
Computer Science and Information Technology 7(2): 31-39, 2019 http://www.hrpub.org
DOI: 10.13189/csit.2019.070201

GDG in UNIX? No Way!

Kannan Deivasigamani

Business Technical Analyst - SAS Team, Wellcare Health Plans, Inc., Florida, USA

Copyright©2019 by authors, all rights reserved. Authors agree that this article remains permanently open access under
the terms of the Creative Commons Attribution License 4.0 International License

Abstract IBM mainframes in the z/OS environment
provide a generational structure often referred to as
Generation Data Group (GDG) for file storage to maintain
data snapshots of related data.[1] These data resulting from
business operations within a servicing organization are not
uncommon. This structure can hold TEXT data sets
without a problem. However, in the case of a UNIX or
Linux platform, a comparable structure is unavailable for
use by SAS for storing data as TEXT files. This paper
contains a solution to this problem and shows a comparison
of what the mainframe GDG offers and the solution offered.
A developer or a programmer may find that the solution,
TextGDS (SAS macro) is even better than the mainframe
GDG structure in certain respects. Although there are both
limitations and delimitations when using TextGDS, the
tool helps to fill the void with UNIX-SAS.

Keywords TextGDS, SAS, GDG, MAINFRAME,
UNIX-SAS, LINUX-SAS

1. Introduction
Developers around the world who work in a mainframe

environment commonly use GDGs for storing the different
types of hierarchical data required to support their
businesses. The feature is available in mainframe as part of
the operating system with IBM OS 3090, Z/OS, and others,
where job control language is commonly used to embed
SAS statements as a program to run in a batch-mode. While
JCL allocates resources on the mainframe on Linux and
UNIX platforms, it is managed by the operating system and
the infrastructure accessed by the batch programs.[2] It is
also a normal practice to have GDGs defined to store
different types of data depending on the needs of the
business for a specific number of generations. SAS offers a
generational data set structure as part of the language
feature that many users are familiar with, use in their
organizations, and manage using keywords such as genmax
and gennum. Although SAS operates in a mainframe
environment, users also have the ability to tap into the
GDG feature available on Z/OS and on other applicable

mainframe platforms.

1.1. Need to Migrate from Mainframe System

The mainframe end user computing cost is increasing
and has demanding business intelligence and operational
reporting on structured data. Even though mainframe is
billed by usage, optimization is an essential part of the
information technology (IT) group and leads to expensive
bills based on usage of Logical Partitions (LPAR) [3]. With
cost-saving initiatives across businesses, and due to some
scaling factors, many organizations are in the process of
migrating from mid-tier platforms to cheaper operating
platforms such as UNIX and AIX. With Linux being open
source and a cheaper alternative, several organizations
have opted for the UNIX distribution of SAS that could
work in UNIX/AIX environments. Metaware, an IT
organization, migrated 12,000 million instructions per
second (MIPS), saved over $55 million a year, and
recouped the cost of conversion in 12 months [4]. MIPS is
a common industry term that refers to million instructions
per second and a measure of computing performance and
implies the amount of work a larger computer can do and is
a way to measure the cost of computing. Organizational
leadership encourages employees to optimize their
processes to save on end-user computing costs.[5]

Two forms of cost savings in organizations are (1)
measures taken to downsize human resources and (2)
migration from mainframe to less expensive systems such
as UNIX or LINUX operating systems.[6] Based on the
research, several organizations are moving away from
mainframe and could benefit from the tool discussed here,
depending on their destination platform.

1.2. Research on State-of-the-art migration Projects

A detailed literature review reveals that several
organizations have attempted migration from legacy
systems such as mainframe to a client-server or a cloud
based servicing environment. An insurance giant
Prudential used a third party, Cedar knowledge solutions
for their data migration[11]. An Extract transform load
(ETL) tool named Sagent to pull out data from 15 core

32 GDG in UNIX? No Way!

systems into a data staging area and then moved into a data
warehouse environment for everyone else to pull data
from[11]. Security Industry Automation corporation hired
Clerity Solutions Inc to help with their Mainframe to Unix
migration; Readers Digest Association outsourced to
Infocrossing; SIAC a subsidiary of New York Stock
exchange Group Inc migrated to IBM servers running AIX.
[12] Taking the approach of mapping exercise to map data
from variable to variable across all files and then moving
them based on a structure is a time consuming and
expensive. None of these research articles have mentioned
in detail to the granularity of the data type and file type to
be able to compare against what they did with mainframe
GDG files. Some organizations based on the authors
research show that they couldn’t migrate due to the sheer
size and complexity of the systems they had on mainframe.

1.3. Challenges

While migrating to UNIX or Linux may be a viable
alternative, the migration effort brings up certain nuances
to technical conversion teams. A migration effort from
mainframe to UNIX or LINUX operating systems is not
easy; rather, it is time consuming and involves complex
data patterns and mapping.[7] Unlike mainframes, the
concept of GDG does not exist on UNIX. Although SAS
offers a generational data sets feature as part of the
language, the feature is only good for SAS data sets. If an
organization needs to house and operate with a GDG-like
structure for TEXT data sets, there is not one available in a
UNIX/AIX environment. Storing non-SAS types of data in
a UNIX/AIX environment becomes a challenge and makes
the conversion process more challenging. Financial
organizations operating mortgage lending businesses
require data sets related to subprime mortgage analytics,
incentives, and regulatory reports to be shifted to
UNIX/AIX environments. Many of these files are
generational, and the paucity of literature and research on
this topic is evident. This paper contains information that
reveals the basics of a mainframe GDG and indicates how
the TextGDS tool is likely to help with such a migration
effort.

The development of the macro was not an easy task and
took much effort to identify the challenges and then arrive
at solutions to those challenges. It was a step by step effort
to arrive at the final end-product that would work. Several
design challenges were encountered both in the design
stages and the development stages of the macro. The author
had to parse the file name into parameters that could be
passed on from a SAS program to the UNIX operating
system as a file name. There was meta-data information
about the existing GDS files required before processing the
call. The information about how many files exist currently
in the location, the oldest generation number, highest
generation number we also required. The author had to
develop SQL to obtain intelligence so a new generation

number can be assigned to the new file. In addition, the rule
also necessitates that there can only be a specific number of
active generations available which is a characteristic of the
dataset. This value is also passed on as a parameter during
the macro call by the calling program. Internally, this
means that the macro should be able to delete the oldest file
if the max capacity is reached. The author had to research
to find the code that would delete a file from UNIX or
LINUX operating system and invoke that step from within
the SAS macro. These were some of the main challenges
while trying to keep things simple to the user, the author
has also tried to encapsulate everything within the macro to
maintain some level of abstraction and the user just needs
to know how to call the macro and the macro will get the
job done.

2. Mainframe GDG
IBM has built a cataloguing mechanism for successive

file updates or generations of related data that are referred
to as GDGs.[8] Each data set within a group is called a
generational data set (GDS). These generational data sets
are related to each other in a chronological order. If the
attributes of these data sets are identical, they can be
retrieved together within a batch process if necessary. They
can also be retrieved individually or by a relative reference
as the most recent generation, the oldest generation, or any
of the nth generation in between, which is counted
backward from the most recent as the latest and the lowest
nonnegative number, which is a “0”.The maximum number
of generations that a GDG can hold is 255. While executing
on a mainframe environment, SAS can access the GDG
feature, write SAS data into the generational datasets, and
text data into the generations of a GDG. When these files
are migrated to the UNIX/AIX environment, the structure
needs to be available in the target platform. This is where
the TextGDS tool becomes useful.

2.1. What is TextGDS?

TextGDS is a SAS macro that accepts specific
parameters and populates the macro variable &fn that will
hold the appropriate file name. This macro variable “&fn”
will be used by the calling program within a file name
statement as shown below and the file will be part of the
Text Generational Data Set.
filename f1 &fn;

These specific parameters have some rules that are
described in the “Macro Rules” paragraph below. This
macro was designed by trial and error experimentation and
by finding out scenarios that were handled one after
another and was gradually built to reach a stable version
that can handle many of the common scenarios.

The author, while developing encountered issues during
run time tests and also issues that were encountered by

Computer Science and Information Technology 7(2): 31-41, 2019 33

other users during an initial beta release that helped bring
to surface, scenarios that were to be handled. With further
development, the author was able to fix those and
ultimately reach production standards. A SAS program in
general will be considered “ready” for production, if tested
successfully using variety of data with production
scenarios that the program is expected to handle in a
specific time without errors without any performance
issues. The results are then validated by developer, tester,
subject matter experts, and business users and finally
signed off for deployment to production. After a series of
such tests, the macro was promoted to production and used
by several production process by a banking organization
for archiving all of the production files. It is unfortunate
that due to business divestiture decisions by leadership was
sold to several other companies and that specific line of
business no longer exists today with that multi-national
corporation. While the business was sold, the macro
TextGDS is still available for use to anyone who needs it.

2.2. Macro Rules

The program code under the section labeled “MACRO
CODE” contains the actual SAS macro that a user would
have to include to be able to call the macro. The macro
needs to be called with the following syntax %TextGDS
(f1=, f2=, n=, m=) where f1 should point to a directory
structure or path on UNIX where the GDS files can be
stored. The user or process needs to have “write” access to
the folder. The second parm f2 should point to the file
name of the GDS. The third parm ‘n’ should point to the
generation prefixed by a sign. The ‘n’ value cannot be
without a sign and the macro will not operate as expected.
The macro variable accepting values without sign can be
coded to can be part of future enhancement. The last parm

m has to be a numeric value without a sign and have a value
greater than 0. Having a negative or a sign value here can
lead to undesired results. This can also be a future
enhancement to accept input values prefixed with positive
sign.

3. TextGDS Macro Calls
TextGDS can be called by SAS programs that need a

structure similar to a mainframe GDG for storing TEXT
data in an AIX/UNIX environment.[9] The macro will
require some parameters to be passed that will determine
the kind of operation a user intends to perform. The
operation can be better explained with the example
provided below that uses the macro TextGDS explained
throughout this document whose code is included at the
end. The macro call for this example is as follows:

%TextGDS (f1=/data, f2=Text_, n=+1, m=5);

Such a call would result in populating a macro variable
&fn with a value that will be assigned to the file-ref name in
the filename statement. This value assigned to the macro
variable &fn will be named in such a way that it resembles
a GDG structure. The file created with this &fn will be part
of the generational dataset as per the macro call by the
calling program. The file can be read in an SAS program
using the same SAS macro by altering the parameters
(parms) to fit a user’s need.

An example of a read is demonstrated below. In the code
below, the parameter “n” has a value of “+0,” which
indicates that the user is requesting the macro to point to
the current generation of the text file.

%TextGDS (f1=/data, f2=Text_, n=+0, m=5);
Filename f1 &fn;

34 GDG in UNIX? No Way!

TEXT - GENERATIONAL DATA SETS (TextGDS)

Macro call (f1=, f2=, n= , m=)

Check the list of
files in the
directory

Find the first gen#
Find the last gen#
Find the genlimit#

Is there room
to grow ?

Create the next
generation#

Drop the oldest file
/ Pencil-it-in for

Deletion

Yes

No

Append the new
gen# to the file

name

Append the file
name to the entire
file path from parm

f1

Assign to macro
variable &fn

Figure 1. A logical operational view of TextGDS

Computer Science and Information Technology 7(2): 31-41, 2019 35

4. Macro Operation
Parms f1 and f2 point to file location and file name,

respectively. The next parameter n can have either a
positive or a negative value. It cannot have an unsigned
numeric value. The last parameter, which is m in this case,
holds a value of 5, which indicates that this macro is set to
hold a maximum of five generations. This is equivalent to
the GENLIMIT parm on the mainframes while defining a
GDG.[10] If the file in the directory is empty before
running this macro and is run for the first time with parms
shown below, the first generation will be created in
accordance with the macro parameters provided. Figure 1
describes the operational flow of the TextGDS macro.

%TextGDS (f1=/data, f2=Text_, n=+1, m=5);
Filename f1 &fn;
Data _null_;

File f1;
Put 'the TDS# is:' &fn;

Run;

The data folder will have the following file:
/data/Text_000001m005.dat

As shown above, the first part is from parm f2=Text_
and the second part is from parm n=+1, which resulted in
000001. The last part is from the parm m=5 that resulted in
005, which is appended with the file extension “.dat” that
completes the file name and results in

Text_000001m005.dat

If the code segment shown above with the macro is
invoked again, then the next generation is created and the ls
–altr command in the /data folder will show the following
two files:

Text_000001m005.dat
Text_000002m005.dat

If the code segment is executed again, the third
generation will be created and will have three files as
shown below:

Text_000001m005.dat
Text_000002m005.dat
Text_000003m005.dat

A repeat of the same will result in the fourth file and
finally another repetition will result in five files as shown
below:

Text_000001m005.dat
Text_000002m005.dat
Text_000003m005.dat
Text_000004m005.dat
Text_000005m005.dat

And if the code is executed again, the sixth generation
will be created and most recent five generations will be
available for use as shown below:

Text_000002m005.dat
Text_000003m005.dat

Text_000004m005.dat
Text_000005m005.dat
Text_000006m005.dat

The oldest generation #000001 will be deleted and the
most recent five generations will be available. The oldest
generations will keep dropping off as new generations are
created. The macro internally manages these generation
retention processes using the work space mentioned earlier
on in the paper. The macro reads the metadata in the
current directory which is nothing but the list of
generations matching the file name provided in the macro
parameter and stores it for file management operations in
the macro. The maximum and minimum generations are
identified, and their generation numbers are handled
depending on the max gen limit that the macro initially
defined it to hold. If the user is requesting a +1, then the
generation number is incremented to the next higher
number and the oldest generation is deleted within the
macro code. So far, we have seen examples of creating new
TextGDS files but not reading in existing current and
historical generations which is discussed in the next
section.

5. Macro Read Operation
A macro call with a negative sign to parameter “n” will

result in a read operation of a historic generation as
specified by the numeric value assigned to the parameter
“n”.

%TextGDS (f1=/data, f2=Text_, n=-1, m=5);
Filename f1 &fn;
Data _null_;

File f1;
 Put 'the GDS# is:' &fn;
Run;

A macro call with a value of -1 will result in reading the
previous generation of the file. As an example if we have
the following five files in the /data folder if a read is
attempted with a -1 as described, Text_000005m005.dat
will be referenced by the &fn macro variable and assigned
in the filename statement.

Text_000002m005.dat
Text_000003m005.dat
Text_000004m005.dat
Text_000005m005.dat
Text_000006m005.dat

Similarly, if a -2 is the value to the parameter m, then
Text_000004m005.dat will be the file name that the &fn
macro variable will be pointing to as a result. If the macro
is referencing a generation that is out of scope, then as one
would expect, the code would not be successful in pointing
to the generation.

The macro is intelligent enough to recognize what the
user is requesting, to perform the operation in the UNIX

36 GDG in UNIX? No Way!

region using a temporary work space for internal
calculation, and to populate the final output variable, which
is nothing but a path, followed by the file name that
includes the fixed name along with the variable generation
number followed by an extension indicating the generation
limit for which the file structure was defined. This is the
short version of the macro operation. A detailed
explanation is provided with the example discussed in this
presentation.

6. Limitations and Delimitations
Table 1 shows the similarities between mainframe GDG

files and TextGDS files. They are very similar and can be
used without much complexity. In many cases, the
TextGDS feature offers more flexibility than what is
currently available on the mainframe platform. There are
certain limitations to the current version of the macro. For
example, the maximum value that can be held by the
three-digit gen-limit value is 999, which is identical to a
SAS GDS. In addition, the highest generation number of
the TextGDS indicated by the six-digit value that follows
the TGDS name is 999,999 which is about a million
generations. The generations may recycle, but the current
version of the macro is not capable of recognizing the
smaller number after recycling beyond 1,000,000. Upon
reaching the limit, a new name can be defined and can start
another set of million files, which would be a simple
alternative to reaching the max count. Mainframe GDGs
require a backup, if required to retain more than 255
generations while the current version of TextGDS allows a
much larger retention count before necessitating a backup.

The number of generations in TextGDS can also be
adjusted by shrinking or expanding the six digits to fit one's
needs. The maximum number of generations may be
shrunk or expanded according to one's needs. The
extension of the file, which is ".dat," may also be modified
to ".txt" or another type depending on the need of a project.
All three limitations discussed may also be converted to
parms that can be input to the macro to accept the values
dynamically as the macro is invoked. However, all these
enhancements call for a code change in the macro and in
the way the macro will be invoked.

Another limitation or requirement is that this macro
requires temporary work storage for the computation
where the meta file is written and cleared out at the end of
the macro execution, leaving no trace. The work space or
the temporary folder is a requirement in the current design.
One can choose to have this provided in the parm if desired;
however, in the current setup, the invoking job will have a
subfolder within the work folder and will be used for the
computation. Depending on the infrastructure, program,
and macro setup, the user might choose to add a command
"mkdir tmp" in place of the work folder as appropriate.

The macro does not prevent anyone from pointing to a
"+5" or "> +1 " without warning the user of getting ahead
of the gen numbers. Therefore, the macro needs to be used
with caution, and it will be the responsibility of the user to
invoke it with appropriate parameters. Checks in code may
be included to look for out-of-bounds values while
invoking the macro to ensure appropriate functionality. In
addition to the above, the macro currently expects a sign
while referring to the current generation which was
explained in the paragraph above named “Macro Rules”.

Table 1. Mainframe GDG vs. TextGDS – a comparison

Mainframe GDG/GDS TextGDS
Holds maximum of 255
generations Hold 1,000 but customizable to hold more

Refer using relative or absolute
reference Can be referred using relative or absolute reference

Built-in within the O/S Macro call is required with the right parameters
“+1” will create a new
generation Macro call with “+1” is required as a parameter

Can call all generations at once Need to specify each generation to invoke all files together

Can hold any type of data Can hold any type of data but specially designed for non-SAS data

For mainframe only For UNIX/AIX only. Using this concept in other platforms may require modifications to the macro and
possible scripting depending on the platform

Mainframe has no file
extensions Currently has TXT but can be customized to have another extension such as .BIN, .TXT, etc.

Computer Science and Information Technology 7(2): 31-41, 2019 37

7. TextGDS - Macro Code

38 GDG in UNIX? No Way!

Computer Science and Information Technology 7(2): 31-41, 2019 39

8. Explanation of Macro Code
The code above is a SAS MACRO named TextGDS and

it accepts the 4 parameters f1, f2, n, and m. The first part of
the code looks at the path provided in the first parameter f1
and finds out how many generations of the specified file
name already exists in the location. With this information,
the code knows the next generation number, if it has
reached the max generation, and what the next generation
number should be to create a new generation of text file. If
the max number of generations has reached, it also knows
which generation needs to be dropped from the list to
maintain the count, if a new generation is called to be
created through the parm that is passed to the macro.

The next part of the code drops or deletes the oldest file
to maintain the maximum number of generations when a
“new generation” (+1) is requested through the macro call.
Based on the calculations in the first part of the code, the
new generation number is calculated and assigned to the
output variable (&fn). The variable becomes the file
assigned to the “FILENAME” statement in the calling SAS
program. The *.meta data file is temporary but can be
reused once the contents are cleared or a new file is created
overwriting the contents of the existing file. It is advisable
that the temp folder is associated with the program name so
concurrent or parallel use of the workspace does not have
interference during multi-threading and provides an
independent space for each program.

9. Conclusions
TextGDS is a very easy tool to maintain and use and can

be considered as another SAS program. The tool can be
enhanced to make it more robust but it is a good start and
can be used by developers. The TextGDS feature may
someday become available as a part of native SAS
language for developers to use to maintain generational
text files when organizations need them. Although
enhancements are possible, despite the existence of both
limitations and delimitations, the TextGDS tool may be
useful for software developers working with dual platforms
who seek to use the solution. Organizations with initiatives
of cost savings with technology can benefit from this tool,
depending on their choice of target platform.

10. Recommended Reading
• Base SAS® Programming Guide
• SAS® Macros Programming Guide
• Linux/UNIX

REFERENCES
[1] SimoTime Technologies and Services. Generation data

group [Internet]; 1987. Available from: http://www.simoti
me.com/gdgone01.htm.

[2] Volovik V, Edwards E. Migration from Mainframe to
LINUX: Leading but Still Bleeding Edge [Internet]; 2009
[cited 2018 Sep 29]. Available from:
https://www.lexjansen.com/nesug/nesug09/ap/AP02.pdf

[3] LeRoy M. Why is my mainframe system so expensive?
[Internet]; 2018 [cited 2018 Sep 28]. Available from:
https://www.zcostmanagement.com/why-is-my-mainframe-
system-expensive

[4] Metaware. 12,000 mainframe MIPS moved to Unix. n.d.
[cited 2018 Sep 29]. Available from:
http://www.metaware.fr/pdf/1_Metaware_French_Social_S
ecurity_Mainframes%20Migrations_Case_Study.pdf

[5] Deivasigamani K. Relationship between leadership and
mortgage banking end-user computing efficiency
[dissertation]. Ann Arbor: University of Phoenix; 2016. 136
p.

[6] Beheshti HM, Bures AL. Information technology's critical
role in corporate downsizing. Ind. Manage. Data Syst.
2000;100(1):31-5.

[7] Syncsort. Considerations for Mainframe Application
Modernisation [Internet]; 2010 [cited 2018 Sep 29].
Available from: https://whitepapers.em360tech.com/wp-co
ntent/files_mf/white_paper/mod60wd_appmodernization_u
_app2_0.pdf

[8] IBM Knowledge Center. What is a generation data group;
[n.d.] [cited 2018 Sep 16]. Available from:
https://www.ibm.com/support/knowledgecenter/zosbasics/c
om.ibm.zos.zconcepts/zconcepts_175.htm

[9] Deivasigamani, K.Text generational datasets [TextGDS];
2017 [cited 2018 Sep 10]. Available from:
http://support.sas.com/resources/papers/proceedings17/027
4-2017.pdf

[10] SAS Institute. Generation Data Sets [Internet]; 1999 [cited
2018 Sep 29]. Available from: https://v8doc.sas.com/sasht
ml/lrcon/z0934566.htm

[11] Howard LS. Extreme makeover: Migrating data. National
Underwriter 2003 Jul 28;107(30):19.

[12] Thibodeau P. Mainframe Migrations Follow Different
Routes. Computerworld 2007 Jan 15;41(3):14.

	1. Introduction
	2. Mainframe GDG
	3. TextGDS Macro Calls
	4. Macro Operation
	5. Macro Read Operation
	6. Limitations and Delimitations
	7. TextGDS - Macro Code
	8. Explanation of Macro Code
	9. Conclusions
	10. Recommended Reading
	REFERENCES

