Gear Geometry and Applied Theory

SECOND EDITION

Faydor L. Litvin
University of Illinois at Chicago
\section*{Alfonso Fuentes}
Polytechnic University of Cartagena

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org
© Faydor L. Litvin and Alfonso Fuentes 2004
This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004
Printed in the United States of America
Typefaces Sabon 10/13 pt. and Gill Sans System $\mathrm{EAT}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon} \quad$ [TB]
A catalog record for this book is available from the British Library.
Library of Congress Cataloging in Publication Data
Litvin, F. L. (Faydor L.)
Gear geometry and applied theory / Faydor L. Litvin, Alfonso Fuentes.
p. cm.

Includes bibliographical references and index.
ISBN 0-521-81517-7

1. Gearing. I. Fuentes, Alfonso. II. Title

TJ184.L48 2004
621.8'33 - dc22

ISBN 0521815177 hardback

Contents

Foreword by Graziano Curti page xii
Preface xiv
Acknowledgments xV
I Coordinate Transformation 1
1.1 Homogeneous Coordinates 1
1.2 Coordinate Transformation in Matrix Representation 2
1.3 Rotation About an Axis 6
1.4 Rotational and Translational 4×4 Matrices 14
1.5 Examples of Coordinate Transformation 15
1.6 Application to Derivation of Curves 24
1.7 Application to Derivation of Surfaces 28
2 Relative Velocity 33
2.1 Vector Representation 33
2.2 Matrix Representation 39
2.3 Application of Skew-Symmetric Matrices 41
3 Centrodes, Axodes, and Operating Pitch Surfaces 44
3.1 The Concept of Centrodes 44
3.2 Pitch Circle 49
3.3 Operating Pitch Circles 50
3.4 Axodes in Rotation Between Intersected Axes 51
3.5 Axodes in Rotation Between Crossed Axes 52
3.6 Operating Pitch Surfaces for Gears with Crossed Axes 56
4 Planar Curves 59
4.1 Parametric Representation 59
4.2 Representation by Implicit Function 60
4.3 Tangent and Normal to a Planar Curve 60
4.4 Curvature of Planar Curves 68
5 Surfaces 78
5.1 Parametric Representation of Surfaces 78
5.2 Curvilinear Coordinates 78
5.3 Tangent Plane and Surface Normal 79
5.4 Representation of a Surface by Implicit Function 82
5.5 Examples of Surfaces 82
6 Conjugated Surfaces and Curves 97
6.1 Envelope to a Family of Surfaces: Necessary Conditions of Existence 97
6.2 Basic Kinematic Relations 102
6.3 Conditions of Nonundercutting 103
6.4 Sufficient Conditions for Existence of an Envelope to a Family of Surfaces 107
6.5 Contact Lines; Surface of Action 110
6.6 Envelope to Family of Contact Lines on Generating Surface Σ_{1} 112
6.7 Formation of Branches of Envelope to Parametric Families of Surfaces and Curves 114
6.8 Wildhaber's Concept of Limit Contact Normal 118
6.9 Fillet Generation 119
6.10 Two-Parameter Enveloping 124
6.11 Axes of Meshing 128
6.12 Knots of Meshing 134
6.13 Problems 137
7 Curvatures of Surfaces and Curves 153
7.1 Introduction 153
7.2 Spatial Curve in 3D-Space 153
7.3 Surface Curves 164
7.4 First and Second Fundamental Forms 175
7.5 Principal Directions and Curvatures 180
7.6 Euler's Equation 188
7.7 Gaussian Curvature; Three Types of Surface Points 189
7.8 Dupin's Indicatrix 193
7.9 Geodesic Line; Surface Torsion 194
8 Mating Surfaces: Curvature Relations, Contact Ellipse 202
8.1 Introduction 202
8.2 Basic Equations 203
8.3 Planar Gearing: Relation Between Curvatures 204
8.4 Direct Relations Between Principal Curvatures of Mating Surfaces 218
8.5 Direct Relations Between Normal Curvatures of Mating Surfaces 226
8.6 Diagonalization of Curvature Matrix 231
8.7 Contact Ellipse 234
9 Computerized Simulation of Meshing and Contact 241
9.1 Introduction 241
9.2 Predesign of a Parabolic Function of Transmission Errors 242
9.3 Local Synthesis 245
9.4 Tooth Contact Analysis 249
9.5 Application of Finite Element Analysis for Design of Gear Drives 257
9.6 Edge Contact 260
10 Spur Involute Gears 267
10.1 Introduction 267
10.2 Geometry of Involute Curves 268
10.3 Generation of Involute Curves by Tools 273
10.4 Tooth Element Proportions 278
10.5 Meshing of Involute Gear with Rack-Cutter 280
10.6 Relations Between Tooth Thicknesses Measured on Various Circles 285
10.7 Meshing of External Involute Gears 287
10.8 Contact Ratio 292
10.9 Nonstandard Gears 294
II Internal Involute Gears 304
11.1 Introduction 304
11.2 Generation of Gear Fillet 305
11.3 Conditions of Nonundercutting 309
11.4 Interference by Assembly 314
12 Noncircular Gears 318
12.1 Introduction 318
12.2 Centrodes of Noncircular Gears 318
12.3 Closed Centrodes 323
12.4 Elliptical and Modified Elliptical Gears 326
12.5 Conditions of Centrode Convexity 329
12.6 Conjugation of an Eccentric Circular Gear with a Noncircular Gear 330
12.7 Identical Centrodes 331
12.8 Design of Combined Noncircular Gear Mechanism 333
12.9 Generation Based on Application of Noncircular Master-Gears 335
12.10 Enveloping Method for Generation 336
12.11 Evolute of Tooth Profiles 341
12.12 Pressure Angle 344
Appendix 12.A: Displacement Functions for Generation by Rack-Cutter 345
Appendix 12.B: Displacement Functions for Generation by Shaper 348
13 Cycloidal Gearing 350
13.1 Introduction 350
13.2 Generation of Cycloidal Curves 350
13.3 Equations of Cycloidal Curves 354
13.4 Camus' Theorem and Its Application 355
13.5 External Pin Gearing 359
13.6 Internal Pin Gearing 365
13.7 Overcentrode Cycloidal Gearing 367
13.8 Root's Blower 369
14 Involute Helical Gears with Parallel Axes 375
14.1 Introduction 375
14.2 General Considerations 375
14.3 Screw Involute Surface 377
14.4 Meshing of a Helical Gear with a Rack 382
14.5 Meshing of Mating Helical Gears 392
14.6 Conditions of Nonundercutting 396
14.7 Contact Ratio 398
14.8 Force Transmission 399
14.9 Results of Tooth Contact Analysis (TCA) 402
14.10 Nomenclature 403
15 Modified Involute Gears 404
15.1 Introduction 404
15.2 Axodes of Helical Gears and Rack-Cutters 407
15.3 Profile-Crowned Pinion and Gear Tooth Surfaces 411
15.4 Tooth Contact Analysis (TCA) of Profile-Crowned Pinion and Gear Tooth Surfaces 414
15.5 Longitudinal Crowning of Pinion by a Plunging Disk 419
15.6 Grinding of Double-Crowned Pinion by a Worm 424
15.7 TCA of Gear Drive with Double-Crowned Pinion 430
15.8 Undercutting and Pointing 432
15.9 Stress Analysis 435
16 Involute Helical Gears with Crossed Axes 441
16.1 Introduction 441
16.2 Analysis and Simulation of Meshing of Helical Gears 443
16.3 Simulation of Meshing of Crossed Helical Gears 452
16.4 Generation of Conjugated Tooth Surfaces of Crossed Helical Gears 455
16.5 Design of Crossed Helical Gears 458
16.6 Stress Analysis 465
Appendix 16.A: Derivation of Shortest Center Distance for Canonical Design 467
Appendix 16.B: Derivation of Equation of Canonical Design $f\left(\gamma_{o}, \alpha_{o n}, \lambda_{b 1}, \lambda_{b 2}\right)=0$ 472
Appendix 16.C: Relations Between Parameters $\alpha_{p t}$ and $\alpha_{p n}$ 473
Appendix 16.D: Derivation of Equation (16.5.5) 473
Appendix 16.E: Derivation of Additional Relations Between $\alpha_{o t 1}$ and $\alpha_{o t 2}$ 474
17 New Version of Novikov-Wildhaber Helical Gears 475
17.1 Introduction 475
17.2 Axodes of Helical Gears and Rack-Cutter 478
17.3 Parabolic Rack-Cutters 479
17.4 Profile-Crowned Pinion and Gear Tooth Surfaces 482
17.5 Tooth Contact Analysis (TCA) of Gear Drive with Profile-Crowned Pinion 485
17.6 Longitudinal Crowning of Pinion by a Plunging Disk 487
17.7 Generation of Double-Crowned Pinion by a Worm 491
17.8 TCA of a Gear Drive with a Double-Crowned Pinion 497
17.9 Undercutting and Pointing 500
17.10 Stress Analysis 502
I 8 Face-Gear Drives 508
18.1 Introduction 508
18.2 Axodes, Pitch Surfaces, and Pitch Point 510
18.3 Face-Gear Generation 512
18.4 Localization of Bearing Contact 512
18.5 Equations of Face-Gear Tooth Surface 515
18.6 Conditions of Nonundercutting of Face-Gear Tooth Surface (Generated by Involute Shaper) 519
18.7 Pointing of Face-Gear Teeth Generated by Involute Shaper 522
18.8 Fillet Surface 524
18.9 Geometry of Parabolic Rack-Cutters 525
18.10 Second Version of Geometry: Derivation of Tooth Surfaces of Shaper and Pinion 527
18.11 Second Version of Geometry: Derivation of Face-Gear Tooth Surface 529
18.12 Design Recommendations 529
18.13 Tooth Contact Analysis (TCA) 531
18.14 Application of Generating Worm 535
18.15 Stress Analysis 541
19 Worm-Gear Drives with Cylindrical Worms 547
19.1 Introduction 547
19.2 Pitch Surfaces and Gear Ratio 548
19.3 Design Parameters and Their Relations 552
19.4 Generation and Geometry of ZA Worms 557
19.5 Generation and Geometry of ZN Worms 561
19.6 Generation and Geometry of ZI (Involute) Worms 574
19.7 Geometry and Generation of K Worms 581
19.8 Geometry and Generation of F-I Worms (Version I) 590
19.9 Geometry and Generation of F-II Worms (Version II) 597
19.10 Generalized Helicoid Equations 601
19.11 Equation of Meshing of Worm and Worm-Gear Surfaces 603
19.12 Area of Meshing 606
19.13 Prospects of New Developments 609
20 Double-Enveloping Worm-Gear Drives 614
20.1 Introduction 614
20.2 Generation of Worm and Worm-Gear Surfaces 614
20.3 Worm Surface Equations 618
20.4 Equation of Meshing 620
20.5 Contact Lines 622
20.6 Worm-Gear Surface Equations 622
21 Spiral Bevel Gears 627
21.1 Introduction 627
21.2 Basic Ideas of the Developed Approach 628
21.3 Derivation of Gear Tooth Surfaces 633
21.4 Derivation of Pinion Tooth Surface 644
21.5 Local Synthesis and Determination of Pinion Machine-Tool Settings 649
21.6 Relationships Between Principal Curvatures and Directions of Mating Surfaces 656
21.7 Simulation of Meshing and Contact 661
21.8 Application of Finite Element Analysis for the Design of Spiral Bevel Gear Drives 665
21.9 Example of Design and Optimization of a Spiral Bevel Gear Drive 666
21.10 Compensation of the Shift of the Bearing Contact 676
22 Hypoid Gear Drives 679
22.1 Introduction 679
22.2 Axodes and Operating Pitch Cones 679
22.3 Tangency of Hypoid Pitch Cones 680
22.4 Auxiliary Equations 682
22.5 Design of Hypoid Pitch Cones 685
22.6 Generation of Face-Milled Hypoid Gear Drives 690
23 Planetary Gear Trains 697
23.1 Introduction 697
23.2 Gear Ratio 697
23.3 Conditions of Assembly 703
23.4 Phase Angle of Planet Gears 707
23.5 Efficiency of a Planetary Gear Train 709
23.6 Modifications of Gear Tooth Geometry 711
23.7 Tooth Contact Analysis (TCA) 712
23.8 Illustration of the Effect of Regulation of Backlash 716
24 Generation of Helicoids 718
24.1 Introduction 718
24.2 Generation by Finger-Shaped Tool: Tool Surface is Given 718
24.3 Generation by Finger-Shaped Tool: Workpiece Surface is Given 723
24.4 Generation by Disk-Shaped Tool: Tool Surface is Given 726
24.5 Generation by Disk-Shaped Tool: Workpiece Surface is Given 730
25 Design of Flyblades 734
25.1 Introduction 734
25.2 Two-Parameter Form Representation of Worm Surfaces 735
25.3 Three-Parameter Form Representation of Worm Surfaces 737
25.4 Working Equations 738
26 Generation of Surfaces by CNC Machines 746
26.1 Introduction 746
26.2 Execution of Motions of CNC Machines 747
26.3 Generation of Hypoid Pinion 750
26.4 Generation of a Surface with Optimal Approximation 752
27 Overwire (Ball) Measurement 769
27.1 Introduction 769
27.2 Problem Description 769
27.3 Measurement of Involute Worms, Involute Helical Gears, and Spur Gears 773
27.4 Measurement of Asymmetric Archimedes Screw 779
28 Minimization of Deviations of Gear Real Tooth Surfaces 782
28.1 Introduction 782
28.2 Overview of Measurement and Modeling Method 783
28.3 Equations of Theoretical Tooth Surface Σ_{t} 784
28.4 Coordinate Systems Used for Coordinate Measurements 785
28.5 Grid and Reference Point 786
28.6 Deviations of the Real Surface 787
28.7 Minimization of Deviations 787
References 789
Index 795

Coordinate Transformation

I.I HOMOGENEOUS COORDINATES

A position vector in a three-dimensional space (Fig. 1.1.1) may be represented (i) in vector form as

$$
\begin{equation*}
\mathbf{r}_{m}=\overline{O_{m} M}=x_{m} \mathbf{i}_{m}+y_{m} \mathbf{j}_{m}+z_{m} \mathbf{k}_{m} \tag{1.1.1}
\end{equation*}
$$

where $\left(\mathbf{i}_{m}, \mathbf{j}_{m}, \mathbf{k}_{m}\right)$ are the unit vectors of coordinate axes, and (ii) by the column matrix

$$
\mathbf{r}_{m}=\left[\begin{array}{c}
x_{m} \tag{1.1.2}\\
y_{m} \\
z_{m}
\end{array}\right] .
$$

The subscript " m " indicates that the position vector is represented in coordinate system $S_{m}\left(x_{m}, y_{m}, z_{m}\right)$. To save space while designating a vector, we will also represent the position vector by the row matrix,

$$
\mathbf{r}_{m}=\left[\begin{array}{lll}
x_{m} & y_{m} & z_{m} \tag{1.1.3}
\end{array}\right]^{\mathrm{T}} .
$$

The superscript " T " means that $\mathbf{r}_{m}^{\mathrm{T}}$ is a transpose matrix with respect to \mathbf{r}_{m}.
A point-the end of the position vector - is determined in Cartesian coordinates with three numbers: x, y, z. Generally, coordinate transformation in matrix operations needs mixed matrix operations where both multiplication and addition of matrices must be used. However, only multiplication of matrices is needed if position vectors are represented with homogeneous coordinates. Application of such coordinates for coordinate transformation in theory of mechanisms has been proposed by Denavit \& Hartenberg [1955] and by Litvin [1955]. Homogeneous coordinates of a point in a threedimensional space are determined by four numbers $\left(x^{*}, y^{*}, z^{*}, t^{*}\right)$ which are not equal to zero simultaneously and of which only three are independent. Assuming that $t^{*} \neq 0$, ordinary coordinates and homogeneous coordinates may be related as follows:

$$
\begin{equation*}
x=\frac{x^{*}}{t^{*}} \quad y=\frac{y^{*}}{t^{*}} \quad z=\frac{z^{*}}{t^{*}} . \tag{1.1.4}
\end{equation*}
$$

Figure I.I.I: Position vector in Cartesian coordinate system.

With $t^{*}=1$, a point may be specified by homogeneous coordinates such as $(x, y, z, 1)$, and a position vector may be represented by

$$
\begin{aligned}
& \mathbf{r}_{m}=\left[\begin{array}{c}
x_{m} \\
y_{m} \\
z_{m} \\
1
\end{array}\right] \text { or } \\
& \mathbf{r}_{m}=\left[\begin{array}{llll}
x_{m} & y_{m} & z_{m} & 1
\end{array}\right]^{\mathrm{T}} .
\end{aligned}
$$

I.2 COORDINATE TRANSFORMATION IN MATRIX REPRESENTATION

Consider two coordinate systems $S_{m}\left(x_{m}, y_{m}, z_{m}\right)$ and $S_{n}\left(x_{n}, y_{n}, z_{n}\right)$ (Fig. 1.2.1). Point M is represented in coordinate system S_{m} by the position vector

$$
\mathbf{r}_{m}=\left[\begin{array}{llll}
x_{m} & y_{m} & z_{m} & 1 \tag{1.2.1}
\end{array}\right]^{\mathrm{T}} .
$$

The same point M can be determined in coordinate system S_{n} by the position vector

$$
\mathbf{r}_{n}=\left[\begin{array}{llll}
x_{n} & y_{n} & z_{n} & 1 \tag{1.2.2}
\end{array}\right]^{\mathrm{T}}
$$

with the matrix equation

$$
\begin{equation*}
\mathbf{r}_{n}=\mathbf{M}_{n m} \mathbf{r}_{m} \tag{1.2.3}
\end{equation*}
$$

Figure I.2.I: Derivation of coordinate transformation.

Matrix $\mathbf{M}_{n m}$ is represented by

$$
\begin{align*}
\mathbf{M}_{n m} & =\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\left(\mathbf{i}_{n} \cdot \mathbf{i}_{m}\right) & \left(\mathbf{i}_{n} \cdot \mathbf{j}_{m}\right) & \left(\mathbf{i}_{n} \cdot \mathbf{k}_{m}\right) & \left(\widehat{O_{n} O_{m}} \cdot \mathbf{i}_{n}\right) \\
\left(\mathbf{j}_{n} \cdot \mathbf{i}_{m}\right) & \left(\mathbf{j}_{n} \cdot \mathbf{j}_{m}\right) & \left(\mathbf{j}_{n} \cdot \mathbf{k}_{m}\right) & \left(\widehat{O_{n} O_{m}} \cdot \mathbf{j}_{n}\right) \\
\left(\mathbf{k}_{n} \cdot \mathbf{i}_{m}\right) & \left(\mathbf{k}_{n} \cdot \mathbf{j}_{m}\right) & \left(\mathbf{k}_{n} \cdot \mathbf{k}_{m}\right) & \left(\widehat{O_{n} O_{m}} \cdot \mathbf{k}_{n}\right) \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\cos \left(\widehat{x_{n}, x_{m}}\right) & \cos \left(\widehat{x_{n}, y_{m}}\right) & \cos \left(\widehat{\left.x_{n}, z_{m}\right)}\right. & x_{n}^{\left(\mathrm{O}_{m}\right)} \\
\cos \left(\widehat{y_{n}, x_{m}}\right) & \cos \left(\widehat{y_{n}, y_{m}}\right) & \cos \left(\widehat{\left.y_{n}, z_{m}\right)}\right. & y_{n}^{\left(\mathrm{O}_{m}\right)} \\
\cos \left(\widehat{\left.z_{n}, x_{m}\right)}\right) & \cos \left(\widehat{\left.z_{n}, y_{m}\right)}\right. & \cos \left(\widehat{\left.z_{n}, z_{m}\right)}\right. & z_{n}^{\left(\mathrm{O}_{m}\right)} \\
0 & 0 & 0 & 1
\end{array}\right] . \tag{1.2.4}
\end{align*}
$$

Here, $\left(\mathbf{i}_{n}, \mathbf{j}_{n}, \mathbf{k}_{n}\right)$ are the unit vectors of the axes of the "new" coordinate system; $\left(\mathbf{i}_{m}, \mathbf{j}_{m}, \mathbf{k}_{m}\right)$ are the unit vectors of the axes of the "old" coordinate system; O_{n} and O_{m} are the origins of the "new" and "old" coordinate systems; subscript "nm" in the designation $\mathbf{M}_{n m}$ indicates that the coordinate transformation is performed from S_{m} to
S_{n}. The determination of elements $a_{l k}(k=1,2,3 ; l=1,2,3)$ of matrix $\mathbf{M}_{n m}$ is based on the following rules:
(i) Elements of the 3×3 submatrix

$$
\mathbf{L}_{n m}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{1.2.5}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

represent the direction cosines of the "old" unit vectors ($\mathbf{i}_{m}, \mathbf{j}_{m}, \mathbf{k}_{m}$) in the "new" coordinate systems S_{n}. For instance, $a_{21}=\cos \left(\widehat{y_{n}, x_{m}}\right), a_{32}=\cos \left(z_{n}, \widehat{y}_{m}\right)$, and so on. The subscripts of elements $a_{k l}$ in matrix (1.2.5) indicate the number l of the "old" coordinate axis and the number k of the "new" coordinate axis. Axes x, y, z are given numbers 1,2 , and 3 , respectively.
(ii) Elements a_{14}, a_{24}, and a_{34} represent the "new" coordinates $x_{n}^{\left(\mathrm{O}_{m}\right)}, y_{n}^{\left(\mathrm{O}_{m}\right)}, z_{n}^{\left(\mathrm{O}_{m}\right)}$ of the "old" origin O_{m}.

Recall that nine elements of matrix $\mathbf{L}_{n m}$ are related by six equations that express the following:
(1) Elements of each row (or column) are direction cosines of a unit vector. Thus,

$$
\begin{equation*}
a_{11}^{2}+a_{12}^{2}+a_{13}^{2}=1, \quad a_{11}^{2}+a_{21}^{2}+a_{31}^{2}=1, \quad \cdots . \tag{1.2.6}
\end{equation*}
$$

(2) Due to orthogonality of unit vectors of coordinate axes, we have

$$
\begin{align*}
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right]\left[\begin{array}{lll}
a_{21} & a_{22} & a_{23}
\end{array}\right]^{\mathrm{T}}=0} \\
& {\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31}
\end{array}\right]\left[\begin{array}{lll}
a_{12} & a_{22} & a_{32}
\end{array}\right]^{\mathrm{T}}=0 .} \tag{1.2.7}
\end{align*}
$$

An element of matrix $\mathbf{L}_{n m}$ can be represented by a respective determinant of the second order [Strang, 1988]. For instance,

$$
a_{11}=\left|\begin{array}{ll}
a_{22} & a_{23} \tag{1.2.8}\\
a_{32} & a_{33}
\end{array}\right|, \quad a_{23}=(-1)\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| .
$$

To determine the new coordinates $\left(x_{n}, y_{n}, z_{n}, 1\right)$ of point M, we have to use the rule of multiplication of a square matrix (4×4) and a column matrix (4×1). (The number of rows in the column matrix is equal to the number of columns in matrix $\mathbf{M}_{n m}$.) Equation (1.2.3) yields

$$
\begin{align*}
& x_{n}=a_{11} x_{m}+a_{12} y_{m}+a_{13} z_{m}+a_{14} \\
& y_{n}=a_{21} x_{m}+a_{22} y_{m}+a_{23} z_{m}+a_{24} \tag{1.2.9}\\
& z_{n}=a_{31} x_{m}+a_{32} y_{m}+a_{33} z_{m}+a_{34} .
\end{align*}
$$

The purpose of the inverse coordinate transformation is to determine the coordinates $\left(x_{m}, y_{m}, z_{m}\right)$, taking as given coordinates $\left(x_{n}, y_{n}, z_{n}\right)$. The inverse coordinate transformation is represented by

$$
\begin{equation*}
\mathbf{r}_{m}=\mathbf{M}_{m n} \mathbf{r}_{n} \tag{1.2.10}
\end{equation*}
$$

The inverse matrix $\mathbf{M}_{m n}$ indeed exists if the determinant of matrix $\mathbf{M}_{n m}$ differs from zero.

There is a simple rule that allows the elements of the inverse matrix to be determined in terms of elements of the direct matrix. Consider that matrix $\mathbf{M}_{n m}$ is given by

$$
\mathbf{M}_{n m}=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \tag{1.2.11}\\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

It is necessary to determine the elements of matrix $\mathbf{M}_{m n}$ represented by

$$
\mathbf{M}_{m n}=\left[\begin{array}{cccc}
b_{11} & b_{12} & b_{13} & b_{14} \tag{1.2.12}\\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Here,

$$
\mathbf{M}_{m n}=\mathbf{M}_{n m}^{-1}, \quad \mathbf{M}_{m n} \mathbf{M}_{n m}=\mathbf{I}
$$

where I is the identity matrix.
The submatrix $\mathbf{L}_{m n}$ of the order (3×3) is determined as follows:

$$
\mathbf{L}_{m n}=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \tag{1.2.13}\\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]=\mathbf{L}_{n m}^{\mathrm{T}} .
$$

The remaining elements (b_{14}, b_{24}, and b_{34}) are determined with the following equations:

$$
\begin{align*}
& b_{14}=-\left(a_{11} a_{14}+a_{21} a_{24}+a_{31} a_{34}\right) \Rightarrow-\left[\begin{array}{cccc}
: a_{11}: & a_{12} & a_{13} & : a_{14}: \\
: a_{21}: & a_{22} & a_{23} & : a_{24}: \\
: a_{31}: & a_{32} & a_{33} & : a_{34}: \\
: 0: & 0 & 0 & : 1:
\end{array}\right] \\
& b_{24}=-\left(a_{12} a_{14}+a_{22} a_{24}+a_{32} a_{34}\right) \Rightarrow-\left[\begin{array}{cccc}
a_{11} & : a_{12}: & a_{13} & : a_{14}: \\
a_{21} & : a_{22}: & a_{23} & : a_{24}: \\
a_{31} & : a_{32}: & a_{33} & : a_{34}: \\
0 & : 0: & 0 & : 1:
\end{array}\right] \\
& b_{34}=-\left(a_{13} a_{14}+a_{23} a_{24}+a_{33} a_{34}\right) \Rightarrow-\left[\begin{array}{cccc}
a_{11} & a_{12} & : a_{13}: & : a_{14}: \\
a_{21} & a_{22} & : a_{23}: & : a_{24}: \\
a_{31} & a_{32} & : a_{33}: & : a_{34}: \\
0 & 0 & : 0: & : 1:
\end{array}\right] . \tag{1.2.14}
\end{align*}
$$

The columns to be multiplied are marked.
To perform successive coordinate transformation, we need only to follow the product rule of matrix algebra. For instance, the matrix equation

$$
\begin{equation*}
\mathbf{r}_{p}=\mathbf{M}_{p(p-1)} \mathbf{M}_{(p-1)(p-2)} \cdots \mathbf{M}_{32} \mathbf{M}_{21} \mathbf{r}_{1} \tag{1.2.15}
\end{equation*}
$$

represents successive coordinate transformation from S_{1} to S_{2}, from S_{2} to S_{3}, \ldots, from S_{p-1} to S_{p}.

To perform transformation of components of free vectors, we need only to apply 3×3 submatrices L, which may be obtained by eliminating the last row and the last column of the corresponding matrix \mathbf{M}. This results from the fact that the free-vector components (projections on coordinate axes) do not depend on the location of the origin of the coordinate system.

The transformation of vector components of a free vector A from system S_{m} to S_{n} is represented by the matrix equation

$$
\begin{equation*}
\mathbf{A}_{n}=\mathbf{L}_{n m} \mathbf{A}_{m} \tag{1.2.16}
\end{equation*}
$$

where

$$
\mathbf{A}_{n}=\left[\begin{array}{c}
A_{x n} \tag{1.2.17}\\
A_{y n} \\
A_{z n}
\end{array}\right], \quad \mathbf{L}_{n m}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right], \quad \mathbf{A}_{m}=\left[\begin{array}{c}
A_{x m} \\
A_{y m} \\
A_{z m}
\end{array}\right] .
$$

A normal to the gear tooth surface is a sliding vector because it may be translated along its line of action. However, we may transform the surface normal as a free vector if the surface point where the surface normal is considered will be transferred simultaneously.

I.3 ROTATION ABOUT AN AXIS

Two Main Problems

We consider a general case in which the rotation is performed about an axis that does not coincide with any axis of the employed coordinate system. We designate the unit vector of the axis of rotation by \mathbf{c} (Fig. 1.3.1) and assume that the rotation about \mathbf{c} may be performed either counterclockwise or clockwise.

Henceforth we consider two coordinate systems: (i) the fixed one, S_{a}; and (ii) the movable one, S_{b}. There are two typical problems related to rotation about c . The first one can be formulated as follows.

Consider that a position vector is rigidly connected to the movable body. The initial position of the position vector is designated by $\overline{O A}=\rho$ (Fig. 1.3.1). After rotation through an angle ϕ about c , vector ρ will take a new position designated by $\overline{O A}^{*}=\rho^{*}$. Both vectors, ρ and ρ^{*} (Fig. 1.3.1), are considered to be in the same coordinate system, say S_{a}. Our goal is to develop an equation that relates components of vectors ρ_{a} and ρ_{a}^{*}. (The subscript " a " indicates that the two vectors are represented in the same coordinate system S_{a}.) Matrix equation

$$
\begin{equation*}
\rho_{a}^{*}=\mathrm{L}_{a} \rho_{a} \tag{1.3.1}
\end{equation*}
$$

describes the relation between the components of vectors ρ and ρ^{*} that are represented in the same coordinate system S_{a}.

The other problem concerns representation of the same position vector in different coordinate systems. Our goal is to derive matrix $\mathbf{L}_{b a}$ in matrix equation

$$
\begin{equation*}
\rho_{b}=\mathbf{L}_{b a} \rho_{a} \tag{1.3.2}
\end{equation*}
$$

Figure I.3.I: Rigid body rotation.

The designations ρ_{a} and ρ_{b} indicate that the same position vector ρ is represented in coordinate systems S_{a} and S_{b}, respectively. Although the same position vector is considered, the components of ρ in coordinate systems S_{a} and S_{b} are different and we designate them by

$$
\begin{equation*}
\rho_{a}=a_{1} \dot{\mathbf{i}}_{a}+a_{2} \dot{\mathbf{j}}_{a}+a_{3} \mathbf{k}_{a} \tag{1.3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{\rho}_{b}=b_{1} \mathbf{i}_{b}+b_{2} \mathbf{j}_{b}+b_{3} \mathbf{k}_{b} . \tag{1.3.4}
\end{equation*}
$$

Matrix $\mathbf{L}_{b a}$ is an operator that transforms the components $\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]^{\mathrm{T}}$ into $\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]^{\mathrm{T}}$. It will be shown below that operators \mathbf{L}_{a} and $\mathbf{L}_{b a}$ are related.

Problem I. Relations between components of vectors ρ_{a} and ρ_{a}^{*}.
Recall that ρ_{a} and ρ_{a}^{*} are two position vectors that are represented in the same coordinate system S_{a}. Vector ρ represents the initial position of the position vector, before rotation, and ρ^{*} represents the position vector after rotation about c . The following derivations are based on the assumption that rotation about \mathbf{c} is performed counterclockwise. The procedure of derivations (see also Suh \& Radcliffe, 1978, Shabana, 1989, and others) is as follows.

Step 1: We represent ρ_{a}^{*} by the equation (Fig. 1.3.1)

$$
\begin{equation*}
\rho_{a}^{*}=\overline{O M}+\overline{M N}+\overline{N A^{*}} \tag{1.3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{O M}=\left(\mathbf{c}_{a} \cdot \boldsymbol{\rho}_{a}\right) \mathbf{c}_{a}=\left(\mathbf{c}_{a} \cdot \boldsymbol{\rho}_{a}^{*}\right) \mathbf{c}_{a} \tag{1.3.6}
\end{equation*}
$$

and \mathbf{c}_{a} is the unit vector of the axis of rotation that is represented in S_{a}.
Step 2: Vector ρ_{a} is represented by the equation

$$
\begin{equation*}
\rho_{a}=\overline{O M}+\overline{M A}=\left(\mathbf{c}_{a} \cdot \boldsymbol{\rho}_{a}\right) \mathbf{c}_{a}+\overline{M A} \tag{1.3.7}
\end{equation*}
$$

that yields

$$
\begin{equation*}
\overline{M A}=\rho_{a}-\left(\mathbf{c}_{a} \cdot \rho_{a}\right) \mathbf{c}_{a} . \tag{1.3.8}
\end{equation*}
$$

We emphasize that a vector being rotated about c generates a cone with an apex angle α. Thus, both vectors, ρ and ρ^{*}, are the generatrices of the same cone, as shown in Fig. 1.3.1.

Step 3: Vector $\overline{M N}$ has the same direction as $\overline{M A}$ and this yields

$$
\begin{equation*}
|\overline{M N}|=\left|\overline{M A^{*}}\right| \cos \phi=|\overline{M A}| \cos \phi=\rho \sin \alpha \cos \phi \tag{1.3.9}
\end{equation*}
$$

where α is the apex angle of the generated cone, $|\overline{M A}|=\rho \sin \alpha$, and ρ is the magnitude of ρ.

Equations (1.3.8) and (1.3.9) yield

$$
\begin{equation*}
\overline{M N}=|\overline{M N}| \frac{\overline{M A}}{|\overline{M A}|}=\left[\rho_{a}-\left(\mathbf{c}_{a} \cdot \rho_{a}\right) \mathbf{c}_{a}\right] \cos \phi \tag{1.3.10}
\end{equation*}
$$

Step 4: Vector $\overline{N A^{*}}$ has the same direction as $\left(\mathbf{c}_{a} \times \boldsymbol{\rho}_{a}\right)$ and may be represented by

$$
\begin{equation*}
\overline{N A^{*}}=\frac{\mathbf{c}_{a} \times \boldsymbol{\rho}_{a}}{\left|\mathbf{c}_{a} \times \boldsymbol{\rho}_{a}\right|}\left|\overline{N A^{*}}\right|=\sin \phi\left(\mathbf{c}_{a} \times \boldsymbol{\rho}_{a}\right) . \tag{1.3.11}
\end{equation*}
$$

Here,

$$
\left|\overline{N A^{*}}\right|=\left|\overline{M A^{*}}\right| \sin \phi=\rho \sin \alpha \sin \phi, \quad\left|\mathbf{c}_{a} \times \boldsymbol{\rho}_{a}\right|=\rho \sin \alpha .
$$

Step 5: Equations (1.3.5), (1.3.6), (1.3.10), and (1.3.11) yield

$$
\begin{equation*}
\rho_{a}^{*}=\rho_{a} \cos \phi+(1-\cos \phi)\left(\mathbf{c}_{a} \cdot \rho_{a}\right) \mathbf{c}_{a}+\sin \phi\left(\mathbf{c}_{a} \times \rho_{a}\right) . \tag{1.3.12}
\end{equation*}
$$

Step 6: It is easy to prove that

$$
\begin{equation*}
\left(\mathbf{c}_{a} \cdot \rho_{a}\right) \mathbf{c}_{a}=\mathbf{c}_{a} \times\left(\mathbf{c}_{a} \times \boldsymbol{\rho}_{a}\right)+\rho_{a} \tag{1.3.13}
\end{equation*}
$$

because

$$
\mathbf{c}_{a} \times\left(\mathbf{c}_{a} \times \rho_{a}\right)=\left(\mathbf{c}_{a} \cdot \rho_{a}\right) \mathbf{c}_{a}-\rho_{a}\left(\mathbf{c}_{a} \cdot \mathbf{c}_{a}\right) .
$$

Step 7: Equations (1.3.12) and (1.3.13) yield

$$
\begin{equation*}
\rho_{a}^{*}=\rho_{a}+(1-\cos \phi)\left[\mathbf{c}_{a} \times\left(\mathbf{c}_{a} \times \rho_{a}\right)\right]+\sin \phi\left(\mathbf{c}_{a} \times \rho_{a}\right) . \tag{1.3.14}
\end{equation*}
$$

Equation (1.3.14) is known as the Rodrigues formula. According to the investigation by Cheng \& Gupta [1989], this equation deserves to be called the Euler-Rodrigues, formula.

Step 8: Additional derivations are directed at representation of the Euler-Rodrigues formula in matrix form.

The cross product $\left(\mathbf{c}_{a} \times \boldsymbol{\rho}_{a}\right)$ may be represented in matrix form by

$$
\begin{equation*}
\mathrm{c}_{a} \times \rho_{a}=\mathrm{C}^{s} \rho_{a} \tag{1.3.15}
\end{equation*}
$$

where \mathbf{C}^{s} is the skew-symmetric matrix represented by

$$
\mathbf{C}^{s}=\left[\begin{array}{ccc}
0 & -c_{3} & c_{2} \tag{1.3.16}\\
c_{3} & 0 & -c_{1} \\
-c_{2} & c_{1} & 0
\end{array}\right]
$$

Vector \mathbf{c}_{a} is represented by

$$
\begin{equation*}
\mathbf{c}_{a}=c_{1} \mathbf{i}_{a}+c_{2} \dot{\mathbf{j}}_{a}+c_{3} \mathbf{k}_{a} . \tag{1.3.17}
\end{equation*}
$$

Step 9: Equations (1.3.14), (1.3.15), and (1.3.16) yield the following matrix representation of the Euler-Rodrigues formula:

$$
\begin{equation*}
\boldsymbol{\rho}_{a}^{*}=\left[\mathbf{I}+(1-\cos \phi)\left(\mathbf{C}^{s}\right)^{2}+\sin \phi \mathbf{C}^{s}\right] \boldsymbol{\rho}_{a}=\mathbf{L}_{a} \boldsymbol{\rho}_{a} \tag{1.3.18}
\end{equation*}
$$

where I is the 3×3 identity matrix. While deriving Eqs. (1.3.14) and (1.3.18), we assumed that the rotation is performed counterclockwise. For the case of clockwise rotation, it is necessary to change the sign preceding $\sin \phi$ to its opposite. The expression for matrix L_{a} that will cover two directions of rotation is

$$
\begin{equation*}
\mathbf{L}_{a}=\mathbf{I}+(1-\cos \phi)\left(\mathbf{C}^{s}\right)^{2} \pm \sin \phi \mathbf{C}^{s} . \tag{1.3.19}
\end{equation*}
$$

The upper sign preceding $\sin \phi$ corresponds to counterclockwise rotation and the lower sign corresponds to rotation in a clockwise direction. In both cases the unit vector c must be expressed by the same Eq. (1.3.17) that determines the orientation of \mathbf{c} but not the direction of rotation. The direction of rotation is identified with the proper sign preceding $\sin \phi$ in Eq. (1.3.19).

Problem 2. Recall that our goal is to derive the operator $\mathbf{L}_{b a}$ in matrix equation (1.3.2) that transforms components of the same vector (see Eqs. (1.3.3) and (1.3.4)). It will be shown below that the sought-for operator is represented as

$$
\begin{equation*}
\mathbf{L}_{b a}=\mathbf{L}_{a}^{\mathrm{T}}=\mathbf{I}+(1-\cos \phi)\left(\mathbf{C}^{s}\right)^{2} \mp \sin \phi \mathbf{C}^{s} . \tag{1.3.20}
\end{equation*}
$$

Operator $\mathbf{L}_{b a}$ can be obtained from operator \mathbf{L}_{a} given by Eq. (1.3.19) by changing the sign of the angle of rotation, ϕ. The upper and lower signs preceding $\sin \phi$ in Eq. (1.3.20) correspond to the cases where S_{a} will coincide with S_{b} by rotation counterclockwise and clockwise, respectively. The proof is based on the determination of components of the same vector, say vector $\overline{O A}$ shown in Fig. 1.3.1, in coordinate systems S_{a} and S_{b}.

Step 1: We consider initially that vector $\overline{O A}$ is represented in S_{a} as

$$
\rho_{a}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{1.3.21}
\end{array}\right]^{\mathrm{T}}
$$

Step 2: To determine components of vector $\overline{O A}$ in S_{b} we consider first that coordinate system S_{b} and the previously mentioned position vector are rotated as one rigid body
about \mathbf{c}. After rotation through angle ϕ, position vector $\overline{O A}$ will take the position $\overline{O A}^{*}$ and can be represented in S_{b} as

$$
\begin{equation*}
\overline{\mathrm{OA}}^{*}=a_{1} \mathbf{i}_{b}+a_{2} \dot{\mathbf{j}}_{b}+a_{3} \mathbf{k}_{b} \tag{1.3.22}
\end{equation*}
$$

It is obvious that vector $\overline{O A}^{*}$ has in S_{b} the same components as vector $\overline{O A}$ has in S_{a}.
Step 3: We consider now in S_{b} two vectors $\overline{O A}^{*}$ and $\overline{O A}$. Vector $\overline{O A}^{*}$ will coincide with $\overline{O A}$ after clockwise rotation about \mathbf{c}. The components of vectors $\overline{O A}^{*}$ and $\overline{O A}$ in S_{b} are related by an equation that is similar to Eq. (1.3.19). The difference is that we now have to consider that the rotation from $\overline{O A}^{*}$ to $\overline{O A}$ is performed clockwise. Then we obtain

$$
\begin{equation*}
(\overline{\mathrm{OA}})_{b}=\mathbf{L}_{b}\left(\overline{\mathrm{OA}}^{*}\right)_{b}=\left[\mathbf{I}+(1-\cos \phi)\left(\mathbf{C}^{s}\right)^{2}-\sin \phi \mathbf{C}^{s}\right]\left(\overline{\mathrm{OA}}^{*}\right)_{b} . \tag{1.3.23}
\end{equation*}
$$

Designating components of $(\overline{O A})_{b}$ by $\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]^{\mathrm{T}}$, we receive

$$
\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]^{\mathrm{T}}=\left[\mathbf{I}+(1-\cos \phi)\left(\mathbf{C}^{s}\right)^{2}-\sin \phi \mathbf{C}^{s}\right]\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{1.3.24}
\end{array}\right]^{\mathrm{T}} .
$$

Step 4: We have now obtained components of the same vector $\overline{O A}$ in coordinate systems S_{a} and S_{b}, respectively. The matrix equation that describes transformation of components of $\overline{O A}$ is

$$
\begin{equation*}
(\overline{\mathrm{OA}})_{b}=\mathrm{L}_{b a}(\overline{\mathrm{OA}})_{a} \tag{1.3.25}
\end{equation*}
$$

For the case in which rotation from S_{a} to S_{b} is performed counterclockwise we have obtained that

$$
\begin{equation*}
\mathbf{L}_{b a}=\mathbf{I}+(1-\cos \phi)\left(\mathbf{C}^{s}\right)^{2}-\sin \phi \mathbf{C}^{s} \tag{1.3.26}
\end{equation*}
$$

Similarly, for the case in which rotation from S_{a} to S_{b} is performed clockwise, we obtain

$$
\begin{equation*}
\mathbf{L}_{b a}=\mathbf{I}+(1-\cos \phi)\left(\mathbf{C}^{s}\right)^{2}+\sin \phi \mathbf{C}^{s} \tag{1.3.27}
\end{equation*}
$$

The general description of operator $\mathbf{L}_{b a}$ and the respective coordinate transformation are as follows:

$$
\begin{equation*}
\rho_{b}=\mathbf{L}_{b a} \boldsymbol{\rho}_{a}=\left[\mathbf{I}+(1-\cos \phi)\left(\mathbf{C}^{s}\right)^{2} \mp \sin \phi \mathbf{C}^{s}\right] \rho_{a} . \tag{1.3.28}
\end{equation*}
$$

The upper and lower signs preceding $\sin \phi$ correspond to the cases in which rotation from S_{a} to S_{b} is performed counterclockwise and clockwise, respectively.

In our identification of coordinate systems S_{a} and S_{b} we do not use the terms fixed and movable. We just consider that S_{a} is the previous coordinate system and S_{b} is the new one, and we take into account how the rotation from S_{a} to S_{b} is performed: counterclockwise or clockwise.

Matrix $L_{b a}$

Using Eqs. (1.3.26) and (1.3.27), we may represent elements of matrix $\mathbf{L}_{b a}$ in terms of components of unit vector c of the axis of rotation and the angle of rotation ϕ. Thus,

Figure I.3.2: Derivation of coordinate transformation by rotation.

we obtain

$$
\mathbf{L}_{b a}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{1.3.29}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Here,

$$
\begin{align*}
& a_{11}=\cos \phi\left(1-c_{1}^{2}\right)+c_{1}^{2} \\
& a_{12}=(1-\cos \phi) c_{1} c_{2} \pm \sin \phi c_{3} \\
& a_{13}=(1-\cos \phi) c_{1} c_{3} \mp \sin \phi c_{2} \\
& a_{21}=(1-\cos \phi) c_{1} c_{2} \mp \sin \phi c_{3} \\
& a_{22}=\cos \phi\left(1-c_{2}^{2}\right)+c_{2}^{2} \tag{1.3.30}\\
& a_{23}=(1-\cos \phi) c_{2} c_{3} \pm \sin \phi c_{1} \\
& a_{31}=(1-\cos \phi) c_{1} c_{3} \pm \sin \phi c_{2} \\
& a_{32}=(1-\cos \phi) c_{2} c_{3} \mp \sin \phi c_{1} \\
& a_{33}=\cos \phi\left(1-c_{3}^{2}\right)+c_{3}^{2} .
\end{align*}
$$

When the axis of rotation coincides with a coordinate axis of S_{a}, we have to make two components of unit vector \mathbf{c}_{a} equal to zero in Eqs. (1.3.30). For instance, in the case in which rotation is performed about the z_{a} axis (Fig. 1.3.2), we have

$$
\mathbf{c}_{a}=\mathbf{k}_{a}=\left[\begin{array}{lll}
0 & 0 & 1 \tag{1.3.31}
\end{array}\right]^{\mathrm{T}} .
$$

We emphasize again that in all cases of coordinate transformation only elements (1.3.30) of matrix $\mathrm{L}_{b a}$, and not the components of c_{a}, depend on the direction of rotation. The unit vector c can be represented in either of the two coordinate systems, S_{a} and S_{b}, by the equations

$$
\begin{equation*}
\mathbf{c}=c_{1} \mathbf{i}_{a}+c_{2} \dot{\mathbf{j}}_{a}+c_{3} \mathbf{k}_{a}=c_{1} \mathbf{i}_{b}+c_{2} \dot{\mathbf{j}}_{b}+c_{3} \mathbf{k}_{b} \tag{1.3.32}
\end{equation*}
$$

This means that the unit vector c of the axis of rotation has the same components in both coordinate systems, S_{a} and S_{b}. It is easily verified that

$$
\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right]^{\mathrm{T}}=\mathbf{L}_{b a}\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3} \tag{1.3.33}
\end{array}\right]^{\mathrm{T}}
$$

