
Received December 26, 2021, accepted January 26, 2022, date of publication February 10, 2022, date of current version March 2, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3150840

GDL90fuzz: Fuzzing - GDL-90 Data Interface
Specification Within Aviation Software and
Avionics Devices—A Cybersecurity
Pentesting Perspective
HANNU TURTIAINEN , ANDREI COSTIN , SYED KHANDKER, AND TIMO HÄMÄLÄINEN
Faculty of Information Technology, University of Jyväskylä, FI-40014 Jyväskylä, Finland

Corresponding author: Hannu Turtiainen (hannu.ht.turtiainen@jyu.fi)

This work was supported in part by the Engage Consortium’s Knowledge Transfer Network (KTN) funding for project
‘‘Engage—204—Proof-of-Concept: Practical, Flexible, Affordable Pentesting Platform for ATM/Avionics Cybersecurity’’ Single European
Sky ATM Research (SESAR) Joint Undertaking under the European Union’s Horizon 2020 Research and Innovation Program
under Grant 783287, in part by the Finnish Grid and Cloud Infrastructure (FGCI) Persistent Identifier under Grant
urn:nbn:fi:research-infras-2016072533, in part by the Decision of the Research Dean on Research funding within the Faculty of
Information Technology of the University of Jyväskylä, and in part by the Finnish Cultural Foundation under Grant 00211119.

ABSTRACT As the core technology of next-generation air transportation systems, the Automatic Dependent
Surveillance-Broadcast (ADS-B) is becoming very popular. However, many (if not most) ADS-B devices
and implementations support and rely on Garmin’s Datalink 90 (GDL-90) protocol for data exchange
and encapsulation. This makes it essential to investigate the integrity of the GDL-90 protocol especially
against attacks on the core subsystem availability, such as denial-of-service (DoS), which pose high risks to
safety-critical and mission-critical systems such as in avionics and aerospace. In this paper, we consider
GDL-90 protocol fuzzing options and demonstrate practical DoS attacks on popular electronic flight
bag (EFB) software operating on mobile devices. Then we present our own specially configured avionics
pentesting platform and the GDL-90 protocol. We captured legitimate traffic from ADS-B avionics devices.
We ran our samples through the state-of-the-art fuzzing platform American Fuzzy Lop (AFL) and fed
the AFL’s output to EFB apps and the GDL-90 decoding software via the network in the same manner
as legitimate GDL-90 traffic would be sent from ADS-B and other avionics devices. The results showed
worrying and critical lack of security in many EFB applications where the security is directly related to the
aircraft’s safe navigation. Out of the 16 tested configurations, our avionics pentesting platform managed
to crash or otherwise impact 9 (56%). The observed problems manifested as crashes, hangs, and abnormal
behaviors of the EFB apps and GDL-90 decoders during the fuzzing test. Our developed and proposed
systematic pentesting methodology for avionics devices, protocols, and software can be used to discover
and report vulnerabilities as early as possible.

INDEX TERMS GDL-90, ADS-B, attacks, cybersecurity, pentesting, resiliency, DoS, aviation, avionics.

I. INTRODUCTION
In the United States aviation sector, the Federal Aviation
Administration (FAA) is pushing a shift from secondary
surveillance radar (SSR) interrogations to the more modern
Automatic Dependent Surveillance-Broadcast (ADS-B) tech-
nology in air traffic control. As of January 2020, all aircraft

The associate editor coordinating the review of this manuscript and
approving it for publication was Yang Liu.

operating in the continental United States are required to use
ADS-B [1]. European aviation is following suit – the gradual
shift to mandatory ADS-B broadcasting already started in
June 2020 [2]. ADS-B offers many benefits over SSR, such
as enhanced and fully automatic situational awareness of all
aircraft and air traffic control (ATC) in the vicinity, increased
system efficiency by eliminating interrogation processes,
and cost-effective implementation. Moreover, FAA and its
stakeholders are actively experimenting with ADS-B for

21554 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-7631-620X
https://orcid.org/0000-0002-2704-9715
https://orcid.org/0000-0002-4168-9102


H. Turtiainen et al.: GDL90fuzz: Fuzzing - GDL-90 Data Interface Specification Within Aviation Software and Avionics Devices

commercial space transportation applications [3]. Due to
ADS-B’s efficiency, light weight, and cost-efficient features,
it is gaining popularity among all types of users. Using a
portable ADS-B transceiver (e.g., SkyEcho2, Sentry, and
echoUAT) as a mobile cockpit solution is very trendy nowa-
days, especially in the general aviation sector. Such portable
ADS-B devices provide services through and electronic
flight bag (EFB) application hosted on a mobile tablet or
smartphone. ADS-B devices (e.g., SkyEcho2, Sentry, and
echoUAT) exchange data mainly using the Garmin DataLink
90 (GDL-90) protocol, one of the de facto standard tech-
nologies that are leading in the avionics industry. GDL-90
is also used in many integrated flight deck (IFD) systems
and electronic flight instrumentation systems (EFISs) such
as Garmin’s G1000, Avidyne’s IFD440/540, and EX5000,
as well as in many mobile cockpit devices and EFB
applications (such as AvPlan, Naviator, and Airmate). Due
to the wide use of GDL-90, any potential vulnerability in it
poses elevated cybersecurity risks to avionics systems as well
as safety risks to the passengers and crew lives. Researchers
have reported several types of security threats involving
ADS-B, such as ghost aircraft, aircraft disappearance, denial-
of-service (DoS) [4]–[6]. However, protocol fuzzing in
mobile cockpit systems has not been thoroughly investigated
yet, which has motivated us to conduct this study. This
study is important as it systematically addresses the discovery
of potential bugs and cybersecurity vulnerabilities within
GDL-90 implementations. Our main contributions with this
work are as follows.

1) To the best of our knowledge, we are the first to
propose, develop, and execute a systematic fuzzing
platform and experiments aimed specifically at the
GDL-90 protocol (although our method is easily
extensible to more avionics and aerospace data-link
protocols).

2) We are the first to discover and report safety-critical
DoS vulnerabilities in a handful of the most popular
aviation apps and mobile EFBs as a result from fuzzing
the GDL-90 inputs.

The rest of this article is organized as follows. Different
fuzzing aspects are discussed in Section II. In Section III,
we introduce our attack strategy. We present the results in
Section IV. We discuss related works in Section V. Finally,
in Section VI, we discuss possible workarounds and future
work as we conclude this paper.

II. BACKGROUND
In this section we briefly present background technologies
and techniques used in our experiments.

A. FUZZING
Fuzzing (or fuzz testing) is an automated software testing
method for finding implementation and input sanitization
bugs by using intentionally malformed or randomized inputs.
It was originally developed by Professor Barton Miller and
his team of students at the University of Wisconsin Madison

FIGURE 1. GDL-90 message format.

in 1989 [7]. With fuzzing, a generator is used to create
random and semi-random (known to be dangerous) data
usually sampled from real inputs. Such data are inputed in
to the software being tested, and the software’s behaviour
is observed. Fuzzing is based on the premise that bugs exist
in every program and therefore, a consistent and systematic
approach will eventually cover them [8]. Fuzzing is a blind
testing technique with caveats, such as the possibility of
missed program paths due to the random nature of the input
mutations [9]. In our experiments, we targeted the GDL-90
protocol, which means that we used protocol fuzzing by
forging packets with a real protocol-like format but with some
parts malformed. (This topic will be discussed further in
Section III-D).

In this study, we used the American Fuzzy Lop (AFL) as
our core fuzzing toolset. AFL is a security-oriented greybox
fuzzer originally developed by Michal Zalewski [10]. It is a
proven, easy-to-use, stable, and effective fuzzer that utilizes
performance optimizations to decrease unnecessary runtime.
It uses an instrumentation-guided genetic algorithm to fuzz
the software being tested with brute force. In essence, AFL
takes the user-supplied sample test cases one by one,trims
them, and mutates the trimmed versions with traditional
fuzzing strategies. The behavior of the software being tested
is recorded, and interesting test cases are recorded for further
use and for runtime modifications of the fuzzer [9]. AFL is
currently maintained by Google Open Source and is licensed
with Apache License 2.0 [9], [11].

B. GDL-90 PROTOCOL
The Garmin DataLink 90 (GDL-90) format is supported by
many aviation hardware and software (see Table 3). It is
described in the RTCA DO-267A standard as a messaging
structure based on asynchronous high-level data link control
(HDLC), with some modifications to better suit avionics data
interfaces [12], [13]. The basic GDL-90 message format is
presented in Figure 1.
The message starts with a Flag Byte (0× 7E), followed by

a one-byte Message ID, which specifies the type of message
being transmitted. The message type sets the message data
content and length. All the message definitions are listed in
Table 1.
A two-byte frame check sequence (16-bit CRC, LSB first)

is calculated for the data and appended to the message, and
themessage ends with another flag byte. If a flag byte (0×7E)
or a control-escape character (CEC, 0× 7D) is present in the
original message, the message byte is XOR’d with 0 × 20,
and a CEC is prefixed to it. Thus, the integrity of the message
is preserved. The receiving end checks the incoming traffic
for the Flag Bytes and captures the data between them. The
captured data are inspected for CECs. If a CEC is found, it is

VOLUME 10, 2022 21555



H. Turtiainen et al.: GDL90fuzz: Fuzzing - GDL-90 Data Interface Specification Within Aviation Software and Avionics Devices

TABLE 1. GDL-90 message IDs.

discarded, and the byte after it is XOR’d again to return its
old form properly. The CRC for the message data part of
the full GDL-90 message is calculated and verified. If it is
deemed valid, the message is ready for use. GDL-90 devices
in operation transmit a heartbeat message once every second,
followed by an ownship report. In between these ‘‘pulses’’
other messages such as traffic reports can be transmitted.
In our experiments, we focused on three types of messages:
• Heartbeat messages,
• Traffic reports; and
• Ownship reports
A heartbeat message is used for the devices to indi-

cate that they are operational and to submit information
about their status. Two status bytes in the message tell
information about the transmitter in Boolean fashion. This
information includes ‘‘battery low,’’ ‘‘Global Positioning
System (GPS) fix,’’ ‘‘maintenance requirement,’’ etc. flags.
A timestamp is also present in the message after the status
bytes.

Traffic reports are at the output in each second for each
proximate target. GDL-90 expects at least 32 simultaneous
targets to be handled, but more can be processed depending
on the uplink configurations and the interface baud rate.
Traffic report data use 27 bytes to represent each needed
attribute. Table 2 shows the fields of the traffic report data in
order.

An ownship report message follows the traffic report
format. It is always in the output even without a proper
GPS fix. It broadcasts the transmitter information to the
network.

C. GDL-90 PROTOCOL EXTENSIONS
Some vendors have their own interpretation of the protocol
outside of the Garmin standard. For example, Uavionix’s
SkyEcho2 mainly uses the standard messaging types, but it
outputs its ownship message with the message type code 101.
On the other hand, ForeFlight’s Sentry extends the protocol
and does not communicate with the standard message types.
Sentry transmits messages with IDs 37 and 38, which are
longer than the standard heartbeat, ownship, and traffic
messages and most likely contain multiple message types

FIGURE 2. Heartbeat messages of SkyEcho2 proprietary GDL-90
extension as captured and decoded by wireshark software.

FIGURE 3. System diagram of Garmin G1000 EFIS/IFD [15]. Note the
GDL-90 inputs going into No. 2 GIA 63/63W that, in turn, controls the
auto-pilot Honeywell KAP 140 [14].

in a single packet. The ForeFlight EFB supports both
devices. It broadcasts messages to the network. When the
app is accepting traffic, it sends ‘‘i-want-to-play-ffm-udp’’;
and when it goes to sleep it sends ‘‘i-cannot-play-ffm-
udp.’’ It also identifies itself to the network by broadcasting
‘‘App: ForeFlight, GDL90: port:4000’’ messages. For our
experiments, we did not delve deeper into the ForeFlight
protocol as it was not necessary. We were able to capture,
modify, resend, and receive Sentry packets just like with
the other devices. Thus, the integration with AFL was quite
straightforward. Figure 2 shows a Skyecho-ecoded heartbeat
packet in Wireshark.

Figure 3 depicts the system diagram of Garmin
G1000 – a real-world EFIS/IFD/avionics system. It is
important to note that GDL-90 inputs go to the GIA 63/63W
avionics unit that is also directly controlling the auto-pilot
systems such as Bendix/King KAP-140 [14]. Therefore, any
GDL-90 vulnerabilities present within the avionics units have
a potential direct effect on the auto-pilot systems. Therefore,
it is important to discover such GDL-90 (and other data-link
protocol) vulnerabilities as fast and as efficiently as possible,
for example, using our approach and results.

21556 VOLUME 10, 2022



H. Turtiainen et al.: GDL90fuzz: Fuzzing - GDL-90 Data Interface Specification Within Aviation Software and Avionics Devices

TABLE 2. GDL-90 traffic/ownship report fields.

FIGURE 4. Overview of the GDL-90 test-bench and positioning of our
fuzzing platform (for GDL-90 and similar avionics data-link protocols).

III. FUZZING ATTACKS ON GDL-90
A. DIAGRAMS OF OUR APPROACH
In Figure 4 we present a high-level diagram1 of where
GDL-90 outputs and inputs are connected in real-world
systems and where our platform can be connected during
the execution of GDL-90 fuzzing. It is important to note
that discovering or triggering such protocol implementation
vulnerabilities does not necessarily require physical or
adjacent proximity. In another study of ours, we demonstrated
that carefully crafted wireless ADS-B communications can
be used to achieve the same goals, crash EFB/ADS-B apps
or ADS-B avionics devices, which can be due to the GDL-90
or ADS-B vulnerabilities, or a handful of other reasons [5],
[6]. This is possible because many ADS-B devices with an

1This setup is part of a larger pentesting platform for aviation/avionics and
maritime technologies [5], [6].

ADS-B IN function provide processed data using GDL-90
protocol encoding.

B. ADVANTAGES OF OUR APPROACH
Using the GDL-90 fuzzing approach that we developed and
propose in this paper has the following main advantages:

1) Does not require aviation-spectrum wireless trans-
mission (e.g., ADS-B) and thus, avoids any radio
interference and lowers the costs, as SDR devices are
not required (i.e., it works directly at the GDL-90
receiving point);

2) Is not limited to the capacity of radio channels and thus,
can perform fuzzing/testing at considerably higher
speeds (e.g., WiFi/ethernet has higher a throughput
than the ADS-B RF link);

3) Works closer to the source of the possible GDL-90
implementation problems and thus, avoids the
extra layer(s) introduced by higher protocols’ (such
as ADS-B’s) processing chains, which could be
sources of bottlenecks, false negatives/positives, and
air-transmission regulatory challenges.

C. OVERALL HARDWARE-SOFTWARE SETUP
Our attacks were made simple by the fact that the common
GDL-90 enables WiFi ADS-B devices (such as SkyEcho2,
echoUAT, and Sentry) using connectionless UDP packets
to send data. Therefore, we were able to easily capture,
manipulate, and resend the packets to the applicationswithout
issues. First, we observed the packets transmitted in the
WiFi networks created by the Sentry and SkyEcho2 with the
Wireshark [16] network packet inspection tool. We applied
the GDL-90 dissector [17] lua-script to Wireshark to identify
and analyze the packets. We also transmitted ADS-B traffic
messages via HackRFOne to the receivers. We copied the

VOLUME 10, 2022 21557



H. Turtiainen et al.: GDL90fuzz: Fuzzing - GDL-90 Data Interface Specification Within Aviation Software and Avionics Devices

required messages from the packet captures and saved them
as samples for the fuzzer. Depending on the device and its
configuration, we either left the different message types as
separate samples or left them as one in the case of Sentry.
In addition to the samples that we gathered from real device
networks, we also utilized Eric Dey’s GDL-90 code [18] to
simulate Stratus [19] and SkyRadar [20] ADS-B receivers
and created samples for those. In total, we tried four different
samples with the applications. Some applications worked
with only one sample-specific sample set. The simulated
SkyRadar sample set was deemed the best generalization of
the four, due to which it was the most widely used in our
tests.

We were inspired by Eric Dey’s GDL-90 code [18] and
made our own GDL-90 sender script for fuzzing purposes.
We chose AFL as our fuzzer of choice since we were adamant
that the input coverage with AFL would be sufficient. We set
up our environment as a Docker container with AFL and
our sender/fuzzing script. With our sender script, the target
IP address and the target port must be set at the beginning.
When the parameters are set, we can start fuzzing. As we
used UDP packets over WiFi, the applications at the mobile
phone end were not aware that the device at the other end was
not legitimate; therefore, the testing was realistic. However,
as we had no feedback from the mobile device through the
network to the fuzzer, we could not have AFL recording the
exact input that made an app crash. We could only observe
the applications. Running the fuzzer over the network with a
packet sending delay made the fuzzing quite slow for AFL
standards. However, the applications that were affected the
most crashed within the first 60 minutes of the test. For
the initial test, the target and the attacking PC were both
connected to the same home network via a WiFi access
point that ran OpenWRT 17.01.0 [21] or via an ethernet to a
router.

Overall, our test setup works on the one-click-test princi-
ple. After the Docker container is built, a test can be started
by running a script with four arguments: the IP address of
the attacked device, the UDP port (4000 or 43211 in our
tests), the sample folder (one of our four offerings), and the
output folder (arbitrary and useful for resuming long fuzzing
sessions). Logs are saved to the specified output folder. With
the inclusion of Docker, the setup is easy, as each component
is installed automatically. Figure 5 shows a status display
during the test.

D. AFL SETUP
We used AFL’s Python implementation (python-afl v.0.7.3)
and the latest AFL as of date (afl-fuzz v.2.57b) in our tests.
As our test setup was quite slow, we specified ‘‘quick and
dirty’’ mode (-d option), which skips deterministic steps and
usually yields faster results. This limited the depth that we
could achieve with the tests; however, we discovered that this
mode was perfectly adequate for many applications to falter.
With the non-deterministic mode on and with the sample
variety low, our longest (one-hour) fuzzing sessions reached

FIGURE 5. Example of an AFL run status.

TABLE 3. List of software exposed to fuzzing attacks (‘‘software under
test’’).

at least 50 cycles. A cycle in AFL means that the fuzzer went
through all the interesting test cases [22]. Therefore, we argue
that the tests were quite thorough within the limitations
of the samples we acquired. We observed that the crashes
occurred at several stages of the fuzzing cycles. Even if the
test applications did not crash, the usability of the data they
presented was greatly hindered due to the malformed input
data (see the details in the results in Section IV).

E. GDL-90 FUZZING TARGETS
In Table 3, we present a comprehensive list of the targeted
software. We targeted mostly mobile EFB apps, but we
also tested some open-source tools. For Eric Dey’s GDL-90
code [18], we targeted only the decoding script.

21558 VOLUME 10, 2022



H. Turtiainen et al.: GDL90fuzz: Fuzzing - GDL-90 Data Interface Specification Within Aviation Software and Avionics Devices

F. HIGH-LEVEL GDL-90 ATTACK DESCRIPTION
Apossible cybersecurity attack involving vulnerable GDL-90
implementations could look as follows:

1) At the research time: An exploitable GDL-90
vulnerability is first discovered (e.g., using our
implementation-independent GDL-90 protocol fuzzing
approach).

2) At the design/manufacturing time: An adversary
designs and puts on the market an ADS-B-capable
and GDL-90-compatible ‘‘backdoored’’ device that
contains the GDL-90 exploitation payloads and attack
vectors. The ‘‘backdoor’’ could be implemented at the
hardware or at the firmware level in such a way to avoid
the detection at the (re-)certification time (similar to the
Volkswagen emission engine control unit manipulation
scandal [23]).

3) At the usage time: The ‘‘backdoored’’ ADS-B-capable
device sends or activates the GDL-90 exploitation
payload. Such exploitation payloads could be activated
conditionally, such as at certain altitudes, within certain
geo-fence areas, and upon receiving a ‘‘secret knock’’
ADS-B message.

4) At the usage time: Alternatively, the discovered
GDL-90 vulnerability can be reconstructed back to a
specially crafted triggering ADS-B payload/message.
Therefore, it may even be possible to trigger the
GDL-90 vulnerability without ‘‘backdoored’’ hard-
ware, by simply sending a specially crafted ADS-B
payload/message.

5) Ultimately, backdoors have been shown to be
implanted even in military-grade chips [24]. Therefore,
it is more than reasonable to believe that backdoor
implanting is also feasible for ADS-B devices
destined for avionics/EFIS/IFD/EFB setups within
commercial/general aviation and amateur aircraft.

IV. RESULTS
The fuzzing results are presented in Table 4. Of the
15 tested mobile EFB applications, 6 crashed (4 iOS-only
and 2 iOS+Android) and 2 became unresponsive (1 iOS-only
and 1 Android-only). In addition to mobile the EFB apps,
Eric Dey’s open-source GDL-90 [18] decoder experienced
several dozen of unique crashes during a day-long fuzzing
session on a normal PC (Linux). We focused only on fuzzing
Eric Dey’s GDL-90 decoder, leaving its network component
out of the equation. The unique errors and crashes that we
recorded were related to the different inputs that generated
Python assertion statement failures which, in turn, were due
to the faulty lengths of the messages. (Finding such issues
is exactly the aim of fuzzing tests in general.) These results
allow us to assume that Eric Dey’s open-source GDL-90 [18]
could pose stability, availability, and DoS-resiliency issues
if deployed or operated ‘‘as-is’’ in real-world systems and
devices.

In one of our recent works [5], [6], we tested almost
the same set of mobile apps and devices for DoS attacks

TABLE 4. Details of the mobile applications (apps) considered ‘‘attacked
software’’.

via the ADS-B layer and found that 6 of the mobile apps
in Table 4 were impacted by the ADS-B IN DoS attack,
which possibly affected over 200,000 mobile application
installs worldwide. In [5], [6], we tested a total of 68
different ADS-B configurations (mobile and non-mobile) for
the ADS-B IN DoS attack. We managed to crash 25% of
them mostly within 2 minutes, while overall, the DoS attack
impacted 51.47% of the tested configurations. In comparison,
the fuzzing results presented in this paper have similarly
worrying results in terms of aviation safety and lack of
resiliency to cybersecurity attacks such as DoS. Attacks on
core subsystem availability (such as DoS) pose high risks to
safety-critical and mission-critical systems such as avionics
and aerospace.

A. VISUAL OBSERVATIONS
All the mobile application crashes were observed by visually
inspecting the device and software under test. The crashes
happened either by themselves or while trying to operate the
software (e.g., after any touch input, movement of the map,
or zooming in/out) while the test was running. For each tested
configuration that was impacted, the crashes were observed
and confirmed at least three times (unless noted otherwise)
before the result was registered.

Although FlyQ did not crash, it became unresponsive and
had to be closed by the user. OzRunways on Android crashed,
but the result was not consistently repeated. The Naviator
app on Android did not crash during the test. However,
it consistently closed the GDL-90 ADS-B input on an error
state in each of our attempts and recovered only after a
restart. Otherwise, the application remained functional. Most
of the test applications showed some abnormal behavior,

VOLUME 10, 2022 21559



H. Turtiainen et al.: GDL90fuzz: Fuzzing - GDL-90 Data Interface Specification Within Aviation Software and Avionics Devices

such as an irrationally flinching map screen, fluctuating
GPS data (due to the GPS positioning taken from the
GDL-90 messages), alerts (due to plane proximity or altitude
readings), and other non-standard or device operator-alerting
behavior. Therefore, the apps marked with DNCs (Did Not
Crash) in Table 4 should not be considered conclusively
stable [25]. The applications that did not crash in our tests in
this study may crash with some other sample data or testing
methods.

V. RELATED WORKS
A. SOFTWARE FUZZING
Reliable and efficient aerial communication is at the heart
of aerospace safety. Any defects in this safety-critical
technology may cost human lives and property. However,
modern protocols and the accompanying software are
not always up to the task. Several studies have shown
numerous viable attacks on these protocols and software
[4], [26]. Developers, researchers, and hackers are using
many tools to find out the security vulnerabilities of this
kind of mission-critical system. Here, we discuss a few of
them.

The success stories and the open-source nature of AFL
have encouraged researchers to customize this fuzzer for
different tasks [10]. Numerous studies have added many
functionalities to the AFL (e.g., pathfinding, sample creation,
and coverage) to improve its performance and effectiveness
[27]–[35]. As a result, AFL has been added to commercial
off-the-shelf (COTS) binaries [36]–[38]. It has also received
modifications for its parallel-run capabilities [39].

B. ATTACKS AND FUZZING ON AVIONICS DATA-LINK
The Micro Air Vehicle Link (MAVLink) communication
protocol is a bidirectional communication protocol that is
used in drones and ground control stations. It offers different
types of messages that can be transmitted reliably in an
efficient package [40]. However, Domin et al. reported a
crash of MAVLink-capable software in their protocol fuzzing
tests in 2016 [41]. Theywere able to crash a virtual dronewith
a random payload by incrementally increasing the payload
bytes from 1 to 255, thus increasing the length of the whole
message. An open-source MAVLink fuzzing software is
available [42].

PX4 is a widely avaible and extremely popular flight
controller that also supports the MAVLink protocol as
well as data from ADS-B IN-capable devices (such as
Aerobits AERO and uAvionix pingRX). Alias Robotics [43]
presented a general cybersecurity overview of PX4 from
threat modeling and static analysis perspectives and, in this
context, introduced the Robot Vulnerability Database (RVD).
Subsequently, Jang et al. [44] performed a thorough static
analysis of various PX4 firmware codebases.

Other communication protocols are also used for drones
in particular. Rudo and Zeng [45] showed fuzzing results
on the file transfer protocol/session initiation protocol

(FTP/SIP) and session description protocol (SDP) embedded
in consumer-grade drones. They raised concerns about the
state of security of such drones with commercial drone
software. They demonstrated GPS navigation and other
subsystem failures (e.g., video feed and motor issues).
Multiple studies have shown that the Internet-of-Things (IoT)
and embedded devices are quite vulnerable [46], [47].

With regad to drone security issues, Kim et al. pub-
lished their robotic vehicle (RV) fuzzing tool called
‘‘RVFuzzer’’ [48]. This tool was designed to highlight
missing or faulty validation checks for control inputs.
These bugs and missing features may cause physical
disruptions, such as mission failures or crashes, on RVs,
such as drones, if exploited. The authors constructed the
RVFuzzer to employ three distinct strategies for searching
input validation bugs, such as control parameter mutation,
one-dimensional mutation, and multidimensional mutation.
Throughout their evaluation, they discovered 89 input
validation bugs from two control programs. Since the attacks
do not require any code injection or other invasive proce-
dures, they cannot be detected by security solutions [48].
Hence more specific code improvements and internal
security audits for source codes under development are
required.

C. ATTACKS ON AVIONICS SYSTEMS AND PROTOCOLS
The research community has adamantly scrutinized the
security of ADS-B communication over the years. In 2004,
Korzel et al. [49] demonstrated issues with the data integrity
of the protocol due to erroneous inputs and data dropouts.
Further concerns over the authenticity, security, confiden-
tiality, and integrity of such protocol have been periodically
raised since [50]–[52].

Several researcher have frequently demonstrated attacks
against the ADS-B protocol. Costin and Francillon [4]
conducted the first practical ADS-B message injection
and spoofing attacks. Schäfer et al. [26] exposed several
attacks such as ghost aircraft attacks and virtual trajectory
modification on budget devices. Sjödin and Gruneau [53]
used HackRF SDR to demonstrate data injection and flooding
attacks on the Sentry ADS-B transceiver. They concluded
that the device does not validate the messages from the
ADS-B protocol. McCallie et al. [54] classified such attacks
and explored their consequences, which resulted in worrying
results.

Portable ADS-B transceivers (e.g., SkyEcho2, Sentry,
and echoUAT), which are operated with iPads and other
tablets, are favored by many general aviation pilots due
to their ease of setup, ease of use, and affordable pricing.
As these devices are not part of the onboard avionics per se,
Lundberg et al. [55], [56] pointed out that they do not, nor do
they need to, meet the standards of traditional avionics (e.g.,
RTCA, ARINC, and EUROCAE). The authors also found
vulnerabilities on all of their test samples and recommended
further product improvements to the device and software
designers.

21560 VOLUME 10, 2022



H. Turtiainen et al.: GDL90fuzz: Fuzzing - GDL-90 Data Interface Specification Within Aviation Software and Avionics Devices

VI. CONCLUSION
In this paper, we presented our study of the impact of
GDL-90 protocol fuzzing on a range of popular mobile
EFBs and some standard PC software. Our results showed
a worrying lack of security in many EFB applications
where the security is directly related to aircraft’s safety
navigation. Of the 16 configurations that we tested herein, our
avionics pentesting platform managed to crash or otherwise
impact 9 configurations (56%). During the fuzzing test,
we observed crashes, hangs, and other abnormal behaviors
of the EFB apps and GDL-90 decoders. The consistency
of our test results on a heterogeneous and representative
set of EFBs (on the Android, iOS, and Linux platforms)
indicates the reliability of our approach and results. DoS
attacks can be devastating for mission-critical systems such
as in avionics and aerospace, where the availability and
reliability of the system are crucial. However, we hope that
our results and presented methodology can motivate the
standardization and regulatory bodies, as well as the industry
and air traffic organizations, to improve the requirements
for and the implementation checks of avionics devices and
apps with regard to resiliency to cybersecurity attacks, and in
particular, resiliency to DoS attacks. To ensure the adequate
safety of such mission-critical systems, multidimensional
security measures need to be taken. For avionics devices and
related software/firmware, upgrading their defence against
cyberattacks should be considered a continuous process, and
thus, related research and development need to be sustained
along with the operation of such devices and technologies.

ACKNOWLEDGMENT
All results, views, and opinions presented herein are only
those of the authors and do not reflect the official position
of the European Union and its organizations and projects,
including the Horizon 2020 Program and Engage KTN. The
authors thank Dr. Andrei Costin for facilitating and managing
the grant.

The work of Hannu Turtiainen also acknowledges and
thanks the Finnish Cultural Foundation / Suomen Kulttuuri-
rahasto (https://skr.fi/en) for supporting his Ph.D. dissertation
work and research and the Faculty of Information Tech-
nology of JYU, in particular, Prof. Timo Hämäläinen, for
partly supporting and supervising his Ph.D. work at JYU
in 2021–2022.

REFERENCES
[1] No Kidding: ADS-B Deadline of Jan. 1, 2020, is Firm. Accessed:

Jun. 11, 2021. [Online]. Available: https://www.faa.gov/news/updates/
?newsId=90008

[2] EASA. (2018). Easa Seasonal Technical Commission. Accessed:
Mar. 2, 2021. [Online]. Available: https://www.easa.europa.eu/sites/
default/files/dfu/EASA_STC_NEWS_JUNE_2018.pdf

[3] N. Demidovich, ‘‘Federal aviation administration incremental flight testing
of automatic dependent surveillance-broadcast (ADS-B) prototype for
commercial space transportation applications,’’ in Proc. ITEA 32nd
Annu. Int. Test Eval. Symp. Washington, DC, USA: Federal Aviation
Administration, Aug. 2015.

[4] A. Costin and A. Francillon, ‘‘Ghost in the air (Traffic): On insecurity of
ADS-B protocol and practical attacks on ADS-B devices,’’ in Proc. Black
Hat USA, 2012, pp. 1–12.

[5] S. Khandker, H. Turtiainen, A. Costin, and T. Hamalainen, ‘‘Cyber-
security attacks on software logic and error handling within ADS-B
implementations: Systematic testing of resilience and countermeasures,’’
IEEE Trans. Aerosp. Electron. Syst., early access, Dec. 31, 2021, doi:
10.1109/TAES.2021.3139559.

[6] S. Khandker, H. Turtiainen, and A. Costin, ‘‘Practical denial-of-service and
combined high-level attacks on real-world ADS-B, ATC, ATM hardware
and software,’’ 2021.

[7] B.Miller. Fuzz Testing of Application Reliability. Accessed: May 25, 2021.
[Online]. Available: http://pages.cs.wisc.edu/~bart/fuzz/

[8] OWASP. Fuzzing. Accessed: Jun. 30, 2021. [Online]. Available:
https://owasp.org/www-community/Fuzzing

[9] G. O. Source. Github: Afl. Accessed: Jun. 30, 2021. [Online]. Available:
https://github.com/google/AFL

[10] M. Zalewski. American Fuzzy Lop. Accessed: Jun. 30, 2021. [Online].
Available: https://lcamtuf.coredump.cx/afl/

[11] A. S. Foundation. Apache License, Version 2.0. Accessed: Jul. 1, 2021.
[Online]. Available: https://www.apache.org/licenses/LICENSE-2.0

[12] RTCA DO-267: Minimum Aviation System Performance Standards
(MASPS) for Flight Information Services-Broadcast (FIS-B) Data Link,
RTCA, Washington, DC, USA, 2014.

[13] GDL 90 Data Interface Specification, Garmin, Olathe, KS, USA, 2007.
[14] Bendix/King. (2021). KAP 140 Autopilot System. [Online]. Available:

https://www.bendixking.com/content/dam/bendixking/en/documents/
document-lists/downloads-and-manuals/006-18034-0000-KAP-140-
Pilots-Guide.pdf

[15] Garmin. (2021). G1000 System. [Online]. Available: https://buy.
garmin.com/en-U.S./U.S./p/6420

[16] Wireshark Homepage. Accessed: May 25, 2021. [Online]. Available:
https://www.wireshark.org/

[17] B. Kyser. Github: Gdl90Dissector. Accessed: May 25, 2021. [Online].
Available: https://github.com/BrantKyser/gdl90Dissector

[18] E. Dey. Github: Gdl90. Accessed: May 5, 2021. [Online]. Available:
https://github.com/etdey/gdl90

[19] Stratus ADS-B Receiver. Accessed: May 5, 2021. [Online]. Available:
https://stratusbyappareo.com/products/stratus-ads-b-receivers/

[20] SkyRadar Radenna LLC. SkyRadar ADS-B Receiver.
Accessed: May 5, 2021. [Online]. Available: https://www.skyradar.net/
skyscope-receiver/receiveroverview.html

[21] OpenWrt. OpenWrt Project. Accessed: Jul. 1, 2021. [Online]. Available:
https://openwrt.org/

[22] Google. AFL User Guide. Accessed: Jul. 1, 2021. [Online]. Available:
https://afl-1.readthedocs.io/en/latest/user_guide.html

[23] M. Contag, G. Li, A. Pawlowski, F. Domke, K. Levchenko, T. Holz,
and S. Savage, ‘‘How they did it: An analysis of emission defeat devices
in modern automobiles,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 231–250.

[24] S. Skorobogatov and C. Woods, ‘‘Breakthrough silicon scanning discovers
backdoor in military chip,’’ in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst. London, U.K.: Quo Vadis Labs, 2012, pp. 23–40.

[25] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
‘‘What you corrupt is not what you crash: Challenges in fuzzing embedded
devices,’’ in Proc. NDSS, 2018, pp. 1–15.

[26] M. Schäfer, V. Lenders, and I. Martinovic, ‘‘Experimental analysis of
attacks on next generation air traffic communication,’’ in Applied Cryp-
tography and Network Security, M. Jacobson, M. Locasto, P. Mohassel,
and R. Safavi-Naini, Eds. Berlin, Germany: Springer, 2013, pp. 253–271.

[27] C. Lemieux and K. Sen, ‘‘FairFuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,’’ in Proc. 33rd ACM/IEEE Int.
Conf. Automated Softw. Eng., Sep. 2018, pp. 475–485.

[28] N. Nichols, M. Raugas, R. Jasper, and N. Hilliard, ‘‘Faster fuzzing:
Reinitialization with deep neural models,’’ 2017, arXiv:1711.02807.

[29] K. Patil and A. Kanade, ‘‘Greybox fuzzing as a contextual bandits
problem,’’ 2018, arXiv:1806.03806.

[30] R. K. Prakash, I. Vasudevan, I. Indhuja, T. Thangarasan, and C. Krishnan,
‘‘Hardiness sensing for susceptibility using American fuzzy lop,’’ in Proc.
ITM Web Conf., vol. 37, 2021, pp. 1–4.

[31] M. Rajpal, W. Blum, and R. Singh, ‘‘Not all bytes are equal: Neural byte
sieve for fuzzing,’’ 2017, arXiv:1711.04596.

[32] L. Sun, X. Li, H. Qu, and X. Zhang, ‘‘AFLTurbo: Speed up path discovery
for greybox fuzzing,’’ in Proc. IEEE 31st Int. Symp. Softw. Rel. Eng.
(ISSRE), Oct. 2020, pp. 81–91.

VOLUME 10, 2022 21561

http://dx.doi.org/10.1109/TAES.2021.3139559


H. Turtiainen et al.: GDL90fuzz: Fuzzing - GDL-90 Data Interface Specification Within Aviation Software and Avionics Devices

[33] J. Wang, B. Chen, L.Wei, and Y. Liu, ‘‘Superion: Grammar-aware greybox
fuzzing,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), 2019,
pp. 724–735.

[34] X. Yuan, L. Pan, and S. Luo, ‘‘Binary fuzz testing method based on
LSTM,’’ IOP Conf., Mater. Sci. Eng., vol. 612, Oct. 2019, Art. no. 032192.

[35] G. Zhang and X. Zhou, ‘‘AFL extended with test case prioritiza-
tion techniques,’’ Int. J. Model. Optim., vol. 8, no. 1, pp. 41–45,
Feb. 2018.

[36] Y. Chen, D.Mu, J. Xu, Z. Sun,W. Shen, X.Xing, L. Lu, andB.Mao, ‘‘Ptrix:
Efficient hardware-assisted fuzzing for COTS binary,’’ in Proc. ACM Asia
Conf. Comput. Commun. Secur., 2019, pp. 633–645.

[37] S. Dinesh, N. Burow, D. Xu, and M. Payer, ‘‘RetroWrite: Statically
instrumenting COTS binaries for fuzzing and sanitization,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2020, pp. 1497–1511.

[38] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, ‘‘FIRM-AFL:
High-throughput greybox fuzzing of iot firmware via augmented process
emulation,’’ in Proc. 28th Secur. Symp., 2019, pp. 1099–1114.

[39] J. Ye, B. Zhang, R. Li, C. Feng, and C. Tang, ‘‘Program state
sensitive parallel fuzzing for real world software,’’ IEEE Access, vol. 7,
pp. 42557–42564, 2019.

[40] (2021). Mavlink Developer Guide. [Online]. Available: https://mavl
ink.io/en/

[41] K. Domin, I. Symeonidis, and E. Marin, ‘‘Security analysis of the
drone communication protocol: Fuzzing the MAVLink protocol,’’ in Proc.
ORBIlu, 2016, pp. 1–7.

[42] Auterion. (2019). Github: MAVLink Fuzz Testing. [Online]. Available:
https://github.com/Auterion/mavlink-fuzz-testing

[43] Alias Robotics. The Cybersecurity Status of PX4.
Accessed: Jul. 1, 2021. [Online]. Available: https://aliasrobotics.com/
files/cybersecurity_status_PX4.pdf

[44] J.-H. Jang, Y.-S. Kang, and J.-H. Lee, ‘‘Static analysis and improvement
opportunities for open source of UAV flight control software,’’ J. Korean
Soc. Aeronaut. Space Sci., vol. 49, no. 6, pp. 473–480, Jun. 2021.

[45] D. Rudo and D. Kai Zeng, ‘‘Consumer UAV cybersecurity vulnerability
assessment using fuzzing tests,’’ 2020, arXiv:2008.03621.

[46] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, ‘‘A large-scale
analysis of the security of embedded firmwares,’’ in Proc. 23rd USENIX
Secur. Symp., 2014, pp. 1–22.

[47] A. Costin, A. Zarras, and A. Francillon, ‘‘Automated dynamic firmware
analysis at scale: A case study on embedded web interfaces,’’ in Proc. 11th
ACM Asia Conf. Comput. Commun. Secur., May 2016, pp. 437–448.

[48] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, ‘‘RVFuzzer: Finding input validation bugs in robotic
vehicles through control-guided testing,’’ in Proc. 28th Secur. Symp., 2019,
pp. 425–442.

[49] J. Krozel, D. Andrisani, M. Ayoubi, T. Hoshizaki, and C. Schwalm,
‘‘Aircraft ADS-B data integrity check,’’ in Proc. 4th Aviation Technol.,
Integr. Oper. (ATIO) Forum, 2004, p. 6263.

[50] K. Samuelson, E. Valovage, and D. Hall, ‘‘Enhanced ADS-B research,’’ in
Proc. IEEE Aerosp. Conf., Oct. 2006, pp. 1–7.

[51] R. G. Wood, ‘‘A security risk analysis of the data communications
network proposed in the nextgen air traffic control system,’’ Ph.D.
dissertation, Dept. Inf. Comput. Sci., Oklahoma State Univ., Stillwater,
OK, USA, 2009. [Online]. Available: https://search.proquest.com/
dissertations-theses/security-risk-analysis-data-communications/docview/
305083310/se-2?accountid=11774

[52] L. Purton, H. Abbass, and S. Alam, ‘‘Identification of ADS-B system
vulnerabilities and threats,’’ Proc. 33rd Australas. Transp. Res. Forum
(ATRF), 2010, pp. 1–16.

[53] A. Sjödin and M. Gruneau, ‘‘The ADS-B protocol and its’ weaknesses:
Exploring potential attack vectors,’’ KTH Skolan för Elektroteknik och
Datavetenskap, Stockholm, Sweden, Tech. Rep., Jun. 2020.

[54] D. McCallie, J. Butts, and R. Mills, ‘‘Security analysis of the ADS-B
implementation in the next generation air transportation system,’’ Int.
J. Crit. Infrastruct. Protection, vol. 4, no. 2, pp. 78–87, Aug. 2011.

[55] D. Lundberg, B. Farinholt, E. Sullivan, R. Mast, S. Checkoway, S. Savage,
A. C. Snoeren, and K. Levchenko, ‘‘On the security of mobile cockpit
information systems,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2014, pp. 633–645.

[56] D. A. Lundberg, ‘‘Security of ADS-B receivers,’’ Ph.D. dissertation, Dept.
Comput. Sci. Eng., UC San Diego, San Diego, CA, USA, 2014.

HANNU TURTIAINEN received the B.Sc. degree
in electronics engineering from the University
of Applied Sciences, Jyväskylä, Finland, and the
M.Sc. degree in cybersecurity, in 2020. He is
currently pursuing the Ph.D. degree in software
and communication technology with the Univer-
sity of Jyväskylä, Finland. He is also working
in the IoT field as a Cybersecurity and Software
Engineer with Binare.io, a deep-tech cybersecurity
spin-off from the University of Jyväskylä. His

research interests include machine learning and artificial intelligence in the
cybersecurity and digital privacy.

ANDREI COSTIN received the Ph.D. degree
from the EURECOM/Telecom ParisTech, under
co-supervision of Prof. Francilon and Prof.
Balzarotti, in 2015. He is currently a Senior
Lecturer/Assistant Professor of cybersecurity at
the University of Jyväskylä (Central Finland),
with a particular focus on the IoT/firmware
cybersecurity and digital privacy. He is also
the CEO/Co-Founder of Binare.io, a deep-tech
cybersecurity spin-off from the University of

Jyväskylä, focused on innovation and tech-transfer related to the IoT
cybersecurity. He has been publishing and presenting at more than 45 top
international cybersecurity venues, both academic (Usenix Security and
ACMASIACCS) and industrial (BalckHat, CCC, and HackInTheBox). He is
the author of the first practical ADS-B attacks (BlackHat 2012) and has
literally established the large-scale automated firmware analysis research
areas (Usenix Security 2014)-these two works are considered seminal in
their respective areas, being also most cited at the same time.

SYED KHANDKER received the M.Sc. degrees
in web intelligence and service engineering from
the University of Jyväskylä, Finland, in 2016.
He is currently pursuing the Ph.D. degree with
the Faculty of Information Technology, University
of Jyväskylä. Since his childhood, he has been
a Radio Enthusiast and holds an Amateur Radio
Operator License. He has authored four journal
and conference publications. His research interests
include RF fingerprint positioning, automatic

dependent surveillance-broadcast, automatic identification system, wireless
communications, and artificial intelligence.

TIMO HÄMÄLÄINEN has over 25 years of
research and teaching experience related to com-
puter networks. He has lead tens of external
funded network management related projects.
He has launched and leads master’s programs with
the University of Jyväskylä (currently SW and
communication engineering) and teaches network
management related courses. He has more than
200 internationally peer-reviewed publications
and he has supervised 36 Ph.D. theses. His current

research interests include wireless/wired network resource management (the
IoT, SDN, and NFV) and network security.

21562 VOLUME 10, 2022


