
Hindawi Publishing Corporation
International Journal of Rotating Machinery
Volume 2010, Article ID 502064, 9 pages
doi:10.1155/2010/502064

Research Article

Gear Fault Detection Based on Teager-Huang Transform

Hui Li,1 Haiqi Zheng,2 and Liwei Tang2

1 Department of Electromechanical Engineering, Shijiazhuang Institute of Railway Technology, Shijiazhuang 050041, China
2 First Department, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China

Correspondence should be addressed to Hui Li, huili68@163.com

Received 17 August 2009; Accepted 12 February 2010

Academic Editor: Jerzy Sawicki

Copyright © 2010 Hui Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Gear fault detection based on Empirical Mode Decomposition (EMD) and Teager Kaiser Energy Operator (TKEO) technique is
presented. This novel method is named as Teager-Huang transform (THT). EMD can adaptively decompose the vibration signal
into a series of zero mean Intrinsic Mode Functions (IMFs). TKEO can track the instantaneous amplitude and instantaneous
frequency of the Intrinsic Mode Functions at any instant. The experimental results provide effective evidence that Teager-Huang
transform has better resolution than that of Hilbert-Huang transform. The Teager-Huang transform can effectively diagnose the
fault of the gear, thus providing a viable processing tool for gearbox defect detection and diagnosis.

1. Introduction

Gears are important element in a variety of industrial appli-
cations such as machine tool and gearboxes [1, 2]. An unex-
pected failure of the gear may cause significant economic
losses. For that reason, fault diagnosis in gears has been the
subject of intensive research. Vibration signal analysis has
been widely used in the fault detection of rotation machinery.
Many methods based on vibration signal analysis have
been developed. These methods include power spectrum
estimation, fast Fourier transform (FFT), cepstrum analysis,
and envelope spectrum analysis, which have been proved to
be effective in gear fault detection. However, these methods
are based on the assumption of stationarity and linearity of
the vibration signal. Therefore, new techniques are needed to
analyze vibration signals for fault detection in gear system.
Gear fault by their nature are time-localized transient events.
To deal with nonstationary and nonlinear signals, time-
frequency analysis techniques such as the Short-Time Fourier
Transform (STFT) [1], Wavelet Transform (WT) [3–6], and
Wigner-Ville distribution (WVD) [7–11] are widely used.
The STFT [1] uses sliding windows in time to capture the
frequency characteristics as functions of time. Therefore,
spectrum is generated at discrete time instants. An inherent
drawback with the STFT is the limitation between time
and frequency resolutions. A finer frequency resolution can
only be achieved at the expense of time resolution and vice

versa. Furthermore, this method requires large amounts of
computation and storage for display. The Wavelet Transform
(WT) [3, 4] has been successfully used in nonstationary
vibration signal processing and fault detection. WT is capable
of providing both time-domain information and frequency-
domain information simultaneously. A very appealing fea-
ture of the wavelet analysis is that it provides a uniform
resolution for all the scales. Limited by the size of the basic
wavelet function, the downside of the uniform resolution
is uniformly poor resolution. Moreover, an important lim-
itation of the wavelet analysis is its nonadaptive nature.
Once the basic wavelet is selected, one will have to use it to
analyze all the data. This leads to a subjective assumption on
the characteristic of the analyzed signal. As a consequence,
only signal features that correlate well with the shape of
the wavelet function have a chance to lead to coefficients of
high value. All other features will be masked or completely
ignored. The Wigner-Ville distribution (WVD) [7–9] is a
basic time-frequency representation, which is part of the
Cohen class of distribution. Furthermore, it possesses a great
number of good properties and is of popular interest for
nonstationary signal analysis. Therefore, the Wigner-Ville
distribution has received considerable attention in recent
years as an analysis tool for nonstationary or time-varying
signals. It has been widely used in the areas of structure-bone
noise identification [12], optics [13], machinery condition
monitoring [14–16], and so on. The difficulty with this
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method is the severe cross terms as indicated by the
existence of negative power for some frequency ranges.
In comparison, the Hilbert-Huang transform (HHT) is
based on the instantaneous frequencies resulting from the
intrinsic mode function of the being analyzed; thus, it is
not constrained by the uncertainty limitations with respect
to the time and frequency resolutions to which other time-
frequency techniques are subject. In recent years, HHT has
been applied to identification of damage time instant and
location in biomedical signals processing [17–19], geophysics
[20–23], image processing [24], structural testing [25], fault
diagnosis [26], nuclear physics [27], and so on. These
applications have further demonstrated the effectiveness of
HHT in transient signal processing. The HHT estimates
the instantaneous frequency (IF) using Hilbert transform
(HT). However, owing to the inevitable window effect of
HT, the demodulation results present noninstantaneous
response characteristics. An alternative approach developed
by Maragos et al. [28, 29], Vakman [30], Gexus and Boudraa
[31, 32] uses a nonlinear energy tracking operator, Teager
Kaiser energy operator (TKEO), to first estimate the energy
required for generating an AM-FM signal and then separate
it into its instantaneous frequency (IF) and instantaneous
amplitude (IA) components. Note that the Hilbert transform
approach mainly involves a linear integral operator, whereas
the TKEO approach uses a nonlinear differential operator.
TKEO gives a good estimate of IF and has low computational
complexity [30–33].

In this paper, we present a new method to detect gear
fault using empirical mode decomposition (EMD) and
nonlinear Teager Kaiser Energy Operator (TKEO), which
is named as Teager-Huang transform (THT) [32]. EMD
is a fundamentally new approach to the decomposition of
nonlinear and nonstationary signal presented originally by
Huang et al. [34]. EMD can decompose multicomponent
signals into a series of Intrinsic Mode Functions (IMFs),
and then accurate instantaneous amplitude estimation can
be acquired by TKEO. TKEO is a nonlinear operator, which
has been developed by Teager. It can track the energy and
identify the instantaneous frequency and instantaneous
amplitude of monocomponent signal [28, 29, 32]. In the
end, time-frequency spectrum is obtained by using Teager-
Huang transform. The characteristic frequencies related
to the gear defect can be effectively extracted. The basic
method is introduced in detail. This approach is applied in
the research of the fault detection and diagnosis of the gear
wear. The experimental results show that this method can
effectively monitor the gear fault.

To address the issues discussed above, this paper is
organized as follows. Section 1 gives a brief introduction
of the time-frequency analysis technology. Section 2 briefly
describes the EMD and Hilbert-Huang transformation
(HHT). Section 3 looks at the Teager-Huang transform
(THT). Section 4 presents the method and procedure of
the gear fault detection based on THT. Section 5 gives
two simulation examples to show the effectiveness and
reliability of the proposed method. Section 6 describes the
experimental set-up. Section 7 gives the application of the
method based on THT to fault detection of gear wear.

Finally, the main conclusions of this paper are provided in
Section 8.

2. Introduction of Hilbert-Huang
Transform

Hilbert-Huang transformation is an emerging novel tech-
nique of signal decomposition having many interesting
properties. In order to facilitate the reading of this paper we
will introduce in detail the Hilbert-Huang transformation,
which is a relatively novel technique.

2.1. The Concept of Intrinsic Mode Function. Huang et al. [34]
have defined IMFs as a class of functions that satisfy two
conditions

(1) in the whole data set, the number of extrema and
the number of zero-crossings must be either equal or
differ at most by one.

(2) at any point, the mean value of the envelope defined
by the local maxima and the envelope defined by the
local minima is zero.

2.2. Empirical Mode Decomposition (EMD). Empirical Mode
Decomposition (EMD) has been proposed recently [20,
34] as an adaptive time-frequency data analysis method.
It has proven to be quite versatile in a broad range of
applications for extracting signals from data generated in
noisy nonlinear and nonstationary processes [28, 29]. As
useful as EMD proved to be, it still leaves some annoying
difficulties unresolved.

Empirical mode decomposition method is developed
from the simple assumption that any signal consists of
different simple intrinsic mode oscillations. The essence of
the method is to identify the intrinsic oscillatory modes
(IMFs) by their characteristic times scales in the signal and
then decompose the signal accordingly. The characteristics
time scale is defined by the time lapse between the successive
extremes.

To extract the IMF from a given data set, the sifting
process is implemented as follows. First, identify all the local
extrema, and then connect all of the local maxima by a cubic
spline line as the upper envelope. Then, repeat the procedure
for the local minima to produce the lower envelope. The
upper and lower envelopes should cover all the data between
them. Their mean is designated m1(t), and the difference
between the data and m1(t) is h1(t), that is,

x(t)−m1(t) = h1(t). (1)

Ideally, h1(t) should be an IMF, for the construction of
h1(t) described above should have forced the result to satisfy
all the definitions of an IMF by construction. To check if
h1(t) is an IMF, we demand the following conditions: (i) h1(t)
should be free of riding waves, that is, the first component
should not display under-shots or over-shots riding on the
data and producing local extremes without zero crossing;
(ii) to display symmetry of the upper and lower envelops
with respect to zero; and (iii) obviously the number of zero
crossing and extremes should be the same in both functions.
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The sifting process has to be repeated as many times as
it is required to reduce the extracted signal to an IMF. In the
subsequent sifting process steps, h1(t) is treated as the data;
then

h1(t)−m11(t) = h11(t), (2)

where m11(t) is the mean of the upper and lower envelops of
h1(t).

This process can be repeated up to k times; h1k(t) is then
given by

h1(k−1)(t)−m1k(t) = h1k(t). (3)

After each processing step, checking must be done on
whether the number of zero crossings equals the number of
extrema.

The resulting time series is the first IMF, and then it is
designated as c1(t) = h1k(t). The first IMF component from
the data contains the highest oscillation frequencies found in
the original data x(t).

This first IMF is subtracted from the original data, and
this difference is called a residue r1(t) by

x(t)− c1(t) = r1(t). (4)

The residue r1(t) is taken as if it was the original data and
we apply to it again the sifting process. The process of finding
more intrinsic modes ci(t) continues until the last mode is
found. The final residue will be a constant or a monotonic
function; in this last case it will be the general trend of the
data:

x(t) =
n
∑

i=1

ci(t) + rn(t). (5)

Thus, one achieves a decomposition of the data into n-
empirical IMF modes, plus a residue, rn(t), which can be
either the mean trend or a constant.

2.3. The Hilbert-Huang Transform (HHT). Having obtained
the IMFs using EMD method, one applies the Hilbert
transform to each IMF component:

H[ci(t)] =
1

π

∫ +∞

−∞

ci(τ)

t − τ
dτ. (6)

With this definition ci(t) and H[ci(t)] form a complex
conjugate pair, which defines an analytic signal zi(t):

zi(t) = ci(t) + jH[ci(t)], (7)

which can be expressed as

zi(t) = ai(t) exp
(

jωi(t)
)

. (8)

With amplitude ai(t) and phase θi(t) defined by the
expressions:

ai(t) =
√

c2
i (t) + H2[ci(t)],

θi(t) = arctan

(

H[ci(t)]

ci(t)

)

.
(9)

Therefore, the instantaneous frequencyωi(t) can be given
by

ωi(t) =
dθi(t)

dt
. (10)

Thus the original data can be expressed in the following
form:

x(t) = Re
n
∑

i=1

ai(t) exp

(

j

∫

ωi(t)dt

)

, (11)

where the residue rn(t) has been left out. Re{·} denotes the
real part of a complex quantity.

Equation (11) enables us to represent the amplitude and
the instantaneous frequency in a three-dimensional plot, in
which the amplitude is the height in the time-frequency
plane. This time-frequency distribution is designated as the
Hilbert-Huang spectrum H(ω, t):

H(ω, t) = Re
n
∑

i=1

ai(t) exp

(

j

∫

ωi(t)dt

)

. (12)

3. Introduction of Teager-Huang Transform

3.1. Teager Kaiser Energy Operator (TKEO). TKEO is a pow-
erful nonlinear operator and has been successful used in
many engineering application [31]. TKEO can track the
modulation energy and identify the instantaneous frequency
(IF) and the instantaneous amplitude (IA) of an amplitude
modulation-frequency modulation (AM-FM) signal [29].
The TKEO, ψ(·) is defined for continuous-time signal x(t)
as follows [31, 32]:

ψ[x(t)] = [ẋ(t)]2
− x(t)ẍ(t), (13)

where ẋ(t) and ẍ(t) are the first and the second time
derivatives of x(t), respectively. In the discrete case, the time
derivatives may be approximated by time differences. In
discrete-time domain, TKEO is given as follows [28, 32]:

ψ[x(n)] = x2(n)− x(n + 1) · x(n− 1). (14)

The instantaneous frequency f (n) and instantaneous
amplitude |a(n)| at any time instant of the AM-FM signal
x(n) can, respectively, be given as follows [28]:

y(n) = x(n)− x(n− 1), (15)

f (n) = arccos

(

1−
ψ
[

y(n)
]

+ ψ
[

y(n + 1)
]

4ψ[x(n)]

)

, (16)

|a(n)| =

√

√

√

ψ[x(n)]

sin2
[

f (n)
] , (17)

f (n) =
1

2
arccos

(

1−
ψ[x(n + 1)− x(n− 1)]

2ψ[x(n)]

)

, (18)

|a(n)| =
2ψ[x(n)]

√

ψ[x(n + 1)− x(n− 1)]
. (19)
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Figure 1: The flow chart of Teager-Huang Transform.

In general, the demodulation method given by (15), (16),
and (17) is named as discrete energy separation algorithm-1
(DESA-1). The demodulation method given by (18) and (19)
is called as discrete energy separation algorithm-2 (DESA-2)
[35]. In this paper, we calculate the instantaneous frequency
f (n) and instantaneous amplitude |a(n)| by DESA-2. The
DESA-2 algorithm only requires three samples for the energy
computation at each time instant and is less computationally
complex. Therefore, the DESA-2 algorithm has an excellent
time resolution and almost instantanoeus. This excellent
time resolution provides us with the ability to capture the
energy fluctuations of the AM-FM signal.

3.2. The Teager-Huang Transform. In order to estimate the
instantaneous frequency f (n) and instantaneous amplitude
|a(n)| of x(t), the EMD is combined with the TKEO. TKEO
can only be used to track the IF and IA of a monocomponent
AM-FM signal. If x(t) is a multicomponent AM-FM signal,
then bandpass filtering is needed to isolate each component
before applying the discrete energy separation algorithm
(DESA). Therefore, the EMD is used as a multiband filtering
to separate the signal components in the time domain and
hence reduce multicomponent demodulation to multicom-
ponent one. The association of the EMD and the TKEO
methods is called as Teager-Huang transform (THT) [32].

According to (18) and (19) the original data can be
expressed in the following form:

x(t) =
n
∑

i=1

|ai(t)| exp

(

j

∫

2π fi(t)dt

)

. (20)

Equation (20) enables us to represent the amplitude and
the instantaneous frequency in a three-dimensional plot, in
which the amplitude is the height in the time-frequency
plane. This time-frequency distribution is designated as the
Teager-Huang spectrum T( f , t):

T
(

f , t
)

=

n
∑

i=1

|ai(t)| exp

(

j

∫

2π fi(t)dt

)

. (21)

The final presentation of the the IF and the IA results is an
energy time frequency representation. The block diagram of
Teager-Huang transform technique is illustrated in Figure 1.
The original vibration signal can be decomposed into a series
of monocomponent AM-FM signal named as IMFs. Then
the IF and IA of the separated IMFs are calculated using the
DESA-2 algorithm.
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Figure 2: The monocomponent signal.

4. Proposed THT Method to Fault Detection and
Diagnosis of Gear

The procedure of proposed THT spectrum method is given
as follows:

(1) to decompose the vibration signal x(t) using EMD
and to obtain IMFs,

(2) to calculate the THT spectrum according to
Section 3,

(3) to draw a diagnostic conclusion according to the THT
spectrum.

5. Signal Simulation of THT Spectrum

The performance of the proposed method has been assessed
by means of tests on two simulative signals. Several mono-
component and multicomponents signals, characterized
by known instantaneous frequency trajectories, have been
considered. The evolution versus time of the instantaneous
frequency and amplitude of each component of the analyzed
signal is finally shown.

5.1. Tests on Monocomponent Signals. The main objective
of these tests is to establish the measurement accuracy of
the proposed method as well as its advantages in IF and IA
estimation. As an example, Figure 2 gives a monocomponent
signal whose analytic expression in the time domain is

x(t) = a(t) · s(t), (22)

where a(t) and s(t) are given as follows:

a(t) = e−5t,

s(t) = cos(60πt).
(23)

The number of acquired samples is equal to 512 and the
sampling frequency is 1920 Hz. Figure 3 displays the THT
spectrum estimated by the proposed estimation method.
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Figure 3: THT spectrum of monocomponent signal.
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Figure 4: The multicomponent signal.

5.2. Tests on Multicomponent Signals. A significant example
is shown in Figure 4. The signal shown in Figure 4 is
composed of two components according to

x1(t) = cos[2π40t + 0.5 sin(2π20t)],

x2(t) = sin(2π160t),

x(t) = x1(t) + x2(t).

(24)

Signal x(t) is composed of a carrier frequency of
40 Hz, frequency-modulated of 20 Hz, and constant or time-
independent frequency of 160 Hz sine wave.

Therefore, the frequency-modulated f (t) can be written
as

f (t) = 40 + 10 cos(40πt). (25)

The variation range of the frequency-modulated f (t) is
given as

30 ≤ f (t) ≤ 50. (26)
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Figure 5: The three IMFs component.
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Figure 6: THT spectrum of multicomponent signal

Figure 4 displays a graphical sketch of the signal x(t),
which was generated over a total time span T = 0.2 s with
a sampling frequency fs = 2560 Hz. Figure 5 shows the
empirical mode decomposition in IMFs of the signal x(t).
With the help of the sifting algorithm explained in Section 2,
we carried out this decomposition. The decomposition
identifies two modes: c1 represents the sine wave of x2(t),
c2 represents the frequency modulated signal, x1(t), and
c3 is the residue, respectively. By virtue of EMD method,
signal can be decomposed into two complete and orthogonal
intrinsic mode functions. Therefore, we can know not only
the frequency components of the signal but also the variation
of the amplitude and period. These IMFs component can
reflect the actual physical meaning of the signal.

Figure 6 displays the instantaneous frequency and the
instantaneous amplitude estimation of multicomponent
signal x(t) based on the empirical mode decomposition and
TKEO. The IF in Figure 6 shows a clear picture of temporal
frequency distribution of the data; that is, the linear response
has constant frequency at 160 Hz, and the nonlinear response
has frequency dependence modulated around 40 Hz and
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Figure 8: Time-domain vibration signal with gear wear.

bounded by 30 and 50 Hz, and the decaying energy of
the nonlinear response with the color changing from the
white at the beginning to dark blue at the end of the
record. Therefore, the instantaneous frequency and the
instantaneous amplitude estimation based on the empirical
mode decomposition and TKEO is better to describe the
characteristics of the time-frequency distribution.

These simple simulation examples illustrate the effec-
tiveness of the THT spectrum for analyzing transient (or
nonstationary) vibration signal. The results demonstrate that
THT is suited for capturing transient events in dynamic
system. THT provides a viable signal processing tool for
machine fault detection and diagnosis.
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6. Experimental Set-Up

A crack, wear, or broken gear tooth failure may cause fatal
accidents; so the recognition of gear tooth fault is very
important for the safety of a gearbox. The experimental set-
up consists of a single-stage gearbox, driven by a 4.5 kW
AC governor motor. The driving gear has 28 teeth and the
driven gear has 36 teeth. Therefore, the transmission ratio
is 36/28, which means that a decrease in rotation speed is
achieved. The module of the gear is 2.5 mm. Localized wear
defect of the driven gear had a chipped tooth, from zero
thickness at pitch point to 25% thichness at the tooth top,
to simulate serious wear. The input speed of the spindle was
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1473 r/min; that is, the rotating frequency of the output shaft
fr was 19.11 Hz. Therefore, the tooth-meshing frequency
was 688 Hz. The monitoring and diagnostic system was
composed of four accelerometers, amplifiers, B&K 3560
spectrum analyzer, and a computer. The sampling span
was 6.4 kHz, the sampling frequency was 16384 Hz, and the
sampling points were 2048. After sampling, the measured
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Figure 12: THT spectrum of vibration signal shown in Figure 8.

vibration signals were loaded into MATLAB from data-
files.

7. Gear Fault Detection and Diagnosis
Based on THT

It is well known that the most important components in
gear vibration spectra are the tooth-meshing frequency and



8 International Journal of Rotating Machinery

its harmonics, together with sidebands due to modulation
phenomena. The increment in the number and amplitude
of such sidebands may indicate a fault condition. Moreover,
the spacing of the sidebands is related to their source. In
particular, fault localized on one tooth or a few teeth, such
as gear crack or gear wear, produces modulation effects only
during the engagement of the faulted teeth, but repeated once
each revolution of the gear. As a consequence, the spectrum
presents a large number of sidebands of the tooth-meshing
frequency and its harmonics, spread over a wide frequency
range, spaced by the rotation frequency of the faulted gear,
and characterized by low amplitude [27].

The original vibration signal with gear wear fault is dis-
played in Figure 8. It is clear that there are periodic impacts in
the vibration signal. There are significant fluctuations in the
peak amplitude of the signal. However, it is hardly possible
to evaluate the gear fault condition only through such time
domain vibration signal.

Figure 9 shows the power spectrum of the vibration
signal with gear wear. 688 Hz and 1376 Hz frequency compo-
nent, which are the first and second harmonic of the meshing
frequency, can be clearly seen in Figure 9. But there are
no fault frequency components around 19.11 Hz. Therefore,
classical Fourier analysis has some limitation such as unable
to process nonstationary signals.

To the data of Figure 8, the EMD algorithm is applied.
Figure 10 displays the empirical mode decomposition in ten
IMFs of the vibration signal in Figure 8. The decomposition
identifies ten modes: c1∼c9 represents the frequency compo-
nents excited by the gear wear defects, and c10 is the residue,
respectively. Mode c1 contains the highest signal frequencies,
mode c2 the next higher-frequency band, and so on.

From Figure 10, it can be easily proven that the EMD
decomposes vibration signal very effectively on an adaptive
method. The Hilbert-Huang transform (HHT) can be
applied to each IMF ci(t), resulting in HHT spectrum
according to [27]. The corresponding results of the HHT
analysis are illustrated in Figure 11. From Figure 11, it is
clearly seen that the vibration energy is mainly concentrated
on tooth-meshing frequency (688 Hz) and its harmonics, in
which their amplitudes are higher than others. The energy
distracts from 500 Hz to 3500 Hz. The HHT spectrum dis-
plays no repetitive signal patterns, without providing specific
information on gear defect propagation. In comparison, the
corresponding results of the THT analysis are illustrated in
Figure 12. The presence of gear wear fault results in a sudden
increase of vibration energy. In Figure 12, the instantaneous
amplitude is relatively high and has the period impulse asso-
ciated with period (0.0523 s) of the output shaft revolution,
which corresponds to a 19.11 Hz repetitive frequency result-
ing from the structural defect on the gear of output shaft.
Such repetitive frequency reflects degradation of the gear
health condition as the defect propagated through the gear
meshing. Physically, impacts generated by the gear meshing
excite intrinsic modes of the gear system, giving rise to a train
of transient vibrations. To compare Figure 11 with Figure 12,
it is easily concluded that the THT has better resolution
than that of HHT. Thus, the THT has shown to provide an
effective tool for gear fault detection and diagnosis.

8. Conclusions

A method for fault diagnosis of gear wear was presented
based on a newly developed signal processing technique
named as empirical mode decomposition (EMD) and Teager
Kaiser Energy Operator (TKEO). Using EMD method, the
original vibration signals of gear fault can be decomposed
into intrinsic modes. Therefore, we can recognize the
vibration modes that coexist in the system, and to have a
better understanding of the nature of the fault information
contained in the vibration signal. According to Teager-Huang
transform spectrum, the characteristic period of the gear
fault can be easily recognized. Practical vibration signal
monitored from a gearbox with gear fault is analyzed by the
presented method. The experimental result has been shown
that Teager-Huang transform can be used as an effective
diagnostic method for gear fault. Teager-Huang transform
has better resolution than Hilbert-Huang transform. Such a
technique can be further applied to the health detection of
other of dynamic systems, such as electrical drives. Research
is being continued to systematically investigate the suitability
and constraints of the THT for nonstationary signal analysis,
using vibration signals from different fault types of gear.
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