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Abstract 
 

Varying speed machinery condition detection and fault diagnosis are more difficult due to non-stationary machine 

dynamics and vibration. Therefore, most conventional signal processing methods based on time invariant carried out in 

constant time interval are frequently unable to provide meaningful results. In this paper, a study is presented to apply 

order cepstrum and radial basis function (RBF) artificial neural network (ANN) for gear fault detection during speed-

up process. This method combines computed order tracking, cepstrum analysis with ANN. First, the vibration signal 

during speed-up process of the gearbox is sampled at constant time increments and then is re-sampled at constant angle 

increments. Second, the re-sampled signals are processed by cepstrum analysis. The order cepstrum with normal, wear 

and crack fault are processed for feature extracting. In the end, the extracted features are used as inputs to RBF for 

recognition. The RBF is trained with a subset of the experimental data for known machine conditions. The ANN is 

tested by using the remaining set of data. The procedure is illustrated with the experimental vibration data of a gearbox. 

The results show the effectiveness of order cepstrum and RBF in detection and diagnosis of the gear condition. 
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1. Introduction 

Rotating machine fault diagnosis is typically based 

on vibration. The spectral contents of emitted vibra-

tion signals are analyzed to ascertain the current con-

dition of the monitored process. At present, for the 

fault diagnosis of rotating machinery, many research 

outcomes have been obtained in the stationary proc-

ess. However, little research has been done for the 

run-up or run-down process. The reason why we 

stress the run-up or run-down process is that non-

stationary vibrations signals from varying speed ma-

chinery may include more abundant information 

about its condition. Some phenomena, which are usu-

ally not obvious at constant speed operation, may 

become more apparent under varying speed condi-

tions. Therefore, the behavior characteristics of the 

run-up or run-down process have a distinct diagnostic 

value, and the fault diagnosis of run-up or run-down 

process has owed its distinct standing in the fault 

diagnosis of rotating machinery. In the last decade 

vibration analysis and condition monitoring tech-

niques for varying speed machinery have attracted the 

attention of scientists and engineers. Lopatinskaia et 

al. [1, 2] presented the application of recursive filter-

ing and angle domain analysis to non-stationary vi-

bration analysis. The approach is implemented and 

validated through computer simulation and experi-

ments. Meltzer [3, 4] dealt with the recognition of 

faults in gear tooth during non-stationary start-up and 

run-down of planetary gear drives using the time-

frequency approach and the time-quefrency approach. 

Wu et al. [5] presented the application of adaptive 

order tracking fault diagnosis technique based on 
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recursive Kalman filtering algorithm to gear-set de-

fect diagnosis and engine turbocharger wheel blades 

damaged under various conditions. Li et al. [6] pre-

sented the hidden Markov model-based fault diagno-

sis method in speed-up and speed-down process for 

rotating machinery. 

However, the vibration signal of the run-up or run-

down process is more complex than that of the sta-

tionary process. Conventional signal processing 

methods, which were developed for constant speed 

machinery monitoring, are based on digital sampling 

carried out in equal time intervals. If the machine 

operates under varying speed or load, its dynamic and 

vibrations become non-stationary. The vibration sig-

nal sampled from the rotating machinery is a non-

stationary signal, whose amplitudes and frequencies 

both vary with time. Fixed time sampling cannot cope 

with the varying rotational frequency of the machine, 

resulting in increasing leakage error and spectral 

smearing [1, 2]. Therefore, most of the conventional 

methods for signal processing become inappropriate 

when monitoring the vibrations of varying speed ma-

chinery [1, 2]. Some progress has been made in the 

theoretical analysis [7, 8], the signal processing meth-

odology [9, 10], measurements and practical applica-

tions of varying speed machinery monitoring [11-13]. 

At present, two techniques are mainly used to proc-

ess the non-stationary signal: time frequency analysis 

(such as the short time Fourier transform (STFT), 

wavelet transform (WT) [14], Wigner-Ville distribu-

tion (WVD) [15-17] and Hilbert-Huang transform 

[18-20]) and order tracking technique [11-13]. The 

time frequency analysis involves three-dimensional 

functions that allow for visualizing the frequency and 

amplitude variations of the spectral components [14]. 

However, when the analyzed vibration signal is com-

posed of many spectral components and with large 

changes of the machine speed during measurement, 

they become very difficult to analyze. Recently, order 

tracking has been become one of the important meth-

ods for fault diagnosis in rotating machinery [11-13]. 

Vibration signals produced from rotating machinery 

are speed dependent and hence orders as opposed to 

absolute frequencies are preferred as the frequency 

base. Orders represent the number of cycles per revo-

lution and are thus ideal for representing speed-

dependent vibrations. Therefore, order tracking tech-

nique normally exploits a vibration or a noise signal 

supplemented with the information of shaft speed for 

fault diagnosis of rotating machinery. The order spec-

trum gives the amplitude of the signal as a function of 

harmonic order and shaft speed in rotating machinery 

[11]. 

Artificial neural networks (ANN) have potential 

applications in automated detection and diagnosis of 

machine conditions [21, 22]. Multi-layer perceptions 

(MLPs) and radial basis functions (RBFs) are the 

most commonly used ANNs [23, 24], though interest 

in probabilistic neural networks (PNNs) is also in-

creasing recently. The main difference among these 

methods lies in the ways of partitioning the data into 

different classes. The applications of ANNs are 

mainly in the areas of machine learning, computer 

vision, and pattern recognition because of their high 

accuracy and good generalization capability [24]. 

In this work, the computed order tracking approach 

and order cepstrum analysis are introduced and ap-

plied specifically to gearbox fault diagnosis during 

run-up. This method is based on the re-sampling 

technique and the cepstrum estimation of the re-

sampling signal, which is a function of the angle of 

the input shaft of the gearbox. This re-sampling signal 

can be obtained by re-sampling of the vibration signal 

that has been previous sampled in the time domain. 

The order cepstrum techniques are based on the signal 

processing of the angle domain signal, where the 

resample signal is in accordance with the shaft angle 

of the gearbox. The order cepstrum is then evaluated 

for the vibration signal re-sampled constantly in angle 

at equidistant phases of the input shaft of the gearbox. 

The usefulness of this approach will be shown by 

experimental example in Section 5. 

To address the issues discussed above, this paper is 

organized as follows. Section 2 presents the principle 

and procedure of computed order tracking. Section 3 

briefly describes the cepstrum. Section 4 looks at the 

radial basis function neural network. Section 5 gives 

the applications of the method based on computed 

order tracking, order cepstrum and radial basis func-

tion neural networks to faults diagnosis of gear. Fi-

nally, our conclusions are provided in section 6. 

 

2. The principle and procedure of computed 

order tracking 

There are two popular techniques for producing 

synchronously sampled data: the traditional approach 

that uses special hardware to dynamically adapt the 

sample rate and a technique where the vibration sig-

nals and a tachometer signal are synchronously sam-
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pled, that is, they are sampled conventionally at equal 

time increments. From the synchronously sampled 

tachometer signal re-sample times required to pro-

duce synchronous sampled data are calculated. This 

process is referred to as computed order tracking and 

is particularly attractive, as it requires no special 

hardware. Also, this approach is more flexible than 

the traditional method, as for example different sam-

ple rates may be synthesized. The computed order 

tracking is considerably more flexible than the tradi-

tional approach. It may be organized to produce 

equally accurate or more accurate results than the 

traditional method. An added benefit is that computed 

order tracking requires no specialized hardware, 

which is an important factor in many condition moni-

toring applications. Therefore, computed order track-

ing techniques are introduced and applied in this pa-

per.  

The objective of computed order tracking (COT) 

[9] is a calculation of the vibration signal sampled 

constant in angle from sampled constant in time. 

From the mathematical point of view, this task could 

be solved by interpolation theory. 

The computed order tracking (COT) method first 

records the data at constant t∆  increments, using 

conventional hardware, and then re-samples this sig-

nal to provide the desired constant θ∆  data, based 

on a keyphasor signal.  

To determine the resample times, it will be as-

sumed that the shaft is undergoing constant angular 

acceleration. With this basis, the shaft angle ( )tθ can 

be described by a quadratic equation of the following 

form [9]: 
 

2

0 1 2( )t b b t b tθ = + +   (1) 

 

The unknown coefficients 0b , 1b  and 2b  are 

found by fitting three successive keyphasor arrival 

times ( 1t , 2t  and 3t ), which occur at known shaft 

angle increments φ∆ . This can be obtained by the 

following conditions: 
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The arrival times 1t , 2t  and 3t  are known from 

the sampling of the keyphasor pulse signal. 

Substituting these conditions into Eq. (1) and ar-

ranging in a matrix format gives, 
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This set of equations is then solved for the un-

known { }ib  components. Once these values are 

known, Eq. (1) may be solved for t , yielding 
 

2
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2
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4 ( )

2
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θ⎡ ⎤= ∆ − + −⎣ ⎦   (4) 

 

where k is the interpolation coefficient that can be 

obtained as follow: 

 

kθ θ= ∆   (5) 

 

where θ  is the shaft angle and θ∆  is the desired 

angular spacing between resamples. 

Once the resample times are calculated, the 

corresponding amplitudes of the signal are calculated 

by interpolating between the sampled data. After the 

amplitudes are determined, the resample data are 

transformed from the angle domain to the order 

domain by means of an FFT. 

The order spectrum and order cepstrum techniques 

are based on the signal processing of the angle 

domain signal, where the resample signal is in 

accordance with the shaft angle of the gearbox. The 

order spectrum and order cepstrum are then evaluated 

for the resample signal. The usefulness of this 

approach will be shown with an experimental 

example in Section 5. 

 

3. Brief introduction of cepstrum 

As mentioned in the literature [25], gear vibration 

spectra commonly show sidebands of the meshing 

frequency and its harmonics. Such sidebands typi-

cally arise from the modulation of the tooth meshing 

waveform by the gear rotational frequency. For gear-

boxes in good condition the sideband level generally 

remains constant with time. Changes in the number 

and amplitude of the sidebands normally indicate a 

deterioration condition. In the particular case of a 

local fault in one of the teeth, a localized modulation 

effect takes place once per revolution of the faulted 

gear. Several modulation phenomena may be present, 
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each producing a different family of sidebands char-

acterized by the same spacing in the spectrum, equal 

to the corresponding modulating frequency. As a 

consequence, the sideband spacing contains diagnos-

tic information, since it is related to the modulation 

source [25]. However, it can be difficult to distinguish 

and evaluate the sideband spacing by means of spec-

tral analysis, due to the contemporary presence of 

several families of sidebands and other components.  

To overcome this problem, cepstrum analysis can 

be employed. Various forms of cepstrum exist, but all 

of them can be considered as a spectrum of a loga-

rithmic spectrum [25]. For applications to machine 

diagnostics, the power cepstrum, ( )xc τ , is well 

suited and generally applied; as shown in the litera-

ture, it is defined as the inverse Fourier transform of 

the logarithmic power spectrum: 

 
1( ) [log ( )]x xC F S fτ −=   (6) 

 

where 1[]F − is the inverse Fourier transform, ( )xS f  

is the power spectrum; it is usually represented in dB 

scale, as the corresponding logarithmic power spec-

trum. The independent variable, τ , known as que-

frency, has the dimension of time.  

The cepstrum analysis can be useful in interpreting 

the spectrum, as a tool for detection of periodic struc-

tures. Each family of sidebands, emphasized by the 

logarithmic scale, produces a peak in the cepstrum at 

a quefrency corresponding to the reciprocal of the 

spacing of the spectrum components, as well as other 

peaks at multiple quefrencies, called rahmonics. Thus, 

the quefrency of the fundamental cepstrum com-

ponent represents the average sideband level over the 

whole spectrum. The higher-order rahmonics contain 

information about the shape of the spectrum, which 

depends not only on the type of modulation phe-

nomenon but also on the dynamic properties of the 

mechanical system and transmission path between 

vibration sources and transducer location. As a con-

sequence, rahmonics are generally less meaningful 

for detection and diagnosis than the fundamental cep-

strum component. This fact gives the obvious advan-

tage that the averaged information concerning a 

whole sideband family is basically represented with 

high accuracy by one cepstrum peak. Thus, cepstrum 

makes it possible to separate mixtures of sidebands, 

even in the case of periodicities not immediately ap-

parent in the spectrum. 

After the power spectrum is defined, the cepstrum 

impulse index can be given as follows: 

 

m
pulse

C
f

C
=   (7) 

 

where mC  is the peak of the power cepstrum, C  is 

defined as the mean of power cepstrum as follows: 
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i
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C C
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where iC  is the amplitude of ith quefrency, cN  is 

the number of sampling points. 

 

4. Radial basis function neural network  

(RBFNN) 

It is conceivable that a neural net can be used as a 

monitoring device to detect major changes in the 

operation of the system. Specifically, one approach 

may be that the artificial neural network is trained on 

a well-behaved system, and then operated with no 

more training in parallel to the actual system. The 

artificial neural network output will then be compared 

to that of the physical system, and any anomalies in 

the output of our system will be detected. 

As shown in Fig.1, RBFNN can be expressed as a 

two-layer network. The activations of the hidden units 

are radial basis functions (RBF) of the inputs, 

centered at different locations. For example, when the 

RBF is chosen to be Gaussian, 
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where jµ  is the RBF center of the j th hidden unit, 

and σ the RBF width. The final output of RBFNN is a 

weighted summation of all RBFs: 
 

1

( ) ( )
M

j j

j

y w g
=

=∑x x   (10) 

 

The universal approximation ability of RBFNN 

with adequate RBFs is also guaranteed. The 

adjustable parameters in the case of Gaussian RBFs 

include the centers and widths, and the network 

weights in the second layer. The efficiency of 

RBFNN comes from splitting the training process 

into two simple steps. The first step is an un- 
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Fig. 1. The radial basis function neural network. 

 

 
 

Fig. 2. Experimental set-up. 

 

supervised procedure aimed at finding the centers and 

widths, which is often done through modeling the 

density distribution of input data by using methods 

such as K-means clustering or EM algorithm. The 

second step is to optimize the network weights by 

using supervised learning analogous. Note that in the 

second step of training,the cost function is linear in 

weights, whose minimum can be easily obtained. 

 

5. Gear faults diagnosis based on order cep-

strum and RBFNN 

In this section, the order cepstrum and radial basis 

function neural network will be applied to vibration 

signal measured from a gearbox during speed-up 

process. 

 

5.1 Experimental set-up 

A crack, wear or broken gear tooth failure may 

cause fatal accidents, so the recognition of gear tooth 

fault is very important for the safety of a gearbox. The 

gear test apparatus used in this study is shown in 

Fig.2. The vibration signals of the gear fault are 

sampled on a single-state gearbox during running-up. 

A pair of spur gears, with the module of 2.5mm, is 

tested. The driving gear has 30 teeth and the driven 

gear has 50 teeth. Therefore, the transmission ratio is 

50/30, which means that a decrease in rotation speed 

is achieved. The motion is produced by an AC motor. 

The tested gear was used to study only one kind of 

failure: crack in the root or wear on the tooth. 

Therefore, we prepared three gears, named as health 

gear, cracked gear and weared gear. Localized crack 

defect was seed in the root of the driving gear of the 

input shaft by an electric-discharge machine to keep 

their size and depth under control, to simulate serious 

gear crack. The artificial defect was 1mm in depth 

and the width of the groove was 0.5mm. Localized 

wear defect of the driving gear had a chipped tooth, 

from zero thickness at pitch point to 25% thickness at 

the tooth top, to simulate serious wear. The monitor-

ing and diagnostic system was composed of three 

accelerometers, amplifiers, a rotating speed and 

torque transducer, B&K 3560 spectrum analyzer and 

a computer. The vibration signals and a tachometer 

signal were synchronously sampled. The sampling 

span was 3.2 kHz, the sampling frequency was 8192 

Hz and the sampling time was 2 second. The data 

sampling point was 16384.This time included one 

speed up of the gearbox from idle speed up to steady. 

After sampling, the measured vibration signals were 

loaded into MATLAB from data-files. Then, the 

vibration signals were resampled. For their 

resampling, the algorithm described in the previous 

section was used. As a result of experiment, the 

vibration signals generated by the tested gearbox 

were obtained sampled constant in time as well as 

sampled constant in angle. 

The characteristic parameters of the gearbox are 

given as follows: 

The gear mesh frequency:  

 

130m rf f=   (11) 

 

The characteristic frequency of gear crack:  
 

1crack rf f=   (12) 

 

The gear mesh order: 
 

30mx =   (13) 

 

The characteristic order of gear crack: 
 

1crackx =   (14) 
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The quefrency of the gear mesh frequency: 
 

1ˆ
m

m

f
f

=   (15) 

 

The quefrency of the gear crack or wear fault: 
 

1

1ˆ
crack

r

f
f

=   (16) 

 

The order cepstrum of gear mesh frequency: 
 

ˆ 12mx = °   (17) 

 

The order cepstrum of gear crack or wear fault: 
 

ˆ 360crackx = °   (18) 

 

where 1rf  is the rotating frequency of the input shaft. 

 

5.2 Features selection of gear fault pattern 

The rotating speed signal of the input shaft for the 

tested gearbox is displayed in Fig. 3. Fig. 3(a) 

represents the sampling pluses of the input shaft from 

the optical encoder (60 pulses per rotational period). 

The encoder signals consist of 16384 points and have 

a total duration of 2 seconds. To obtain approximate 

values of rotational speed for every data point, 

polynomial curve fitting was used. It was found that 

linear approximate was sufficient for this research. 

Polynomial coefficients were determined for each 

data and analytical descriptions of the rotational speed 

were obtained. Fig. 3(b) is the calculated 

instantaneous rotating speed using interpolating 

method. Fig. 3(b) clearly shows that the rotating 

speed of the input shaft runs up from idle to steady 

speed about 700 rpm. 

 

 
 

Fig. 3. Rotating speed of the input shaft. 

The original vibration signal with gear crack fault is 

displayed in Fig. 4(a). Fig. 4(a) shows that the vibra-

tion signals are non-stationary, which the amplitude 

of the vibration is increasing during the input shaft 

speed up. The result of applying conventional spectral 

analysis method (FFT) to the specified non-stationary 

signal is given in Fig. 4(b). Fig. 4(b) displays the FFT 

of the vibration signals with gear crack fault. It is 

clear that the resulting spectrum is significantly ob-

scured by spectral smearing. Besides, traditional spec-

tral averaging cannot be applied to the non-stationary 

signal during the input shaft run-up. Fig.4 (b) clearly 

shows that spectral smearing substantially affects the 

result of conventional analysis based on time sam-

pling. Therefore, classical Fourier analysis has some 

limitation such as being unable to process non-

stationary signals.  

The angular resampling technique is applied to the 

original vibration signal in Fig. 4(a). Fig. 5 displays  

 

 
(a) Time (s) 

 

 
(b) Frequency (Hz) 

 

Fig. 4. Time-domain vibration signal with crack fault and 

FFT. 

 

 
 
Fig. 5. Angular resample signal with gear crack fault. 
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Fig. 6. Order spectrum with gear crack fault. 

 

 
 
Fig. 7. Order cepstrum with crack fault. 

 

the angular resample data. Fig. 6 shows the order 

spectrum. The order spectrum is dominated by the 

repetition order of the gear mesh order and its 

harmonics. The conventional order spectrum was not 

capable of revealing the characteristic order of gear 

crack fault that was corrupted by the modulation and 

noise. 

The order cepstrum was evaluated according to Eq. 

(6). The order cepstrum is depicted in Fig. 7. In case 

of the order cepstrum, it can be identified that the 

characteristic order ( crackx ) of gear crack fault, gear 

mesh orders ( mx ) and its harmonics are represented 

in the order cepstrum. The simplicity of the order 

quantity representation can be put down to the ability 

of the order signal processing method to eliminate 

undesirable spectral smearing and modulation effects. 

Fig. 7 demonstrates the advantage of the order 

cepstrum for the analysis vibration signals generated 

by gearbox during speed-up process.  

Fig. 8 and Fig. 9 are the order cepstrum of gear 

wear fault and normal condition, respectively. From 

Figs. 7-9, one can draw a conclusion that the order 

cepstrum can identify the characteristic order. There-

fore, it can be used to detect the fault type of the  

Table 1. Cepstrum impulse index. 
 

Gear condition Cepstrum impulse index 

Normal 3.5697 

Crack fault 5.6191 

Wear fault 13.2091 

 

 
 
Fig. 8. Order cepstrum with wear fault. 

 

 
 
Fig. 9. Order cepstrum with normal condition. 

 

gear. Table 1 shows the cepstrum impulse index, 

which is calculated according to Eq. (7), of gear for 

normal condition, crack fault and wear fault, 

respectively. Therefore, the cepstrum impulse index 

can be applied to the parameters of the input layer for 

radial basis function neural network. 
 

5.3 Gear fault detection based on RBFNN 

The fault diagnosis involves collecting various 

symptom signals, analyzing whether the indexes 

exceed the predefined thresholds, and distinguishing 

the kinds of faults and the ranking problem.We may 

construct a N dimension vector composed of the 

symptom features. The typical symptoms and their 

numbers are determined according to the different 
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diagnosis examples. 

We take the measured fault symptoms of cepstrum 

impulse index as the input of the network, the 

machine's status signals as the output of the network. 

Then the characteristic of the network is able to 

embody this certain mapping relationship between the 

fault symptoms and causes. It is due to the hidden 

neurons that allow the network to extract high-order 

correlations from the information, transformed the 

input pattern to the appropriate output pattern. 

The number of the input symptoms is selected to be 

1. For simplicity, we only consider three states of the 

gear: normal, crack fault and wear fault. Then the 

number of the output unit is 3, so (1,0,0) denotes the 

normal condition, (0,1,0) denotes the crack fault, and 

(0,0,1) denotes the wear fault. For each type of the 

gear fault, we have tested and collected 15 data of the 

gear vibrantion signals. When we collect the fault 

signals, we should aim at the different fault situation 

and the different fault level as far as possible, so as to 

ensure the completeness of the training patterns. 

The test experiment was executed fifteen times for 

three gears of different faults, respectively. We 

collected 10 data to train the RBFNN and the others 

to test the system. Therefore, there were totally 45 

real-time testing data sets to train and test the 

accuracy of the trained neural network to diagnose 

different gear faults.The features of cepstrum impulse 

index extracted from the order cepstrum were used as 

inputs to the RBFNN and the results obtained are  

 
Table 2. Test condition and its output. 
 

Test condition Output 1 Output 2 Output 3

 0.9997 0.0001 0.0001 

 0.9995 0.0001 0.0002 

Normal condition 1.0001 -0.0001 -0.0001 

 1.0002 -0.0001 -0.0001 

 0.99989 0.00002 0.0000 

 0.0002 0.9999 -0.0001 

 -0.0003 1.0002 -0.00015

Crack fault -0.0001 1.0003 0.0000 

 0.0002 0.9876 -0.0001 

 -0.0011 1.00021 -0.0003 

 0.0014 -0.0001 0.9998 

 0.0013 0.0004 0.9785 

Wear fault 0.0002 -0.0001 0.9997 

 0.0003 0.0000 0.9998 

 -0.0001 -0.0002 1.0002 

shown in Table 2. Table 2 shows the performance of 

the neural network for gear fault diagnosis scheme. 

The success rate for each condition is 100%. The 

features are effective in RBFNN-based diagnosis of 

gear failures using order cepstrum of the resample 

signal. The result demonstrates that with proper 

processing of the measured data and possible training 

procedure, the neural network for gear fault diagnosis 

schema can diagnose gear faults with desired 

accuracy. The results show the effectiveness of the 

RBFNN in diagnosis of the gear condition. 

 

6. Conclusions 

A method for fault diagnosis of gear faults during 

speed-up process was presented based on a newly 

developed signal processing technique termed 

computed order tracking and order cepstrum. The 

radial basis function neural network has been used in 

this paper to perform gear fault diagnosis based on the 

extracted information features. Using computed order 

tracking technique, the non-stationary vibration 

signals of gear faults in time domain can be converted 

into stationary ones in the angle domain. The 

definition of the order cepstrum for analysis of 

vibration signals generated by rotating machinery was 

introduced. This method is based on the cepstrum 

estimation from the vibration signal sampled constant 

in angle with respect to the shaft speed of the gearbox. 

The order cepstrum method assists in the elimination 

of spectral smearing and modulation effects caused 

by the variation in shaft speed. The results show that 

the radial basis function neural network can be 

effectively used in the diagnosis of various gear faults 

through appropriate measurement and interpretation 

of gear vibration signals. 
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