shown in Figure 2. The current implemen-

tation of our approach assumes that we deal with protein structures

that are continuous in space, i.e. are formed from elements that are

in physical contact with each other. For such structures, the graph

must be connected (as defined in graph theory), such that all residue

pairs are connected by a finite path. It is important to note that a

gapped graph indicates spatially isolated fragments.

2.2 Multi-dimensional scaling of maps
The example shown in Figure 2 suggests that the graph distance

map calculated from the contact map can be considered an approxi-

mation of a Euclidean distance map of a given protein. However,

the values of the graph distance map are integer numbers, while the

real, Euclidean distance map contains real values. We used a Multi-

Dimensional Scaling (MDS) algorithm (Kruskal, 1964) in order to

transform the graph distance matrix into a corresponding real value

distance matrix that should approximate the real Euclidean distance

map. The algorithm was set to operate in 3D, which also yields the

proposed 3D representation of points corresponding to the final

Euclidean distance map.

Directly before running the MDS algorithm, a transition from

the unit-less graph distances to the corresponding Euclidean dis-

tances (in Ångströms) is made. This is made by using the following

formula for a graph distance value of n:

dn ¼ n � d1

where the expected distance value on the right side of the equation

equals that for contacts, which in turn is based on statistical meas-

urements on a dataset derived from the PDB (Berman et al., 2000);

the procedure is described in detail in Supplementary material (see

also equation E1 therein).

The graph distance map values, being discrete natural numbers

(0, 1, 2, . . . ), are replaced by real values according to the above for-

mula (e.g. all occurring graph distance values of 1 are replaced by

Fig. 1. Visualization of the graph distance map definition for a protein back-

bone fragment. (A) Two backbone fragments are shown as solid lines with

the Ca atoms numbered according to the residue position in sequence.

Residues in contact (distance�8 Å) are connected by vertices shown as dot-

ted lines. (B) A graph distance matrix calculated for the residues from the

highlighted fragment shown in (A). Distance values greater than 1 are defined

as the length of the shortest path connecting respective residue pair in the

connectivity graph shown in (A)

Fig. 2. Visualization of the three types of 2D maps for protein molecules. (A) Contact map of manganese(III) superoxide dismutase (PDB id: 1IX9, chain A), calcu-

lated for Ca atoms, using an 8 Å threshold. Contacts are shown as white dots. (B) Graph distance map with discrete, natural distance values, derived solely based

on the contact information from (A). (C) Euclidean distance map of the same protein, calculated for Ca atoms. In both (B) and (C) the relative distance is scaled

from zero (white) to maximal observed distance (black). All images were generated using PROTMAP2D (Pietal et al., 2007)
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5.72 Å). This step is made before MDS in order to make the algo-

rithm transform a crude 2D map into an approximate Euclidean dis-

tance map. Thus, a 2D map has the same number of distance values

as the graph distance map. However, it contains only several distinct

real values. As an example, a Euclidean distance map of a real pro-

tein structure of 200 residues contains 19 800 unique real entries.

An approximate Euclidean distance map obtained by the MDS pro-

cedure is thus a more realistic and detailed representation of a pro-

tein structure.

2.3 Graph distance generalization for processing

predicted contact maps
The generalization of the graph distance map is achieved by introducing

probabilities of contacts as weights of edges in the connectivity graph.

The protocol remains the same except for the fact that the graph attains

weights as contact probabilities taken from the input 2D map. The map

can be a typical output of any contact map prediction method. The only

difference is that during calculating paths in the graph, the number of

paths between two vertices (i,j) can be fractional, because of processing

the probabilities (we deal with expected path lengths). The resulting

graph distance map shares the same features with the one derived for

binary contact map processing. See Supplementary material for add-

itional details.

An important assumption for the graph distance map calculation

algorithm is to have a stop feature: while it may seem trivial in the

case of native contact maps, it can be problematic for predicted con-

tact maps that may lack some ‘obvious’ contacts. If the contact

probability for the nearest neighboring (NN) residue (i,iþ1),

the next NNN (i,iþ2) and so on, is less than 0.5, this might

cause the algorithm to never stop. It is important that the whole

graph is connected, so subsequent residues (NN, NNN, etc.) are as-

signed a contact probability 1.0 which is true for biological se-

quences, but not necessarily true for the predicted contact maps.

2.4 3D stage: modeling protocol
The MDS algorithm generates 3D coordinates of a crude Ca model

and its mirror image, which both represent the same approximate

Euclidean distance map. In either of the crude models, most neigh-

boring Ca distances are non-physical. This is because as the MDS

protocol tries to optimize all distance pairs, this often causes the dis-

tances between subsequent Ca deviate from the physical value of

3.8 Å. To address this problem, we implemented a simple correction

algorithm (see Supplementary Material for details).

Following the initial refinement of a Ca model, we generate an

all-atom model using MODELLER (Sali et al., 1995), with restraints

on Ca-Ca distances limited to residues with graph distances�4 and

on secondary structure predicted by SSPro4 (Cheng et al., 2005).

Because MODELLER accepts distance restraints as normal distribu-

tion parameters, we use such parameters (which are: expected dis-

tance value and standard deviation) separately for each restraint.

Those are the same values as used in transition from graph distance

values to Ångströms (see Supplementary Material). The purpose of

using MODELLER, is to generate an all-atom model that presents

reasonable stereochemistry and packing.

Subsequently, we continue the refinement with the REFINER

program (Boniecki et al., 2003), with similar restraints as in the pre-

vious step, only with distance restraints further limited to residues

with originally predicted graph distance�3. The purpose of using

REFINER is in the use of a knowledge-based force-field that has

been developed specifically to refine protein structures to improve

the formation of native-like residue-residue interactions, and, for

example, to guide the formation of proper b-sheets from neighbor-

ing b-strands. We set REFINER to operate in a ‘burial mode’, which

regularizes 3D packing and removes some of other artifacts pro-

duced by MODELLER. Both 3D models generated by MDS are pro-

cessed in parallel, until the refined version of one of them is finally

selected according to the REFINER score.

MDS outputs two Ca models, which are mirror images of each

other. This is a typical feature of correspondence between the 2D

and 3D representation of the same protein. This notion comes from

the fact that any distance function is invariant to isometric trans-

formations of a 3D object: translation, rotation and symmetry. Since

initially it is not obvious which of the two structures related by mir-

ror symmetry represents a biological structure, we apply

MODELLER and REFINER to refine both variants with the as-

sumption of biologically relevant handedness on the local level (e.g.

L-amino acids, right-handed a-helices etc.). Thereby, for models of

wrong handedness, we introduce a mismatch between global and

local handedness, and the refinement often causes models of the

wrong global handedness to be poorly folded compared with their

counterparts with the correct global handedness. In our experience,

the scoring of refined models by REFINER typically allows selection

of a model with the proper handedness.

2.5 3D stage: refinement protocol
The conformation selected as potentially best by REFINER is ultim-

ately processed with MMTSB Rebuild (Feig et al., 2004) to generate

an all-atom 3D model. In the last step, MODELLER is run with re-

straints on the secondary structure only to alleviate steric clashes

that might arise as a result of conversion from a coarse-grained to

all-atom representation.

The modeling protocol is illustrated in Figure 3 and has been im-

plemented as a web server GDFuzz3D that takes as an input a pro-

tein sequence and a predicted contact map and outputs an all-atom

3D structural model.

3 Results

3.1 GDFuzz3D comparison with FT-COMAR
We tested our method by comparing it directly against FT-COMAR,

the state-of-the-art method for 3D structure reconstruction from 2D

maps. For this purpose, we selected maps generated by the

MULTICOM predictor for single-domain targets analyzed in the

CASP10 experiment (Moult et al., 2014). This dataset comprised 45

targets, with sensitivity (recall) of predicted contact maps ranging

from 0 to 0.84 (average sensitivity 0.30), including only 10 maps

with sensitivity >0.5. This range of sensitivity values (mostly very

bad to some that are reasonable but far from perfect) can be ex-

pected for ‘real life’ situations, i.e. prediction tasks encountered by

typical users of protein structure prediction methods.

For this dataset, FT-COMAR was able to generate 10 models

with TM-score>0.5, i.e. with a correct 3D fold (Supplementary

Table S1). GDFuzz3D was able to generate correct fold predictions

for 16 targets, including all 10 correctly predicted by FT-COMAR.

On average, models generated by GDFuzz3D were more accurate,

with an average TM-score of 0.41 compared with 0.31 for models

returned by FT-COMAR (average RMSD: 11.06 Å for GDFuzz3D

versus 14.88 Å for FT-COMAR). GDFuzz3D was able to generate 5

models with RMSD to the reference structure <3.5 Å, while none of

the FT-COMAR models met this criterion. If the RMSD threshold is

relaxed to 5 Å, GDFuzz3D scores 9 models compared with 5 by FT-

COMAR. Supplementary Figures S3 and S4 illustrate examples of

successful predictions made by GDFuzz3D.
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If only 10 ‘reasonable’ contact maps (sensitivity>0.5) are taken

into account, GDFuzz3D is able to generate 6 out of 10 models with

TM-score>0.5 which indicates correct fold prediction, and eight

models generated by GDFuzz3D are significantly better than those

of FT-COMAR, and two are of essentially the same accuracy. The

average RMSD value for a model generated by GDFuzz3D for these

maps is 6.15 Å, while the average RMSD for FT-COMAR is

11.02 Å, and the average TM-score is 0.51 for GDFuzz3D versus

0.39 for FT-COMAR.

3.2 GDFuzz3D comparison with PconsFold
While we prepared our results for publication, another protocol for

protein 3D structure prediction based on contact maps was pro-

posed: PconsFold (Michel et al., 2014) uses PconsC as a contact

map predictor (Skwark et al., 2013), and ROSETTA (Leaver-Fay

et al., 2011) as a method for 3D structure prediction with restraints

derived from predicted contact maps. PconsFold was tested on sev-

eral datasets, of which the largest was the PSICOV dataset (Jones

et al., 2012) that consists of 150 single-domain proteins with se-

quence lengths between 52 and 266 residues. PconsFold was also

compared with the EVfold protocol (Morcos et al., 2011; Marks

et al., 2012) and was shown to yield more accurate models (Michel

et al., 2014). It must be emphasized that the PconsC maps for the

PSICOV dataset are of above-average quality, with sensitivity rang-

ing from 0.33 to 0.72, and average sensitivity of 0.55 (i.e. much bet-

ter than the relatively unbiased set of predictions generated by

MULTICOM during CASP10).

Detailed results of comparison between models generated by

GDFuzz3D and PconsFold for 150 proteins of the PSICOV dataset

and contact maps predicted by PconsFoldC are shown in

Supplementary Table S4. Models generated by GDFuzz3D have an

average TM-score of 0.49 and average RMSD to the reference

structure of 8.2 Å, which is slightly inferior to best models reported

by PconsFold (average TM-score 0.55 and average RMSD 7.4 Å),

and they are slightly better than models returned by the

EVfold protocol (average TM-score 0.47). In this exercise, accord-

ing to RMSD, 58 models generated by GDFuzz3D were more

accurate than models generated by PconsFold, and 92 models gen-

erated by PconsFold were better. For example, GDFuzz3D was

able to generate a better prediction than PconsFold for the target

1jwq (Michel et al., 2014). There, GDFuzz3D achieved a RMSD of

3.3 Å and TM-score of 0.77 compared with RMSD of 5.1 Å and

TM-score of 0.62 for a model generated by PconsFold. Figure 4 il-

lustrates the relative performance of GDFuzz3D, FT-COMAR,

and PconsFold, in terms of TM-score of the models depending on

the sensitivity of the starting map and the results are summarized

in Table 1.

3.3 Improvement of predictions in the course of

modeling with GDFuzz3D
We tested to which extent the contact maps improve in the course of

modeling by GDFuzz3D. Table 2 and Supplementary Table S5 show

that for the PSICOV dataset our method was able to improve the

quality of contact maps: the generation of graph distance maps and

its subsequent optimization by the MDS procedure increased the

average contact map recall from 0.550 to 0.685, and it further

increased to 0.785. Accuracy of the maps has also improved at the

3D modeling stage. On the other hand, we were not able to achieve

such improvement for the more noisy input maps generated by the

MULTICOM method (not shown).

We have also tested to which extent the use of the graph distance

function improves 3D structure prediction accuracy compared with

Fig. 3. Schematic data flow of GDFuzz3D. GDFuzz3D workflow with T0752

CASP10 model as an example: (1) contact map prediction with MULTICOM;

(2) graph distance map; (3) rescaled, MDS-refined graph distance map;

(4 L&4 R) an initial Ca model with fixed Ca neighboring distances and its mir-

ror image; (5 L&5 R) all-atom models generated by MODELLER (with right-

handed helices); (6) models optimized by REFINER; (7) top-scoring structure

locally optimized with MODELLER; (N) reference structure 4GB5 from PDB.

(2D) 2D comparison (Ca, 8 Å definition) between the native structure (lower

part of the map) and the model (upper part). RMSD of our model to the refer-

ence is 4.8 Å, TM-score is 0.76 and original map sensitivity (recall) is 0.12 (any

sequence separation). (See Supplementary Fig. S5 for additional details)

Fig. 4. Final model quality in a form of a TM-score as a function of initial con-

tact map recall, between models generated by GDFuzz3D and those by FT-

COMAR and PconsFold tested on the PSICOV dataset (150 proteins).

GDFuzz3D performs clearly better than FT-COMAR on a wide range of sensi-

tivity values, and it performs slightly worse than PconsFold on a restricted

range of values of the PSICOV dataset. But as the recall of the map improves,

GDFuzz3D models catch up with those by PConsFold. For additional compari-

sons see Supplementary Figure S6
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the use of the contacts alone. Table 3 demonstrates that the use of

the graph distance improves average model quality in terms of

RMSD and TM-score. The improvement is minor for the relatively

accurate maps of the PSICOV test set, but it increases for the less ac-

curate maps of the MULTICOM46 test set.

4 Discussion

We developed a method for predicting protein 3D structures from

2D contact maps, which is based on a novel approach for predicting

distance maps from predicted 2D contact maps. The main novelty is

in the concept of a non-Euclidean 2D distance map, which can be

derived directly (and unambiguously) from a protein contact map.

The graph distance reflects a series of physical contacts between the

residues, and thereby indicates the length of the path of the signal

produced by a perturbation of a given residue (due to a substitution

or due to any physical interaction with the environment) until it af-

fects other residues in the protein. The graph distance matrix can be

therefore treated as a map of perturbation propagation pathways,

which describes in detail to which extent a single residue substitu-

tion may impact other residues in protein structure.

Most of existing methods for predicting protein 3D structures

from 2D contact maps are very sensitive to errors. Currently, the

best methods for 2D contact map predictions perform rather poorly

on average, and only a small fraction of their predictions have high

accuracy. Typical predicted contact maps contain a non-physical

number of contacts and they include a large number of contacts that

are erroneous. Our intention was to develop a method that over-

comes the problem of non-physicality of typical predicted contacts

maps, and to handle input maps with probabilities of contacts for all

residues. Such maps contain a very high number of predicted con-

tacts, of which many are erroneous, and which often contradict one

another. Our algorithm does not tackle cases where only a few

highly relevant contacts are known, but this task can be handled by

standard methods for protein 3D structure prediction by folding

with restraints, such as ROSETTA (Thompson and Baker, 2011) or

CABS (Latek et al., 2007).

We tested our 3D structure prediction protocol on contact maps

predicted with MULTICOM (the best method for contact map pre-

diction according to CASP10) and found that it generates more ac-

curate 3D models than those produced by FT-COMAR, on maps

with a wide range of sensitivity values. We have also tested it on

contact maps predicted by PconsC (with a restricted range of

sensitivities) and demonstrated that models generated by

GDFuzz3D are on the average almost as accurate as those generated

by computationally demanding PconsFold protocol.

Our method is modular and elements of our protocol can be

incorporated into other protocols for protein 3D structure predic-

tion from contact maps. In particular, the 3D modeling method-

ology we used (combination of MODELLER and REFINER) can be

easily replaced any other method for structure prediction that uses

distance restraints. In particular, the use of extensive conformational

sampling (as in PconsFold with ROSETTA) and/or the use of alter-

native methods for model quality assessment (and identification of

candidate structures from many decoys) may further improve the ac-

curacy of predicted structures. In particular, we envisage that elem-

ents of our protocol could be combined with elements of the

PconsFold protocol to generate even better predictions. On the other

hand, the choice of a method with which to generate an input con-

tact map can be a significant factor in the procedure. It would be

interesting to evaluate various combinations of methods for contact

map generation, conversion of distance maps to contact maps, and

protein 3D folding with restraints.

We envisage potential applications of graph distance maps be-

yond protein 3D structure prediction. One possible application is in

protein contact map alignment, flexible superposition of protein

structures, and structure-based sequence alignment. Algorithms that

use contact maps operate on sparse matrices, in which the majority

of entries represent non-contacts. The use of graph distance maps,

which can be obtained both from experimentally determined protein

3D structures and from predicted contact maps, would allow for the

use of more efficient algorithms developed; e.g. for distance matrix

comparison, as in DALI (Holm and Sander, 1993). This approach

could facilitate comparison of proteins with known structures with

those with unknown structures, for which only theoretical predic-

tions (including predicted contact maps) are available.

Another possible application of graph distance maps include

RNA 3D structure modeling. Most methods for RNA 3D structure

prediction developed to date utilize similar strategies to those de-

veloped for protein 3D structure modeling (Rother et al., 2011).

RNA 3D structure prediction is usually guided by secondary struc-

ture prediction, which identifies canonical Watson-Crick base pairs

Table 1. Models with correct fold (TM score> 0.5)

Method GDFuzz3D

(%)

PconsFold FT-COMAR

(%)

Targets with

TM-score> 0.5

(PSICOV test set)

48.7 66.7% 10.7

Targets with

TM-score> 0.5

(MULTICOM test set)

34.8 N/A 21.7

Table 2. Improvement of 2D maps in the course of GDFuzz3D modeling, shown for the PSICOV dataset (details in Supplementary Table S3)

Measure PSI COV GDF3D, after 2D stage GDF3D, after 3D stage 2D stage improvement. 2Dþ 3D improvement

RECALL 0.550 0.685 0.785 0.135 0.235

ACCURACY 0.532 0.576 0.597 0.044 0.064

Table 3. Comparison of a full GDFuzz3D procedure (‘graph dis-

tance’) with a simplified version (‘contacts-only’), where only re-

straints on contacts are used with MODELLER

Measure Contacts

only

Graph

distance

Improvement Improvement

(% of better

models)

MULTICOM46

RMSD 11.39 11.06 0.33 65.2%

TM-score 0.397 0.414 0.017 73.9%

PSICOV

RMSD 8.36 8.21 0.15 52.7%

TM-score 0.482 0.487 0.005 62.7%

Note: RMSD—the smaller the better, TM-score—the higher the better (de-

tails in Supplementary Tables S4 and S5).
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between ribonucleotide residues. However, there exist methods such

as SHEVEK (Pang et al., 2005), MC-Fold (Parisien and Major,

2008) or RNAwolf (zu Siederdissen et al., 2011) that predict other

types of contacts in RNA structures, including non-canonical base

pairs. Thus, the approach delineated here for protein structure mod-

eling could be used to improve RNA 3D structure modeling by the

inference of RNA graph distance maps. Last, but not least, some

elements of the methodology described in this article could be

adapted to help generation of coarse-grained 3D models of chroma-

tin structure based on long-range contact information from experi-

ments such as Hi-C (Dekker et al., 2013).

5 Conclusions

We developed a novel approach for predicting protein 3D struc-

tures, by converting protein residue contact maps into protein resi-

due distance maps, and then into all-atom models. We implemented

it as a publicly available web server GDFuzz3D, which accepts a

predicted contact map as an input and generates a corresponding

3D structural model. The novel approach to calculating non-

Euclidean distance maps from contact maps may find other uses

beyond protein 3D structure prediction, such as flexible alignment

of protein sequences and structures, modeling of RNA structure,

and modeling of chromatin structure.
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