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A B S T R A C T 

This paper presents a multi-stage algorithm for the dynamic condition monitoring of a gear. The algorithm 
provides information referred to the gear status (fault or normal condition) and estimates the mesh 
stiffness per shaft revolution in case that any abnormality is detected. In the first stage, the analysis of 
coefficients generated through discrete wavelet transformation (DWT) is proposed as a fault detection 
and localization tool. The second stage consists in establishing the mesh stiffness reduction associated 
with local failures by applying a supervised learning mode and coupled with analytical models. To do 
this, a multi-layer perceptron neural network has been configured using as input features statistical 
parameters sensitive to torsional stiffness decrease and derived from wavelet transforms of the response 
signal. The proposed method is applied to the gear condition monitoring and results show that it can 
update the mesh dynamic properties of the gear on line. 

1. Introduction 

The ability to achieve accurate prognostics is critical to the 
optimal maintenance of rotating machinery with the purpose of 
avoiding the high costs associated with machine downtime in the 
manufacturing industry. A suitable advance warning system would 
allow for the scheduling of timely corrective and repair actions 
as well as extending the maintenance cycles. The trade-off associ­
ated with implementing such a system is that it requires a sensing 
system to be deployed on the machine and a sophisticated data 
analysis procedure that can be used to interrogate the measured 
data. Through this system the existence and location of damage 
should be detected. 

On the other hand, the estimation of the engineered system's 
remaining useful life and the machine performance when damage 
appears, would require not only the process of identifying the pres­
ence of damage but also either quantify the extent of damage or 
update the current gear dynamics based on information extracted 
from the measured system response. This would require a more 
sophisticated method based on statistical procedures. 

Considerable research has been carried out previously for the 
development of various techniques for gear fault detection and 
diagnosis based on vibration. These techniques can be classified 
into time domain, frequency domain and time-frequency domain. 

Analyzing the vibration signals directly in the time domain is one 
of the simplest detection and diagnosis approaches. Various time 
domain statistical parameters can be used as trend parameters to 
detect the presence of damage [1]. The time synchronous average 
(TSA) providing an average time signal of one individual gear over 
a large number of cycles has also been acknowledged as a powerful 
and very successful tool in the detection of gear faults [2,3] since it 
can remove the background noise and all the periodic events that 
are not exactly synchronous with the gear of interest. 

In the frequency domain approach the dominant frequency 
components of the vibration signals and their amplitudes, together 
with sidebands due to modulation phenomena, are used for trend­
ing purposes. As faults occur, the corresponding amplitudes of the 
peaks in the power spectrum increase as well as the number and 
amplitude of the sidebands. However, the spectral analysis may 
be unable to detect gear failures in the case of local faults, which 
primarily affect sidebands, due to the difficulty of evaluating the 
spacing and evolution of sideband families in the spectrum. 

Another solution of the problem is offered by a time-frequency 
distribution, which is a function giving a distribution of the total 
energy of the signal at particular time and frequency points. The 
most common approach for performing this kind of analysis is the 
short-time Fourier transform (STFT) based on applying the Fourier 
transform (FT) to sections or windows of a signal and by trans­
lating the window along the signal of interest. The width of the 
window is kept constant throughout the analysis and specifies the 
resolutions of time and frequency information. Common forms of 
this window include the Hanning or Gaussian functions. The first 



work in this area goes back to Gabor [4] and Hoelstrom [5]. Other 
different methods for extracting a time-frequency map of a signal 
are the Wigner-Ville distribution (WVD) [6] and the Choi-Williams 
distribution [7]. 

Decompositions based on FT do not give any local information 
about the function due to the infinite support of the trigonometric 
functions used in the analysis. Wavelet transforms (WT), however, 
provide for locality both in time and frequency. Originally devel­
oped at the end of the 80s [8,9], wavelet transforms have been 
gaining popularity for their capability to treat transient signals and 
have been increasing interest in recent years as a tool for fault 
detection both in machinery [10-12] and in civil engineering struc­
tures [13,14] and for other engineering fields [15]. 

Through the preprocessing of the vibration signals using dis­
crete wavelet transform (DWT), a monitoring of the signals in the 
time-frequency domain is obtained which can offer either warnings 
or localizations of the perturbations. 

The method above makes it possible to identify and locate faults 
at early stages in the monitored machine. However, little study 
has been developed about the on-line estimation of the changes 
involved in dynamic mesh stiffness when a fault is detected and 
localized. This updating task is necessary to assess the structural 
integrity of the gear and the rest of the machine. 

This mesh stiffness is a key parameter in the gear dynamics 
because it has a direct impact on load-carrying capacity of the gear, 
vibrations induced and dynamic tooth loads. Many studies have 
been performed in the past to determine the influence of the afore­
mentioned mesh compliance in gear dynamics [16,17]. This study 
aims to detect this torsional stiffness change on-line which implies 
an extra feature over such techniques [16,17]. In addition the eval­
uation on line of the change in stiffness allows to determine its 
influence over the gear operating point which can be critical in 
some applications due to the fact that changes in mesh stiffness 
associated with some failures can decrease the frequency value of 
some resonances, with the potential risk of interacting with another 
exciting frequencies in the rotary machine, like shaft unbalances, 
giving raise to unforeseen changes that should be evaluated either 
for maintenance purposes and to avoid unexpected failures. 

Moreover with this updated dynamic information the new 
potential risk operation points (new critical torque and speed con­
ditions) in a rotary machine can be avoided when a perturbation is 
detected in the response signal. 

Therefore, in this work, one step forward is given with the pur­
pose of determining the mesh stiffness changes when a failure 
appears per shaft revolution. To this end, a two-stage algo­
rithm, which combines DWT (discrete wavelet transformation) 
preprocessing and MLPN (multi layer perceptron neural network) 
prognostics, has been developed. In previous publications, rotating 
machinery fault diagnosis tools based on soft computing tech­
niques have also been developed [18-21]. In most cases, a first 
stage of feature selection or preprocessing is implemented with the 
purpose of serving as input, in a second stage, to a feature-based 
classifier for fault diagnosis. In the proposed methodology, the first 
stage, based on DWT, serves by itself as a fault diagnosis tool and 
as preprocessor for a second stage in which fault severity is esti­
mated. According to this, the first stage plays also as a filter since 
only those signals detected as faulted in the first stage are fed to 
the second stage. 

Mathematical models of gear systems can be used in order to 
study the effects of faults on gear torsional vibrations with the 
purpose of developing more suitable techniques for monitoring, 
diagnostics and quantification. A review of spur gear dynamic mod­
els with and without defects has been done by Ozguben and Houser 
[16] and Parey and Tandon [22], respectively. In this work, a local 
damage in one tooth has been simulated by assuming a modula­
tion function in mesh stiffness [23]. It should be remarked that 
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Fig. 1. Scheme of the proposed method. 

with the new proposed algorithm, the diagnosis referring either 
to warning or localization or stiffness reduction is provided per 
shaft revolution. Furthermore, the proposed procedure allows per­
forming a dynamic evaluation on-line that can predict changes in 
rotating machine resonances. 

The layout of the paper is as follows. In Section 2, the scheme 
for machine health assessment is presented as generalized tech­
nique to detect and on-line update the gear dynamics. In Section 
3, a short description of the machine model used for the study is 
performed. In the following section, the implementation of the first 
stage of the algorithm is analyzed emphasizing the advantages of 
using DWT as a pre-processing tool when compared with tradi­
tional techniques. In Section 5, implementation of the second stage 
of the proposed is presented in order to estimate the mesh stiffness 
reduction once the fault has been identified. At the end of the paper 
we will summarize the present study with the final conclusions. 

2. Method for rotating machinery health assessment 

The schematic representation of the proposed system is shown 
in Fig. 1. The scheme consists mainly of two major parts or stages, 
namely (i) data acquisition and signal processing by DWT for iden­
tifying machine faults and (ii) post-processing and fault severity 
diagnosis by using a pattern recognition tool like NNs. The scheme 
can be implemented as an on-line assessment of machine health. 

The first stage consists in three steps (steps 1-3), namely (1) 
data acquisition with accelerometers, (2) time signal processing 
with discrete wavelet transform and (3) inspection of the trans­
formed signal to detect abnormalities. By using DWT the time signal 
is zoomed which allows showing the changes in torsional mesh 
stiffness when the gear is faulted. This first stage plays as a filter, 
since if there is not detection of abnormalities in the first stage the 
procedure jumps again to the step 1. However, if any abnormality 
is detected, the algorithm continues with the following steps in a 
second stage (steps 4 and 5) of fault diagnosis. By using sensitive 
statistics for a particular decomposition level of the post-processed 
DWT signal (step 4), the time data are used as input to an artificial 
neural network (step 5), previously trained, which finally tracks on­
line the value of the gear mesh stiffness and, therefore, the severity 
of fault. Although combination of DWT coefficients as input values 
to a MLPN has been used in other gear applications [24,25] their 
scope normally is limited to damage detection and it is unusual to 
find a direct application to gear dynamic updating on line. 
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Fig. 2. Lumped parameter model. 

The on-line implementation of the assessment procedure of 
bearing health is possible once the off-line modeling has been per­
formed, i.e., when a proper DWT decomposition level has been fixed 
and when the neural network has been trained. This requires the 
use of historic data from normal and faulty bearings. In this sense, 
although the off-line modeling is clearly dependent on each partic­
ular gear dynamics, the general scheme of the proposed algorithm 
(Fig. 1) can be analogously implemented in any gear machine. To 
do it, logically, a previous off-line modeling of each machine should 
be performed. 

3. Description of the elastodynamic model 

To evaluate the proposed procedure in Section 3, a specific gear 
machine, briefly described below, has been taken as reference. 

Gear boxes are one of the most common components in modern 
rotating machinery; being able to detect accurately the existence 
and severity of a fault in a machine can be of prime importance 
for taking decisions automatically, and reliably on the running 
health of a machine. All the studies in this work use vibration data 
taken from the mathematical model of the gear system reported 
by Dalpiaz et al. [26]. The gear machine is composed of two identi­
cal single-stage gear boxes mounted back to back, with a locked-in 
torque. Each gear unit is constituted by a carburized spur gear pair 
of module 3 mm; the pinion and the wheel have 28 and 55 teeth, 
respectively. Further details about the gears can be found in [27]. 

3.1. Mathematical model 

In order to simulate the vibrational characteristics of this 
machine, a non-linear torsional model was used (Fig. 2). In the 
proposed model, only the torsional stiffness, represented by linear 
springs, of the bearings and the shafts were considered, resulting in 
nine torsional DOFs. Analogously, translating masses were repre­
sented by the rotational inertias. Furthermore, dampers of constant 
value and proportional to the corresponding spring stiffness were 
put between every two masses. 

All the vibrational signals generated numerically in this paper 
correspond to a wheel torque of 1139 Nm and to wheel and pinion 
speeds of 254.5 rpm and 500 rpm, respectively; thus the meshing 
frequency is 233.3 Hz. The generated signals were assumed to rep­
resent the measured tangential accelerations in the base circle of 
the wheel of gearbox corresponding to the mass connected to the 
degree of freedom labeled with '9' in Fig. 2. Furthermore, a white 
noise of mean '0' and power '0.1 (Nm)2/Hz' was added to the input 

torque. For this background noise the signal to noise ratio (SNR), 
defined as: 

SNR: 
^signal 

takes a value of 126.8, where A signal and A„ 

(1) 

are the root mean 
square (RMS) amplitude for the signal and the noise, respectively. 

The noise influence over the response signals (corresponding to 
damage and non damaged scenarios) will be evaluated in Section 
4. 

Mesh stiffness variability has been considered to be the main 
source of gear vibration. The mesh stiffness model assumes that 
the design, manufacturing and assembly errors are not taken into 
account and, furthermore, the transmission error is due only to 
the variation in the position of the meshing point along the line 
of action. 

Consequently a vibration signal generated by the mesh action 
mentioned above should be expected. It is common to represent 
this signal as [23]: 

y(t)--

R 

% cos(27TZ/srt + 0(t)) (2) 

where R is the number of harmonics considered, Z is the number 
of teeth of the gear and Xr and &(t) represent the amplitude and 
phase modulation of the rth harmonic, respectively. On the other 
hand, t is the time analyzed and/s is the shaft frequency. 

It should be emphasized that, according to Eq. (2), although we 
had a perfect gear without manufacturing or assembly errors there 
will always be a source of vibration induced by the teeth engaging 
action. 

Variable mesh stiffness should be incorporated in the model in 
order to guarantee a vibration signal as depicted in Eq. (2). In case of 
considering only the fundamental harmonic in Eq. (2), the meshing 
stiffness would be simulated by using a single sinusoid (Fig. 3). 

The lumped mathematical model was built using the Simulink 
interface from MATLAB and the differential equations of motion of 
this model were solved using the Dormand-Prince finite difference 
method [28]. 

Fig. 4 shows a time history of the tangential acceleration numer­
ically obtained under the operating conditions specified above. In 
spite of its simplicity, the torsional model has similar acceleration 
values that the ones obtained experimentally and numerically by 
Dalpiaz et al. [26]. 

It should be remarked that the main purpose of this work is using 
the torsional model as a "virtual machine" to introduce faults of 
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Fig. 4. Numerical tangential acceleration in the time domain. 

different severity that allow checking the procedure of identifica­
tion and dynamic updating presented later. 

3.2. Damage model 

Local faults in gears are considered in this study and the way of 
introducing their effect in a global mathematical expression will be 
depicted next. 

Local damage in gear teeth generates a local decrease in mesh 
stiffness [17]; as a consequence the damage in gears produce mod­
ulation effects modifying either the magnitude or the phase of the 
vibration signal picked up by the transducers. These effects occur 
during the engagement of the faulted teeth, but are repeated once 
per revolution of the gear. In order to study the modifications in 
torsional vibrations due to faults, one damaged tooth is considered 
whose cause might be due to phenomena such as spalls in tooth 
flank and cracks in tooth root. The algorithm developed in this study 

might be applied to any local gear failure because most of them 
have in common the torsional mesh stiffness reduction when the 
affected area is contacting with the mating tooth. The modulation 
phenomena due to gear faults are modeled through amplitude and 
phase modulation functions, ar(t) and pr(t), respectively, given by 
the expressions: 

ar(t) : 

Pr(t) = 

M 
cos(27rr/st + amr{t)) 

M 

pmr COS(27Tr/st + fimr(t)) 

(3) 

(4) 

where M is the number of sidebands around the rth tooth meshing 
harmonic, and amr(r) and pmr{t) are the magnitude of the amplitude 
and phase functions, respectively, associated with the rth order and 
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Fig. 5. Variable mesh stiffness model used in case of damage. 

the mth sideband. Finally, amr{t) and /¡mr(r) represent the phases of 
both modulating functions for the mth sideband of rth order. 

The final expression that gathers the source of vibration gener­
ated only by mesh action (Eq. (2)) and the modulation functions 
(Eqs. (3) and (4)) produced by gear faults can be combined through 
the following expression [23]: 

y'(r) = ^ X r ( l + ar(r)) cos(27rZ/srt + 0(t) + Pr(t)) (5) 

r=\ 

where all the parameters have been defined previously. 
In order to introduce the gear fault in our model, the mesh stiff­

ness is modified according to Eq. (5), considering only the first 
harmonic (the mesh frequency). Moreover in order to avoid dis­
continuities in the mesh stiffness, only the magnitude modulation 
effect is considered since the discontinuities introduced by using 
a phase modulation generate huge fluctuations of the acceleration 
response signal, which are far from the real conditions. 

Consequently, the modified mesh stiffness corresponding to a 
damaged gear appears to be as shown in Fig. 5. 
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Fig. 6. Numerical tangential acceleration in the time domain for the damaged and healthy cases. 
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Fig. 8. Time signal corresponding to first level decompositions of a faulty vibration signals (1% of torsional reduction). 

Notice that the stiffness reduction is introduced in a small region 
(short time period) of the variable mesh stiffness function in order 
to simulate local faults (small number of teeth affected at early 
stages of the damage gear). 

In the studies performed in this work, ten different fault severity 
conditions, assumed to correspond to decreases of the averaged 
torsional meshing stiffness included between 1.2% and 3.2%, were 
considered. 

With the purpose of evaluating the ability of multiple detection 
of the proposed procedure, two different teeth were assumed to be 
damaged. Fig. 6 shows the acceleration responses in time domain 
for 'healthy' and 'damage' cases. It can be noticed that the damaged 
cases generate transitory changes in the response signal in a limited 
period of time, which are difficult to detect when only frequency 
techniques are used. 

4. Detection and diagnosis of faults 

The first step in the gear monitoring procedure in a rotat­
ing machine requires the fault detection. To attain this, an 
inspection of DWT coefficients is used as either identification 
or localization tool. A short description of the method is given 
below. 

4.1. Wavelet transforms 

The wavelet transform is the most recent solution to overcome 
the shortcomings of the Fourier transform. In wavelet analysis the 
use of a fully scalable modulated window solves the signal-cutting 
problem. The window is shifted along the signal and for every posi­
tion the spectrum is calculated. Then this process is repeated many 
times with a slightly shorter (or longer) window for every new 
cycle. In the end the result will be a collection of time-frequency 
representations or multiresolution analysis of the signal, all with 
different resolutions. In wavelet analysis, the approximations are 
the high scale, low frequency components of the signal while the 
details are the low scale, high frequency components. 

From this point of view, wavelet transforming of a signal can be 
regarded as passing the signal through a filter bank. In a first stage, 
the signal spectrum is split into two equal parts, a low-pass and 
a high-pass part. Both, the high-pass and the low-pass parts are 
half the size of the original signal and represent the high frequency 
(detail coefficients) and the low frequency (approximation coef­
ficients) content of the signal, respectively. If the high-pass part 
contains the details we are interested in we could stop the pro­
cess here. If not, the low-pass part still contains some details and 
therefore we can split it again. The decomposition procedure can 
be iterated with successive approximations being decomposed in 
turn until reaching the desired level of resolution (Fig. 7). In this 
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way an iterated filter bank has been created. The suitable number 
of levels will be selected based on the nature of the signal. As dif­
ferent faults usually correspond to different levels of frequencies, 
this can be used to establish the level at which the wavelet analysis 
must be performed. A detailed review of WT can be found in [29]. 

4.2. Signal pre-processing 

In this step it is necessary to select the most appropriate wavelet 
for the pre-processing as well as its level of decomposition. 

To choose the appropriate family of wavelets only orthogonal 
and biorthogonal wavelets were considered since they permit the 
discrete wavelet transform to be carried out by means of the fast 
wavelet transform (FWT) developed by Mallat [9]. For the present 
study, the commonly used orthogonal set of Daubechies wavelet 
with eight vanishing moments ('db8') was used. 

For the multiresolution analysis, three levels of decomposition 
were tested, but, finally, only the detail coefficients of level 1 (Dl) 
were considered. 

The fluctuation signal built by using the coefficients correspond­
ing to the level of decomposition 1 shows clearly the presence of 
abnormalities and it is able to acute localize its positions per shaft 
revolution (Figs. 8 and 9 ). 

It should be noticed that the identification of abnormalities can 
be performed at early stages. However, as the fault involves a short 
transitory period, it cannot be identified when only frequency infor­
mation is used (Fig. 10). 

On the other hand, it is clear from 'raw' time signals correspond­
ing to healthy and fault vibration responses that the identification 
of damage is a difficult task, especially at early stages (Fig. 6). 

Therefore, DWT analysis is a suitable tool for identification and 
localization purposes. 
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Fig. 10. PSD signals corresponding to healthy and fault vibration signal (1% of torsional reduction). 
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4.3. Diagnosis robustness 

An important aspect in the development of a diagnosis tool is to 
evaluate its robustness to background noise. 

To check this influence, a slight perturbation of the non-
damaged original response signal was introduced in a couple of 
teeth as a consequence of a stiffness reduction; noise was not added 
in this case. The perturbation was introduced in an early teeth 

Output layer 

Hidden layers 

Input layer xj 

Fig. 12. MLP architecture. 

damaged stage (3% of mesh stiffness reduction) generating a SNR 
per shaft revolution of value 1349.6. This value is clearly higher than 
the one used in the simulations (SNR= 126.8) for a non-damaged 
scenario including noise. The SNR values were obtained in simula­
tions of 15 s. 

According to these results, the perturbation induced by differ­
ent damages (from 1% to 3% of stiffness reduction) would remain 
masked by the background noise. However, damage identification 
predictions were good and, therefore, it can be stated that the diag­
nosis tool developed in this study can be considered as a robust 
diagnosis procedure. 

5. Dynamic updating 

Once damage is identified in the system in a first stage, it would 
be helpful to update the mesh stiffness to monitor the working 
condition of the rotating machinery. Furthermore, this dynamic 
updating would make it possible to integrate the condition assess­
ment system for predictive maintenance of the machine, which 
would allow extending its operative life [30,31]. 

Dynamic updating can be regarded as an inverse problem 
[32] where the target is to establish a "mapping" between direct 
responses in the system (in this case tangential acceleration) and 
mesh stiffness reduction (which can be considered as input param­
eter to direct problem). For this reason, to solve this inverse 
problem, a multi-layer perceptron neural network (MLPNN) with 
back-propagation training algorithm was used. In general terms, 
the input vector to the network was provided from the vibrational 
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signal while the output layer was composed of only one node indi­
cating the averaged torsional meshing stiffness. 

The success of the procedure requires the definition as input pat­
tern to the NN of a minimum number of features, extracted from 
the signal, which characterize the system conditions and are sensi­
tive to damage. This is, in fact, the most difficult task of the process 
and must be studied in a very detailed way. 

(4252 points), necessary to ensure the stability of the integration 
algorithm, was clearly reduced. 

However, according to the study developed in Section 4, if we 
take as input parameters to the MLPNN the wavelet coefficients cor­
responding to the level of decomposition 1, the number of input 
features (2256) would still be very high. Because of this, if the 
"curse" of dimensionality [33] is wished to be avoided, another 
reduction procedure should be applied on the wavelet coefficients. 

5.1. Feature extraction using discrete wavelet coefficients 

In Section 4, the main features in the time-frequency domain 
of the tangential acceleration determined with the torsional math­
ematical model were extracted using DWT. In this way, the huge 
number of sample points obtained for every revolution of the shaft 

5.1.1. Statistical characteristics of the signal 

When a perturbation is introduced in a signal transformed by 
the DWT, some coefficients stand out and their value depends on 
the number of vanishing moments of the wavelet family and also on 
the regularity of the perturbed signal [29]. Furthermore, the per­
turbation usually affects the coefficients located in the so-called 
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cone of influence of the perturbation. Therefore, the peak of the 
coefficient reached and the width of the cone of influence are very 
sensitive to the regularity of the perturbation; these properties can 
be used to quantify damage. 

The standard deviation from the mean is used widely in statistics 
to indicate the degree of dispersion while kurtosis, which is the 
normalized fourth moment, gives an indication about the spikiness 
of the analyzed data. For this reason, it is expected that when a 
perturbation is introduced on a signal, either the kurtosis or the 
standard deviation will be seriously affected. The higher the peak of 
the perturbation the higher the kurtosis value and, furthermore, as 
the width of the cone of influence grows with the damage severity, 
the standard deviation will do so as well. 

Fig. 11 shows the maximum, minimum, mean, standard devi­
ation and kurtosis values obtained from the wavelet coefficients 
associated to each pattern for the level of decomposition 1. In 
these figures, 420 patterns were represented every 42 of them 
corresponding to the same reduction of the torsional meshing stiff­
ness beginning with 1.2% and ending with 3.2% with increments of 
0.2%. It should be remembered that each pattern corresponds to 
one wheel revolution and, therefore, the statistical parameters are 
extracted using DWT coefficients obtained in every revolution and 
for every level of decomposition. 

As can be observed from Fig. 11 these statistical parameters, 
except the mean value, showed sensitive to the decrease in mesh 
stiffness and, therefore, might be selected as input to the MLPNN. 
Therefore, if, as in our case, only the level 1 of decomposition were 
considered after the statistical study, the NN would be configured 

by only four input neurons, which represents a very 
reduction. 

noticeable 

5.2. Dynamic updating using multilayer perceptron neural 

networks 

5.2.1. Network configuration and training 

A multilayer perceptron neural network was used in the present 
work to identify the damage severity. MLPNNs consist of an input 
layer of source nodes, one or more hidden layers of computation 
nodes and an output layer (Fig. 12). As has been commented previ­
ously, maximum, minimum, standard deviation and kurtosis values 
obtained from the wavelet coefficients for the level of decomposi­
tion selected by being sensitive enough to damage are adopted as 
the input vector to the perceptron neural network. On the other 
hand, the output of the network is only one value representing the 
change in the averaged torsional meshing stiffness. 

The number of hidden layers and the number of nodes in each 
hidden layer affect the generalization capability of the network. 
It has been demonstrated that the number of hidden layers in a 
regression problem has to be higher than two [34,35]; therefore 
this is the minimum number that should be used as a starting point. 
With that restriction, a heuristic method has been applied to select 
the number of hidden layers and the nodes. 

The training of the MLP network (Fig. 13) involves finding val­
ues of the connection weights, which minimize an error function 
between the actual network output and the corresponding target 
value in the training set. The training algorithm used is based on 



resilient propagation [36]. The weight adjust is performed by min­
imizing the mean square error function. This error function usually 
corresponds to a way of quantifying the deviation with respect to 
the target values. 

The data needed for network training are generated from the 
lumped parameter model of Section 3. After completing the net­
work training, new patterns generated with the lumped model are 
used to check the validity of the network. 

5.2.2. Quantification results 

The designed network has two hidden layers with 20 and 5 neu­
rons, respectively. In the training phase, a total number of 210 shaft 
revolutions (patterns) were obtained by introducing in the lumped 
gear model five different decrease levels (1.4%, 1.8%, 2.2%, 2.6% and 
3.2%) of the meshing stiffness. Furthermore, to be more consis­
tent with experimental reality, white noise was added to the drive 
torque with the same characteristics as in Section 3. This allows 
different training patterns for the same damage severity. 

Net prognostics of the meshing modulation stiffness together 
with the target values during the training phase are shown in 
Fig. 14. In the same way, errors between predictions and real values 
during this phase are depicted for every level of severity in the first 
column of the same figure. To define the error, a function has been 
established as follows: 

ERROR = 100 
absiKgEAL - KESTIMATED) 

KR 

(6) 

In the above expression the prefix /(indicates the mesh torsional 
stiffness, either estimated by the neural network or the real value, 
and abs the absolute operator. 

The training has been performed every 42 damage patterns for 
each level of mesh stiffness reduction (1.4%, 1.8%, 2.2%, 2.6% and 
3.2%), and every prognostic corresponds to one shaft revolution 
(0.24 s). The averaged error value for all the training patterns is 
below 0.03% which represents a very small quantity when com­
pared to the meshing stiffness variations taken into account. 

After completing the network training, 210 new patterns gen­
erated with the lumped model with damage extents (1.2%, 1.6%, 
2.0%, 2.4% and 3.0%) different from the training ones were fed into 
the trained network in order to evaluate how well the proposed 
approach works, i.e. how significant the generalization ability is for 
predicting damage severities. In the same way as for the training 
stage, the comparison between predictions and real values of the 
meshing stiffness for each level of severity are shown in Fig. 15 and 
the errors between predicted and target values are shown in the 
first column of Fig. 15. 

In this case the total averaged error value is below 0.09%, which 
is slightly higher than the value observed in the training stage; 
however, these values are close enough to affirm that the proposed 
approach generalizes well and can be used as a tool to track the evo­
lution of the reduction of the meshing stiffness which is a straight 
indicator of the damage progress. 

6. Conclusions 

In this paper, a two-stage procedure for the gear dynamic mon­
itoring in rotating machinery from vibration analysis has been 
developed. Both stages are based on the combined use of wavelet 
transforms and neural networks. The first stage, fault detection 
and diagnosis, combines the capabilities of wavelet transform. To 
this first stage, a new stage was added for estimating the mesh 
stiffness reduction. To achieve this, a multilayer perceptron neural 
network was used. This network was fed with statistical param­
eters obtained from the wavelet coefficients derived only for the 
most sensitive levels of decomposition to damage. The output 
of the network is only one value representing the drop in the 

averaged torsional meshing stiffness when a failure appears. This 
value is highly related with local failure and is a clear indicator 
of damage evolution. It should be remarked that this algorithm 
could be implemented in another gearbox machine following the 
steps given in Section 2. Therefore it is a generalized diagnostic and 
dynamic updating tool for monitor the gear dynamics. 

The algorithm proposed in this paper allows performing a diag­
nostic at early stages of the mesh stiffness variation when a local 
damage appears (it is able to detect a 1% mesh stiffness decrease). 
Detection, localization and dynamic updating are predicted and 
provided very soon and every shaft revolution, nearly on-line, 
therefore this system can be used as a powerful tool in order to 
avoid catastrophic failures in gears caused when critical operating 
points (speed and torque) are exciting some potential risk reso­
nances modified by new mesh stiffness as a consequence of local 
gear damage. 

This mesh stiffness updating is a key aspect of the monitoring 
gear dynamics because it allows knowing nearly on-line (per shaft 
revolution) critical parameters such as load carrying capacity of the 
gear and dynamic tooth loads. 

The errors obtained during the dynamic updating stage can be 
considered negligible when compared to the changes in the tor­
sional stiffness causing the faults; therefore, the procedure can be 
considered as suitable for dynamic monitoring purposes. 

The proposed procedure allows for a suitable scheduling of 
timely corrective and repair actions on rotating machinery. Fur­
thermore, it allows establishing the best working condition, 
referred to torque and speed, for a damaged rotary machine, when 
a failure takes place. In conjunction with this procedure it would 
be very interesting to relate the type of specific local failure (size 
of spalls in tooth flank, crack length, etc.) with local mesh stiffness 
variations in order to build a complete prognosis tool. However, 
this would require a thoroughly study of the specific failure mech­
anism and the aim of the study developed here was to implement 
a procedure for dynamic condition monitoring in machines with 
gear local failures characterized by a mesh stiffness reduction. 
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