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ABSTRACT As the core technology of next-generation air transportation systems, the Automatic Dependent
Surveillance-Broadcast (ADS-B) is becoming very popular. However, many (if not most) ADS-B devices
and implementations support and rely on Garmin’s Datalink 90 (GDL-90) protocol for data exchange
and encapsulation. This makes it essential to investigate the integrity of the GDL-90 protocol especially
against attacks on the core subsystem availability, such as denial-of-service (DoS), which pose high risks to
safety-critical and mission-critical systems such as in avionics and aerospace. In this paper, we consider
GDL-90 protocol fuzzing options and demonstrate practical DoS attacks on popular electronic flight
bag (EFB) software operating on mobile devices. Then we present our own specially configured avionics
pentesting platform and the GDL-90 protocol. We captured legitimate traffic from ADS-B avionics devices.
We ran our samples through the state-of-the-art fuzzing platform American Fuzzy Lop (AFL) and fed
the AFL’s output to EFB apps and the GDL-90 decoding software via the network in the same manner
as legitimate GDL-90 traffic would be sent from ADS-B and other avionics devices. The results showed
worrying and critical lack of security in many EFB applications where the security is directly related to the
aircraft’s safe navigation. Out of the 16 tested configurations, our avionics pentesting platform managed
to crash or otherwise impact 9 (56%). The observed problems manifested as crashes, hangs, and abnormal
behaviors of the EFB apps and GDL-90 decoders during the fuzzing test. Our developed and proposed
systematic pentesting methodology for avionics devices, protocols, and software can be used to discover
and report vulnerabilities as early as possible.

INDEX TERMS GDL-90, ADS-B, attacks, cybersecurity, pentesting, resiliency, DoS, aviation, avionics.

I. INTRODUCTION
In the United States aviation sector, the Federal Aviation
Administration (FAA) is pushing a shift from secondary
surveillance radar (SSR) interrogations to the more modern
Automatic Dependent Surveillance-Broadcast (ADS-B) tech-
nology in air traffic control. As of January 2020, all aircraft
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operating in the continental United States are required to use
ADS-B [1]. European aviation is following suit – the gradual
shift to mandatory ADS-B broadcasting already started in
June 2020 [2]. ADS-B offers many benefits over SSR, such
as enhanced and fully automatic situational awareness of all
aircraft and air traffic control (ATC) in the vicinity, increased
system efficiency by eliminating interrogation processes,
and cost-effective implementation. Moreover, FAA and its
stakeholders are actively experimenting with ADS-B for
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commercial space transportation applications [3]. Due to
ADS-B’s efficiency, light weight, and cost-efficient features,
it is gaining popularity among all types of users. Using a
portable ADS-B transceiver (e.g., SkyEcho2, Sentry, and
echoUAT) as a mobile cockpit solution is very trendy nowa-
days, especially in the general aviation sector. Such portable
ADS-B devices provide services through and electronic
flight bag (EFB) application hosted on a mobile tablet or
smartphone. ADS-B devices (e.g., SkyEcho2, Sentry, and
echoUAT) exchange data mainly using the Garmin DataLink
90 (GDL-90) protocol, one of the de facto standard tech-
nologies that are leading in the avionics industry. GDL-90
is also used in many integrated flight deck (IFD) systems
and electronic flight instrumentation systems (EFISs) such
as Garmin’s G1000, Avidyne’s IFD440/540, and EX5000,
as well as in many mobile cockpit devices and EFB
applications (such as AvPlan, Naviator, and Airmate). Due
to the wide use of GDL-90, any potential vulnerability in it
poses elevated cybersecurity risks to avionics systems as well
as safety risks to the passengers and crew lives. Researchers
have reported several types of security threats involving
ADS-B, such as ghost aircraft, aircraft disappearance, denial-
of-service (DoS) [4]–[6]. However, protocol fuzzing in
mobile cockpit systems has not been thoroughly investigated
yet, which has motivated us to conduct this study. This
study is important as it systematically addresses the discovery
of potential bugs and cybersecurity vulnerabilities within
GDL-90 implementations. Our main contributions with this
work are as follows.

1) To the best of our knowledge, we are the first to
propose, develop, and execute a systematic fuzzing
platform and experiments aimed specifically at the
GDL-90 protocol (although our method is easily
extensible to more avionics and aerospace data-link
protocols).

2) We are the first to discover and report safety-critical
DoS vulnerabilities in a handful of the most popular
aviation apps and mobile EFBs as a result from fuzzing
the GDL-90 inputs.

The rest of this article is organized as follows. Different
fuzzing aspects are discussed in Section II. In Section III,
we introduce our attack strategy. We present the results in
Section IV. We discuss related works in Section V. Finally,
in Section VI, we discuss possible workarounds and future
work as we conclude this paper.

II. BACKGROUND
In this section we briefly present background technologies
and techniques used in our experiments.

A. FUZZING
Fuzzing (or fuzz testing) is an automated software testing
method for finding implementation and input sanitization
bugs by using intentionally malformed or randomized inputs.
It was originally developed by Professor Barton Miller and
his team of students at the University of Wisconsin Madison

FIGURE 1. GDL-90 message format.

in 1989 [7]. With fuzzing, a generator is used to create
random and semi-random (known to be dangerous) data
usually sampled from real inputs. Such data are inputed in
to the software being tested, and the software’s behaviour
is observed. Fuzzing is based on the premise that bugs exist
in every program and therefore, a consistent and systematic
approach will eventually cover them [8]. Fuzzing is a blind
testing technique with caveats, such as the possibility of
missed program paths due to the random nature of the input
mutations [9]. In our experiments, we targeted the GDL-90
protocol, which means that we used protocol fuzzing by
forging packets with a real protocol-like format but with some
parts malformed. (This topic will be discussed further in
Section III-D).

In this study, we used the American Fuzzy Lop (AFL) as
our core fuzzing toolset. AFL is a security-oriented greybox
fuzzer originally developed by Michal Zalewski [10]. It is a
proven, easy-to-use, stable, and effective fuzzer that utilizes
performance optimizations to decrease unnecessary runtime.
It uses an instrumentation-guided genetic algorithm to fuzz
the software being tested with brute force. In essence, AFL
takes the user-supplied sample test cases one by one,trims
them, and mutates the trimmed versions with traditional
fuzzing strategies. The behavior of the software being tested
is recorded, and interesting test cases are recorded for further
use and for runtime modifications of the fuzzer [9]. AFL is
currently maintained by Google Open Source and is licensed
with Apache License 2.0 [9], [11].

B. GDL-90 PROTOCOL
The Garmin DataLink 90 (GDL-90) format is supported by
many aviation hardware and software (see Table 3). It is
described in the RTCA DO-267A standard as a messaging
structure based on asynchronous high-level data link control
(HDLC), with some modifications to better suit avionics data
interfaces [12], [13]. The basic GDL-90 message format is
presented in Figure 1.
The message starts with a Flag Byte (0× 7E), followed by

a one-byte Message ID, which specifies the type of message
being transmitted. The message type sets the message data
content and length. All the message definitions are listed in
Table 1.
A two-byte frame check sequence (16-bit CRC, LSB first)

is calculated for the data and appended to the message, and
themessage ends with another flag byte. If a flag byte (0×7E)
or a control-escape character (CEC, 0× 7D) is present in the
original message, the message byte is XOR’d with 0 × 20,
and a CEC is prefixed to it. Thus, the integrity of the message
is preserved. The receiving end checks the incoming traffic
for the Flag Bytes and captures the data between them. The
captured data are inspected for CECs. If a CEC is found, it is
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TABLE 1. GDL-90 message IDs.

discarded, and the byte after it is XOR’d again to return its
old form properly. The CRC for the message data part of
the full GDL-90 message is calculated and verified. If it is
deemed valid, the message is ready for use. GDL-90 devices
in operation transmit a heartbeat message once every second,
followed by an ownship report. In between these ‘‘pulses’’
other messages such as traffic reports can be transmitted.
In our experiments, we focused on three types of messages:
• Heartbeat messages,
• Traffic reports; and
• Ownship reports
A heartbeat message is used for the devices to indi-

cate that they are operational and to submit information
about their status. Two status bytes in the message tell
information about the transmitter in Boolean fashion. This
information includes ‘‘battery low,’’ ‘‘Global Positioning
System (GPS) fix,’’ ‘‘maintenance requirement,’’ etc. flags.
A timestamp is also present in the message after the status
bytes.

Traffic reports are at the output in each second for each
proximate target. GDL-90 expects at least 32 simultaneous
targets to be handled, but more can be processed depending
on the uplink configurations and the interface baud rate.
Traffic report data use 27 bytes to represent each needed
attribute. Table 2 shows the fields of the traffic report data in
order.

An ownship report message follows the traffic report
format. It is always in the output even without a proper
GPS fix. It broadcasts the transmitter information to the
network.

C. GDL-90 PROTOCOL EXTENSIONS
Some vendors have their own interpretation of the protocol
outside of the Garmin standard. For example, Uavionix’s
SkyEcho2 mainly uses the standard messaging types, but it
outputs its ownship message with the message type code 101.
On the other hand, ForeFlight’s Sentry extends the protocol
and does not communicate with the standard message types.
Sentry transmits messages with IDs 37 and 38, which are
longer than the standard heartbeat, ownship, and traffic
messages and most likely contain multiple message types

FIGURE 2. Heartbeat messages of SkyEcho2 proprietary GDL-90
extension as captured and decoded by wireshark software.

FIGURE 3. System diagram of Garmin G1000 EFIS/IFD [15]. Note the
GDL-90 inputs going into No. 2 GIA 63/63W that, in turn, controls the
auto-pilot Honeywell KAP 140 [14].

in a single packet. The ForeFlight EFB supports both
devices. It broadcasts messages to the network. When the
app is accepting traffic, it sends ‘‘i-want-to-play-ffm-udp’’;
and when it goes to sleep it sends ‘‘i-cannot-play-ffm-
udp.’’ It also identifies itself to the network by broadcasting
‘‘App: ForeFlight, GDL90: port:4000’’ messages. For our
experiments, we did not delve deeper into the ForeFlight
protocol as it was not necessary. We were able to capture,
modify, resend, and receive Sentry packets just like with
the other devices. Thus, the integration with AFL was quite
straightforward. Figure 2 shows a Skyecho-ecoded heartbeat
packet in Wireshark.

Figure 3 depicts the system diagram of Garmin
G1000 – a real-world EFIS/IFD/avionics system. It is
important to note that GDL-90 inputs go to the GIA 63/63W
avionics unit that is also directly controlling the auto-pilot
systems such as Bendix/King KAP-140 [14]. Therefore, any
GDL-90 vulnerabilities present within the avionics units have
a potential direct effect on the auto-pilot systems. Therefore,
it is important to discover such GDL-90 (and other data-link
protocol) vulnerabilities as fast and as efficiently as possible,
for example, using our approach and results.
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TABLE 2. GDL-90 traffic/ownship report fields.

FIGURE 4. Overview of the GDL-90 test-bench and positioning of our
fuzzing platform (for GDL-90 and similar avionics data-link protocols).

III. FUZZING ATTACKS ON GDL-90
A. DIAGRAMS OF OUR APPROACH
In Figure 4 we present a high-level diagram1 of where
GDL-90 outputs and inputs are connected in real-world
systems and where our platform can be connected during
the execution of GDL-90 fuzzing. It is important to note
that discovering or triggering such protocol implementation
vulnerabilities does not necessarily require physical or
adjacent proximity. In another study of ours, we demonstrated
that carefully crafted wireless ADS-B communications can
be used to achieve the same goals, crash EFB/ADS-B apps
or ADS-B avionics devices, which can be due to the GDL-90
or ADS-B vulnerabilities, or a handful of other reasons [5],
[6]. This is possible because many ADS-B devices with an

1This setup is part of a larger pentesting platform for aviation/avionics and
maritime technologies [5], [6].

ADS-B IN function provide processed data using GDL-90
protocol encoding.

B. ADVANTAGES OF OUR APPROACH
Using the GDL-90 fuzzing approach that we developed and
propose in this paper has the following main advantages:

1) Does not require aviation-spectrum wireless trans-
mission (e.g., ADS-B) and thus, avoids any radio
interference and lowers the costs, as SDR devices are
not required (i.e., it works directly at the GDL-90
receiving point);

2) Is not limited to the capacity of radio channels and thus,
can perform fuzzing/testing at considerably higher
speeds (e.g., WiFi/ethernet has higher a throughput
than the ADS-B RF link);

3) Works closer to the source of the possible GDL-90
implementation problems and thus, avoids the
extra layer(s) introduced by higher protocols’ (such
as ADS-B’s) processing chains, which could be
sources of bottlenecks, false negatives/positives, and
air-transmission regulatory challenges.

C. OVERALL HARDWARE-SOFTWARE SETUP
Our attacks were made simple by the fact that the common
GDL-90 enables WiFi ADS-B devices (such as SkyEcho2,
echoUAT, and Sentry) using connectionless UDP packets
to send data. Therefore, we were able to easily capture,
manipulate, and resend the packets to the applicationswithout
issues. First, we observed the packets transmitted in the
WiFi networks created by the Sentry and SkyEcho2 with the
Wireshark [16] network packet inspection tool. We applied
the GDL-90 dissector [17] lua-script to Wireshark to identify
and analyze the packets. We also transmitted ADS-B traffic
messages via HackRFOne to the receivers. We copied the
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required messages from the packet captures and saved them
as samples for the fuzzer. Depending on the device and its
configuration, we either left the different message types as
separate samples or left them as one in the case of Sentry.
In addition to the samples that we gathered from real device
networks, we also utilized Eric Dey’s GDL-90 code [18] to
simulate Stratus [19] and SkyRadar [20] ADS-B receivers
and created samples for those. In total, we tried four different
samples with the applications. Some applications worked
with only one sample-specific sample set. The simulated
SkyRadar sample set was deemed the best generalization of
the four, due to which it was the most widely used in our
tests.

We were inspired by Eric Dey’s GDL-90 code [18] and
made our own GDL-90 sender script for fuzzing purposes.
We chose AFL as our fuzzer of choice since we were adamant
that the input coverage with AFL would be sufficient. We set
up our environment as a Docker container with AFL and
our sender/fuzzing script. With our sender script, the target
IP address and the target port must be set at the beginning.
When the parameters are set, we can start fuzzing. As we
used UDP packets over WiFi, the applications at the mobile
phone end were not aware that the device at the other end was
not legitimate; therefore, the testing was realistic. However,
as we had no feedback from the mobile device through the
network to the fuzzer, we could not have AFL recording the
exact input that made an app crash. We could only observe
the applications. Running the fuzzer over the network with a
packet sending delay made the fuzzing quite slow for AFL
standards. However, the applications that were affected the
most crashed within the first 60 minutes of the test. For
the initial test, the target and the attacking PC were both
connected to the same home network via a WiFi access
point that ran OpenWRT 17.01.0 [21] or via an ethernet to a
router.

Overall, our test setup works on the one-click-test princi-
ple. After the Docker container is built, a test can be started
by running a script with four arguments: the IP address of
the attacked device, the UDP port (4000 or 43211 in our
tests), the sample folder (one of our four offerings), and the
output folder (arbitrary and useful for resuming long fuzzing
sessions). Logs are saved to the specified output folder. With
the inclusion of Docker, the setup is easy, as each component
is installed automatically. Figure 5 shows a status display
during the test.

D. AFL SETUP
We used AFL’s Python implementation (python-afl v.0.7.3)
and the latest AFL as of date (afl-fuzz v.2.57b) in our tests.
As our test setup was quite slow, we specified ‘‘quick and
dirty’’ mode (-d option), which skips deterministic steps and
usually yields faster results. This limited the depth that we
could achieve with the tests; however, we discovered that this
mode was perfectly adequate for many applications to falter.
With the non-deterministic mode on and with the sample
variety low, our longest (one-hour) fuzzing sessions reached

FIGURE 5. Example of an AFL run status.

TABLE 3. List of software exposed to fuzzing attacks (‘‘software under
test’’).

at least 50 cycles. A cycle in AFL means that the fuzzer went
through all the interesting test cases [22]. Therefore, we argue
that the tests were quite thorough within the limitations
of the samples we acquired. We observed that the crashes
occurred at several stages of the fuzzing cycles. Even if the
test applications did not crash, the usability of the data they
presented was greatly hindered due to the malformed input
data (see the details in the results in Section IV).

E. GDL-90 FUZZING TARGETS
In Table 3, we present a comprehensive list of the targeted
software. We targeted mostly mobile EFB apps, but we
also tested some open-source tools. For Eric Dey’s GDL-90
code [18], we targeted only the decoding script.
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F. HIGH-LEVEL GDL-90 ATTACK DESCRIPTION
Apossible cybersecurity attack involving vulnerable GDL-90
implementations could look as follows:

1) At the research time: An exploitable GDL-90
vulnerability is first discovered (e.g., using our
implementation-independent GDL-90 protocol fuzzing
approach).

2) At the design/manufacturing time: An adversary
designs and puts on the market an ADS-B-capable
and GDL-90-compatible ‘‘backdoored’’ device that
contains the GDL-90 exploitation payloads and attack
vectors. The ‘‘backdoor’’ could be implemented at the
hardware or at the firmware level in such a way to avoid
the detection at the (re-)certification time (similar to the
Volkswagen emission engine control unit manipulation
scandal [23]).

3) At the usage time: The ‘‘backdoored’’ ADS-B-capable
device sends or activates the GDL-90 exploitation
payload. Such exploitation payloads could be activated
conditionally, such as at certain altitudes, within certain
geo-fence areas, and upon receiving a ‘‘secret knock’’
ADS-B message.

4) At the usage time: Alternatively, the discovered
GDL-90 vulnerability can be reconstructed back to a
specially crafted triggering ADS-B payload/message.
Therefore, it may even be possible to trigger the
GDL-90 vulnerability without ‘‘backdoored’’ hard-
ware, by simply sending a specially crafted ADS-B
payload/message.

5) Ultimately, backdoors have been shown to be
implanted even in military-grade chips [24]. Therefore,
it is more than reasonable to believe that backdoor
implanting is also feasible for ADS-B devices
destined for avionics/EFIS/IFD/EFB setups within
commercial/general aviation and amateur aircraft.

IV. RESULTS
The fuzzing results are presented in Table 4. Of the
15 tested mobile EFB applications, 6 crashed (4 iOS-only
and 2 iOS+Android) and 2 became unresponsive (1 iOS-only
and 1 Android-only). In addition to mobile the EFB apps,
Eric Dey’s open-source GDL-90 [18] decoder experienced
several dozen of unique crashes during a day-long fuzzing
session on a normal PC (Linux). We focused only on fuzzing
Eric Dey’s GDL-90 decoder, leaving its network component
out of the equation. The unique errors and crashes that we
recorded were related to the different inputs that generated
Python assertion statement failures which, in turn, were due
to the faulty lengths of the messages. (Finding such issues
is exactly the aim of fuzzing tests in general.) These results
allow us to assume that Eric Dey’s open-source GDL-90 [18]
could pose stability, availability, and DoS-resiliency issues
if deployed or operated ‘‘as-is’’ in real-world systems and
devices.

In one of our recent works [5], [6], we tested almost
the same set of mobile apps and devices for DoS attacks

TABLE 4. Details of the mobile applications (apps) considered ‘‘attacked
software’’.

via the ADS-B layer and found that 6 of the mobile apps
in Table 4 were impacted by the ADS-B IN DoS attack,
which possibly affected over 200,000 mobile application
installs worldwide. In [5], [6], we tested a total of 68
different ADS-B configurations (mobile and non-mobile) for
the ADS-B IN DoS attack. We managed to crash 25% of
them mostly within 2 minutes, while overall, the DoS attack
impacted 51.47% of the tested configurations. In comparison,
the fuzzing results presented in this paper have similarly
worrying results in terms of aviation safety and lack of
resiliency to cybersecurity attacks such as DoS. Attacks on
core subsystem availability (such as DoS) pose high risks to
safety-critical and mission-critical systems such as avionics
and aerospace.

A. VISUAL OBSERVATIONS
All the mobile application crashes were observed by visually
inspecting the device and software under test. The crashes
happened either by themselves or while trying to operate the
software (e.g., after any touch input, movement of the map,
or zooming in/out) while the test was running. For each tested
configuration that was impacted, the crashes were observed
and confirmed at least three times (unless noted otherwise)
before the result was registered.

Although FlyQ did not crash, it became unresponsive and
had to be closed by the user. OzRunways on Android crashed,
but the result was not consistently repeated. The Naviator
app on Android did not crash during the test. However,
it consistently closed the GDL-90 ADS-B input on an error
state in each of our attempts and recovered only after a
restart. Otherwise, the application remained functional. Most
of the test applications showed some abnormal behavior,
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such as an irrationally flinching map screen, fluctuating
GPS data (due to the GPS positioning taken from the
GDL-90 messages), alerts (due to plane proximity or altitude
readings), and other non-standard or device operator-alerting
behavior. Therefore, the apps marked with DNCs (Did Not
Crash) in Table 4 should not be considered conclusively
stable [25]. The applications that did not crash in our tests in
this study may crash with some other sample data or testing
methods.

V. RELATED WORKS
A. SOFTWARE FUZZING
Reliable and efficient aerial communication is at the heart
of aerospace safety. Any defects in this safety-critical
technology may cost human lives and property. However,
modern protocols and the accompanying software are
not always up to the task. Several studies have shown
numerous viable attacks on these protocols and software
[4], [26]. Developers, researchers, and hackers are using
many tools to find out the security vulnerabilities of this
kind of mission-critical system. Here, we discuss a few of
them.

The success stories and the open-source nature of AFL
have encouraged researchers to customize this fuzzer for
different tasks [10]. Numerous studies have added many
functionalities to the AFL (e.g., pathfinding, sample creation,
and coverage) to improve its performance and effectiveness
[27]–[35]. As a result, AFL has been added to commercial
off-the-shelf (COTS) binaries [36]–[38]. It has also received
modifications for its parallel-run capabilities [39].

B. ATTACKS AND FUZZING ON AVIONICS DATA-LINK
The Micro Air Vehicle Link (MAVLink) communication
protocol is a bidirectional communication protocol that is
used in drones and ground control stations. It offers different
types of messages that can be transmitted reliably in an
efficient package [40]. However, Domin et al. reported a
crash of MAVLink-capable software in their protocol fuzzing
tests in 2016 [41]. Theywere able to crash a virtual dronewith
a random payload by incrementally increasing the payload
bytes from 1 to 255, thus increasing the length of the whole
message. An open-source MAVLink fuzzing software is
available [42].

PX4 is a widely avaible and extremely popular flight
controller that also supports the MAVLink protocol as
well as data from ADS-B IN-capable devices (such as
Aerobits AERO and uAvionix pingRX). Alias Robotics [43]
presented a general cybersecurity overview of PX4 from
threat modeling and static analysis perspectives and, in this
context, introduced the Robot Vulnerability Database (RVD).
Subsequently, Jang et al. [44] performed a thorough static
analysis of various PX4 firmware codebases.

Other communication protocols are also used for drones
in particular. Rudo and Zeng [45] showed fuzzing results
on the file transfer protocol/session initiation protocol

(FTP/SIP) and session description protocol (SDP) embedded
in consumer-grade drones. They raised concerns about the
state of security of such drones with commercial drone
software. They demonstrated GPS navigation and other
subsystem failures (e.g., video feed and motor issues).
Multiple studies have shown that the Internet-of-Things (IoT)
and embedded devices are quite vulnerable [46], [47].

With regad to drone security issues, Kim et al. pub-
lished their robotic vehicle (RV) fuzzing tool called
‘‘RVFuzzer’’ [48]. This tool was designed to highlight
missing or faulty validation checks for control inputs.
These bugs and missing features may cause physical
disruptions, such as mission failures or crashes, on RVs,
such as drones, if exploited. The authors constructed the
RVFuzzer to employ three distinct strategies for searching
input validation bugs, such as control parameter mutation,
one-dimensional mutation, and multidimensional mutation.
Throughout their evaluation, they discovered 89 input
validation bugs from two control programs. Since the attacks
do not require any code injection or other invasive proce-
dures, they cannot be detected by security solutions [48].
Hence more specific code improvements and internal
security audits for source codes under development are
required.

C. ATTACKS ON AVIONICS SYSTEMS AND PROTOCOLS
The research community has adamantly scrutinized the
security of ADS-B communication over the years. In 2004,
Korzel et al. [49] demonstrated issues with the data integrity
of the protocol due to erroneous inputs and data dropouts.
Further concerns over the authenticity, security, confiden-
tiality, and integrity of such protocol have been periodically
raised since [50]–[52].

Several researcher have frequently demonstrated attacks
against the ADS-B protocol. Costin and Francillon [4]
conducted the first practical ADS-B message injection
and spoofing attacks. Schäfer et al. [26] exposed several
attacks such as ghost aircraft attacks and virtual trajectory
modification on budget devices. Sjödin and Gruneau [53]
used HackRF SDR to demonstrate data injection and flooding
attacks on the Sentry ADS-B transceiver. They concluded
that the device does not validate the messages from the
ADS-B protocol. McCallie et al. [54] classified such attacks
and explored their consequences, which resulted in worrying
results.

Portable ADS-B transceivers (e.g., SkyEcho2, Sentry,
and echoUAT), which are operated with iPads and other
tablets, are favored by many general aviation pilots due
to their ease of setup, ease of use, and affordable pricing.
As these devices are not part of the onboard avionics per se,
Lundberg et al. [55], [56] pointed out that they do not, nor do
they need to, meet the standards of traditional avionics (e.g.,
RTCA, ARINC, and EUROCAE). The authors also found
vulnerabilities on all of their test samples and recommended
further product improvements to the device and software
designers.
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VI. CONCLUSION
In this paper, we presented our study of the impact of
GDL-90 protocol fuzzing on a range of popular mobile
EFBs and some standard PC software. Our results showed
a worrying lack of security in many EFB applications
where the security is directly related to aircraft’s safety
navigation. Of the 16 configurations that we tested herein, our
avionics pentesting platform managed to crash or otherwise
impact 9 configurations (56%). During the fuzzing test,
we observed crashes, hangs, and other abnormal behaviors
of the EFB apps and GDL-90 decoders. The consistency
of our test results on a heterogeneous and representative
set of EFBs (on the Android, iOS, and Linux platforms)
indicates the reliability of our approach and results. DoS
attacks can be devastating for mission-critical systems such
as in avionics and aerospace, where the availability and
reliability of the system are crucial. However, we hope that
our results and presented methodology can motivate the
standardization and regulatory bodies, as well as the industry
and air traffic organizations, to improve the requirements
for and the implementation checks of avionics devices and
apps with regard to resiliency to cybersecurity attacks, and in
particular, resiliency to DoS attacks. To ensure the adequate
safety of such mission-critical systems, multidimensional
security measures need to be taken. For avionics devices and
related software/firmware, upgrading their defence against
cyberattacks should be considered a continuous process, and
thus, related research and development need to be sustained
along with the operation of such devices and technologies.
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