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Abstract— The General Data Protection Regulation (GDPR)
gives control of personal data back to the owners by appointing
higher requirements and obligations on service providers who
manage and process personal data. As the verification of GDPR-
compliance, handled by a supervisory authority, is irregularly
conducted; it is challenging to be certified that a service provider
has been continuously adhering to the GDPR. Furthermore, it is
beyond the data owner’s capability to perceive whether a service
provider complies with the GDPR and effectively protects her
personal data. This motivates us to envision a design concept
for developing a GDPR-compliant personal data management
platform leveraging the emerging blockchain and smart con-
tract technologies. The goals of the platform are to provide
decentralised mechanisms to both service providers and data
owners for processing personal data; meanwhile, empower data
provenance and transparency by leveraging advanced features
of the blockchain technology. The platform enables data owners
to impose data usage consent, ensures only designated parties
can process personal data, and logs all data activities in an
immutable distributed ledger using smart contract and cryp-
tography techniques. By honestly participating in the platform,
a service provider can be endorsed by the blockchain network
that it is fully GDPR-compliant; otherwise, any violation is
immutably recorded and is easily figured out by associated
parties. We then demonstrate the feasibility and efficiency of the
proposed design concept by developing a profile management
platform implemented on top of the Hyperledger Fabric permis-
sioned blockchain framework, following by valuable analysis and
discussion.

Index Terms— Blockchain, data management, GDPR, personal
data, smart contract.

I. INTRODUCTION

T
HE General Data Protection Regulation (GDPR) legis-

lation came into force in May 2018 in all European

Union (EU) countries. The GDPR is a major update to the

data privacy regulations released in 1995, which is before the

proliferation of cloud platforms and social media, let alone the

scale of today’s data usage. The provision of the GDPR is to
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ensure that personal data “can only be gathered legally, under

strict conditions, for a legitimate purpose”; as well as to bring

full control back to the data owners.1

As the GDPR requirements are highly abstract, it is open

to interpretation. In fact, each organisation has its own

way to satisfy the new regulations; and to demonstrate the

compliance. Supposedly, each EU member state provides a

supervisory authority who is responsible for monitoring the

GDPR-compliance. Organisations are required to demonstrate

compliance only in case of suspicion of a violation or when

a Data Subject (i.e., the owner of data, denoted as DS)

lodges a complaint with the supervisory authority. In this

regard, the challenge of complying with the GDPR is not

because of lacking technical solutions for tackling down the

GDPR requirements nor providing required mechanisms; it is

because such solutions are designed and implemented under

a centralised client-server architecture mindset. Due to the

irregular verification of GDPR compliance, critical concerns

on the lack of transparency have been imposed accordingly.

In particular, it is unachievable for a Service Provider (SP)

to prove that it has been continuously adhering to the GDPR

using existing centralised solutions. Moreover, it is beyond the

DS’s capability to perceive whether an SP fully complies with

the GDPR and effectively protects her data. For these reasons,

GDPR-compliant personal data management is a well-suited

scenario for the emerging blockchain technology (BC) to

come into play. A BC platform implementing Smart Con-

tracts (SCs) is expected to be a promising measure for these

challenges thanks to its advanced features of decentralisation,

transparency, tamper-resistance, and traceability.

Some research articles have stated potentials of the BC as a

general-purpose data management and storage [1]–[11]; how-

ever, they only provided preliminary methodological explo-

ration or conceptual models without detailed technical analysis

and implementation. In these articles, a holistic architecture of

decoupling the BC, which is for accounting and auditing data

access, from a storage layer, which physically stores data were

adopted. Unfortunately, there are lacking of a comprehensive

design concept and technical mechanisms to actualise the

capability of the BC in personal data management and in com-

plying with the GDPR requirements. In this article, we propose

a design concept with technical mechanisms for a BC-based

GDPR-compliant personal data management platform, along

with a detailed implementation of the profile management

1https://gdpr-info.eu/
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system use-case built on top of a permissioned BC framework.

The goal of the design concept is to preserve advanced features

of BC and SCs in personal data management by leveraging

distributed ledger and public-key cryptography technologies

for complying with the manifold legal requirements of the

GDPR [12]. For this purpose, a BC network is designed

to play as the roles of: (i) a delegated authentication and

authorisation server which is consolidated by a novel concept

of decentralised access token, (ii) an automated access control

manager, and (iii) an immutable logging system a for parties

who desire to access personal data stored in an off-chain

Resource Server (RS).

By following the proposed design concept, a personal data

management platform ensures that only designated DSs and

Data Controllers (DCs) are permitted to create, update and

withdraw consents; and only authorised Data Processors (DPs)

can process personal data respecting rules defined in corre-

sponding data usage policy agreed between the DSs and the

DPs. The platform not only provides mechanisms for DS rights

but also plays as a role of a DC for handling personal data

processing and demonstrating data accountability. By honestly

participating in the BC-based personal data management plat-

form, an SP can be endorsed by the BC network that it is

GDPR-compliant. Otherwise any violations are recorded in an

immutable distributed ledger as a record of the infringements,

which can be then used for the GDPR compliance investigation

by supervisory authorities.

We demonstrate the feasibility and effectiveness of the

proposed design concept by developing a system for managing

personal profiles. The system, which is built on top of the

Hyperledger Fabric (HLF) permissioned BC framework2 and

cooperates with an honest RS for data storage, plays as

a profile management service for a social networking SP.

This system provides clients’ rights as well as facilitates

the social networking SP’s obligations, following by analysis

and discussion on the GDPR-compliance, threat models and

system performance. It is affirmed that the social networking

SP is fully compliant with the GDPR requirements. We believe

the proposed approach is a promising solution not only

for GDPR-compliant personal data management but also for

digital assets governance.

The rest of the article is organised as follows. Section II

presents background and related work. Section III describes

challenges and motivation. The design concept is proposed

in Section IV following by the implementation of the profile

management platform in Section V. Section VI provides the

analysis and discussion about the platform. The last section

concludes our work and outlines future research.

II. BACKGROUND AND RELATED WORK

In this section, relevant background knowledge on GDPR

and BC and related work are presented. Table I depicts some

of the notions frequently used throughout this article.

A. The GDPR in a Nutshell

The full GDPR are described in detail across 99 articles

covering all of the technical and admin principles around

2https://www.hyperledger.org/projects/fabric

TABLE I

NOTATION TABLE WITH ENTRIES IN ALPHABETICAL ORDER

how commercial and public organisations process personal

data [13]. GDPR lays out the means by which personal data

is to be protected which are founded on a set of six core data

processing principles: Lawfulness, Fairness, and Transparency;

Purpose Limitation; Data Minimisation; Accuracy; Storage

Limitation; Integrity and Confidentiality.3 To preserve such

principles, the GDPR clearly differentiates three roles (i.e.,

DS, DC and DP) and explicitly specifies associated rights and

obligations under the EU data protection law. The goal of the

GDPR legislation is to provide a DS full control over her

personal data by specifying a variety of rights. The GDPR

requires that personal data should be managed by a DC that

assures the rights of the DS [13]. Such mechanisms enable

the DS to impose consents and to arbitrarily withdraw the

consents whenever needed. The DS is also able to trace back

all activities on her data including who, what, why, when, and

how the data is processed. Valid legal consents must be given

by the DS to the DC for processing her personal data. The

DC then takes appropriate measures to provide the rights of

the DS; meanwhile determines the purposes for which and the

method in which, the personal data is processed by DPs [14].

Being compliant with the GDPR is not enough, DCs should

also be able to demonstrate the compliance to supervisory

authorities once required (when a supervisory authority has

suspicion of a violation or when a DS lodges a complaint

with the supervisory authority). In this case, the supervisory

authority shall establish and make public a list of processing

operations subjected to Data Protection Impact Assessment

and the Privacy Impact Assessment requirements4; then file a

report of infringements if it is the case.

B. Blockchain Technology

The BC technology, indeed, is a set of diversified techniques

including distributed systems, computer networks, databases,

and cryptography playing as the role of a distributed ledger.

3https://gdpr-info.eu/art-5-gdpr/
4https://gdpr-info.eu/issues/privacy-impact-assessment/
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The BC technology maintains a distributed immutable data-

base constituted from a continuous growing list of blocks

so-called a BC which records all transactions between enti-

ties in a network. In our article, the acronym BC either

refers to the technology or a specific chain-of-block database.

By nature, a BC is inherently resistant to data modification.

Once recorded, information in any given block cannot be

altered retroactively as this would invalidate all hashes in the

previous blocks in a BC; and break the consensus among nodes

in the network. The concept of BC was introduced in Bitcoin

in 2008 [15]. Bitcoin is the first cryptocurrency that not only

transacts digital currency in a secure manner but also resolves

the long-standing problem of “double-spend” without the need

for a trusted third-party. BC underpins Bitcoin, but BC is not

only Bitcoin. Its usage goes far beyond [16]–[18].

In a BC network, a consensus protocol needs to be imple-

mented to ensure any disruptive action from an adversary will

be negated by a majority of participants [2]. The protocol

is to decide which player among the participants in the

BC network has permission to append a new block; other

participants are able to verify the permission and update their

local ledgers accordingly; which establishes consensus over

the network [19], [20]. Proof of Work (PoW) is the most

common consensus model used in public BCs. Unfortunately,

PoW is computation-intensive, as it requires powerful nodes

(i.e., miners) dedicate to solve a computationally intensive

puzzle (i.e., mining), in order to produce a new block to

the chain [21]. To overcome latency and throughput bot-

tlenecks of PoW, alternative consensus models have been

proposed, including Proof of Stake (PoS) [22], [23], Byzantine

fault-tolerant (BFT) variants [24], Proof of Elapsed Time

(PoET),5 and Algorand [25]. Nonetheless, such consensus

protocols depend on several assumptions and impose their own

disadvantages which results in limited usage in the real-world

compared to the PoW-variant mechanisms [20].

C. Smart Contracts

An SC is a computer program deployed onto a BC network.

It automatically executes “actions” when necessary “condi-

tions” are met, specifying business logic of a service that

participants have agreed to [26]. As a mutual agreement,

the content of the SC is accessible to all participants [27].

An SC is a form of decentralised automation that facilitates,

verifies, and enforces an agreement in a transaction and

records the results (i.e., state changes) into a ledger. All

BC frameworks have built-in mechanisms for executing SCs

from a simple stack-based scripting system (e.g., Bitcoin)

to a Turing-complete system (e.g., Ethereum and Hyper-

ledger). Ethereum is among the first BCs offering Turing-

completeness. Its SCs are written in either Solidity, Serpent

or LLC, before being compiled to bytecodes and executed in

an Ethereum Virtual Machine (EVM) [28]. The EVM keeps

track of resources consumed by the execution (i.e., gas) and

charges to the sender’s account as an incentive for miners.

Hyperledger does not have its bytecode for SCs. Instead, its

SCs are language-agnostic programs which are then compiled

5https://sawtooth.hyperledger.org/docs/core/releases/latest/index.html

into native code, packed, installed and executed inside Docker

containers [29]. As a result, this language-agnostic design

supports multiple high-level programming languages such as

Go and JavaScript [30].

D. Related Work

Besides cryptocurrencies, the use of BC in other areas

has been intensively carried out over the last few years.

Specifically, prominent features of BC such as immutability,

traceability, transparency, and pseudo-anonymity can be pre-

served for a wide range of decentralised applications (DApps),

especially for managing and accounting digital assets. For

instance, several projects have utilised BC in supply-chain

and logistics to provide provenance tracking mechanisms for

products leveraging its immutability and traceability features

[31]–[33]. The immutability and transparency features have

also been utilised in a cloud data provenance platform called

ProvChain [34] in which all data operation history was trans-

parently and permanently recorded into a BC.

Furthermore, SCs deployed in a BC framework provide

autonomous functionalities executed in a decentralised manner

for a wide range of domain services. Blockstack [35] took

advantage of BC for managing domain names to replace the

traditional centralised Domain Name System. This work intro-

duced pivotal functionalities including identity and discovery

mechanisms deployed on top of the Namecoin platform [36]

and integrated with an off-chain storage service. In Blockstack,

domain name registration and modification operations were

implemented in BC whereas payload and digital signatures

were stored in a Kademlia6 Distributed Hash Table (DHT),

which was connected to a virtual-chain that separated off-chain

storage and BC operations. Only hashes of “name-data” tuples

and state transitions were recorded on-chain. This design of

decoupling the storage layer from the BC has paved the

way to other studies, particularly in large-scale Internet of

Things (IoT) data management [1], [2]. In these studies, data

generated from IoT devices were stored in a DHT system and

only keys of the data were recorded onto a BC. DHT nodes,

responsible for managing IoT data, are required to join the

BC network and listen to transactions for sending/retrieving

data to/from legitimate IoT devices. BigchainDB [37] fur-

ther provided a mechanism to balance between on-chain and

off-chain storage to achieve advanced features from both

BC and distributed databases by using Tendermint,7 a weak

synchronisation BC engine built on a BFT consensus.

Besides general-purpose data storage, BC-based account-

ing and management mechanisms (e.g., IdM, authorisation,

access and permissions control) have also been proposed in

a variety of scenarios. Lee proposed a BC-based cloud ID

service for IdM [38], which used public-key cryptography for

pseudo-identity and a distributed ledger for recording public

keys. This study introduced a concept of mutual authentication

by combining signatures from a client and an SP for granting

access to a service. A fast security authentication scheme

based on permissioned BC was proposed by Chen et al.

6https://en.wikipedia.org/wiki/Kademlia
7https://tendermint.com
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in a 5G ultra-dense network [39] by using an optimised

Practical BFT (PBFT) consensus protocol called APG-PBFT.

APG-PBFT propagated authentication results embedded in

BC among a group of access points, resulting in reducing

the authentication frequency. In [40], a distributed access

control in the IoT was proposed, with operations embedded

in an SC on a public BC (i.e., Ethereum). However, most

of these studies only presented high-level system design,

without technical details to demonstrate the feasibility of

their proposed solutions. Some platforms (e.g., [40]) relied

on a set of management nodes to play as a hub for access

control, which in fact turns into the scenario of centralised

management.

A few studies in the literature concerning BC-based personal

data management, particularly in supporting SPs to comply

with the new GDPR legislation. In [3], Wang et al. proposed

a fine-grained access control scheme deployed in the Ethereum

framework, for personal files stored in a distributed file system

called Interplanetary File System (IPFS) [4]. It customised

an attributed-based encryption scheme, but the dependency

of a centralised trusted private key generator is eliminated

by leveraging BC. The main limitation of this system is data

owners were responsible for all required tasks, from secret key

generation, file encryption, to the establishment of a secure

channel for communicating with another party. The Ethereum

framework was just used as a medium to execute SCs in which

crypto-artifacts were embedded for identity authentication.

Zyskind et al. [5] proposed another access control scheme

for a privacy-preserving personal data sharing platform, taking

advantage of immutability and public-key cryptography in BC

for identity verification and authorisation mechanisms. Similar

ideas were proposed for Electronic Heath Records (EHRs)

access control using Ethereum [6], [7] or a permissioned

BC [8]. In these works, EHRs were stored off-chain in secure

data custodians whereas access control was carried out on a

BC using a digital signature scheme. Neisse et al. [9] proposed

a BC-based approach for data accountability, resulting in

GDPR-compliance. They discussed different design choices

respecting who create and manage data usage SCs. Similar

ideas can be found in [10], [11]. However, in these studies,

only the conceptual approach was presented; technical details

on platform development were missed out. The challenges

including ledger data models and functionalities in SCs have

not been addressed.

III. PERSONAL DATA MANAGEMENT: SCENARIOS

AND CHALLENGES

In this section, we provide an overview of the scenarios and

the current solution approach on personal data management

which leverages a delegated authentication and authorisation

server following the OAuth standardisation [41] (illustrated

in Fig. 1). This solution approach is designed under a cen-

tralised client-server mindset that imposes unsolvable chal-

lenges in complying with the new GDPR requirements and

in establishing trust with clients [14].

A. Scenarios

We consider real-world scenarios in which clients allow an

SP to collect, manage, process, and (possibly) shares their

Fig. 1. Personal data management and sharing scheme in the conventional
client-server architecture.

personal data in exchange for a service. These scenarios

specify three roles as follows:

• End-user: a client of a service who owns personal data.

The end-user allows the SP to collect its data once using

the service. In the GDPR terminology, an end-user is a

DS.

• Service Provider (SP): an entity that directly collects

and manages personal data for its operational and

business-related purposes. An SP stores personal data in

an RS, which is either a system run by the SP or an

independent service. An SP may share collected data with

third parties for its benefits. In the context of GDPR,

an SP plays both roles of a DC (when the SP shares

personal data with a third-party) and a dDP (when the

SP processes personal data for its own business).

• Third-party (TP): an entity that provides a service to

end-users but has to rely on the SP’ infrastructure to

develop the service and to acquire desired personal data.

In the GDPR terminology, a TP is a DP.

As illustrated in Fig. 1, the procedure of granting data access

for an SP and a TP is in four steps:

1) A user starts to use a service provided by an SP. The SP

asks the user for permission to collect her personal data.

2) The end-user grants a set of permissions to the SP for

personal data collection and processing.

3) The TP asks the end-user to access her personal data

which is collected and managed by the SP.

4) End-user logs into the service provided by the SP and

consents a set of permissions to the TP

Once the permission is granted, the data access procedure

is in the fifth and sixth steps in Fig. 1:

5) The SP authenticates and authorises the TP for accessing

the data and provides an access token to the TP.

6) The TP then calls associated APIs using the provided

token in step-5 to obtain the desired data.

B. Challenges

To meet the new GDPR requirements, conventional

solutions on personal data management provide additional

measures such as offering end-users mechanisms to fully

control their data. Nevertheless, these measures are based
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on the client-server architecture which provide limited trans-

parency and are lack of trust. For instance, a majority of SPs

follow the O Auth28 standard for access delegation, which

includes IdM, authentication, authorisation, and access control

mechanisms that allows end-users to share their personal data

with single sign-on in a simplified and secure manner [41].

However, the centralisation of the current approaches poses

severe concern [42]: it fully relies on the truthfulness of the

SP (i.e., a delegated authentication and authorisation server)

as it is the only authority to (i) authenticate and authorise

participants; and (ii) control data access and provenance.

From an end user’s perspective, this leads to a lack of

transparency and accountability of data management and raise

risks of personal data leakage. As all data management mech-

anisms are operated in a centralised system and under the SP’s

control, the SP may still be able to hand over personal data to

an unauthorised TP without the end-user’s knowledge, as far

as it is not investigated by supervisory authorities. From an

SP’s perspective, as investigation from supervisory authority

is occasionally carried out, it is challenging for an SP to

declare that it has been continuously, securely and legally

processing all personal data as required. This is of paramount

importance for any SP to build trust with prospective clients.

Furthermore, delegated permissions on personal data are not

flexible as end-users do not have a fine-granular access control

to impose their preferences on data usage except simple

conditions predefined by SPs. Indeed, SPs currently provide

only options to either “accept all” or opt-out.

Motivated by such challenges, our ultimate goal is to

develop a GDPR-compliant personal data management plat-

form by leveraging the state-of-the-art BC and SC tech-

nologies. The use of BC with SC provides autonomous

operations securely executed in a decentralised manner. Fur-

thermore, the prominent features of the BC technology,

namely immutability, traceability, transparency, and pseudo-

anonymity, can be effectively utilised to manage personal data

fully complying with the GDPR legislation.

IV. DESIGN CONCEPT

In this section, we propose a design concept for a

GDPR-compliant personal data management platform, includ-

ing a high-level system architecture, design guidelines, and

detailed functionalities and algorithms.

A. Conceptual Model and System Architecture

1) Assumption: The design of a BC-based platform depends

on the security models of the parties involved. In this article,

we assume that an RS is “honest-but-curious” whereas SPs fol-

low a malicious model. This means the RS executes required

protocols honestly, even though it might be curious about

the results it receives after the operations. If an SP correctly

follows the required protocols; it will be compliant with the

GDPR; otherwise violations will be logged in an immutable

ledger as a record of GDPR infringements.

8https://oauth.net/2/

Fig. 2. High-level system architecture of the design concept for a BC-based
personal data management platform. The operation flow consists of 6 steps,
among which step 1, 2, 4, and 5 are dedicated to granting and validating
permissions operated through Smart Contracts. Step 3 and 6 operated via API
calls and data-flow from/to an resource server.

2) High-Level System Architecture: A conceptual model of

the proposed platform is illustrated in Fig. 2. The inclusive

idea is that mechanisms which are related to GDPR compli-

ance are ported to a BC network from a traditional centralised

server. In particular, the Authorisation and Authentication, IdM

and Access Control; and Logging and Provenance components

are implemented in the form of SCs deployed in a BC network.

If a BC framework offers Turing-completeness (e.g., Ethereum

and Hyperledger Fabric), GDPR-related mechanisms can be

conveyed by SCs. As depicted in Fig. 2, all activities on

personal data are authenticated and authorised by the proposed

BC platform (step 1 and 2). The BC, playing as a role of

a delegated authentication and authorisation server, issues an

access token as “proof of permission” showing that a party has

been granted to access a particular dataset. An authorised SP

receives the access token (step 2) and use it to request desired

data from the RS (step 3). The RS interacts with the BC

platform to validate the granted access (step 4 and 5) before

returns the requested data (step 6). The validation ensures

the granted access is still valid and honestly used by the

corresponding authorised party.

B. Design Guidelines

1) IdM, Authentication and Authorisation Mechanisms:

IdM, authorisation, and authentication mechanisms are of

paramount importance in any data management system since

they are directly related to security and privacy of the system.

In the design concept, an entity in a BC network should be

uniquely identified using a public-key (or hash of the public-

key) in an asymmetric cryptography key-pair; authentication

and authorisation processes should be implemented leveraging

public-key cryptography techniques (e.g., digital signatures

and encryption). In the case of permissioned BC, an additional

access control layer is consolidated by using a Certificate

Authority (CA) and a Membership Service Provider (MSP).
2) Design of Distributed Ledgers: Content of a distributed

ledger reflects historical and current states of information
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recorded in the ledger maintained by the BC network. A per-

sonal data management platform should clarify what informa-

tion and associated data model to be stored in the ledger.

(i) Information required to be tamper-resistant, transparent

and traceable should be recorded in a distributed ledger.

- Any personal dataset should be specified by both DS and

DC using digital signatures in a distributed ledger;

- Data Usage Policy should be clearly specified and

recorded in a distributed ledger;

- Data activities should be logged in a distributed ledger.

The logs should contain information about ‘who’, ‘why’,

‘when’, ‘what’ and ‘how’ personal data was processed;

- Hash of personal data can be recorded in a distributed

ledger for data integrity checking.

(ii) The design of a distributed ledger must ensure:

- Designated nodes in the BC network are able to verify

whether an entity is the DS or the DC of a dataset;

- Designated nodes in the BC network should be able to

verify whether an entity’s activity satisfies the data usage

policy as recorded in a distributed ledger

3) Data Usage Policy: The policy specifies data governance

measures including rights, permissions, and conditions. The

usage policy should be defined in a fine-grain and expressive

way using a policy language such as eXtensible Access

Control Markup Language (XACML) and Model-based Secu-

rity Toolkit (SecKit) designated for the IoT domains [43].

By nature, a blockchain-based personal data management

following the proposed design concept provides a fine-grained

access control capability as an individual user is able to

customise her own policy on each dataset by imposing access

control preferences recorded onto the ledger.

4) Off-Chain Data Storage: Personal data should be stored

off-chain for better scalability and higher efficiency. Moreover,

storing personal data directly onto BC, even in an encrypted

form, could pose potential privacy leakage and result in

non-compliance with the GDPR [44]. Depending on specific

scenarios, a conventional DBMS (e.g., Oracle or MongoDB),

a storage cloud service (e.g., S3, AWS or Azure), or a

distributed storage system (e.g., IPFS [4] or Storj [45]) can

be used for data storage. Only reference to the data is stored

on-chain (i.e., stored in distributed ledgers). The reference

is called data_pointer that can be a hash,9 a connection

string, an absolute path, or an identifier referring to a dataset;

depending on specific off-chain storage system used in the

platform.

C. Functionalities, Ledgers Data Model and Algorithms

1) Identity Management: We introduce complex-identity,

denoted as c-ID, to specify a digital asset associated with two

or more parties. A c-ID can be considered as an extension

of asymmetric keys. In the context of the personal data

management, a c-ID of a dataset m comprises an asymmetric

key pair of the DS, an asymmetric key pair the DC, and

an asymmetric key pair of the data pointer (denoted as pm)

of m. As the data usage policy depends on the requester’s

9Hash is a type of the data_ pointer used in a content-addressed storage
system such as DHT, IPFS, and Stoij.

role (i.e., DS, DC, or DP), the way we define c-ID specifies

the entities associated with m, and simplifies the process

of verification. Any digital signature scheme such as Digital

Signature Algorithm (DSA) or Elliptic Curve Digital Signature

Algorithm (ECDSA)10 can be used to generate and manage

the c-ID, which is formally defined as a triple of probabilistic

polynomial-time algorithms (G,S,V):

• G: a key generator that creates a public-private key pair

(pk, sk).

• S: a signing algorithm that takes sk and a message x

as inputs and produces a signature t = S(sk, x) as the

output.

• V : a signature verifying algorithm that takes pk, x, t

as inputs, and outputs accept or reject . For all x and

(pk, sk), V (pk, x, S(sk, x)) = accept .

A complete c-ID is defined as a 6-tuple as follows:

c−I D
comp
DS,DC = (pkDS, skDS, pkDC, skDC , pkenc, skenc)

(1)

where (pkDS, skDS), (pkDC, skDC) and (pkenc, skenc) are

asymmetric key-pairs of DS, DC and pm , respectively. The

c-ID is externally observed by nodes in a BC network as a

3-tuple:

c − I Dext
DS,DC = (pkDS, pkDC, pkenc) (2)

The c-ID is observed by the DS (or DC) as a 5-tuple:

c − I DDS
DS,DC = (pkDS, skDS, pkDC, pkenc, skenc) (3)

c − I DDC
DS,DC = (pkDS, pkDC, skDC , pkenc, skenc) (4)

When a DS grants consent to a DP to access m, the private

key skenc of pm is shared to the DP through a secure channel.

The DP then observes the c-ID as a 4-tuple:

c − I DD P
DS,DC = (pkDS, pkDC, pkenc, skenc) (5)

The c − I DD P
DS,DC includes the key-pair (pkenc, skenc) used

to encrypt and decrypt sensitive information, including the

data pointer pm . Thus, only designated nodes are able to

decrypt the ciphertext using the shared private key skenc. As a

result, the information is protected from all other players

in the system. Normally, RSA (Rivest-Shamir-Adleman) is

used for public-key encryption mechanisms in a digital sig-

nature scheme such as DSA and ECDSA, formally defined

as a 4-tuple (G,D, E, D): the key generator, key distribution,

encryption and decryption mechanisms, respectively.

2) Distributed Ledgers Data Model: In the proposed design

concept, ledgers are in the form of key-value pair, which is

widely used in BC frameworks including Ethereum and HLF.

For complex business logic, extra tasks might be required

for mapping high-level data structures into key-value pairs.

A state is a snapshot of a ledger at a specific time whereas

state transitions are a result of transactions for creating,

updating or deleting key-value pairs. A ledger contains a

full history of state transitions recorded in a BC, thus it is

timestamp-sequenced, immutable and tamper-resistant. With

the key-value data format, all information can be obtained by

10https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm



1752 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Listing 1. A state of the 3A_ledger in JSON format. Content of the ledger
includes en_ pointer: ciphertext of a data pointer; pk_enc: public key used
to encrypt the en_ pointer; policy: data usage policy, and hash of the data.

Listing 2. A state of the log_ledger in JSON format. Content of the ledger
includes status: either approved or rejected, operation: an activity a D P

used to process the data such as CRUD, scope: a set of allowed permissions,
expires_in and re f resh_count : dedicated to controlling the access_token.

referring to the latest state of the ledger, which is written in the

most recent block of the BC. Some frameworks duplicate the

latest state of a ledger (i.e., world-state) from a BC to a DBMS

for better performance and for supporting advanced query

capability (e.g., rich query). For example, either CouchDB11

or LevelDB12 are used in the HLF for its world-state database.

Following the design guidelines for distributed ledgers,

we specify data models for two separate ledgers used

in personal data management: 3A_ledger (Listing 1) and

log_ledger (Listing 2). The 3A_ledger is used in authentica-

tion, authorisation and access control whereas the log_ledger

is used for access token validation and logging. Both ledgers

are in key-value format in which keys in the 3A_ledger

and log_ledger are c − I DDS,DC and c − I DDS,DC,D P,

respectively. The value in both ledgers contains information

being used in the personal data management and provenance

operations.

Note that the content of the ledgers can be seen by

corresponding nodes in the BC network, either honest or

malicious ones. Therefore, sensitive information should be

11http://couchdb.apache.org
12http://leveldb.org

protected. For instance, asymmetric cryptography is used

for pseudo-anonymous identity; and reference to a dataset

(i.e., data pointer pm) is encrypted (Eq. 6).

en_ pointer = E(pkenc, pm) (6)

3) Authentication, Authorisation and Access Con-

trol: Public-key cryptography has been commonly used in

BC-based systems to authenticate participants involved in

a variety of tasks from consensus protocol participation to

SC operations. In our design concept, the authentication is

achieved by using the algorithm V in the 3-tuples digital

signature scheme G,S,V based on any RSA/DSA-variants.

The authorisation in personal data management is to specify

access control (e.g., consent and usage policy); and data

provenance tracking is to log data activities in an immutable

and tamper-free ledger.

In the initial step (i.e., Registration function), a DS grants

consent to a DC for managing her personal data along with

a shared key-pair (pkenc, skenc). A new record is appended

into the 3A_ledger specifying a new key-pair for the personal

dataset with default settings granting DS all permissions (e.g,

CRUD operations) specified in the policy. The policy can

be considered as an access control list/rules for a dataset,

updated when consent is granted or revoked. The hash and

the en_pointer in the record are then updated once the DS

upload her data to an RS by calling DataU pload function.

In our pseudo-codes, interactions with BC is through either

Get State or Put State function provided by built-in APIs.

Algorithm 1 GrantConsent Grants a Consent for a DP

Input : c-ID ci , signature tDS , signature tDC , public-key

pkD P , signature tD P , permission op

Output: out

1 Initialisation: rec ← null, out ← error

2 s1 ← V(ci.pkDS, tDS)

3 s2 ← V(ci.pkDC, tDC)

4 s3 ← V(pkD P, tD P)

5 if (s1 ∧ s2 ∧ s3) then

6 policy ← GetState(3A_ledger ).GetPolicy(ci )

7 PutState(3A_ledger ).Update(ci , policy, {pkD P , op})

8 rec ← JSON.Marshall({ci, pkD P}, {scope[]+=op,

access_token=rand(), i ssue_at=Time.now(),

status=“approved”});

9 PutState(log_ledger ).Append(rec);

10 out ← success

11 Return out

Fig. 3 depicts a sequence diagram of granting consent for

a DP. The consent is granted if both DS and DP accept

the request by providing their digital signatures t_DS and

t_DC in step (2) and (3). Step (4) and (5) are carried out

by the GrantConsent function (Alg. 1). Authentication is

achieved by using verification function V for all DS, DC,

and DP (line 2-4). If the authentication is accepted (line 5),

access control is then carried out by reflecting the permis-

sion into policy in the 3A_ledger . As depicted in Alg. 1,
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Fig. 3. Process of granting consent for a DP.

Fig. 4. Sequence diagram of accessing data stored in an RS by a DP.

the GrantConsent firstly grants permissions (i.e., requested

operation op) by updating policy with op in the 3A_ledger

(line 6, 7). Secondly, the GrantConsent appends a new record

into the log_ledger (line 9), which is used for validating and

logging whenever the DP accesses the data. The access_token

with other metadata is generated as value in the key-value

format record (line 8). Technically, access_token is a string

of random-looking characters referring to a collection of

metadata in the log_ledger . A multi-signature technique is

also used in the algorithm to ensure consent is granted by

both DS and DC.

RevokeConsent function is to revoke a permission previ-

ously granted to a DP. As depicted in Alg. 2, it is only executed

by either DS or DC. Similar to GrantConsent function,

RevokeConsent appends an updated policy excluded the

revoked permission op to the 3A_ledger (line 4, 5) and

updates the log_ledger accordingly (line 6,7).

Once consent is grant, the operation flow of accessing

personal data is demonstrated in Fig. 4. Whenever DP desires

to access personal data (step (1)), it invokes a corresponding

SC with the Data Access function (Alg. 3). As can be seen

Algorithm 2 RevokeConsent Revokes a Permission Pre-

viously Granted to a DP

Input : c-ID ci , signature t , public-key pkD P ,

permission op

Output: out

1 Initialisation: rec = null, out = error

2 s ← (V(ci.pkDS, t) ∨ V(ci.pkDC, t))

3 if s then

4 policy ← GetState(3A_ledger ).GetPolicy(ci )

5 PutState(3A_ledger ).Update(ci , policy, {pkD P ,

−op})

6 rec ← GetState(log_ledger ).GetRecord(ci , pkD P)

7 rec ← PutState(log_ledger ).Update(rec,

{scope[]-=op, access_token=rand(),

i ssue_at=Time.now()});

8 out ← success

9 Return out

in Fig. 4, after checking eligibility of the call (i.e., step (2)

and (3) executed by line 2, 3 in Alg. 3), the SC returns two

outputs en_pointer and access_token to the DP (step (4)),

executed by line 6-9 in Alg. 3. The DP then uses the shared

private key skenc (already obtained from step (8) in Fig. 3)

for decrypting the en_pointer . The decrypted ciphertext (i.e.,

de_pointer ) is the datapointer for the desired dataset. Both

de_pointer and access_token are used as parameters for an

API call to process the data (step (5)).

Algorithm 3 Data Access Returns en_pointer and

access_token for an Eligible Request

Input : c-ID ci , public-key pkD P , signature tD P ,

permission op

Output: out

1 Initialisation: rec ← null, out ← rejected

2 s ← (V(pkD P, tD P)

3 if s then

4 policy ← GetState(3A_ledger ).GetPolicy(ci )

5 if (policy ⊂ (pkD P, op)) then

6 en_ pointer ←

GetState(3A_ledger ).GetPointer(ci );

7 access_token ←

GetState(log_ledger ).GetToken(ci , pkD P);

8 out ← (en_pointer, access_token)

9 Return out

A function called T okenV alidation is dedicated to

double-checking the validity of the access_token and updates

the log_ledger . In Alg. 4, line 4 is to obtain metadata

associated with the access_token from the log_ledger ; if the

request is from DS or DC then there is no need to validate

the access_token; only log_ledger is updated (line 5-7).

Otherwise, the validation is then conducted by inspecting the

metadata (line 9-12) before updating the log_ledger (line 13).



1754 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Algorithm 4 T okenV alidation Double-Checks the Valid-

ity of an access_token and Update the log_ledger

Input : Token access_token, public-key pk, signature t

permission op

Output: out

1 Initialisation: rec ← null, out ← rejected

2 s ← (V(pk, t)

3 if s then

4 rec ← GetState(log_ledger ).Query(access_token)

5 if ((rec.owner = pk) ∨ (rec.controller = pk)) then

6 rec ← PutState(log_ledger ).Update(rec,

{ex pires_in-=Time.now(),

i ssue_at=Time.now()});

7 out ← accepted

8 else

9 if ( (rec.processor = pk) ∧ (rec.scope ⊂ op) ∧

10 (rec.ex pires_in > 0) ∧ (rec.operation = op) ∧

11 (rec.status = approved) ∧ . . .) then

12 rec ← PutState(log_ledger ).Update(rec,

{ex pires_in-=Time.now(),

i ssue_at=Time.now()});

13 out ← accepted

14 Return out

The T okenV alidation is performed to ensure that only API

calls with valid an access_token leads to an execution of the

call (step (9)). Step (7) safeguards that all valid API calls are

autonomously logged in the log_ledger . It is worth to mention

that the honest-but-curious RS assumption plays a key role in

the success of our platform because the RS must follow the

authorisation process (i.e., double-check API calls from DPs

with the BC system) before executing the calls.

V. PLATFORM DEPLOYMENT IN

PERMISSION BLOCKCHAIN

In this section, we implement a platform following the

proposed design concept for managing personal profiles for

an SNS. The choice of using a permissioned BC framework

in the demonstration does not imply that a public one is less

appropriate for implementing the proposed design concept.

Instead, HLF is chosen due to its business-oriented architecture

offering better adaptation to the use-case; also, thanks to its

readily existing software components for a rapid development

cycle of our platform. Detailed technical solutions and imple-

mentation of the platform are presented. Source-code of the

demonstration can be obtained from Github.13

A. HLF Platform Setup

HLF is the most popular permissioned BC framework used

by big enterprises such as IBM and Microsoft. As being

permissioned, a node involved in an HLF network is asso-

ciated with an identity and permissions provided by a CA

13https://github.com/nguyentb/Personal-data-management

Fig. 5. High-level system architecture and transaction flow of the HLF
framework.

and an MSP, respectively. Nodes in HLF take up one of

three roles: Client, Peer and Ordering Service Nodes (OSNs).

In our demonstration and for the performance evaluation,

we have deployed different HLF network settings include

3 OSNs running in K a f ka cluster mode for providing the

ordering service, from 4 to 32 peers, and a varied number

of clients from 10 to 1000. All peer nodes endorse both

SCs (i.e., chaincodes in HLF terminology), namely 3A_cc

and log_cc. That means these two SCs are locally installed,

instantiated and executed in all 5 peers to interact with the

two ledgers 3A_ledger and log_ledger , respectively. These

two ledgers are exactly following the data models described in

Section IV.D. As the two distributed ledgers are being used and

HLF allows only one ledger per channel,14 two HLF channels

are created, namely 3A_channel and log_channel. All Peers

and OSNs belong to both channels; the 3A_cc and the log_cc

SCs are operated in the 3A_channel and the log_channel,

respectively. As a result, all the peer nodes separately endorse

the two SCs corresponding to different local ledgers. The

two local ledgers are stored in Linux filesystem whereas the

world-state database is duplicated in CouchDB.

All clients are populated using the Fabric Client SDK (for

NodeJS) for interacting with the HLF network. As illus-

trated in Fig. 5, a client constructs a transaction proposal

to invoke either 3A_cc or log_cc SCs (step-1) and sends to

all endorsing peers (i.e., endorsers). These peers verify the

proposal and locally execute the 3A_cc or log_cc to produce

an endorsement signature (i.e., transaction results with the

peer’s signature) (step-2) and pass back to the client (step-3).

Once receiving endorsement signatures, the client assembles

the endorsements into the transaction and broadcast it to the

OSNs, running K a f ka mode (step-4). The OSNs validate and

commit the transaction (step-5), then broadcast a message to

all peers to update their local ledgers (step-6). In case the

transaction is not successful, and the ledgers are not updated

but the proposal is still logged for audit.

14Channel is a terminology in HLF technically referring to a private
blockchain overlays which offers data isolation and transaction confidentiality.
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Fig. 6. System architecture of a GDPR-compliant social networking service
with the RS for personal profiles using HLF.

B. Personal Profile Management Use-Case

We consider a use-case that a social networking SP process-

ing profile data stored in a separate RS. This RS follows the

honest-but-curious model anticipating the BC as an HLF client

and honestly executing required protocols (i.e., interacting

with the BC network for token validation). To comply with

the GDPR, the SP participates in the proposed BC-based

platform (Fig. 6). To demonstrate the use-case, we build the

RS as a profile management web-service based on REST

architecture15 for parties to process profile data through calling

corresponding RESTful APIs. Profile information is stored in

JSON-like documents using MongoDB,16 a document-oriented

database system. The profile data model follows the Friend-

Of-a-Friend (FOAF) ontology for describing person which

is normally used in social networks.17 Processing a profile

includes {create, read, update, delete} CRUD operations by

making a request to a corresponding API provided by the RS.

A request to a RESTful API contains 6 parameters:

(1)AP I − Endpoint , (2)RE ST − Endpoint , (3)Method ,

(4)H eader , (5)Params, (6)Payload in which the first fours

are required. A RESTful request is as follows:

where Method is P OST , RE ST − Endpoint is

localhost:8080, AP I −Endpoint is /Prof ileManagement ,

Header is Content − T ype:application/json following by

Params including the public-key pk with the signature t ,

the access_token, and the requested Read operation.

C. Identity Management and Pseudo-Anonymity

Any entity in HLF including clients, peers, orderers,

CAs and MSPs needs to be identified by digital identities

15https://en.wikipedia.org/wiki/Representational_state_transfer
16https://www.mongodb.com/
17http://xmlns.com/foaf/spec/

(e.g., X.509 standard) before interacting with the HLF net-

work. In our HLF-based system, a built-in CA called Fabric

CA is used to generate X.509 digital certificates, adopting the

traditional Public Key Infrastructure (PKI) hierarchical model.

An X.509 digital certificate contains a public key (along with

a corresponding private key) and associated information of

an entity (e.g., organisation, host-name, and domain. This

certificate is then either signed by the Fabric CA or self-signed.

The Fabric CA server in our system is initialised using Docker

which hosts an HTTP server on the default port 7054 that

offers REST APIs. All entities have to enrol and register with

the CA server via the REST APIs using either the Fabric CA

client or the Fabric SDK before participating in the blockchain

system. Once an entity is enrolled and registered, an enrolment

certificate (eCert), a network transaction certificate (tCert),

a CA certificate, and a corresponding private key are stored in

P E M files in the subdirectories of the entity’s directory.

In the HLF settings, ECDSA, an updated version of the

DSA scheme leveraging elliptic-curve cryptography, is used

with 256-bit key-size, which guarantees that any public-private

key pairs generated by the generator G is practically unique

across the HLF network. Moreover, the hiding property of the

ECDSA also ensures that there is no practical mechanism to

recover a private key from the corresponding public key [46].

As a result, HLF entities, whose identifiers are X.509 digital

certificates, preserve the pseudo-anonymity property. However,

as HLF is a permissioned blockchain, all of HLF entities are

under control of a certificate authority CA (in our system is the

built-in Fabric CA); this means the pseudo-anonymity property

depends on the security and trustworthiness of the Fabric CA.

To administer entities evolving in variety of HLF tasks,

MSP is used for specifying participants, roles, and access

privileges in a HLF network and channel. An MSP provides

a configuration identifying trusted root and intermediate CAs;

these CAs then define members of a trust domain by either (i)

listing identities of the members or (ii) identifying authorised

CAs that issue valid identities for members. The latter is

used in the demonstration. Technically, an entity’s identity is

associated with its MSP and implemented using the HLF client

identity chaincode library cid18 as shown in Listing 3:

D. Smart Contracts Implementation

There are two chaincodes implemented in the HLF network:

(i) the 3A_cc for authentication, authorisation and access

control, operating with the 3A_ledger ; and (ii) the log_cc for

access validation and logging, operating with the log_ledger .

Theoretically, a contract can be written in any programming

language; and in the demonstration, Go language is used. The

two chaincodes inherit the built-in shim package,19 which

provides a variety of APIs to interact with distributed ledgers

such as accessing state variables, transaction context and call

other chaincodes.

Regarding the distributed ledgers, en_pointer is the cipher-

text of an identifier of a data object (i.e., prof ile.I D) using

18https://github.com/hyperledger/fabric/blob/release-
1.1/core/chaincode/lib/cid/README.md

19https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim
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Listing 3. Identity of a HLF client constituted from mspI D and X.509
certificates utilising the cid library.

Listing 4. Data usage policy defined as an access control list under JSON
format.

the encryption function E with the encryption key pkenc:

en_ pointer = E(pkenc, prof ile.I D) (7)

A party who permitted access a profile has a shared private

key sk_enc to decrypt en_pointer in order to obtain the

prof ile.I D, which is then passed as a parameter for a

RESTful API to access the desired profile information:

prof ile.I D = D(skenc, en_pointer) (8)

The policy in the 3A_ledger is simply defined as an

access control list (ACL) as shown in Listing 4. The ACL is

implemented as a struct in the 3Acc specifying four access

rights for participants called Create, Read , U pdate and

Delete (representing four CRUD operations). Associated with

each access right is a list of granted parties including DS,

DC and DPs (under their public keys such as pk_DS, pk_DC ,

and pk_DP).

Based on the identity scheme and detailed information for

the two ledgers, core functions in personal data management

such as GrantConsent , RevokeConsent , T okenV alidation

and Data Access are then implemented exactly following the

algorithms described in Section III.D.

VI. ANALYSIS AND DISCUSSION

This section provides analysis and discussion on the plat-

form deployed in Section V, including GDPR-compliance

applicability, threat models and system performance.

A. Trust Assumption

Besides the honest-but-curious characteristic of the RS,

a must assumption is that a large portion of peer nodes in

the HLF network are honest. Generally, HLF v1.x offers

multiple ordering techniques including a variety of BFT-based

solutions such as pBFT. Such BFT-variant protocols are able

to conditionally tolerate ⌊ N−1
5 ⌋ (e.g., in Ripple [47]) to ⌊ N−1

2 ⌋

(e.g., in crash-fault tolerance) simultaneously faulty nodes.

Such BFT-variant protocols guarantee consistency despite any

number of node failures and network partition, with at most

⌊ N−1
3

⌋ faulty nodes [48]. Unfortunately, these protocols are

under development for the HLF framework, and only Apache

Kafka is provided as a reference implementation, which sup-

ports some levels of fault-tolerant (e.g., crash-faulty) but not

Byzantine failure.

The cryptographic primitives (i.e., cryptographic hash func-

tion SH A256, the public-key cryptography RSA and the

digital signature schemes ECDSA) are practically secure.

This means adversaries are not able to: (i) reverse/break

the cryptographic hash function, (ii) reverse a public key

to obtain a private key, and (iii) forge a digital signature

of another party without knowing the corresponding private

key. As our system is built on top of the permissioned

blockchain HLF, the Fabric CA with built-in PKI, which

are responsible for the distribution of management of X.509

digital certificates, are assumed to be secure and honest. This

means in general adversaries are not able to mislead the

Fabric CA in large-scale (e.g., more than ⌊ N−1
3 ⌋ adversaries

granted in the HLF network) in order to subvert the HLF

system (e.g., 51% attack or Sybil attack). However, some

internal adversaries might be granted to participate in the

network, resulting in non-GDPR-compliance. Regarding key

management, we assume that private keys obtained by the key

generator G are effectively protected from adversaries by lever-

aging existing solutions from enterprise systems. However,

this is the weak assumption, meaning that an adversary could

somehow obtain a private key and impersonate an honest party

to access data which also leads to non-GDPR-compliance.

These threats of non-GDPR-compliance will be considered

under Section VI.C.

B. GDPR-Compliance

From an applicability perspective, the proposed platform

provides SPs (e.g., the SNS) mechanisms to fully comply with

the GDPR. This is due to the following reasons:

1) Full Control Back to Data Owners: As following the

design concept, the platform provides DSs:

• “Right of access” and “right of rectification”: This is

because DS is eligible to do all CRUD operations to

her personal data as specified in the default policy when

ledgers are initialised, and no one can change these rights.

• “Right of restricted processing” and “right of data porta-

bility”: This is because DSs have full permissions to

manage data usage policy (e.g., to grant or revoke consent

anytime/anywhere by invoking the GrantConsent and

RevokeConsent functions in the 3A_cc).

• “Right to be informed”: This is because the platform

always requires DS’s signature for data collection or for

granting consent.

• “Right to be forgotten”: As personal data is stored off-

chain, an RS is able to erase the data as requested

from DS. However, a question is posed when leverag-

ing BC for personal data management: “whether a BC

platform complies with the GDPR as distributed ledgers

are immutable; meaning that the ledgers, theoretically,

will never be erased?”. Therefore, if a piece of personal

information is recorded in a ledger, the platform will

violate the “right of forgotten”. In the design concept,

sensitive information is encrypted before writing into a
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ledger (e.g., data_pointer ). The “right of forgotten” is

then ensured by throwing decryption keys. Whether this

remedy fully satisfies the GDPR is still an open question

[44], [49].

2) Security, Transparency and Accountability: By following

the design concept, the platform ensures that:

• Security of the identity, authentication and authorisation

mechanisms, which depends on the security of the cryp-

tographic primitives, is assumed to be secure.

• Operations (e.g., grant or revoke a consent, update usage

policy, verify access token, and CRUD) are authenticated,

authorised and autonomously executed only by invoking

corresponding SCs deployed in the HLF network. This

ensures system procedures are executed in a transparent

and not compromised by any individuals.

• Information about management operations and CRUD

activities on personal data, including who/what/when/

why/ and how are immutably recorded in the log_ledger .

Consequently, the proposed platform forces SPs, who par-

ticipate in the system, to be responsible for complying with

the GDPR; otherwise any unauthorised or malicious transac-

tions initiated by a corresponding SP can be always figured

out. Furthermore, the investigation for GDPR-compliance is

empowered as all activities logged in the ledgers can be traced

back. The signalling of a non-compliant activity could trigger

official investigation and auditing of an SP by a supervisory

authority. The decisions could be made based on whether

a malicious activity recorded in the log_ledger exists that

respects the associated data usage policies in the 3A_ledger .

In this regard, the two distributed ledgers can be considered

as legal grounds for the GDPR compliance. As a result,

the platform is able to demonstrate the GDPR compliance.

Therefore, the proposed BC-based platform provides efficient

measures to meet the requirements of data accountability.

For those reasons, a social networking SP, which utilises

the platform for its personal data management tasks, fully

complies with the GDPR.

C. Threat Models

The advanced capability of the BC framework plays a

key role in providing a secure and trustworthy platform for

complying with the GDPR. However, certain aspects of the

contemporary BC and SC technologies present limitations

imposing threats resulting in non-compliance with the GDPR.

1) Security Threats: Given the aforementioned assumptions,

the decentralised nature of the BC ensures that an adversary

cannot corrupt the BC network to unauthorisedly change the

ledgers as that would imply the majority of the network’s

resources are compromised. Also, the adversary cannot imper-

sonate an authorised party as its digital signature cannot be

forged. Security threats are, thus, from two sources: (i) an

internal adversary acting in a Byzantine way, who has been

granted to access personal data; and (ii) an honest party whom

both private key and decryption key skenc are disclosed to an

external adversary; thus, the adversary could pose itself as the

party. In such scenarios, the T okenV alidation function is of

paramount importance since it plays as a role of a gatekeeper

to reassure that any access_token expires after the amount of

time and needs to be refreshed (i.e., re-authenticated and re-

authorised). As a result, the T okenV alidation mitigates the

risk of a long-lived access_token leaking, similar to the use of

both access_token and re f resh_token used in the standard

OAuth2 specification.20

Admittedly, it is inevitable that an adversary is able to

access the data in the time-frame window of the access_token

(defined by the ex pires_in parameter in the log_ledger ).

During this period, it is unachievable to prevent the adversary

from accessing data unless the security breach is detected.

Once being detected, DS is able to revoke the consent by

updating the ledgers to remove all permissions related to

the adversary. The remedy is straightforward in case of the

first scenario - the party is malicious. However, it turns to a

complex situation when an honest party leaks its private key

to the adversary. This party is never able to get granted again

as its identity is compromised, which is unreasonable. A key

management with an account recovery scheme could be an

applicable solution to deal with this situation although it is

expected to be much complicated to integrate the recovery

scheme with a BC system [50]. Another security threat comes

from poor quality code in SCs which exposes vulnerabilities

to be exploited. For example, an attacker stole 3.6M Ether

(worth $50M at that time) in DAO21 attack exploiting a con-

currency bug in DAO’s SCs. As a BC framework supporting

Turing-complete SCs, software bugs are painful to avoid. Thus,

SCs must be written in high-quality standards and follows

strict security specifications [30], [51].

2) Privacy Threats: The openness of distributed ledgers,

which allows parties to inspect, violates the idea of privacy.

Even in a permissioned BC in which transactions take place

between authenticated parties, some privacy threats remain as

any participants could be malicious. In the proposed design

concept, measures to tackle privacy leakage are to both:

(i) provide pseudo-anonymity for parties using public key

cryptography as identities; and (ii) encrypt sensitive informa-

tion exposed on the ledgers.

The first measure provides pseudo-anonymity, thus, there

is a possibility to link between public addresses with

physical identification of the users by using a variety of

de-anonymisation techniques [52]. Literally, the risk of reveal-

ing real-world identity by an adversary can be significantly

reduced in a permissioned BC compared to a public one thanks

to an additional permission access control layer [27], [53]. As a

trade-off, anonymity is sacrificed as it requires more identity

materials for stringent privacy requirements.

The second measure is to encrypt data_pointer

(i.e., pro f ile.I D in the demonstration), which is used

as a parameter in API calls for accessing a personal dataset.

The encryption ensures that the information is only visible to

designated parties, reducing the risk of leaking the information

to adversaries. Some other information recorded onto the

ledgers such as data usage policy (i.e., policy) and activities

log must be in plain text as the information is referred by

20https://tools.ietf.org/html/rfc6749
21https://ethereum.org/dao
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Fig. 7. Performance of R E AD and W R I T E from/to distributed ledgers in the HLF-based system under different workloads.

peers for some business logic when executing the chaincodes.

Even though this information is not directly related to

identifiable individuals, this might be a source of privacy

leakage as it might be used in de-anonymisation techniques.

At this moment, no particular privacy threat has been

pointed out due to exposing such information. Nevertheless,

further investigation might need to be carried out for this

potential threat. Homomorphic Encryption could be used for

information encryption supporting query on cipher-text [54].

Flexible encryption schemes like attribute-based encryption

(ABE) [55] might also be used as a remedy to encrypt such

information and only a designated group of peers can be

decrypted. These schemes are only suitable for permissioned

BC as they rely on a trusted key generator - which could be

integrated in a CA.

D. Performance Evaluation

As the proposed platform is expected to serve a large num-

ber of clients accessing data simultaneously, performance, and

scalability of the platform is necessarily evaluated. The core

technology leaders in BC such as Bitcoin, Ethereum Enter-

prise Alliance and Hyperledger Foundation have demonstrated

promising technology advancements of both performance and

scalability. However, at the moment, public BCs can only

achieve limited throughput (e.g., Bitcoin gets 7 transactions

per second (t ps) with Blocktime is around 10 minutes

whereas Ethereum reaches around 15 t ps with 15-second

Blocktime 22). In permissioned BCs, additional permission

control ensures that a majority of nodes are trusted; as well as

all identities of the participants in the network are known.

This allows the use of BFT-variant consensus in the BC

platforms, theoretically resulting in higher throughput. For

instance, FabricCoin deployed on top of the HLF framework

can achieve about 3, 500 t ps at a second latency [53]. How-

ever, scalability incurs as a critical issue for a permissioned

22https://bitinfocharts.com/

BC framework, especially frameworks with the pBFT-variant

consensus mechanisms.

1) Hyperledger Caliper Performance Benchmark: For our

performance evaluation, we use a new evaluation tool devel-

oped by the Hyperledger Foundation called Caliper,23 which is

a performance benchmark framework for various BC frame-

works including HLF, Hyperledger Sawtooth and Ethereum.

Caliper is equipped with adaptors implementing interfaces for

interacting with HLF systems version 1.x using either HLF

native SDK or a RESTful API. To integrate with our existing

HLF profile management system, we have programmed our

adaptors using Fabric Client SDK (NodeJS version) to interact

with the BC network and to invoke the two chaincodes 3A_cc

and log_cc. On top of the adaptation layer is a bench-

mark layer implementing predefined use-cases in the form of

Y AM L configuration files. We have written various use-cases

for the performance benchmark following these configurations:

• RE AD the ledgers (e.g., invoke policy_check func-

tion) and W RI T E the the ledgers (e.g., invoke the

GrantConsent and RevokeConsent functions to update

the AC L policy).

• Different HLF network settings in which the number of

peer nodes are varied from 4 to 32.

• Different workloads to the system by generating a num-

ber of transaction proposals per second to the system.

In each network setting, the workload is from 100 t ps to

1000 t ps.

2) Results and Analysis: There are four metrics in the

Caliper benchmarking results, namely (1) Success Rate,

(2) Throughput, (3) Latency, and (4) Resource Consumption.

These metrics are counted from the time a transaction sub-

mitted by a client until it is processed and is written on a

distributed ledger. Fig. 7 interprets our system performance

under different number of workloads, from 100tps to 1000tps.

The HLF network setting includes 4 peer nodes and 3 OSNs

running Kafka cluster for crash-fault tolerance consensus.

23https://hyperledger.github.io/caliper/
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Fig. 8. System performance vs scalability under different number of peer
nodes.

In this benchmark, 1000 clients are popularised that generates

transaction proposals (including both RE AD and W RI T E a

distributed ledger) to our system. As can be seen in the figure,

throughput of RE AD transactions can reach highest to 492tps

at 500-tps workload whereas W RI T E transactions only reach

to 167 tps at 300-tps workload with highest success rate (more

than 95%) and with less than 1-second latency. Compared

to RE AD transactions, W RI T E transactions require more

processes from OSNs to chronologically order the transactions,

create a new block, and broadcast it to all peers in the network

to update a distributed ledger; that is why W RI T E trans-

actions get lower throughput, lower success rate, and higher

latency. After these peaks, the throughputs and the success

rates of both RE AD and W RI T E transactions dramatically

decrease. For instance, at 1000-tps workload, the throughputs

and success rates drop to about 34.5 tps and 30%; and

3.4 tps and 1.4% for RE AD and W RI T E transactions,

respectively. The average latency is significantly risen from

less than 1 second to 6.68 seconds (RE AD transaction) and

9.92 seconds (W RI T E transactions) as higher workload is

generated.

Generally, the reason that the system cannot handle high

workload due to local processing bottleneck as transactions

are queued at endorsing peer’s buffer and OSNs’ buffers (for

W RI T E transactions) to be processed. The HLF procedure

requires that a transaction has to obtain enough proposal

responses from endorsing peers, thus, if an endorsing peer

processes the transaction lower than others, the transaction

is delayed accordingly. Particularly for W RI T E transactions

which require more processes for ordering service as such, all

W RI T E transactions need to be buffered and processed at

the 3 OSNs running Kafka cluster. As we observed, OSNs are

always busy that the docker container can consume to 88%

CPU-load on average.

Fig. 8 illustrates the performance vs. scalability of our

proposed system when the number of peer nodes increasing

while the ordering service remains the same with 3 OSNs

running Kafka cluster. In this performance benchmark test,

RE AD and W RI T E transactions are set under 500 tps and

300 tps workload, respectively. More peer nodes mean more

overhead messages exchanged between nodes, and the wait

for endorsement messages before broadcasting a transaction

response to the OSNs to create a new block and to update

a distributed ledger. That is why the throughput decreases

and the latency increases for both RE AD and W RI T E

transactions. As depicted in Fig. 8, the proposed HLF-based

profile management system fails to support high performance

and scalability since the throughput significantly decreases

and the latency dramatically increases when the BC network

scales up (e.g., at 32 peer nodes, throughputs are 151 tps and

42 tps and latencies are 78s and 95s for RE AD and W RI T E

transactions, respectively). Fortunately, HLF allows us to par-

tition a BC network in which only a subset of peer nodes

are permitted to endorse a particular chain-code. This will

reduce the number of messages exchanged across the network

as well as reduce the waiting time for endorsement messages

from endorsing peers. As a trade-off, decentralisation is partly

sacrificed and the system is more sensitive to 51% and selfish

mining attacks [56].

VII. CONCLUSION AND THE ROAD AHEAD

In this article, a design concept for a GDPR-compliant

BC-based personal data management platform is proposed.

Following the guidelines from the design concept including

system architecture, ledger data models, and SC function-

alities, a BC-based platform is implemented on top of the

HLF framework. The platform interplays among an honest

RS, a social networking SP, DPs, and DSs ensuring that all

processing activities over profile data stored in the RS are

compliant with the GDPR. The feasibility and effectiveness of

the design concept are, therefore, successfully demonstrated.

For future work, we will deploy the design concept in

a public BC (e.g., Ethereum) with an RS using distributed

storage (e.g., IPFS, BigchainDB or Storj). In this regard,

the RS is not trustworthy as some storage nodes might be

malicious. Thus, more mechanisms need to be implemented

to resolve the lack of a trusted centralised RS. As a reward,

the system is truly decentralised. Another work is to develop a

fine-grain expressive data usage policy using a policy language

instead of a simple ACL as in the demonstration. A policy

generator deployed in SCs that autonomously acquires data

usage policy depending on specific contexts is also a promising

research direction. Additionally, pricing and incentive models

for the cost of data storage and BC operations should be

carried out to finalise a complete system.

As the processing of personal data refers to CRUD opera-

tions – which is under the mindset of data storage, an ambi-

tious research direction is to provide computational capa-

bility on a BC network [32]. This means an SP directly

runs computation on the network and obtain results using

secure Multi-Party Computation (MPC).24 This approach is

much securer as the SP does not directly observe raw data.

We believe our work acts as a catalyst to open a variety

of research directions regarding the use of BC and SCs in

decentralised authorisation and access control, which plays

24https://en.wikipedia.org/wiki/Secure_multi-party_computation
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a crucial role in digital assets management, particularly in

personal data regulations.
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